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Reward prediction errors create event boundaries in memory

Nina Rouhania,b,*, Kenneth A. Normana,b, Yael Niva,b, Aaron M. Bornsteinc

aPrinceton Neuroscience Institute, Princeton University, United States of America

bDepartment of Psychology, Princeton University, United States of America

cDepartment of Cognitive Sciences and Center for the Neurobiology of Learning and Memory, 
University of California, Irvine, United States of America

Abstract

We remember when things change. Particularly salient are experiences where there is a change in 

rewards, eliciting reward prediction errors (RPEs). How do RPEs influence our memory of those 

experiences? One idea is that this signal directly enhances the encoding of memory. Another, not 

mutually exclusive, idea is that the RPE signals a deeper change in the environment, leading to the 

mnemonic separation of subsequent experiences from what came before, thereby creating a new 

latent context and a more separate memory trace. We tested this in four experiments where 

participants learned to predict rewards associated with a series of trial-unique images. High-

magnitude RPEs indicated a change in the underlying distribution of rewards. To test whether 

these large RPEs created a new latent context, we first assessed recognition priming for sequential 

pairs that included a high-RPE event or not (Exp. 1: n = 27 & Exp. 2: n = 83). We found evidence 

of recognition priming for the high-RPE event, indicating that the high-RPE event is bound to its 

predecessor in memory. Given that high-RPE events are themselves preferentially remembered 

(Rouhani, Norman, & Niv, 2018), we next tested whether there was an event boundary across a 

high-RPE event (i.e., excluding the high-RPE event itself; Exp. 3: n = 85). Here, sequential pairs 

across a high RPE no longer showed recognition priming whereas pairs within the same latent 

reward state did, providing initial evidence for an RPE-modulated event boundary. We then 

investigated whether RPE event boundaries disrupt temporal memory by asking participants to 

order and estimate the distance between two events that had either included a high-RPE event 

between them or not (Exp. 4). We found (n = 49) and replicated (n = 77) worse sequence memory 

for events across a high RPE. In line with our recognition priming results, we did not find 

sequence memory to be impaired between the high-RPE event and its predecessor, but instead 

found worse sequence memory for pairs across a high-RPE event. Moreover, greater distance 

between events at encoding led to better sequence memory for events across a low-RPE event, but 

not a high-RPE event, suggesting separate mechanisms for the temporal ordering of events within 

versus across a latent reward context. Altogether, these findings demonstrate that high-RPE events 

are both more strongly encoded, show intact links with their predecessor, and act as event 

boundaries that interrupt the sequential integration of events. We captured these effects in a variant 
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of the Context Maintenance and Retrieval model (CMR; Polyn, Norman, & Kahana, 2009), 

modified to incorporate RPEs into the encoding process.

Keywords

Memory; Reinforcement learning; Context; Reward prediction errors; Computational model; 
Sequence memory; Distance memory; Recognition priming; Event boundaries

1. Introduction

A single experience can change our expectations of future rewards. The ability to infer this 

change is critical to adaptive behavior, as it guides decisions to seek or avoid that experience 

in the future. For example, imagine you watch a new episode of what had long been your 

favorite television show, only to find that you strongly dislike it. Worse, this bad episode 

indicates a decrease in the show’s quality (e.g. brought on by a change in writers). In 

reinforcement learning, a surprising event (e.g., a dramatically substandard tv episode) 

generates a large reward prediction error (RPE), which quantifies the difference between 

expected and received reward. Recent work shows that larger positive or negative RPEs 

experienced during reward learning lead to improved memory for those surprising events 

(Rouhani et al., 2018). However, the mechanism behind this enhanced memory is unclear. Is 

the episode where the quality of the show changed better remembered because it is more 

strongly stamped in memory? Or is it better remembered because it predicts a meaningful 

change in the state of the show, thereby separating the pleasant episodes that came before it 

from the unpleasant episodes that followed, creating separate clusters in memory? In other 

words, do high RPEs lead to better memory because they bind events more strongly to the 

context in which the event occurred, leading to greater accessibility of that memory when 

cued with context, or because they lead to the creation of a new context, thereby reducing 

interference from memories that came before?

If high RPEs create a new latent state or context, then we predicted they would act as event 
boundaries in memory. In fact, prediction errors (outside of the reward domain) are thought 

to create event boundaries by segmenting the continuous stream of experience into separate 

memory traces (DuBrow, Rouhani, Niv, & Norman, 2017; Gershman, Radulescu, Norman, 

& Niv, 2014; Zacks, Speer, Swallow, Braver, & Reynolds, 2007). It is, however, unknown 

whether changes in the distribution of rewards, signaled by high RPEs, act as event 

boundaries in memory. Events boundaries structure the temporal organization of memories 

by interrupting the integration of events across them. This leads to worse memory for the 

order of events (“sequence memory”) and greater perceived distance for events across rather 

than within contexts (DuBrow & Davachi, 2013; Horner, Bisby, Wang, Bogus, & Burgess, 

2016). This is further predicted by greater representational dissimilarity of those events in 

the hippocampus (DuBrow & Davachi, 2014; Ezzyat & Davachi, 2014). Interestingly, like 

high-RPE memories, memory for the event boundary itself is enhanced (Heusser, Ezzyat, 

Shiff, & Davachi, 2018; Swallow, Zacks, & Abrams, 2009). However, temporal memory for 

the events across the boundary is worse, suggesting a trade-off between memory for the 
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boundary event and the mnemonic integration of events across the boundary (Heusser et al., 

2018).

In four experiments, we investigated whether latent shifts in the reward distribution of a 

Pavlovian reinforcement task (which generate high RPEs) create such event boundaries in 

memory. In all experiments, participants first completed a passive, sequential reward task 

that included several high RPEs indicating changes in the underlying distribution of rewards. 

We then investigated the degree to which high RPEs affected the temporal organization of 

memories through recognition priming as well as sequence and distance memory measures. 

We reasoned that if high-RPE events are more strongly bound to the context they were 

encoded in, then events around the high RPE would be more accessible to one another, 

resulting in improved priming and better sequence memory. On the other hand, if high-RPE 

events create new contexts in memory, then events that occurred on either side of a high RPE 

would be less accessible to one another, leading to less effective priming and sequence 

memory relative to other pairs of events at the same presentation distance.

We further asked, if high RPEs do create event boundaries, where does this boundary occur? 

In other words, is the high-RPE event the last of the old context or the first of the new one? 

The latent cause model would predict that, because the RPE event is predictive of the 

rewards to follow, it should be the first event of a new context (Gershman et al., 2014). 

However, recent work suggests that event boundaries lead to the neural reinstatement of 

events that preceded the boundaries (Baldassano et al., 2017; Ben-Yakov & Dudai, 2011; 

Ben-Yakov, Eshel, & Dudai, 2013; Sols, DuBrow, Davachi, & Fuentemilla, 2017), which 

could bind the high-RPE event to its predecessors. Here, we characterized where the event 

boundary occurs by testing for each one of these possibilities. We first tested the associative 

links between a high-RPE event and its direct predecessor in Experiments 1 and 2, as well as 

one of the conditions of Experiment 4. However, given the possibility that the high-RPE 

event is still bound to its predecessor, we next tested whether an event boundary occurs 

across the high-RPE event, i.e., between the high-RPE event’s predecessor and successor, in 

Experiments 3 and 4.

We used recognition priming (Experiments 1–3) and sequence and distance memory tasks 

(Experiment 4) to compare associative and temporal memory for high and low-RPE events. 

We additionally developed a computational model (a variant of the Context Maintenance and 

Retrieval model; Polyn et al., 2009), where high RPEs induce mnemonic separation between 

rewarding events, and used this model to simulate performance on our experiments and test 

whether it captured our main behavioral results.

2. Overview of experiments

2.1. Recognition priming

In Experiments 1–3, we used a recognition priming task to probe whether RPEs influence 

the degree to which two sequential events are bound in memory. In recognition priming, 

recognition for an event is better and faster if it is preceded by the event that occurred before 

it during encoding (Schwartz, Howard, Jing, & Kahana, 2005; Zwaan, 1996). The idea is 

that retrieval of an item also reactivates items that were associated with it during encoding, 
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either directly, or indirectly via context, facilitating subsequent recognition of those items. 

This is strongest for the forward sequence (i.e., each cue will reactivate the subsequent one; 

Howard & Kahana, 2002). Given this, we reasoned that if a high RPE creates an event 

boundary that separates the high-RPE event from its predecessor, high-RPE events would 

become less accessible when primed during retrieval, demonstrating less recognition 

priming. If, instead, high-RPE events are more strongly bound to the previous event, we 

would expect the RPE event to be more accessible when primed by the preceding event, 

leading to enhanced recognition priming. Since evidence of recognition priming is more 

consistently reported in response latencies rather than memory accuracy (e.g., DuBrow & 

Davachi, 2014; Zwaan, 1996), we used and simulated recognition latency as our measure of 

recognition priming, but additionally report memory accuracy results.

2.2. Sequence and distance memory

In Experiment 4 (and its replication), we further tested whether high-RPE events disrupt the 

integration of events by probing the temporal ordering and perceived distance between them. 

Contextual changes (both external and internal to an observer) are thought to increase 

change in one’s internal context, leading to greater perceived time between events (Sahakyan 

& Smith, 2014). Performance on these measures of temporal memory is modulated by 

representations in the hippocampus, thought to support the temporal structuring of events in 

memory (Davachi & DuBrow, 2015): Previous studies have found that greater hippocampal 

dissimilarity between two events across an event boundary predicts worse sequence memory 

and larger subjective distances between them (DuBrow & Davachi, 2014; DuBrow & 

Davachi, 2016; Ezzyat & Davachi, 2014). For sequence memory, we asked participants to 

indicate which of two items came first, and for distance memory, we asked participants to 

indicate how far apart the events had been during encoding. If a high RPE signals an event 

boundary, we would expect worse sequence memory and greater estimated distances for 

pairs that include or are interrupted by a high-RPE event. On the other hand, if high-RPE 

events are more bound to the events around them, thereby activating and compressing the 

sequence of events in memory, we could expect better sequence memory and shorter 

estimated distances.

3. Experiment 1

3.1. Method

3.1.1. Participants—Participants were recruited from Amazon’s Mechanical Turk 

(MTurk), and 35 participants initiated the task (age: 27–67, median = 34; 15 female, 20 

male). The sample size chosen was a standard number of pilot subjects to recruit for an 

MTurk study in our lab. We first obtained informed consent online, and prior to accessing 

the task, participants had to correctly answer questions that checked for their understanding 

of the instructions. All procedures were approved by Princeton University’s Institutional 

Review Board. We excluded participants if they (a) missed > 20 memory trials, or (b) had a 

memory score of < 0.5 (memory score was determined by A’; Pollack & Norman, 1964). 

Using these criteria, we excluded 8 participants, which led to a sample of 27 participants.
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3.1.2. Task design—Participants completed 6 blocks, each consisting of learning (36 

trials in each block), choice (4 trials in each block), and recognition memory phases (42 

trials in each block). In the instructions, participants were told they would be exploring six 

different “rooms” (i.e. blocks), defined by distinct color backgrounds, where they would 

“find” different photographs and earn 10% of the reward value associated with each 

photograph. We used a Pavlovian (passive) learning design in order to isolate the effects of 

changes in reward alone, unconfounded by shifts in responding. In the learning phase, 

participants passively viewed a sequence of trial-unique images of scenes that were 

associated with different reward values (Fig. 1A). On each trial, participants saw the scene 

image for 1 s, then were shown the image with its associated value for 2 s. The individual 

values of the scenes fluctuated around a fixed mean (means ranged from 10¢ to 90¢ in steps 

of 10¢). Participants were encouraged to remember the individual values of the photographs 

as they would be choosing between them later (after each room), and earning the reward 

value of the chosen image.

In each room, the mean value of the photographs shifted either four or five times. 

Participants were told that a shift in the mean value of the photographs indicated they had 

found a new “collection” of photographs that were more or less valuable than their previous 

collection. Critically, as a result of these reward shifts, participants experienced high positive 

or negative reward prediction errors whose magnitude ranged from 20¢ to 80¢ (and every 

10¢ increment in between; these magnitudes reflect a one-trial difference between current 

and previous reward). Each participant experienced each magnitude of prediction error 1–2 

times, and the number of positive and negative reward shifts was balanced (13 positive and 

13 negative high-RPE events across the entire experiment). Within each latent reward state, 

participants experienced at least 5 and at most 9 trials (average = 6.75 trials) where the 

individual values of the scene images fluctuated around the same mean value (individual 

reward values never deviated > 5¢ from the mean value). After learning, within each block, 

participants completed 4 choice trials that were intended to ensure they paid attention to the 

values in the passively viewed sequence. On each choice trial, two previously-seen images 

were presented and the participant chose one, anticipating that the reward value of that 

image would be added to their payment for participating in the experiment. The 8 images 

used in the choice test were not used in any other memory test in that block.

3.1.3. Recognition priming—Following the choice test, we tested for recognition 

priming of pairs that had either been experienced sequentially during encoding or not (Fig. 

