
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Efficient imaging of crosshole electromagnetic data

Permalink
https://escholarship.org/uc/item/4ww2n4rq

Authors
Kim, Hee Joon
Lee, Ki Ha
Wilt, Mike

Publication Date
2002-09-03

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4ww2n4rq
https://escholarship.org
http://www.cdlib.org/


Efficient imaging of crosshole electromagnetic data 
 
Hee Joon Kim(1), Ki Ha Lee(2), and Mike Wilt(3) 
 
(1)

 Pukyong National University (hejkim@pknu.ac.kr), (2)
 Ernest Orland Lawrence Berkeley National Laboratory,  

(3)
 ElectroMagnetic Instruments, Inc. 

 
ABSTRACT

       
A computationally efficient inversion scheme has been 
developed using the extended Born or localized non-
linear (LN) approximation to analyze electromagnetic 
fields obtained in a crosshole environment. The medium 
is assumed to be cylindrically symmetric about the 
borehole, and to maintain the symmetry a vertical 
magnetic dipole is used as a source. The efficiency and 
robustness of an inversion scheme is very much 
dependent on the proper use of Lagrange multiplier, 
which is often provided manually to achieve a desired 
convergence. We have developed an automatic Lagrange 
multiplier selection scheme, which enhances the utility 
of the inversion scheme in handling field data. In this 
selection scheme, the integral equation (IE) method is 
quite attractive in speed because Green’s functions, the 
most time consuming part in IE methods, are repeatedly 
re-usable throughout the selection procedure. The 
inversion scheme using the LN approximation has been 
tested to show its stability and efficiency using synthetic 
and field data. 
 
KEY WORDS: crosshole, localized nonlinear approxi-

mation, cylindrical symmetry, inversion 
 
INTRODUCTION 
 
High-resolution imaging of electrical conductivity has 
been the subject of many studies in crosshole tomography 
using electromagnetic (EM) fields (Zhou et al., 1993; 
Wilt et al., 1995; Alumbaugh and Morrison, 1995; 
Newman, 1995; Alumbaugh and Newman, 1997). 
Although the theoretical understanding and associated 
field practices for crosshole EM methods are relatively 
mature, fast and stable interpretation of crosshole EM 
data is still a challenging problem. 

The main advantage of integral equation (IE) method 
in comparison with the finite difference (FD) and/or 
finite element (FE) method is the fast and accurate 
simulation of compact three-dimensional (3-D) bodies in 
a layered background (Hohmann, 1975). The FD and FE 
methods are suitable for modeling EM fields in complex 
structures with large-scale conductivity variations. In 
principle, the IE method can handle these models too, but 
the huge demand on computer resources places a 
practical limit on its use. This is because of the full 
matrix arising from the IE formulation. 

Another advantage of the IE method over the FD or FE 
method is its greater suitability for inversion. The IE 
formulation readily contains a sensitivity matrix, which 
can be revised at each inversion iteration at little expense. 
With the FD or FE method, in contrast, the sensitivity 

matrix has to be recomputed at each iteration at a cost 
nearly equal to that of full forward modeling. The IE 
method, however, has to overcome severe practical 
limitations imposed on the numerical size of the 
anomalous domain for inversion purposes. In this 
direction, several approximate methods such as the 
localized nonlinear (LN) approximation (Habashy et al., 
1993) and quasi-linear approximation (Zhdanov and Fang, 
1996) have been developed recently. 

In this paper we exploit an advantage of the LN 
approximation with applications to crosshole inversion of 
EM data. We begin our discussion with a review of the 
LN approximation of IE solutions. We then consider its 
accuracy for a cylindrically symmetric model, describe 
our inversion algorithm, and demonstrate the stability and 
effectiveness of this approach by inverting synthetic data. 
Finally, we briefly consider an example application to 
field data provided by Chevron as a part of the Lost Hills 
CO2 pilot project in southern California. 
 