1B). On each recognition trial, participants were asked to indicate “old” or “new” for the 

presented image (by pressing ‘o’ or ‘n’ respectively), and to indicate their recognition 

judgment as quickly as possible. We use “prime” to refer to the first item and “target” to 

refer to the second item in any pair tested during recognition priming. Importantly, the image 

stayed on screen for 3 s regardless of the response time, ensuring that each prime was 

experienced for the same amount of time.

Recognition trials were comprised of (1) an old scene image (“low- or high-RPE −1”), 

followed by either (a) an old scene image that had followed the prime during learning and 

belonged to the same reward state (“low RPE”; 4 “priming pairs” within each recognition 

block, 24 pairs in total), (b) an old scene image that had followed the prime during learning 
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but belonged to a different reward state (“high RPE”; 4 priming pairs within each 

recognition block, 24 pairs in total); (c) an old scene image that had come before the prime 

(“out of sequence”; 4 pairs within each recognition block, 24 pairs total); (2) new scene 

images, representing one-third of the images seen during recognition (“new”; 14 images 

within each recognition block; 84 images total); (3) “single” old scene images - half of these 

items were presented following a new image and the other half after an old image (that had 

been studied at least 3 trials apart from the tested item) so that participants would not learn 

to expect old items to always appear in pairs (“single”; 4 images within each recognition 

block; 24 images total). Note that this pair structure was not disclosed to participants, and all 

test items were presented as part of one single sequence. The order of the conditions at test 

was predetermined to minimize unintentional spill-over memory effects during recognition 

from other old items that appeared close to a test item during learning (although the images 

themselves were randomized).

Recognition priming can be evidenced by better memory and faster reaction times in 

recognizing a target item after correctly retrieving the prime, compared to when the target 

was preceded by an old item that had not preceded it during encoding. Although we report 

differences in both memory accuracy (hit-rate) and response latencies for target items, 

recognition priming is more consistently observed in response latencies rather than hit-rates 

(DuBrow & Davachi, 2014; Zwaan, 1996), and so we focused on characterizing (and 

modeling) recognition latencies within the above four conditions. We were primarily 

interested in whether recognition priming was enhanced or interrupted for events that had 

been associated with a high RPE in comparison to the baseline, which was recognition 

latency for out-of-sequence targets. The out-of-sequence targets served as the primary 

baseline for recognition priming since, like the primed high and low-RPE pairs, the first item 

in the pair is “old”, accounting for any recognition priming effects that would arise from 

recognizing any old item (Duncan, Sadanand, & Davachi, 2012). The single (non-primed) 

images, where half of the images were preceded by new items, served as an additional 

baseline (see Section 3.1.4).

If a high-RPE event is bound to the event that occurred immediately before it, we would 

expect faster recognition of the target than the out-of-sequence target. On the other hand, if 

high-RPE events create a boundary in memory between the high-RPE event and its 

predecessor, we would expect similar reaction times in recognizing the high-RPE target and 

the out-of-sequence target. Together with the RPE condition (high or low), we tested 

whether the sign of the RPE additionally influenced or interacted with the RPE condition to 

influence recognition latency. We further examined how well a continuous versus a 

categorical measure of RPE (high or low) predicted our results.

3.1.4. Statistical analysis—All statistical comparisons were conducted using linear or 

generalized linear mixed-effects models (using lme4 package in R; Bates et al., 2015), 

treating participant as a random effect for both the intercept and the slope of the tested fixed 

effect. To test for differences in memory (i.e., hit-rate) between the primed pairs, we 

analyzed trials where the prime had been correctly remembered; we did this because of prior 

research indicating that recognition priming only occurs when the prime is itself 

remembered (Schwartz et al., 2005). This led to the inclusion of the following number of 
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tested trials in analyzing recognition memory: Experiment 1: mean = 50 (out of 72) trials per 

participant (range = 36–68 trials), Experiment 2: mean = 47 (out of 66) trials per participant 

(range = 28–65 trials), Experiment 3: mean = 53 (out of 72) trials per participant (range = 

34–71 trials). When testing for recognition priming in reaction time, we analyzed trials 

where both the prime and the target were correctly remembered. As discussed earlier (3.1.3), 

this was because we only expected recognition priming to occur for latencies when the 

prime and the target were correctly remembered. This led to the inclusion of the following 

number of tested trials in analyzing reaction time: Experiment 1: mean = 37 (out of 72) trials 

per participant (range = 17–60 trials), Experiment 2: mean = 34 (out of 66) trials per 

participant (range = 11–60 trials), Experiment 3: mean = 41 (out of 72) trials per participant 

(range = 14–68 trials). Reaction times were log-transformed and z-scored within participant.

The primary baseline used to assess recognition priming was the out-of-sequence pairs, 

although the single (non-primed) items can be used as an alternative baseline. The difference 

between the two conditions was that during the recognition tests, the single items were 

sometimes preceded by new items and sometimes preceded by old ones (that were not 

necessarily out of sequence from the item); however, we did not find reliable differences 

between single items preceded by new versus those preceded by old items within and across 

all recognition priming experiments. In line with this, the single items were not statistically 

different than the out-of-sequence targets in recognition latency; we report results for these 

items as an additional baseline in the following experiments.

3.2. Results

3.2.1. Recognition memory—We found that the primed targets were better 

remembered than the out-of-sequence targets, regardless of the RPE condition (B = 0.35, z = 

2.91, p = .004, μ-out-of-sequence = 0.68; low RPE: B = 0.38, z = 2.75, p = .006, μ = 0.74; 

high RPE: B = 0.32, z = 2.18, p = .03, μ = 0.73; Fig. 2A). We did not find a difference in 

memory between the primed high-RPE and low-RPE images (B = −0.04, z = −0.30, p = .76) 

nor between images in the two non-primed conditions (i.e. the out-of-sequence vs. the 

“single low RPE” items: B = −0.01, z = −0.05, p = .96, μ-single = 0.68).

3.2.2. Recognition latency—The primed targets were more quickly recognized than 

the out-of-sequence targets (B = −0.15, t = −2.82, p = .005, μ-out-of-sequence = −0.05; Fig. 

2B), providing evidence of recognition priming. This was significant for high-RPE targets 

(B = −0.19, t = −3.11, p = .002, μ = −0.24), and trending for low-RPE targets (B = −0.11, t = 

−1.83, p = .06, μ = −0.17). Latencies were moreover no different between the two primed 

conditions (B = −0.08, t = −1.16, p = .25). Additionally, the latencies for correctly 

recognizing the non-primed targets were not significantly different across conditions (B = 

0.02, t = 0.31, p = .76, μ-single = −0.04). We did not find an effect of positive versus 

negative RPE targets (B = 0.04, t = 1.01, p = .32), nor did this interact with RPE condition 

(B = −0.06, t = −0.82, p = .41) to influence reaction times. We furthermore did not find that 

a continuous measure of RPE predicted latencies across RPE conditions (B = −0.0004, t = 

−0.36, p = .72).
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3.3. Discussion

We found better and faster recognition of items that had been primed, including items that 

were associated with a high RPE. These results suggested that a high-RPE event is bound to 

its predecessor. However, given that high-RPE items are generally better remembered 

(Rouhani et al., 2018), it is possible that the generally stronger memory trace is driving the 

recognition memory results, and not a stronger association with the previous item. We 

therefore tested in Experiment 2 whether there are differences in the recognition of primed 

versus non-primed high-RPE items. Specifically, if a high-RPE event is more bound to the 

preceding event in memory, then we would expect faster latencies for high-RPE items that 

are primed versus those that are not primed.

4. Experiment 2

4.1. Method

4.1.1. Participants—One-hundred participants from MTurk (age: 22–71, median = 35; 

46 female, 54 male) were recruited on MTurk. The sample size was chosen because it was 

the approximate number of subjects needed to detect a medium-sized correlation at 80% 

power (Hulley, 2007). Following the same exclusion criteria stated in Experiment 1, we 

excluded 17 participants, leaving a final sample of 83 participants.

4.1.2. Task design—Experiment 2 was identical to Experiment 1 except that during the 

recognition test we additionally included “single” (i.e., not primed) scene images associated 

with high RPEs. We did this to determine whether high-RPE events lead to better and faster 

recognition because they are more strongly bound to the previous item (and thus show more 

recognition priming) or because they are more strongly encoded (i.e., a recognition effect 

not affected by priming). This led to one fewer high-RPE pair within each recognition block, 

and 41 trials within each recognition block. Across the experiment, for each participant we 

tested 18 high-RPE priming pairs, 24 low-RPE priming pairs, 24 out-of-sequence pairs, 16 

low-RPE single images, and 8 high-RPE single images.

4.2. Results

4.2.1. Recognition memory—We again found that the high-RPE primed items were 

better remembered than the out-of-sequence items (B = 0.24, z = 2.34, p = .02, μ-high-RPE-

primed = 0.76, μ-out-of-sequence = 0.71; Fig. 2C); however, we did not find them to be 

better remembered than high-RPE images that were not primed (B = 0.05, z = 0.37, p = .71, 

μ-high-RPE-single = 0.78). Therefore, we could not conclude that better recognition 

memory for the high-RPE images was necessarily a result of recognition priming, further 

supporting the use of recognition latency, instead of accuracy, as our measure of recognition 

priming. Additionally, and consistent with previous research (Rouhani et al., 2018), we 

found the high-RPE (single) items were better remembered than the low-RPE (single) items 

(B = 0.39, z = 3.40, p < .001, μ-low-RPE-single = 0.70).

4.2.2. Recognition latency—We replicated our previous observation of faster reaction 

times in recognizing the primed high-RPE items than the out-of-sequence ones (B = −0.08, t 
= −2.11, p = .03, μ-high-RPE-primed = −0.19, μ-out-of-sequence = −0.10; Fig. 2D). 
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Importantly, primed high-RPE images were also recognized more rapidly than the non-

primed (single) high-RPE images (B = −0.13, t = −2.84, p = .005, μ-high-RPE-single = 

−0.06). The faster recognition of the primed high-RPE items thus reflected intact recognition 

priming. The primed low-RPE targets were not retrieved significantly faster than the out-of-

sequence targets (B = −0.05, t = 1.32, p = .19, μ-low-RPE-primed = −0.15), but were 

retrieved faster than the non-primed (single) low-RPE images (B = −0.08, t = −2.13, p = .03, 

μ-low-RPE-single = −0.08). When testing for a difference between high and low-RPE targets 

that were primed versus those that were not primed, we did not find an interaction (B = 

−0.05, t = −0.76, p = .45). Thus, we observed similar levels of recognition priming between 

high and low-RPE pairs. Again, we did not find an effect of RPE sign (B = 0.02, t = 0.85, p 
= .40), nor did this interact with RPE condition (B = −0.00006, t = −0.001, p = .99) to 

predict reaction times. We similarly did not find that a continuous measure of RPE predicted 

these latencies across RPE conditions (B = −0.0003, t = −0.48, p = .63; for discussion of 

these results see Section 8.4 in the “General discussion”).

4.3. Discussion

We found that high-RPE items were both better remembered overall, and were also primed 

(at least with regard to reaction time) by recognition cues. From this, we concluded that 

high-RPE items were, in fact, linked with the items that had occurred before them during 

encoding, providing no evidence of an event boundary between a high-RPE event and its 

predecessor. However, it remained possible that the boundary occurs across rather than 

during the high-RPE event. To investigate this possibility, we next tested for priming 

between pairs that had one item in between them during encoding. In other words, we tested 

for a boundary between the event before and the event after a high RPE. This allowed us to 

exclude the high-RPE item itself and determine whether we see diminished priming for 

events across a high-RPE versus those across a low-RPE event.

5. Experiment 3

5.1. Method

5.1.1. Participants—We again recruited 100 participants on MTurk (age: 20–66, median 

= 33.5; 39 female, 61 male), and following the exclusion criteria stated in Experiment 1, we 

excluded 15 participants, leading to a final sample of 85 participants. The sample size was 

chosen because it was the approximate number of subjects needed to detect a medium-sized 

correlation at 80% power (Hulley, 2007).

5.1.2. Task design—The task structure was the same as in Experiments 1 & 2. During 

recognition, however, instead of testing pairs that had been presented directly one after the 

other during learning, we tested recognition priming for pairs that had one item in between 

them during learning. In other words, the high-RPE priming pair never included the high-

RPE event itself, allowing us to test whether the events around a high RPE provide evidence 

of an event boundary. As before, the image immediately preceding the high-RPE event was 

the prime, but the target was now the image after the high-RPE image (“high RPE +1”). The 

low-RPE priming pairs had also been one trial apart during learning (“low-RPE +1”), and 

were selected from the same reward state. All primed targets were therefore associated with 
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low RPEs. We tested 24 high-RPE +1 priming pairs, 24 low-RPE +1 priming pairs, 24 out-

of-sequence pairs, 12 single low-RPE images, and 12 single high-RPE images along with 84 

new images, across all 6 blocks of the experiment (42 trials within each recognition block).