LN APPROXIMATION 
 
Assuming an e+iωt time dependency and an electric 
current source Js at rs, Maxwell’s equations in the 
frequency domain are (Hohmann, 1975) 
 
 )()( rHrE ωµi−=×∇ ,     (1) 
 )()()()( ss rrJrErrH −+=×∇ σ ,    (2) 
 
where E and H are the electric and magnetic fields, 
respectively, σ the conductivity, and ω the angular 
frequency, and µ the magnetic permeability. For the 
frequency range used in this study (less than 100 kHz), 
the displacement current can be neglected, and the 
magnetic permeability µ is assumed to be that of free 
space. The electrical conductivity σ is heterogeneous and 
can be divided into 
 
 )()( rr σσσ ∆+= b ,     (3) 
 
where σb is the background conductivity, and ∆σ is the 
excess conductivity. From equations (1) and (2), we can 
get a differential equation for the electric field as 
 

)()()()( rJrErrE sii ωµωµσ −=+×∇×∇ .     (4) 
 

The numerical solution for the electric field may be 
obtained using either the FE or FD method. Alternatively, 
the numerical solution may be obtained using the IE 
method involving the Green’s function that satisfies 



 
 

)'()'()'( sEbE i rrIrrGrrG −=−+−×∇×∇ δωµσ , (5) 
 
where I is the identify tensor, and the subscript E 
signifies that the Green’s function translates current 
source J to electric field E. Each vector component of 
the Green’s tensor GE(r-r’) is the vector electric field at 
r due to a point source at r′ with its current density of  
–(iωµ)-1 Amp/m2, polarized in x, y, and z, respectively. 
Using equations (4) and (5), we can derive an IE solution 
for the electric field as 
 

')'()'()'()()( ∫ ∆⋅−−=
V

Eb dvi rErrrGrErE σωµ ,  (6) 

 
where Eb(r) is the background electric field that would 
exist in the presence of background medium only, and 
the term ∆σE inside the integral is called the scattering 
current (Hohmann, 1975). 

Equation (6) is nonlinear because the electric field 
inside the integral is a function of the conductivity. To 
obtain a numerical solution, the anomalous body is 
divided into a number of cells, and a constant electric 
field is assigned to each cell. Since Raiche (1974) first 
formulated a volume 3-D IE method, many numerical 
solutions have been presented on this subject (Hohmann, 
1988). The process involved in volume IE methods 
requires computing time proportional to the number of 
cells used, and it quickly becomes impractical as the size 
of the inhomogeneity is increased to handle realistic 
problems. 

For some important class of problems the complexity 
associated with a full 3-D problem can be reduced to 
something much simpler. A model whose electrical 
conductivities are cylindrically symmetric in the vicinity 
of a borehole is such an example. In order to preserve the 
cylindrical symmetry in the resulting EM fields, a 
horizontal loop current source or a vertical magnetic 
dipole may be considered in the borehole. In this case 
the problem is scalar when formulated using the 
azimuthal electric field Eϕ, and the analogous IE solution 
is 
 

)()( rr bEE ϕϕ =  

∫∫ ∆−−
z

E dzdEGi
ρ
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where 
r zr

r
+= ρ  and r’ '' zr

r
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are the position vectors, and the electric field and 
Green’s function are both scalar. The Green’s function is 
given in the form of a Hankel transform as (p. 219, Ward 
and Hohmann, 1988) 
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where 
ub = (λ2+iωµσb)1/2. 

 
Since measurements are usually made for the magnetic 
field, equation (7) is modified as 
 

)()( rr zbz HH =  

∫∫ ∆−−
z

H dzdEGi
ρ

ϕ ρρσωµπ ''')'()'()'(2 rrrr ,   (9) 

 
where GH(r-r’) translates the scattering current 
∆σ(r’)Eϕ(r’) at r’ to the magnetic field at r. 

Using equations (7) through (9), we can obtain an IE 
solution by first dividing the (ρ, z) cross-section into a 
number of cells, and formulate a system of equations for 
the electric field using a pulse basis function. Sena and 
Toksoz (1990) presented a crosshole inversion study for 
permittivity and conductivity in cylindrically symmetric 
medium using high-frequency EM, and Alumbaugh and 
Morrison (1995) investigated crosshole EM tomography 
using an iterative Born approximation. 

The LN approximation offers an efficient and 
reasonably accurate electric field solution without 
deriving the full IE solution from equation (7). To do this 
equation (7) is first modified to (Habashy et al., 1993) 
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If the electric field is continuous in the vicinity of r, 

the contribution from the second integral may be small 
compared with the background electric field. This is 
because when r′ approaches r, the difference in [Eϕ(r’) – 
Eϕ(r)] is getting smaller, so the scattering current is 
effectively zero at the singular point. When r′ moves 
away from r, the contribution is also small because the 
Green’s function falls off rapidly. For the type of 
problem where there is only the azimuthal electric field, 
therefore, we can get a good approximation even if the 
second integral is neglected entirely. As a result we get 
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Substituting equation (10) into equation (9), we get an 
approximate magnetic field solution  
 

)()( rr zbz HH ≈  

∫∫ ∆−−
z
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To illustrate the efficiency and usefulness of the LN 
numerical solution, especially in a crosshole application, 
let us consider a simple model consisting of a conductive 
ring about a source borehole axis in a uniform whole 
space of 100 ohm-m. The cross-section of the ring is a 
10 m by 10 m rectangle and 15 m horizontally away 
from the borehole as shown in Figure 1. The Born and 
LN approximated magnetic fields measured in the other 
borehole 50 m horizontally away from the source 
borehole are compared with the result obtained from the 
full FE method (Lee et al., 2002). 
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Figure 1. A cylindrically symmetric model. A 
conductive body with a cross-section of 10 m by 10 
m is cylindrically symmetric about a borehole in 
which vertical magnetic dipole (Mz) source is 
inserted, and located in a whole space of 0.01 S/m at 
15 m horizontally away from the borehole. 
Horizontal and vertical magnetic fields are measured 
in the other borehole 50 m horizontally away from 
the source borehole. 

 
 
Figure 2 shows the comparison in the secondary 

horizontal and vertical magnetic fields between the Born, 
LN, and FE solutions. The center of the body is chosen 
as z = 0. The conductivity contrast and operating 
frequency used are 10 and 10 kHz, respectively. The 
source and receiver are located at the same depth in each 
borehole. More anomalies can be observed in the 
imaginary part than in the real part. For all field 
components, the LN and FE solutions agree very well.  

We are also interested in the quality of the LN solution 
when the conductivity of the body is varied. Figure 3 
shows the comparison in the secondary vertical magnetic 
fields between the Born, LN, and FE solutions. A 
vertical magnetic source is fixed at the depth of the 
center of body in the source borehole, and vertical 
magnetic fields are measured at 10 m below the center of 
the body in the receiver borehole. The frequency used is 
10 kHz. The LN approximation is very well up to the 

conductivity contrast of about 100. The imaginary part 
of the LN solution starts deviating from the FE solution 
beyond the conductivity contrast of 100, while the real 
part still shows a good agreement. 
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Figure 2. Horizontal (upper) and vertical (lower) 
components of secondary magnetic fields. Operating 
frequency is 104 Hz and body conductivity is 0.1 S/m. 
The array used is a crosshole source-receiver pair 
moving in parallel down the two boreholes. Solid and 
dashed lines show FE solutions. 
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Figure 3. The effect of conductivity contrast between the 
body and background on the vertical components of 
secondary magnetic fields. The depths of source and 
receiver are fixed at 5 m above and below the bottom 
of the body, respectively. The operating frequency is 
104 Hz. Solid and dashed lines show FE solutions. 



 
 
 
Finally, the comparison is made for responses in 

frequency as shown in Figure 4. The source-receiver 
array is the same as that in Figure 3, and the conductivity 
contrast is fixed to 10. The LN and FE solutions show a 
good agreement all the way up to about 100 kHz. 
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Figure 4. The effect of frequency on the vertical 
components of secondary magnetic fields. The 
depths of source and receiver are fixed at 5 m above 
and below the bottom of the body, respectively. The 
conductivity of the body is 0.1 S/m. Solid and dashed 
lines show FE solutions. 

 
 

INVERSION 
 
Based on the encouraging results of the LN 
approximation, we have proceeded to implement the 
crosshole EM inversion. Measurements are in the other 
borehole to the transmitter borehole. Upon dividing the 
inhomogeneity into K elements, the secondary magnetic 
field at the i-th receiver in the borehole may be written 
as 
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where the subscript k denotes the k-th element. The 
corresponding Green’s function for the magnetic field 
may be deduced from the electric field Green’s function 
(8) as  
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For the inversion, the sensitivity of the magnetic field 
with respect to the change in conductivity can be easily 

obtained from equation (12). Taking derivative of the 
data with respect to the j-th conductivity parameter and 
neglecting the dependence of γj on ∆σj, the sensitivity 
becomes 
 

∫∫ −−≈
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s
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σ ϕ , (14) 

 
which can be easily evaluated by integrating over the j-th 
element. 