5.2. Results

5.2.1. Recognition memory—Memory was not significantly better for the primed 

targets in comparison to the out-of-sequence items (B = 0.13, z = 1.57, p = .12, μ-out-of-

sequence = 0.75), and we did not find a difference between primed high-RPE versus low-

RPE events (B = −0.001, z = −0.01, p = .99, μ-high-RPE-primed = 0.77, μ-low-RPE-primed 

= 0.77; Fig. 2E). We again found better memory for high RPE (single) items relative to low-

RPE (single) items (B = 0.41, z = 3.44, p < .001, μ-high-RPE-single = 0.79, μ-low-RPE-

single = 0.72).

5.2.2. Recognition latency—When excluding the high-RPE item itself, we no longer 

observed a recognition priming effect for pairs that spanned a high-RPE event (compared to 

out-of-sequence, B = −0.02, t = −0.53, p = .60, μ-high-RPE-primed = −0.15, μ-out-of-

sequence = −0.13; Fig. 2F). We nevertheless did see recognition priming for pairs that 

spanned a low-RPE event (compared to out-of-sequence, B = −0.08, t = −2.42, p = .02, μ-

low-RPE-primed = −0.21). Moreover, there was now a difference between the latencies of 

the high- and low-RPE pairs where the high-RPE +1 targets were more slowly recognized 

than the low-RPE +1 targets (B = 0.06, t = 1.89, p = .05). We did not find a signed effect of 

RPE (B = 0.002, t = 0.13, p = .91), nor did this interact with RPE condition (B = −0.02, t = 

−0.50, p = .62) to influence reaction times. Lastly, we did not find that a continuous measure 

of RPE predicted latencies across conditions (B = −0.0003, t = −0.05, p = .96); for 

discussion of these results see Section 8.4 in the “General discussion”.

5.3. Discussion

The recognition latency results of Experiment 3 provided evidence that high RPEs serve as 

an event boundary, and more specifically, that this boundary can be observed for events 

across a high-RPE event (i.e., between the event before and after a high-RPE) rather than 

directly between the high-RPE event and its predecessor. The slower latencies in recognizing 

the item that followed the high-RPE prime, which were now similar to the out-of-sequence 

pairs and significantly slower than the low-RPE pairs, indicated decreased recognition 

priming. With this initial evidence of an event boundary, we next tested whether events 

around a high RPE demonstrate other behavioral markers of event boundaries. For this, we 

asked whether high-RPE events disrupt the temporal organization of events in memory, 

leading to worse sequence memory and larger perceived distances between item-pairs that 

included a high-RPE event versus those that did not.

6. Experiment 4

6.1. Method

6.1.1. Participants—For the first set of this experiment, we recruited 50 participants on 

MTurk (age: 24–61, median = 38; 26 female, 24 male). We excluded participants if they 

missed > 15 trials, which led to the exclusion of 1 participant and a final sample of 49 
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participants. The sample size chosen was slightly larger than the standard number of pilot 

subjects given that sequence memory is generally more difficult and noisier than recognition 

memory.

Subsequently, we ran an additional sample of 80 participants as a pre-registered replication 

of this experiment (for pre-registration, see Rouhani, 2018). The replication sample size was 

chosen on the basis of a simulation-based power analysis of the effect seen in the initial 

sample, which indicated we would have sufficient power (80% probability) of replicating the 

results with 50 participants. Following common practice of testing around 1.5× the indicated 

sample size for replication studies, we thus recruited 80 participants on MTurk (age: 24–68, 

median = 38, 38 female, 42 male), and excluded 3 participants who missed > 15 trials, 

leaving a final sample of 77 participants.

6.1.2. Task design—The task structure was the same as in Experiments 1–3; however, 

instead of testing for recognition memory, here we tested participants’ sequence memory 

and distance judgments for images seen during learning. Worse sequence memory and larger 

estimated distance between items are considered as evidence of an event boundary in 

memory (Davachi & DuBrow, 2015). We instructed participants to pay attention to the 

sequence of images during learning as they would later be asked to order them. After the 

learning and choice sections in each block, participants were presented with two old scene 

images on the screen (left/right order counterbalanced), and were asked to indicate which 

image came first (“sequence memory”) and then to estimate how many other images were 

found between the two (from 0 to 5; “distance judgment”; Fig. 1C). Within each block, 

participants completed 12 sequence and distance judgment trials. The two scene images 

either spanned (or even included) a high-RPE event (“high RPE”; 48 total), or were from the 

same reward state (“low RPE”: 48 total). Additionally, the high/low-RPE manipulation was 

crossed with a distance manipulation: the pairs had either been presented directly one after 

the other (“0 between”: high-RPE −1 and high-RPE events, 24 total), had one item in 

between them (“1 between”: high-RPE −1 and high-RPE +1 events, 24 total), or had three 

items in between them (“3 between”: high-RPE −2 and high-RPE +2 events, 24 total) during 

learning. Note that the “0 between” high-RPE pairs included the high RPE event and the 

event that immediately preceded it. The “1 between” high-RPE pairs included the events 

immediately preceding and following a high-RPE event, and the “3 between” high-RPE 

pairs included the second event before and the second event after the high-RPE event.

6.2. Results

6.2.1. Sequence memory—We found better sequence memory for pairs within the 

same reward state than across a high RPE (B = 0.25, z = 3.46, p = .0005; Fig. 3A), and 

replicated this main effect in the second sample (B = 0.17, z = 2.97, p = .003; Fig. 3B). 

Interestingly, for the pair that included the high-RPE event itself and its predecessor (“0” 

trials-between: high RPE −1 and high RPE), there was no difference in sequence memory 

between the pair types (first set: B = −0.03, z = −0.26, p = .79, μ-high-RPE = 0.52, μ-low-

RPE = 0.53; replication set: B = −0.05, z = −0.52, p = .61, μ-high-RPE = 0.53, μ-low-RPE = 

0.54). The difference in sequence memory was instead carried by pairs that were across the 

high-RPE event, i.e. the pairs that had 1 item in between them (high RPE −1 and high RPE 
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+1; first set: B = −0.35, z = −2.79, p = .005, μ-high-RPE = 0.48, μ-low-RPE = 0.56; 

replication set: B = −0.19, z = −1.87, p = .06, μ-high-RPE = 0.50, μ-low-RPE = 0.54), and 3 

items between them (high RPE −2 and high RPE +2; first set: B = −0.36, z = −2.95, p 
= .003, μ-high-RPE = 0.51, μ-low-RPE = 0.59; replication set: B = −0.27, z = −2.88, p 
= .004, μ-high-RPE = 0.52, μ-low-RPE = 0.59).

We also found that for low-RPE pairs, greater distance between items predicted better 

sequence memory (first set: B = 0.09, z = 2.31, p = .02; replication set: B = 0.07, z = 2.32, p 
= .02), whereas this was not true for high-RPE pairs (first set: B = −0.005, z = −0.15, p 
= .88; replication set: B = 0.002, z = 0.06, p = .95). Although the interaction between 

distance and high/low RPE was not significant when analyzing each set alone (first set: B = 

−0.10, z = −1.71, p = .09; replication set: B = −0.07, z = −1.63, p = .10), it was when 

analyzing the sets together (B = −0.08, z = −2.32, p = .02), suggesting we had been 

underpowered to detect this effect.

There was no effect of RPE sign on sequence memory (first set: B = −0.03, z = −0.42, p 
= .68; replication set: B = −0.03, z = −0.46, p = .65). We next tested for an interaction 

between RPE sign and condition to determine whether positive and negative RPEs 

differentially modulate sequence memory when the RPE indicates a change in reward state 

versus when it doesn’t (i.e., high-versus-low RPE events). We did not find an interaction in 

either set (first set: B = −0.25, z = −1.80, p = .07; replication set: B = −0.12, z = −1.01, p 
= .31). We moreover did not find that a continuous measure of RPE predicted sequence 

memory (first set: B = 0.003, z = 1.14, p = .25; replication set: B = 0.003, z = 1.69, p = .09). 

For a discussion of these results, see Section 8.4 in the “General discussion.”

6.2.2. Distance memory—We did not find that high RPEs influenced distance 

judgments in the first dataset (B = −0.01, t = −0.52, p = .61; Fig. 3C). To further assess 

whether the magnitude of the RPE influenced perceived distance, we correlated distance 

judgments with the reward difference between the pair of items within a pair (which is a 

proxy for the magnitude of any intervening RPE event, since item values were roughly 

stable on each side of a high-RPE event). We did not find this measure to predict perceived 

distance either (B = 0.03, t = 0.89, p = .38; Fig. 3E).

In the larger replication dataset, however, we did find two main effects and an interaction 

between RPE event and presentation distance in modulating distance judgments (Fig. 3D). 

Here, perceived distance was higher when the pair included/spanned a high (vs. low) RPE 

event (RPE: B = 0.11, t = 3.12, p = .002). These two effects interacted such that the high-

RPE effect was strongest for items that were closer together (B = −0.04, t = −2.05, p = .04), 

and in particular for the pairs that had included the high-RPE item itself (“0” trials-between: 

high RPE −1 and high RPE; B = 0.12, t = 2.91, p = .004, μ-high-RPE = 3.07, μ-low-RPE = 

2.90). We also found that the greater the reward difference between the two images, the 

greater the perceived distance (B = 0.04, t = 2.83, p = .005; Fig. 3F). This effect was again 

largely driven by the pair that included the high RPE event itself (0 trials-between: B = 0.07, 

t = 2.45, p = .01; 1 trial-between: B = 0.05, t = 1.85, p = .06; 3 trials-between B = 0.01, t = 

0.56, p = .58).
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We did not find that RPE sign predicted distance judgment in the first set (B = 0.05, t = 1.30, 

p = .20), while we did find that positive RPEs were associated with increasing perceived 

distance in the replication set (B = 0.06, t = 1.95, p = .05). Lastly, we did not find that RPE 

sign differentially modulated perceived distance for high- versus low-RPE events in either 

set (first set: B = −0.06, t = −0.77, p = .45; replication set: B = −0.08, t = 1.26, p = .21).

6.3. Discussion

In Experiment 4 and its replication, we again found that high-RPE events act as event 

boundaries by interrupting the sequential integration of events into memory, leading to 

worse sequence memory for events across a high RPE event. Interestingly, and in line with 

our recognition priming results, there were no differences in sequence memory for the pair 

that included the high-RPE item itself (i.e., the pair testing the association between the high-

RPE −1 and high-RPE event), again suggesting that the high-RPE event is associated with 

its predecessor. Moreover, and in line with a widely reported finding in temporal memory 

(Fortin, Agster, & Eichenbaum, 2002; Kesner, Hunsaker, & Ziegler, 2010; Rouhani et al., 

2018; Yntema & Trask, 1963), we found that greater distance between items improved 

sequence memory. However this pattern was only present for the low-RPE pairs, providing 

further evidence that high-RPE events disrupt temporal memory.

Our distance judgment measure yielded mixed results. We only found an effect of high RPEs 

on perceived distance in the replication dataset: High RPEs led to greater perceived distance, 

and (relatedly) greater differences in reward value between the two items were associated 

with greater perceived distance; importantly, these effects were most reliably present for the 

“0 between” condition, where the pair included the high-RPE event itself. Here, the effects 

of high RPEs on sequence memory (and recognition latency) showed the opposite pattern 

from perceived distance: when testing temporal associations between the high-RPE event 

and its predecessor, evidence of an event boundary is strongest in distance judgment but 

absent in sequence memory (as well as in recognition memory: Exp. 1 and 2). This 

qualitative difference suggests a potential dissociation between the mechanisms supporting 

sequence and distance judgments (Clewett, Gasser, & Davachi, 2019). In this replication set, 

we also found that positive RPEs led to greater perceived distance, although this effect was 

not contingent on whether the RPE signaled a change in reward state or not (i.e., high versus 

low RPE). Nevertheless, as we did not find these distance effects in the first dataset, they 

require further investigation and replication.

7. Computational model

7.1. Overview

To explore potential mechanisms for our findings, we developed a variant of the Context 

Maintenance and Retrieval model (CMR; Polyn et al., 2009; for other variants, see CMR2: 

Lohnas, Polyn, & Kahana, 2015; eCMR: Talmi, Lohnas, & Daw, 2019), and tested whether 

our behavioral results can be explained by a model in which high RPEs induce mnemonic 

separation between events. In our model, experienced events are temporally linked through a 

slowly drifting internal “context”, where features of the experienced items update the 

context representation (Howard & Kahana, 2002). We posit that high RPEs temporarily 
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increase the context drift rate (i.e., the extent to which the high-RPE event updates context), 

thereby creating a large shift between the context representation of events experienced prior 

to the high RPE and those experienced after it. We show that this discontinuity can explain 

our findings of reduced recognition priming (Exp. 3).

To simulate recognition priming, we first presented a recognition prime to the model, which 

triggered an update to the model’s context representation. Next, the recognition target was 

presented to the model. Importantly, activation was allowed to spread back from the context 

representation (which had been updated by the prime) to the representation of the target; this 

spreading activation affected the latency with which the target was recognized (for details, 

see Section 7.6 below). For sequence memory, we used a mechanism whereby primacy 

judgments (“which came first?”) were based on which item’s context was more distant from 

the retrieved context (for details, see Section 7.7 below).

7.2. Representational structure

The model includes two layers, a feature layer (F) and an internal, temporal context layer 

(C), both of which contain the same number of units. External events (happening at time i) 
activate a single localist feature in F (fi), and these activations spread up from F to C (the 

context layer at time i is denoted as ci) via a feature-to-context matrix (MFC) that updates 

context during both the initial encoding phase and the test phase. During retrieval, 

activations spread back down from C to F via a context-to-feature matrix (MCF) that guides 

memory search (Fig. 4). We represent different events as orthogonal unit vectors (“one-

hot”). Although the CMR uses an additional “source layer” to tag explicit contextual shifts 

(such as different encoding tasks), in our model we did not use this layer to tag different 

reward states. This is because changes in the reward distribution were latent to the 

participant (and thus also to the model).

Each associative matrix was made up of an episodic and a semantic component, meaning 

that MCF comprised a weighted average of episodic (EMCF) and semantic (SMCF) weight 

matrices, and likewise MFC comprised a weighted average of EMFC and SMFC (we modeled 

the weights of each matrix separately, see Section 7.5–7.6 below). As in TCM and CMR, the 

episodic matrices are updated during encoding to store associations between active feature 

representations in F and context representations in C. The semantic matrices contain one-to-

one connections between a unit in F to its corresponding unit in C (concretely, they are 

identity matrices).

7.3. Updating temporal context and associative matrices during reward learning

Prior to the reward learning phase, C and the episodic associative matrices (EMCF and 

EMFC) are initialized to 0. When an item is activated in F during the reward learning phase, 

the activation spreads up from F to C via MFC where the input to C is calculated as follows:

cIN = MFCfi . (1)

The vector cIN is then normalized to be of unit length, and then context is updated as follows 

(as in TCM and CMR):
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ci = ρici − 1 + βcIN, (2)

ρi = 1 + β2[ ci − 1 ⋅ cIN 2 − 1] − β ci − 1 ⋅ cIN . (3)

Here, β defines the degree to which the active feature causes the context to “drift” – the 

larger the value of β, the more the active feature will be inserted into the context, crowding 

out other active events in C. We allowed for two distinct drift values, β, the standard drift 

(implemented for low-RPE events), and d, a higher level of drift for high-RPE events. This 

approach (i.e., increased drift in response to high-RPE events) is in line with how contextual 

disruptions due to salient changes have been previously modeled (Horner et al., 2016; Polyn 

et al., 2009; Siefke, Smith, & Sederberg, 2019). We moreover use d for the first item 

presented to the network as a way of capturing classic primacy effects in memory (i.e., the 

higher probability of retrieving the first item in a sequence; see Section 7.5 for further 

discussion of how primacy is modeled here, compared to how it is usually modeled in 

CMR).

The two episodic associative matrices are updated through Hebbian outer-product 

associative learning. α represents the learning rate for that update:

ΔEMFC = αFCcifi
T , (4)

ΔEMCF = αCFficiT . (5)

Importantly, in our version of the model, on each time step, the following order-of-

operations applies: First, the feature vector is updated based on the current event; next, the 

episodic matrices are updated; and finally the context vector is updated. The consequence of 

this order-of-operations is each event is inserted into the following event’s episodic context 

(but not its own episodic context). For example, at the end of the fourth time step, the fourth 

item will be inserted into the context layer; at the start of time step 5, the fifth item’s feature-

layer representation will be activated, at which point it will be episodically associated with 

the current state of the context layer (where the fourth item’s context-layer representation is 

active). Next, the fifth item’s context-layer representation is activated, and the cycle begins 

again. We also simulated our results with a version of the model where context is updated 

before the episodic matrices (like CMR), and were not able to capture our behavioral effects 

(Fig. S2, see Supplemental material).

7.4. Simulating free recall

Although we did not collect our own free recall data, we calibrated the model by running 

free-recall simulations, using the following procedure. First, after the learning trials, we 

simulated the intervening time period before the memory test by presenting 15 randomly-

generated “distractor” events. This allowed active features in C to substantially drift from the 

encoding period, thereby capturing the putative drift occurring between the end of the 
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learning phase and the start of the test phase. These distractor events did not compete during 

retrieval.

The associative matrices at recall were each calculated as a weighted average of their 

episodic and semantic components:

MFC = γFCSMFC + 1 − γFC EMFC, (6)

MCF = γCFSMCF + 1 − γCF EMCF , (7)

As in CMR and TCM-A (Sederberg et al., 2008), the recall period was governed by a leaky, 

competitive accumulation process where experienced events accumulated activation until 

one passed a threshold and “won” the competition (Usher & McClelland, 2001). The 

following calculates the input to the accumulators:

fIN = MCFci . (8)

Which then guides the below competition dynamics:

xs = 1 − τk − τλN xs − 1 + τfIN + ε,

xs max xs, 0 . (9)

Here, x is a vector with units corresponding to each element in the feature layer (fIN), and s 
indexes the step in the accumulation process (units are initialized to 0, and cannot take on 

negative values, second line of Eq. 9). The parameters governing the competition are τ, the 

time constant determining the rate of accumulation, κ, the decay rate for active items, and λ, 

the lateral inhibition parameter which scales the strength of inhibitory matrix, N; ε adds 

gaussian noise to the decision process (drawn from a random normal distribution with mean 

zero and standard deviation η). This accumulation process proceeded until one of the 

elements passed a threshold of 1, at which point the winning item’s feature was reinstated in 

F, and its encoding context was reactivated using Eq. 1.

The reactivated context was then used to update the current context vector following Eq. 2. 

Subsequently, fIN was updated and the accumulation process restarted with x(1) = 0. 

Previously retrieved items were allowed to continue competing in the accumulation process, 

but were prevented from passing the retrieval threshold.

7.5. Model calibration

Before simulating our experiments, we determined which parameter values to use by 

identifying combinations that replicate canonical findings in free recall tasks; namely, the 

higher probability of recalling the first item (“primacy”) and the last item (“recency”) in a 

given context, along with contiguity effects (increased likelihood of recalling items that were 

studied close together in time, with a bias towards forward transitions; Howard & Kahana, 
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2002). We identified these parameters by feeding our network distinct events (orthogonal 

one-hot vectors) and running network simulations for all value combinations of the 

following four parameters (ranging from 0 to 1, in increments of 0.05; 100 simulations for 

each combination): (1) d, context drift for primacy events (and for high-RPE events, in the 

recognition simulations presented later); (2) β, context drift for non-primacy events (and for 

low-RPE events in the recognition simulations); (3) γCF, the relative weight assigned to the 

semantic vs. episodic components in MCF; and (4) γFC, the relative weight assigned to the 

semantic vs. episodic components in MFC. All other parameter values were taken from 

Polyn et al. (2009; see Supplemental material). We generated serial position curves and 

conditional response probability curves for each run, and filtered the parameter values based 

on whether they generated characteristic features of these recall curves (Fig. S1, see 

Supplemental material). Specifically, in the serial position curves, the parameter values we 

chose generated primacy (higher recall of the first item relative to the subsequent one) and 

recency effects (higher recall of the last item relative to the preceding one). When simulating 

contiguity effects, we looked for parameter values that resulted in greater sequential recall of 

events that were neighboring during encoding, with an increased likelihood of forward recall 

(thereby matching the pattern that is typically observed in free recall; Howard & Kahana, 

2002).

We found that recency and contiguity effects were obtained across a fairly wide range of 

parameters in the model (as has been shown in previous work with TCM and CMR; Howard 

& Kahana, 2002; Polyn et al., 2009). Primacy effects were obtained across a more narrow 

range of parameters. Specifically, to obtain primacy effects we needed to have a relatively 

high drift rate for primacy items (d) compared to the drift rate for non-primacy items (β), as 

well as a strong contribution of the semantic matrix to both MCF and MFC (i.e., high values 

of γCF and γFC). This configuration of parameters allowed primacy effects to arise in the 

following manner: When the primacy item is present, it is strongly inserted into context, due 

to the high value of context drift (d) that we assigned to primacy items, and the high 

contribution of the semantic matrix to MFC. Because the primacy item is strongly inserted 

into context, it is still present in context (i.e., its unit’s activation has not fully decayed away) 

at the time of test. Because of the strong contribution of the semantic matrix to MFC (which 

supports “direct readout” of active items in context back into the feature layer), the fact that 

the primacy item is still active in context leads to increased activation of that item back in 

the feature layer (via the aforementioned “direct readout” mechanism; see Section 7.8 for 

how these matrices interact during our recognition priming simulations). Note that this way 

of modeling primacy is different from how primacy is handled in CMR – in Polyn et al. 

(2009), primacy items are assigned a higher learning rate (for forming episodic context-to-

feature associations) but the drift rate is the same for primacy and non-primacy items. A key 

goal of our modeling exercise was to assess if we could model our own experimental results 

and also classic recall effects (e.g., primacy) only through drift manipulations and not 

through learning rate manipulations; we return to this point in Section 8.2 below.

As a result of these initial simulations, we selected the following parameter values: d = 0.8; 

β= 0.6; γCF= 0.75; γFC= 0.70. We subsequently ran the recognition priming and sequence 

memory procedure detailed below (see Section 7.6–7.7) using these parameters. For 

recognition priming, we ran 10,000 simulations for each condition, and for sequence 
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memory, we ran a single simulation for each condition since dynamics during encoding are 

deterministic.

7.6 Recognition priming

To simulate our recognition priming results, we used the following procedure: After the 

initial learning phase and presentation of filler items (see Section 7.3–7.4), we presented a 

“recognition prime” (a low- or high-RPE −1 event) to the network by activating the “one-

hot” feature vector that represents that event. After the prime’s representation was activated 

in F, activation was allowed to spread up from F to C via MFC. The EMFC component of 

MFC updates the context vector with the prime’s episodic context (i.e., the context linked to 

the prime at encoding; this is the process commonly referred to as “mental time travel”, 

since it makes the context at test resemble the context when the prime was studied; Kragel, 

Morton, & Polyn, 2015; Tulving, 1984). The SMFC component of MFC allows for the prime 

itself to be inserted into C (see Section 7.8–7.9 for more description on how these matrices 

interact during retrieval).

Note that prior studies have found that recognition priming is only obtained when the prime 

is successfully recollected at test (Schwartz et al., 2005). Our allowing activation to spread 

from the prime’s feature-layer representation to C via EMFC corresponds to an assumption 

that the prime was (itself) successfully recollected; this assumption is justified because – in 

the priming data that we set out to model – we only analyzed trials where the prime was 

successfully remembered (so the assumptions of the model match the structure of our 

analysis; see Section 3.1.4).

After context was updated by the prime, the recognition trial was simulated. Here, activation 

was allowed to spread down from C to F via MCF. EMCF modulates item activation as a 

function of the match between each item’s episodic context and the current context, and 

SMCF provides a “direct readout” of activations from C to F (e.g., if the fifth unit in C is 

active, activity spreads directly down to the fifth unit in F). We then allowed the competition 

dynamics to unfold. To simulate the fact that the recognition target is presented perceptually, 

we boosted the activation of the target event by in F by 0.75 at the start of the competition; 

this had the effect of ensuring that the target event would be the winner of the competition, 

but still allowed for variance in recognition latency. We extracted recognition latencies for 

the target item and compared them with the empirical recognition data.

We tested target items matched to our experimental conditions, and ran simulations for each 

condition separately (Fig. 5). For the simulation of Experiment 2, the “low RPE” target was 

the low-RPE event that had been studied directly after the prime and the “high RPE” target 

was the high-RPE event that had been studied directly after the prime thus testing the link 

between the high-RPE event and its predecessor. In this simulation, we further tested the 

associative links between the high-RPE event and its successor (the high-RPE +1), which we 

did not behaviorally test; here, the prime was the high-RPE event and the target was the 

high-RPE +1 event. For the simulation of Experiment 3, the low-RPE +1 target was a low-

RPE event that had been studied two events after the prime, and the high-RPE +1 target was 

a low-RPE event that had been studied two events after the prime (with the high-RPE event 

having occurred between the prime and the target). The “out of sequence” target was always 
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an event that had been studied before the prime (3 trials apart). For conditions where there 

was no prime (“single high-RPE” and “single low RPE”), we did not present a prime to the 

model prior to simulating target recognition – in this case, the state of C at the start of target 

recognition only reflected the effects of the reward learning phase and the distractor items 

(but not the prime); otherwise, the procedure was the same as in primed trials.

7.7. Sequence memory

We aimed to capture the two characteristic results of our sequence memory paradigm: (1) 

worse sequence memory for items that span a high-RPE event, and (2) better sequence 

memory with greater distance between items in the low-RPE condition (but not the high-

RPE condition).

Our simulation was based on “distance theories” of temporal order memory (Friedman, 

1993, 2004), which posit that judgments of recency are a function of the similarity of the 

context associated with an item at encoding and the context that is active at test (such that 

greater similarity leads to judgments of greater recency; Hintzman, 2002). In our task, we 

did not ask for a judgment of recency, but instead asked for a judgment of primacy. To 

simulate these judgments, we first retrieved the context vectors associated (at encoding) with 

each tested item, and then correlated each of these retrieved vectors with the context vector 

active at test. We next took the difference of these correlations within each tested pair, and 

used this as a measure of distance between items. We then put this correlation difference 

through a sigmoid function whereby larger differences increased the likelihood of a primacy 

judgment for the more contextually distant item.

7.8. Simulation results

During the initial encoding (i.e., reward learning) phase, our use of a higher drift rate for 

high-RPE events created a discontinuity in the mental contexts associated with events that 

occurred before the high RPE event versus those that occurred after it. We tested how this 

representational “event boundary” affected recognition priming in simulations of 

Experiments 2 and 3. Experiment 2 (Fig. 6A–B) tested pairs of events that were 

consecutively-encoded during the reward-learning phase – call these events n and n + 1 

(referring to their adjacent positions during learning). For some pairs, event n + 1 was a high 

RPE event (“high RPE”), and for other pairs, event n + 1 was a low RPE event (“low RPE”). 

As noted in 7.4, the model is set up such that (during reward learning) each item becomes 

part of the next item’s episodic context (i.e., item n is strongly active in the context layer 

when item n + 1 is activated in the feature layer; see Fig. 4). At test, when item n is 

presented as a prime (by activating its representation in the feature layer), activation spreads 

up to item n’s representation in the context layer (via the influence of SMFC). Next, 

activation is allowed to spread back down to the feature layer via MCF. Here, the influence 

of EMCF is crucial – the effect of this matrix is that items whose context at study matched 

the current context are activated in the feature layer. Crucially, because item n was part of 

item n + 1’s context at study, the effect of EMCF in this situation is to allow activation to 

spread from the “item n” unit in the context layer to the “item n + 1” unit in the feature layer. 

This spreading activation allows the “item n + 1” unit to cross threshold sooner when item n 
+ 1 is presented as a recognition target, thereby giving rise to the recognition priming effect.
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This priming effect is present in the model for both high-RPE primed targets and low-RPE 

primed targets, but it is larger in magnitude for high-RPE targets than low-RPE targets (μ-

high-RPE-primed = 1007.14 ms, μ-low-RPE-primed = 1029.86 ms, μ-out-of-sequence = 

1067.65). Moreover, there was an interaction in the retrieval of high and low-RPE targets 

that were primed versus those that were not, indicating that priming led to the faster retrieval 

of the high-RPE target relative to the low-RPE target (μ-high-RPE-single = 1068.98 ms, μ-

low-RPE-single = 1063.26 ms). The difference in priming effects (in the model) between 

high-RPE and low-RPE targets is caused by the influence of SMCF at retrieval. In addition to 

the effects of EMCF (described above), SMCF provides a “direct readout” of which items are 

active in the context layer. Because of the greater drift associated with high-RPE items, 

high-RPE (vs. low-RPE) items end up being more strongly active in context (even at the 

time of test). This extra activation in context translates (via the influence of SMCF) into 

greater activation of the high-RPE target in the feature layer, which further speeds 

recognition for high-RPE items, boosting the level of recognition priming.

In addition to the strong link between the high-RPE event and its predecessor, we found the 

high-RPE event to be similarly linked to its successor. In fact, when primed by the high-RPE 

event, the high-RPE +1 event was retrieved faster than when the high-RPE event was primed 

by its predecessor (μ-high-RPE+1-primed = 993.18). This is because the high-RPE item 

itself gets strongly inserted into the high-RPE +1 item’s context during encoding, and then 

subsequently during retrieval, priming the network with the high-RPE event leads to strong 

forward retrieval of the high-RPE +1 event. Although we did not test this association 

behaviorally, our model simulation therefore suggests that the high-RPE event is linked to 

both its predecessor and its successor.

In Experiment 3 (see Fig. 6C–D), primed target items were studied two items after the prime 

during the learning phase (i.e., with one event in between); sometimes the event interposed 

between prime and target during learning was a high-RPE event, and sometimes it was a 

low-RPE event. For the purpose of explaining what happens in the model on these trials, call 

the prime item n−1, the interposed item n, and the target item n + 1. First, consider the 

condition where the interposed item was a low-RPE event. In this case, during learning, item 

n−1 (the prime) is still strongly active in context when item n + 1 (the target) is studied, so 

the prime’s representation in context gets linked to the target’s representation in the feature 

layer. Because of this link, the usual mechanisms of recognition priming (as described in the 

preceding paragraph) still apply. Next, consider the condition where the interposed item was 

a high-RPE event. Because of the higher drift rate for high-RPE items, the effect of 

(strongly) inserting high-RPE item n into context is to “push out” the representation of item 

n−1 from the context layer. Because item n−1 (the prime) is no longer strongly active in 

context when item n + 1 (the target) is studied, the crucial episodic link between the prime 

(in context) and the target (in the feature layer) is not formed, eliminating the recognition 

priming effect. Finally, there was an interaction in the retrieval of primed high and low-RPE 

items between experiments, such that priming of the high-RPE event itself (Exp. 2) is 

enhanced whereas priming of the high-RPE +1 event (Exp. 3) is interrupted relative to the 

low-RPE items.

Rouhani et al. Page 20

Cognition. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In our sequence memory simulation, primacy judgments were based on which item’s context 

was more distant from the retrieval context. Sequence memory for low-RPE pairs therefore 

improved the further the items had been from each other at encoding (μ-low-RPE-0 = 0.49, 

μ-low-RPE-1 = 0.51, μ-low-RPE-3 = 0.54; Fig. 7). However, the simulation incorrectly 

predicted that sequence memory for high-RPE pairs would improve with increasing distance 

between items at encoding. Moreover, it incorrectly predicted better sequence memory for 

items spanning a high (compared to low) RPE event. This was because - in our model - high 

RPEs induced a strong shift in context; this context shift between the first and second items 

selectively increased the contextual distance between the first item and the test context, 

thereby making the model more (instead of less) accurate at choosing which item came first.

7.9. Discussion of simulation results

Our model, with parameters chosen to generate canonical free recall dynamics, was able to 

capture the signature effects of our recognition priming tasks. In our simulation of 

Experiment 2, we found that feeding the network recognition primes led to the faster 

retrieval of target items that had come directly after the primes during the initial reward 

learning phase (i.e., the low- and high-RPE targets) as compared to targets that were out of 

sequence or were not primed (single items). Recognition priming was especially strong for 

high-RPE items, whose higher activation in C led to faster retrieval times as compared to 

low-RPE targets. Although we did not observe significantly faster retrieval times for high-

RPE versus low-RPE events in Experiments 1 and 2, the simulation results suggest that the 

numerical difference in their latencies may reflect an actual effect, which may reach 

significance with sufficient power. Moreover, the model predicted not only an association 

between the high-RPE event and its predecessor, but also one between the high-RPE event 

and its successor.

In our simulation of Experiment 3, the prime and the target always had one event (either 

high-RPE or low-RPE) between them. Our model captured the lack of recognition priming 

in the high-RPE condition by creating a contextual discontinuity after the high-RPE item, 

thereby “breaking” the contextual link between the prime and the target.

In introducing the simulations, we identified four parameters of interest, namely the drift 

rates for high-RPE and low-RPE events at encoding and the episodic and semantic 

proportions of the associative matrices. The effects of drift rate on model results ended up 

being fairly straightforward: d (the high-RPE drift rate) had to be larger than β (the low-RPE 

drift rate) to create the aforementioned contextual “gap” after high-RPE items, which is how 

we explain impaired recognition priming in the high-RPE condition of Experiment 3.

The effects of γFCand γCF (episodic/semantic balance in the associative matrices) ended up 

being more complex. As discussed above, recognition priming depends on the semantic 

component of MFC and the episodic component of MCF: The prime is loaded into context 

via SMFC, and then it cues the target via EMCF (since the prime was part of the target’s 

episodic context during learning). Note that this is the same basic sequence of events that 

accounts for the forward bias in contiguity effects in free recall. The only difference is that, 

in free recall, the just-recalled item plays the role of the prime: the just-recalled item is 

loaded into context via SMFC and cues recall of the following item via EMCF (Howard & 
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Kahana, 2002). Thus, to explain recognition priming effects (and forward contiguity effects 

in free recall), we need to ensure a substantial contribution of SMFC and EMCF.

However, it would be unwise to fully “tilt” MFC towards semantic memory and MCFtowards 

episodic memory. The episodic component of MFC is also important: As noted earlier, this 

component is what gives rise to “mental time travel” effects in free recall – in particular, 

backward transitions in free recall (i.e., recalling items that were studied before the item that 

was just recalled) are thought to result from a sequence where recalling an item reinstates 

that item’s context via EMFC, which then biases recall towards nearby items symmetrically 

in the backward and forward directions (Howard & Kahana, 2002). The semantic component 

of MCF is also important: As described in Section 7.5, our model uses this “direct readout” 

component to explain primacy effects in free recall – the primacy item is (strongly) inserted 

into context via SMFC and then is directly read out from context at test via SMCF. As an 

aside, this same mechanism that gives rise to primacy would also predict increased free 

recall of high RPE items (which, like primacy items, are assigned a higher-than-usual drift 

rate); we have not yet run an experiment to test this prediction in our paradigm.

To summarize the above: Both the episodic and semantic components of both MCFand MFC 

are important for explaining various effects (either effects in our data or classic regularities 

in free recall). As such, the greatest challenge in parameterizing the model was finding the 

right balance between the episodic and semantic components for each matrix. The fact that 

we found a set of parameters that works well for simulating our results (without impeding 

our ability to simulate primacy/recency/contiguity in free recall) serves as an existence proof 

that these factors can be suitably balanced.

In our simulation of sequence memory, we sought to explain the following two effects: (1) 

impaired sequence memory for items that spanned a high-RPE event, and (2) better 

sequencing of low-RPE pairs (but not high-RPE pairs) the further the items had been from 

each other at encoding. We implemented a mechanism whereby primacy judgments were 

based on which item’s context was more distant from the retrieval context, in line with 

distance theories of temporal ordering (Friedman, 1993, 2004). This simulation correctly 

predicted the better sequencing of low-RPE items that had been further apart during 

encoding, but incorrectly predicted better, instead of worse, sequence memory for items that 

spanned a high (compared to low) RPE event. This finding highlights that contextual 

distance theories can explain sequence memory performance for items within the same latent 

context, but cannot explain it for items across latent contexts (i.e., across a high-RPE event), 

suggesting separate mechanisms for organizing events within and across a latent context 

(DuBrow & Davachi, 2016; Ezzyat & Davachi, 2014).

What kind of model could correctly explain the full pattern of sequence effects we 

observed? An alternative account of sequence memory is that it relies on explicitly 

reconstructing the chain of events involving the two queried items. Here, the sequence 

judgment could be based on the difference in reconstructed order between the two items: P 
(A before B) would be proportional to the reconstructed serial position of B minus the 

reconstructed serial position of A. In this kind of model, event boundaries induced by high 

RPEs should disrupt temporal order memory by making it harder to reconstruct the chain of 
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events (i.e., they would create a break in the associative “chaining” of events across a high-

RPE event; Friedman, 1993). Furthermore, the model should also show greater accuracy 

with increasing distance between the items. While CMR does not include this kind of 

explicit reconstruction mechanism, other recently developed models, like the Structured 

Event Memory (SEM) model (Franklin, Norman, Ranganath, Zacks, & Gershman, 2019), do 

incorporate this mechanism. In future work, we plan to explore how well SEM can account 

for these sequence memory results.

Lastly, although we found RPEs to modulate distance memory in the replication set of 

Experiment 4, we did not simulate distance memory results. This was because we did not 

find consistent results between this experiment and its replication, and because we found a 

pattern of RPE-modulated effects for distance memory that was opposite to our recognition 

priming and sequence memory results. For distance memory, we found the greatest 

difference between the high and low-RPE conditions for the pairs that included the RPE 

event and its predecessor; by contrast, for recognition priming and sequence memory, effects 

of high vs. low RPE were largest for pairs that spanned the high-RPE event, and 

nonsignificant for the pairs that included the RPE event and its predecessor. For this reason, 

we speculate that distance memory may be supported by a different process than the one we 

have outlined.

8. General discussion

8.1. Summary of behavioral results

In a passive-viewing, Pavlovian reward learning task, we found that large reward prediction 

errors (RPEs) enhance memory for that event, demonstrate intact links with preceding 

events, yet create event boundaries, thereby chunking rewarding experiences into discrete 

states in memory. Like other types of event boundaries, high RPEs enhance recognition for 

the event associated with the prediction error, while interrupting memory of the sequence of 

events across the boundary itself. Specifically, we showed that high-RPE items demonstrate 

recognition priming, i.e., faster recognition of those items when primed by the previous 

item, indicating intact associative links with preceding events during encoding (i.e., between 

high-RPE −1 and high-RPE events: Exp. 1–2). However, we found diminished recognition 

priming for events surrounding the high-RPE item (i.e., between high-RPE −1 and high-RPE 

+1 events: Exp. 3) providing evidence of an RPE-modulated event boundary. Moreover, we 

found that temporal memory, and in particular sequence memory, was worse for pairs that 

spanned a high RPE versus those that did not (Exp. 4). Interestingly, and analogous to our 

recognition priming results, this worse overall sequence memory was seen for pairs that 

excluded the high-RPE event itself, whereas we did not find impaired sequence memory for 

the pairs that included the high-RPE event and its predecessor.

8.2. Summary of computational model

To illustrate and better understand the effects of event boundaries on memory in our 

experiments, we developed a computational model, a variant of the CMR model (Polyn et 

al., 2009), that qualitatively fits our results. To explain the effects of RPEs on memory, our 
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model posits that large RPEs increase the drift rate of contextual information, effectively 

flushing out previous events and adding the current event into the drifting context.

We simulated recognition priming in the model and analyzed simulated recognition 

latencies; we also simulated the accuracy of sequential memory judgments. Using the 

mechanism described above (increased drift in response to large RPEs), we were able to 

explain our recognition priming findings: 1) there was recognition priming for pairs of items 

that were presented sequentially at encoding, regardless of the size of the RPE associated 

with the target item, and 2) when testing for priming of events that were separated by one 

event during encoding, recognition priming was disrupted if the intervening event triggered a 

high RPE. For a discussion of our sequence memory simulation, see Section 8.7, below.

These simulation results illustrate the sufficiency of our drift-rate manipulation for 

explaining the effects of high (vs. low) RPE in the studies reported here. However, this 

demonstration of sufficiency does not rule out the possibility that RPEs can affect 

declarative memory in other ways. For example, in addition to (or instead of) increasing drift 

rate, RPEs might also increase the learning rate on item-context associations – this would 

have the effect of stamping in the episodic memory of the high-RPE event more strongly. 

More simulation work is needed to determine what combination of mechanisms does the 

best overall job of explaining the effects of RPEs on declarative memory.

8.3. High RPE events are better remembered

Consistent with previous results (Rouhani et al., 2018), we found that high RPEs led to 

better recognition memory for the event associated with the RPE. This finding is moreover 

consistent with work showing enhanced memory for other types of surprising events in the 

context of reward learning (Murty & Adcock, 2014; Murty, Labar, & Adcock, 2016), and 

outside of reward learning (Greve, Cooper, Kaula, Anderson, & Henson, 2017; Kalbe & 

Schwabe, 2019).

8.4. High RPEs form event boundaries in memory

We found that latent shifts in the reward value of a rewarding source induce event 

boundaries by interrupting the sequential integration of memories that occur before and after 

a high-RPE event, thus acting similarly to other event boundaries reported in the literature 

(DuBrow & Davachi, 2013, 2014; Ezzyat & Davachi, 2014; Horner et al., 2016). Heusser et 

al. (2018) recently demonstrated that enhanced associative memory for a perceptual 

boundary comes at the cost of integrating events across the boundary, reflecting a trade-off 

between the two processes. Here, we found concordant results in the domain of latent reward 

expectations: high-RPE events were not only better encoded but also demonstrated intact 

associative memory with their preceding items, through intact recognition priming and 

sequence memory. However, and in line with this trade-off, events surrounding the high RPE 

demonstrated diminished associative memory through impaired recognition priming and 

sequence memory.

Across all experiments, with the exception of the distance judgment results in Experiment 4 

(which need to be replicated), we did not find effects of the sign or a continuous measure of 

the RPE on our behavioral measures. Previous work shows that positive RPEs increase 
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memory for associated events more than negative RPEs (De Loof et al., 2018; Ergo, De 

Loof, Janssens, & Verguts, 2019; Jang, Nassar, Dillon, & Frank, 2019), and that the strength 

of the RPE, regardless of sign, enhances memory for events experienced during reward 

learning (Rouhani et al., 2018). Here, large latent jumps in rewards, regardless of their sign 

and exact size, modulated the structure of memory, implicating neural processes associated 

with event boundaries rather than reward learning per se (see Section 8.9 for a discussion of 

neural mechanisms). We note that, in our task, we were interested in the effect of having 

detected a change in rewards (i.e., to induce sharp event boundaries), and so the jumps in the 

underlying reward distribution were quite obvious. In the real world, however, these changes 

may be more subtle and gradual, requiring multiple observations to infer an event boundary. 

Future work could introduce uncertainty around reward shifts and examine how this affects 

the temporal organization of events in memory (DuBrow et al., 2017).

Another key issue is whether the (apparent) contextual discontinuity evoked by high-RPE 

events in our study is attributable to the prediction error per se, or whether it is attributable to 

the fact that high RPEs indicated shifts in the underlying “latent cause” driving participants’ 

observations (see Zacks et al., 2007). In our paradigm, these two factors (RPE and shift-in-

latent-cause) were confounded – in future work, we can try to unconfound them (e.g, by 

having isolated high-reward or low-reward items that do not indicate a lasting change in the 

underlying mean reward value). Related to this point, Siefke et al. (2019) recently ran a 

study that attempted to unconfound context change and prediction error, using stimuli that 

varied in their background color; results from that study supported the hypothesis that 

context change, not prediction error per se, is the key determinant of discontinuities in 

mental context. More work is needed to see if this applies to our RPE paradigm.

8.5. Event boundary occurs across the high-RPE event

Although some theories (e.g., latent cause models, Gershman et al., 2014) predict that an 

event boundary occurs at the high prediction error event itself, separating that event from 

preceding items, we found intact associative links between the high-RPE event and its 

predecessor. At the same time, we found evidence for an event boundary across the high-

RPE event. In our model, the high-RPE item and its predecessor are linked because the high-

RPE −1 item is active in the context layer when the high-RPE item is presented at study. 

Additionally, the high-RPE item is strongly linked to its successor since the high-RPE item 

itself gets strongly inserted into the high-RPE +1 item’s context. For this reason, although 

we did not test for recognition priming between the high-RPE item and high-RPE +1 item, 

we predict, based on our model, that there will be strong recognition priming for the high-

RPE +1 item when primed by the high-RPE item. Nevertheless, consistent with our 

behavioral results, the model predicts that recognition priming between the high-RPE −1 and 

the high-RPE +1 item will be disrupted because the increased drift associated with the high 

RPE leads to weak representation of the high-RPE −1 item in the high-RPE +1’s context. In 

sum, our model predicts that the high-RPE item is linked to both its predecessor and 

successor through context while disrupting the association of the events around it. This 

explains the seemingly inconsistent results of our Experiments 1 and 2 (and the “0 trials-

between” condition in Experiment 4), which suggest no boundary between the high-RPE 
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item and its predecessor, and Experiments 3 and 4 that provide evidence for a boundary 

across the high-RPE event.

Previous work offers another potential mechanism for the preserved link between the high-

RPE event and its preceding event, namely that at event boundaries, memory of the previous 

episode is reinstated (Sols et al., 2017), perhaps leading to binding between the high-RPE 

event and its predecessor. Other work has also shown that increased hippocampal activity at 

event offset (i.e., right after the boundary is inferred) predicts subsequent retrieval of the 

previous episode, in a sense “registering” the just-experienced episode (Baldassano et al., 

2017; Ben-Yakov et al., 2013; Ben-Yakov & Dudai, 2011). In our task, the boundary itself is 

calculated by the difference between the expected value and the current reward, which, along 

with the “replay” mechanism described above, could additionally bind the high-RPE event 

with its predecessor.

8.6. Recognition priming for high- versus low-RPE events

Our results in Experiments 1 and 2 were suggestive of more stable recognition priming for 

high-RPE items than for low-RPE items (i.e., numerically, high-RPE items were retrieved 

faster than the low-RPE targets, although not significantly). This pattern was also present in 

the model, where high-RPE items were more strongly associated with their predecessor than 

low-RPE items. We note that in previous studies, recognition priming was evident only for 

high-confidence recognition (i.e., for recollection instead of familiarity; DuBrow & Davachi, 

2013; Schwartz et al., 2005), and we did not collect confidence judgments in our task, 

perhaps occluding more stable recognition priming effects in the low-RPE pairs. If anything, 

however, this emphasizes the intact association of the high-RPE event with its predecessor, 

as we saw recognition priming for the high-RPE item across all confidence levels.

8.7. Sequence memory

We found two distinct effects of our RPE conditions on sequence memory: (1) temporal 

order memory was impaired for items spanning a high (compared to low) RPE event, and (2) 

temporal order memory in the low-RPE condition (but not the high-RPE condition) was 

enhanced with greater distance between the events at encoding. In our simulation, primacy 

judgments were based on which item’s context was more distant from the test context 

(Friedman, 1993, 2004; Hintzman, 2002). Using this mechanism, our simulation captured 

the second effect (increased accuracy with greater distance between events at encoding, in 

the low-RPE condition) but it failed to predict the first effect (impaired sequence memory 

for items spanning a high RPE event). This is because high-RPE events in our model create 

a contextual shift, thereby making it easier (instead of harder) to identify the first item as the 

more contextually-distant (and thus earlier) item.

These results suggest that different mechanisms support temporal order memory for items 

within a latent context versus those across one (DuBrow & Davachi, 2016; Ezzyat & 

Davachi, 2014). Here, we suggest that a mechanism relying on contextual distance (i.e., the 

present simulation) can explain temporal memory for items within a latent context, but not 

temporal memory across latent contexts. As discussed above (see Section 7.9), a model 
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incorporating an explicit reconstruction mechanism like SEM (Franklin et al., 2019) may do 

better at explaining the full pattern of results.

8.8. Distance memory

Event boundaries increase the subjective temporal distance between events (Ezzyat & 

Davachi, 2014). We saw this effect only in the replication of Experiment 4, which points to 

more variable results with this measure. Across both datasets in Experiment 4, participants’ 

responses were quite inaccurate: the mean distance judgment was close to “3 trials apart,” 

even though two-thirds of the actual distances were smaller than 3. Although this needs to be 

replicated, we did find greater subjective distance for high-RPE pairs that was largely driven 

by the pair that included the high-RPE event itself (“0 trials-between”). However, this 

condition did not demonstrate impaired sequence memory, which points to a dissociation 

between mechanisms supporting sequence and distance memory. This finding is in line with 

a recent study showing that, at event boundaries, separate components of pupillary response 

are associated with sequence and distance measures (Clewett et al., 2019).

8.9. Neural mechanisms

RPEs modulate dopamine release in the ventral tegmental area (VTA) by increasing firing 

when rewards are better than expected, and decreasing firing when rewards are worse than 

expected (Barto, 1995; Montague, Dayan, & Sejnowski, 1996). Given dopamine-dependent 

plasticity in the hippocampus, associated with memory formation, putative links have been 

made between RPE signals in the VTA and modulation of hippocampal plasticity (Lisman & 

Grace, 2005), giving rise to enhanced memory for events that are better than expected (Jang 

et al., 2019).

In this study, however, we only observed effects of unsigned RPEs on the structure of 

memory. Recent work offers a mechanism by which unsigned (absolute value) RPEs can 

interact with memory. The locus coeruleus (LC), a previously unknown source of dopamine, 

co-releases dopamine along with its known release of norepinephrine, facilitating the 

generation of hippocampal memories during learning and for novel events (Kempadoo, 

Choi, Sulzer, & Kandel, 2016; Takeuchi et al., 2016). Large RPEs, whether positive or 

negative, have been shown to increase learning rate during reward learning, and are thought 

to modulate the noradrenergic LC system and its connections to the anterior cingulate cortex 

(Behrens, Woolrich, Walton, & Rushworth, 2007; Courville, Daw, & Touretzky, 2006; 

Nassar et al., 2012; Roesch, Esber, Li, Daw, & Schoenbaum, 2012; Sara, 2009) – a system 

linked to memory for surprising or arousing events (Clewett, Huang, Velasco, Lee, & 

Mather, 2018; Clewett, Schoeke, & Mather, 2014). Moreover, an increase in pupil dilation (a 

biomarker for LC activation) occurs at event boundaries, and predicts sequence and distance 

memory (Clewett et al., 2019), providing further corroboration of the putative role of the LC 

in supporting our results.

Nevertheless, there is still a question of whether this LC mechanism strengthens the high-

RPE event in memory and/or segments it from previous events. For example, it is possible 

that LC enhances the encoding of the high-RPE event while the hippocampus segments or 

“pattern separates” the events that come after the high RPE from those that came before 
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(Yassa & Stark, 2011). Future work should characterize how these potentially distinct 

processes of mnemonic strengthening and segmenting are orchestrated by the brain.

Moreover, prediction errors are thought to enact a “network reset” (Zacks et al., 2007) that 

has been recently linked to a shifting latent-state representation in the orbitofrontal cortex 

(Nassar, McGuire, Ritz, & Kable, 2018). The orbitofrontal cortex is a strong candidate 

region for representing these latent states (Schuck, Cai, Wilson, & Niv, 2016), which are 

thought to encode a cognitive map of task space (Wilson, Takahashi, Schoenbaum, & Niv, 

2014). Seeing that event boundaries modulate representations in the hippocampus (DuBrow 

& Davachi, 2014; Ezzyat & Davachi, 2014), it has been suggested that at these boundaries, 

enhanced hippocampal activity and a shift in cortical representations (such as in the 

orbitofrontal cortex) increases the drift in temporal context (Brunec, Moscovitch, & Barense, 

2018). Future work should characterize the interactions between the orbitofrontal cortex and 

the hippocampus in segmenting our experiences and organizing those memories.

9. Conclusion

Using four experiments, we established that latent shifts in the mean value of a reward 

distribution, generating the experience of high reward prediction errors, led to stronger 

recognition for the event associated with the high prediction error and preserved its link to 

the preceding event, while simultaneously interrupting the sequential integration of events 

across the prediction error event, thereby creating an event boundary in memory. We 

developed a computational model that treats a high prediction error event as an increase in 

the updating of that event to an internal, temporal context during encoding (thus creating a 

representational break between the events that occurred before and after the high prediction 

error event), and were able to capture our recognition priming results. These results suggest 

that large changes in the value of a rewarding experience split our memories of those 

experiences, separating them into separate clusters in memory, each including similarly 

rewarding events. This mechanism can help create low-dimensional representations of task 

states that are useful for both learning and decision making.
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Acknowledgements

We thank Sarah DuBrow for her instrumental consulting on this project, and Lynn Lohnas, Per Sederberg, and 
Rivka Cohen for fruitful conversation. This work was supported by grant W911NF-14-1-0101 from the Army 
Research Office (Y.N.), grant R01MH098861 from the National Institute for Mental Health (Y.N.), grant 
R21MH120798 from the National Institute of Health (Y.N.) and the National Science Foundation’s Graduate 
Research Fellowship Program (N.R.).

References

Baldassano C, Chen J, Zadbood A, Pillow JW, Hasson U, & Norman KA (2017). Discovering event 
structure in continuous narrative perception and memory. 10.1016/j.neuron.2017.06.041.

Barto AG (1995). Adaptive critic and the basal ganglia In Houk JC, Davis JL, & Beiser DG (Eds.). 
Models of information processing in the basal ganglia (p. 215). MIT press.

Rouhani et al. Page 28

Cognition. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Bates D, Maechler M, Bolker B, Walker S, Christensen RHB, Singmann H, ... Grothendieck G (2015). 
Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. 
10.18637/jss.v067.i01.

Behrens TEJ, Woolrich MW, Walton ME, & Rushworth MFS (2007). Learning the value of 
information in an uncertain world. Nature Neuroscience, 10(9), 1214–1221. 10.1038/nn1954. 
[PubMed: 17676057] 

Ben-Yakov A, & Dudai Y (2011). Constructing realistic engrams: poststimulus activity of 
Hippocampus and dorsal striatum predicts subsequent episodic memory. Journal of Neuroscience, 
31(24), 9032–9042. 10.1523/jneurosci.0702-11.2011. [PubMed: 21677186] 

Ben-Yakov A, Eshel N, & Dudai Y (2013). Hippocampal immediate poststimulus activity in the 
encoding of consecutive naturalistic episodes. Journal of Experimental Psychology: General, 
142(4), 1255–1263. 10.1037/a0033558. [PubMed: 23815458] 

Brunec IK, Moscovitch M, & Barense MD (2018). Boundaries shape cognitive representations of 
spaces and events. Trends in Cognitive Sciences, 22(7), 637–650. 10.1016/j.tics.2018.03.013. 
[PubMed: 29706557] 

Clewett D, Gasser C, & Davachi L (2019). Dynamic arousal signals construct memories of time and 
events. BioRxiv, 765214. 10.1101/765214.

Clewett D, Huang R, Velasco R, Lee T-H, & Mather M (2018). Locus coeruleus activity strengthens 
prioritized memories under arousal. The Journal of Neuroscience. 10.1523/
JNEUROSCI.2097-17.2017. 2097-17

Clewett D, Schoeke A, & Mather M (2014). Locus coeruleus neuromodulation of memories encoded 
during negative or unexpected action outcomes. Neurobiology of Learning and Memory, 111, 65–
70. 10.1016/j.nlm.2014.03.006. [PubMed: 24667494] 

Courville AC, Daw ND, & Touretzky DS (2006). Bayesian theories of conditioning in a changing 
world. Trends in Cognitive Sciences, 10(7), 294–300. 10.1016/j.tics.2006.05.004. [PubMed: 
16793323] 

Davachi L, & DuBrow S (2015). How the hippocampus preserves order: The role of prediction and 
context. Trends in Cognitive Sciences, 19(2), 92–99. 10.1016/j.tics.2014.12.004. [PubMed: 
25600586] 

De Loof E, Ergo K, Naert L, Janssens C, Talsma D, Van Opstal F, & Verguts T (2018). Signed reward 
prediction errors drive declarative learning. PLoS One, 13(1), 10.1371/journal.pone.0189212.

DuBrow S, & Davachi L (2013). The influence of context boundaries on memory for the sequential 
order of events. Journal of Experimental Psychology: General, 142(4), 1277–1286. 10.1037/
a0034024. [PubMed: 23957281] 

DuBrow S, & Davachi L (2014). Temporal memory is shaped by encoding stability and intervening 
item reactivation. Journal of Neuroscience, 34(42), 13998–14005. 10.1523/
jneurosci.2535-14.2014. [PubMed: 25319696] 

DuBrow S, & Davachi L (2016). Temporal binding within and across events. Neurobiology of 
Learning and Memory, 134, 107–114. 10.1016/j.nlm.2016.07.011. [PubMed: 27422018] 

DuBrow S, Rouhani N, Niv Y, & Norman KA (2017). Does mental context drift or shift? Current 
Opinion in Behavioral Sciences. 10.1016/j.cobeha.2017.08.003.

Duncan KD, Sadanand A, & Davachi L (2012). Memory’s penumbra: Episodic memory decisions 
induce lingering mnemonic biases. Science, 337.

Ergo K, De Loof E, Janssens C, & Verguts T (2019). Oscillatory signatures of reward prediction errors 
in declarative learning. Neuro Image, 186, 137–145. 10.1016/j.neuroimage.2018.10.083. 
[PubMed: 30391561] 

Ezzyat Y, & Davachi L (2014). Similarity breeds proximity: Pattern similarity within and across 
contexts is related to later mnemonic judgments of temporal proximity. Neuron, 81(5), 1179–1189. 
10.1016/j.neuron.2014.01.042. [PubMed: 24607235] 

Fortin NJ, Agster KL, & Eichenbaum HB (2002). Critical role of the hippocampus in memory for 
sequences of events. Nature Neuroscience, 5(5), 458–462. 10.1038/nn834. [PubMed: 11976705] 

Franklin NT, Norman KA, Ranganath C, Zacks JM, & Gershman SJ (2019). Structured event memory: 
A neuro-symbolic model of event cognition. BioRxiv, 541607 10.1101/541607.

Rouhani et al. Page 29

Cognition. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Friedman WJ (1993). Memory for the time of past events. Psychological Bulletin, 113(1), 44–66. 
10.1037/0033-2909.113.1.44.

Friedman WJ (2004). Time in autobiographical memory. Social Cognition. 10.1521/
soco.22.5.591.50766.

Gershman SJ, Radulescu A, Norman KA, & Niv Y (2014). Statistical computations underlying the 
dynamics of memory updating. PLoS Computational Biology, 10(11), 10.1371/
journal.pcbi.1003939.

Greve A, Cooper E, Kaula A, Anderson MC, & Henson R (2017). Does prediction error drive one-shot 
declarative learning? Journal of Memory and Language, 94, 149–165. 10.1016/j.jml.2016.11.001. 
[PubMed: 28579691] 

Heusser AC, Ezzyat Y, Shiff I, & Davachi L (2018). Perceptual boundaries cause mnemonic trade-offs 
between local boundary processing and across-trial associative binding. Journal of Experimental 
Psychology: Learning, Memory, and Cognition, 212, 1–48. 10.1037/xlm0000503.

Hintzman DL (2002). Context matching and judgments of recency. Psychonomic Bulletin and Review, 
9(2), 368–374. 10.3758/BF03196295. [PubMed: 12120802] 

Horner AJ, Bisby JA, Wang A, Bogus K, & Burgess N (2016). The role of spatial boundaries in 
shaping long-term event representations. Cognition, 154, 151–164. 10.1016/
j.cognition.2016.05.013. [PubMed: 27295330] 

Howard MW, & Kahana MJ (2002). A distributed representation of temporal context. Journal of 
Mathematical Psychology, 46(3), 269–299. 10.1006/jmps.2001.1388.

Hulley SB (2007). Designing clinical research. Lippincott Williams & Wilkins.

Jang AI, Nassar MR, Dillon DG, & Frank MJ (2019). Positive reward prediction errors during 
decision-making strengthen memory encoding. Nature Human Behaviour. 10.1038/
s41562-019-0597-3.

Kalbe F, & Schwabe L (2019). Beyond arousal: Prediction error related to aversive events promotes 
episodic memory formation. Journal of Experimental Psychology: Learning, Memory, and 
Cognition. 10.1037/xlm0000728.

Kempadoo KA, Mosharov EV, Choi SJ, Sulzer D, & Kandel ER (2016). Dopamine release from the 
locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proceedings of 
the National Academy of Sciences, 113(51). 10.1073/pnas.1616515114.

Kesner RP, Hunsaker MR, & Ziegler W (2010). The role of the dorsal CA1 and ventral CA1 in 
memory for the temporal order of a sequence of odors. Neurobiology of Learning and Memory, 
93(1), 111–116. 10.1016/j.nlm.2009.08.010. [PubMed: 19733676] 

Kragel JE, Morton NW, & Polyn SM (2015). Neural activity in the medial temporal lobe reveals the 
fidelity of mental time travel. Journal of Neuroscience, 35(7), 2914–2926. 10.1523/
jneurosci.3378-14.2015. [PubMed: 25698731] 

Lisman JE, & Grace AA (2005). The hippocampal-VTA loop: Controlling the entry of information 
into long-term memory. Neuron, 46(5), 703–713. 10.1016/j.neuron.2005.05.002. [PubMed: 
15924857] 

Lohnas LJ, Polyn SM, & Kahana MJ (2015). Expanding the scope of memory search: Modeling 
intralist and interlist effects in free recall. Psychological Review, 122(2), 337–363. 10.1037/
a0039036. [PubMed: 25844876] 

Montague PR, Dayan P, & Sejnowski TJ (1996). A framework for mesencephalic dopamine systems 
based on predictive Hebbian learning. The Journal of Neuroscience : The Official Journal of the 
Society for Neuroscience, 16(5), 1936–1947. Retrieved from http://www.jneurosci.org/content/
jneuro/16/5/1936.full.pdf. [PubMed: 8774460] 

Murty VP, & Adcock RA (2014). Enriched encoding: Reward motivation organizes cortical networks 
for hippocampal detection of unexpected events. Cerebral Cortex, 24(8), 2160–2168. 10.1093/
cercor/bht063. [PubMed: 23529005] 

Murty VP, Labar KS, & Adcock RA (2016). Distinct medial temporal networks encode surprise during 
motivation by reward versus punishment. Neurobiology of Learning and Memory, 134, 55–64. 
10.1016/j.nlm.2016.01.018. [PubMed: 26854903] 

Rouhani et al. Page 30

Cognition. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.jneurosci.org/content/jneuro/16/5/1936.full.pdf
http://www.jneurosci.org/content/jneuro/16/5/1936.full.pdf


Nassar MR, McGuire JT, Ritz H, & Kable J (2018). Dissociable forms of uncertainty-driven 
representational change across the human brain. The Journal of Neuroscience, 1713–1718. 
10.1523/jneurosci.1713-18.2018.

Nassar MR, Rumsey KM, Wilson RC, Parikh K, Heasly B, & Gold JI (2012). Rational regulation of 
learning dynamics by pupil-linked arousal systems. Nature Neuroscience, 15(7), 1040–1046. 
10.1038/nn.3130. [PubMed: 22660479] 

Pollack I, & Norman DA (1964). A non-parametric analysis of recognition experiments. Psychonomic 
Science, 1(1–12), 125–126. 10.3758/BF03342823.

Polyn SM, Norman KA, & Kahana MJ (2009). A context maintenance and retrieval model of 
organizational processes in free recall. Psychological Review, 116(1), 129–156. 10.1037/
a0014420. [PubMed: 19159151] 

Roesch MR, Esber GR, Li J, Daw ND, & Schoenbaum G (2012). Surprise! Neural correlates of 
Pearce-Hall and Rescorla-Wagner coexist within the brain. European Journal of Neuroscience, 
35(7), 1190–1200. 10.1111/j.1460-9568.2011.07986.x. [PubMed: 22487047] 

Rouhani N (2018). Reward prediction error effects on sequence memory.

Rouhani N, Norman KA, & Niv Y (2018). Dissociable effects of surprising rewards on learning and 
memory. Journal of Experimental Psychology: Learning, Memory, and Cognition. 10.1037/
xlm0000518.

Sahakyan L, & Smith JR (2014). “A long time ago, in a context far, far away”: Retrospective time 
estimates and internal context change. Journal of Experimental Psychology: Learning Memory and 
Cognition, 40(1), 86–93. 10.1037/a0034250.

Sara SJ (2009). The locus coeruleus and noradrenergic modulation of cognition. Nature Reviews 
Neuroscience, 10 10.1038/nrn2573.

Schuck NW, Cai MB, Wilson RC, & Niv Y (2016). Human orbitofrontal cortex represents a cognitive 
map of state space. Neuron, 91(6), 1402–1412. 10.1016/j.neuron.2016.08.019. [PubMed: 
27657452] 

Schwartz G, Howard MW, Jing B, & Kahana MJ (2005). Shadows of the past: Temporal retrieval 
effects in recognition memory. Psychological Science, 16(11), 898–904. 10.1111/
j.1467-9280.2005.01634.x. [PubMed: 16262777] 

Sederberg PB, Howard MW, & Kahana MJ (2008). A context-based theory of recency and contiguity 
in free recall. Psychological Review, 115(4), 893–912. 10.1037/a0013396. [PubMed: 18954208] 

Siefke BM, Smith TA, & Sederberg PB (2019). A context-change account of temporal distinctiveness. 
Memory & Cognition. 10.3758/s13421-019-00925-5.

Sols I, DuBrow S, Davachi L, & Fuentemilla L (2017). Event boundaries trigger rapid memory 
reinstatement of the prior events to promote their representation in longterm memory. Current 
Biology, 27(22), 3499–3504.10.1016/j.cub.2017.09.057. [PubMed: 29129536] 

Swallow KM, Zacks JM, & Abrams RA (2009). Event boundaries in perception affect memory 
encoding and updating. Journal of Experimental Psychology: General, 138(2), 236–257. 10.1037/
a0015631. [PubMed: 19397382] 

Takeuchi T, Duszkiewicz AJ, Sonneborn A, Spooner PA, Yamasaki M, Watanabe M, ... Morris RGM 
(2016). Locus coeruleus and dopaminergic consolidation of everyday memory. Nature, 537(7620), 
1–18. 10.1038/nature19325.

Talmi D, Lohnas LJ, & Daw ND (2019). A retrieved context model of the emotional modulation of 
memory. Psychological Review, 126(4), 455–485. 10.1037/rev0000132. [PubMed: 30973247] 

Tulving E (1984). Précis of elements of episodic memory. Behavioral and Brain Sciences, 7(2), 223–
238. 10.1017/S0140525X0004440X.

Usher M, & McClelland JL (2001). The time course of perceptual choice: The leaky, competing 
accumulator model. Psychological Review, 108(3), 550–592. [PubMed: 11488378] 

Wilson RC, Takahashi YK, Schoenbaum G, & Niv Y (2014). Orbitofrontal cortex as a cognitive map 
of task space. Neuron, 81(2), 267–279. 10.1016/j.neuron.2013.11.005. [PubMed: 24462094] 

Yassa MA, & Stark CEL (2011). Pattern separation in the hippocampus. Trends in Neurosciences, 
34(10), 515–525. 10.1016/j.tins.2011.06.006. [PubMed: 21788086] 

Yntema DB, & Trask FP (1963). Recall as a search process. Journal of Verbal Learning and Verbal 
Behavior, 2(1), 65–74. 10.1016/S0022-5371(63)80069-9.

Rouhani et al. Page 31

Cognition. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Zacks JM, Speer NK, Swallow KM, Braver TS, & Reynolds JR (2007). Event perception: A mind-
brain perspective. Psychological Bulletin. 10.1037/0033-2909.133.2.273.

Zwaan RA (1996). Processing narrative time shifts. Journal of Experimental Psychology: Learning, 
Memory, and Cognition, 22(5), 1196.

Rouhani et al. Page 32

Cognition. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Experimental paradigm. A. In all experiments, in each of six blocks, participants first 

completed a passive reward learning task (the encoding task) where sequences of scenes, 

each with an associated reward value, were presented. The reward values of the images were 

contingent on the mean value of the reward state, which shifted 4–5 times each block. B. In 

Exp. 1–3, after reward learning, participants completed a recognition test where they 

indicated whether a scene was “old” or “new”. We tested for recognition priming of high 

and low-RPE events, relying on a mechanism by which recognition of an old item (the 

prime), either directly or indirectly, activates the items that had followed it during encoding 

(the target), leading to better and faster recognition of target items. Most of the old scenes 

were presented in pairs that belonged to three different conditions (example stimuli refer to 

the reward sequence in A): (1) “low RPE”: a pair that was studied consecutively; both items 

belonged to the same reward state, (2) “high RPE”: a pair that was studied consecutively, 
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however the items belonged to different reward states, (3) “out of sequence” (baseline): the 

second item in the test pair actually preceded the first item during encoding (i.e., out of 

order); the items belonged to different reward states. Recognition priming for low and high-

RPE pairs was compared to the out-of sequence pairs. In Exp. 1–2, the low and high-RPE 

pairs comprised items that were directly one after the other during encoding, whereas in 

Exp. 3, the pairs were separated by another scene during encoding (“+1”), and so the high-

RPE +1 pair did not include the high-RPE event itself. C. In Exp. 4 (and its replication), 

after reward learning, we tested for the temporal memory of two scenes that either belonged 

to the same reward state (low RPE) or a different reward state (high RPE), and were either 0 

(back-to-back), 1 or 3 trials apart. We first asked participants to indicate which of two 

images came first during encoding (sequence memory), and then for the number of images 

that occurred between them (distance judgment, scale 0–5). Example pairs (bottom) refer to 

the reward sequence in A, although unlike the pairs of stimuli presented here, no scene was 

repeated during testing.
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Fig. 2. 
Recognition priming results. For paired targets (“low RPE”, “high RPE” and “out of 

sequence”), memory is conditioned on correct recognition of the first item in the pair, and 

response latency is additionally conditioned on correct recognition of the target (i.e., latency 

is only for “hits” in all conditions). A. Exp. 1: Recognition memory as a function of item 

condition. Memory for the sequentially primed targets (low and high RPE) was better than 

the out-of-sequence and (unpaired) “single low RPE” targets. B. Exp. 1: Response latencies 

for correct recognition as a function of item condition. Sequentially primed targets were 

retrieved faster than items that were not sequentially primed. C. Exp. 2: Recognition 

memory as a function of item condition. Memory for the primed high-RPE target was no 

different than the “single high RPE” target that had not been primed. Thus, memory 

accuracy did not provide evidence for recognition priming of high-RPE events. D. Exp. 2: 

Response latencies for correct recognition as a function of item condition. Primed high-RPE 
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targets were retrieved faster than the non-primed high-RPE targets and out-of-sequence 

targets, thereby demonstrating recognition priming for high-RPE events. E. Exp. 3: 

Recognition memory as a function of item condition. Primed targets (where the prime was 

the item presented two trials before the target during encoding) were not remembered better 

than the out-of-sequence targets. F. Exp. 3: Response latencies for correct recognition as a 

function of item condition. The high-RPE +1 target was no longer retrieved faster than the 

out-of-sequence target, whereas the low-RPE +1 target was still retrieved faster, 

demonstrating intact recognition priming. Moreover, latencies for the high-RPE +1 target 

were significantly slower than the low-RPE +1 target. Error bars represent standard error of 

the mean (SEM).
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Fig. 3. 
Sequence and distance memory results. A-B. Sequence memory in Exp. 4 (A) and its 

replication (B) as a function of RPE event and presentation distance (number of trials) 

within scene pairs. Sequence memory for pairs that spanned a high-RPE event was worse; 

this was driven by pairs that did not include the high-RPE event itself (i.e., pairs that were 1 

or 3 trials apart). C-D. Distance judgment in Exp. 4 (C) and its replication (D) as a function 

of RPE event and presentation distance (number of trials) within scene pairs. High-RPE 

events were perceived as more distant from each other only in the replication experiment, a 
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result driven by pairs that included the high-RPE event itself (i.e., 0 trials-between). E–F. 
Distance judgment as a function of the reward difference between scenes in Exp. 4 (E) and 

its replication (F). In the replication experiment, we found that greater reward difference 

between scenes, which was a proxy for the magnitude of the RPE event that had occurred 

between them, led to greater perceived distance. Note that no statistics were run on these 

averaged values, and they are plotted here for illustration only. Size of the dots reflects the 

size of that sample. Shaded regions reflect 95% confidence intervals. Error bars represent 

SEM.
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Fig. 4. 
Model structure. The model has two layers: a feature layer (F) and a temporal context layer 

(C) that interact through two associative matrices: a feature-to-context matrix (MFC) that 

updates context and a context-to-feature matrix (MCF) that guides search. Each matrix is a 

composite of an episodic (EMCF, EMFC) and semantic matrix (SMCF, SMFC). The episodic 

matrices represent the episodic associations formed between F and C during encoding, 

whereas the semantic matrices contain one-to-one connections between features in F and the 

corresponding units in C. When an event is “experienced” (during encoding) or 

“remembered” (during retrieval), its corresponding unit fi is activated in F, and activation 

spreads up to C via MFC. Specifically, EMFC updates C with contexts that were previously 

(episodically) linked to fi (“mental time travel”), and SMFC updates C by activating the unit 

in the context layer that directly corresponds to fi (e.g., if fi is the third unit in the feature 

layer, SMFC activates the third unit in the context layer). During retrieval, activation spreads 

down from C to F via MCF. Specifically, EMCF activates units in F that were previously 

(episodically) linked to contexts that match the current state of C (“episodic retrieval”), and 

SMCF activates units in F proportionally to how active the corresponding units are in C 
(“direct readout”). Units in F then compete for retrieval. The figure depicts the state of the 

model at time point i = 4: The first three items (from left to right) were presented 

successively on previous trials, and are therefore active in context (more recently 

experienced items are more active in C, as reflected here by the size of the circles); the 

fourth item (outlined in red) is being presented in the feature layer. This feature-layer 

representation of the fourth item will be episodically associated with the context shown here; 
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on the next time step it will be used to update the state of C (via MFC) and the cycle will 

begin again. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 5. 
Illustration of how high- versus low-RPE events are encoded and retrieved by the model. A. 
Encoding. The high-RPE event enters the next event’s context with increased drift, leading 

to greater activation of the high-RPE event at the expense of the activation of the high-RPE 

−1 item in context. Learning of context-feature associations in the model is based on co-

activity of context and feature units (Hebbian learning); because the high-RPE −1 item is 

less active in context, it becomes less strongly associated with the high-RPE +1 item in the 

feature layer. B. Recognition priming. (1) The prime (high/low RPE −1 event) is retrieved by 

the network, (2) Activation spreads up from F to C via MFC, leading to higher activation of 

the prime in context, (3) Activation then spreads down from C to F via the MCF, leading to 

activation of events that contained the prime in their context, (4) The prime strongly cues 

both the high/low-RPE targets (Exp. 1 and 2). However, when the target item is the high-

RPE +1 event (Exp. 3), that item receives less activation because of the weaker association 

between the high-RPE −1 item (in context) and the high-RPE +1 item (in the feature layer), 

as mentioned above.
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Fig. 6. 
Recognition-priming simulation along with behavioral results. A-B. Recognition latencies as 

a function of item condition in Exp. 2 (A) compared to model simulations (B). High- and 

low-RPE targets are retrieved faster than the out-of-sequence targets. In the simulations there 

is, moreover, an interaction between priming condition and RPE, such that primed high-RPE 

targets are retrieved faster than primed low-RPE targets, but this difference was not observed 

for single (unprimed) items. The data point in the dotted outline represents recognition 

priming for the high-RPE +1 item (target) when primed by the high-RPE event (prime): 

although we did not test this behaviorally, the model predicts a strong association between 

the high-RPE event and its successor. C-D. Recognition latencies as a function of item 

condition in Exp. 3 (C) compared to model simulations (D). In both the data and the 

simulations, the high-RPE +1 target no longer shows recognition priming (i.e., it is no longer 

retrieved faster than the out-of sequence target) but the low-RPE +1 target shows robust 

recognition priming.
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Fig. 7. 
Sequence-memory simulations along with behavioral results. A. Sequence memory as a 

function of RPE event and presentation distance (number of trials) within scene pairs in Exp. 

4 and its replication (results averaged across both). Sequence memory was impaired for 

items spanning a high-RPE event (i.e., 1 and 3-trials-between), but there was no impairment 

in sequence memory for the high-RPE event and its direct predecessor (i.e., 0 trials-

between). Also, sequence memory improved with increasing distance between items in the 

low-RPE condition but not the high-RPE condition. B. The simulation captured the effect 

that sequence memory improved with increasing distance between items in the low-RPE 

condition, but incorrectly predicted that sequence memory would improve with increasing 

distance between items in the high-RPE condition, and also incorrectly predicted better 

sequence memory for items spanning a high (compared to low) RPE event. Error bars 

represent SEM.
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