The inversion procedure starts with the data misfit 
||Wd[H(σ)-Hd]||2, where the subscript d denotes data. The 
data weighting matrix Wd is used to give relative weights 
to individual data. If a perturbation δσ is allowed to the 
conductivity, the misfit takes a form ||Wd[H(σ+δσ)-Hd]||2, 
and the total objective functional may be written as 
 

22])([ δσλδσσφ σWHHW +−+= dd ,   (15) 
 
where the second term on the right-hand side is added to 
impose a smoothness constraint, and Wσ is the weighting 
matrix and λ is the Lagrange multiplier that controls the 
trade-off between data misfit and parameter smoothness. 
Expanding the misfit in δσ using the Taylor series, 
discarding terms higher than the square term, and letting 
the variation of the functional with respect to δσ equal to 
zero, we obtain a linear system of equations for the 
perturbation δσ as 
 

])([)( dd
T
d

TT
d

T
d

T HHWWJWWJWWJ −−=+ σδσλ σσ , 
    (16) 
 
where the superscript T indicates the matrix transpose, 
and the entries of Jacobian matrix J are the sensitivity 
functions given in equation (14). 

The stability of the inversion is largely controlled by 
requiring the conductivity to vary smoothly. Larger 
values of λ result in smooth and stable solutions at the 
expense of resolution. It even allows for the solution of 
grossly underdetermined problems (Tikhonov and 
Arsenin, 1977). In this crosshole inversion study, the 
parameter λ is progressively selected in the inversion 
process. The selection procedure starts with executing a 
given number of inversions using ln  different 
multipliers that are spaced appropriately. The same 
Jacobian is used at this step. As a result ln  updated 
parameter sets are produced, followed by ln  forward 
model calculations resulting in ln  data misfits. Among 
these, we choose the model and parameter λ giving the 
lowest data misfit as optimum ones. In this selection 
scheme, the IE modeling is quite attractive in speed 
because Green’s functions, the most time consuming part 
in IE methods, are repeatedly re-usable throughout the 
selection procedure. 

To evaluate the performance of extended Born 
inversion using the LN approximation, we choose a 



 
conductivity model shown in Figure 5. The model 
consists of two cylindrically symmetric bodies, one 
conductive (0.1 S/m) and the other resistive (0.001 S/m), 
in a whole space of 0.01 S/m. A FE scheme (Lee et al., 
2002) is used to generate synthetic data. The accuracy of 
the FE method is estimated as a level of less than 1 %. 
Using a vertical magnetic dipole (Mz) as a source, 
vertical magnetic fields (Hz) are computed at three 
frequencies of 2.5 kHz, 10 kHz and 20 kHz. Three-
percent Gaussian noise is added to the synthetic data 
prior to the inversion. The inversion is started with an 
initial model of 60 ohm-m uniform whole space. In this 
test 3=ln  is used in each iteration to select parameter 
update and Lagrange multiplier. 
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Figure 5. A model used to calculate synthetic data for 
inversion test. Two bodies of 0.1 S/m and 0.001 S/m, 
separated vertically by 10 m, are located in a whole-
space of 0.01 S/m. The upper conductive and lower 
resistive ones are at 10 m and 30 m horizontally 
away from the source borehole, respectively. 
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Figure 6. An image of the two conductors reconstructed 

from the inversion of synthetic data after 8th iteration. 
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Figure 7. Resistivity imaging derived from the 2-D 

inversion of data obtained in the Lost Hills CO2 pilot 
project in southern California. 

 
 

After 8 iterations, the two bodies are clearly 
reconstructed as shown in Figure 6. The recovered 
conductivity is found to be nearly the same in the 
conductive body but is overestimated in the resistive 
body. The inversion process is quite stable, and the rms 
misfit decreases from the initial guess of 5.095 to 0.036 
after 8 iterations. The smoothing parameter varies 
significantly during the inversion process. This means it 
is difficult to determine the parameter a priori. 

Finally, the 2-D inversion algorithm has been applied 
to a set of crosshole field data provided by Chevron as a 
part of the Lost Hills CO2 pilot project in southern 
California (Wilt, 2002). The separation between the two 
vertical boreholes is 24.536 m and CO2 injection well is 
near the center of the section defined by the two wells. 
Although both EM and seismic data for the pre- and 
post-injection are available, we conducted inversion 
using only the EM (Mz-Hz) data. The operating 
frequency was 759 Hz. 
 Figure 7 shows inversion results of the crosshole data. 
The CO2 injection into a reservoir of oil/brine mixture 
results in changes in conductivity, which can be 
indirectly interpreted as the displacement of brine with 
injected CO2. The replacement of water with CO2 makes 
a decrease of conductivity. Figure 7 shows a significant 
change in conductivity distribution, and this increase of 
resistivity suggests an effect of the CO2 injection. 
Unfortunately, the borehole separation is not far enough 
compared with the skin depth (i.e., low frequency), the 
reconstructed images using the assumption of 
cylindrically symmetric may have artifacts that can be 
produced by the geometry of conductive zone outside of 
the interwell plane (Alumbaugh and Morrison, 1995). 
Computing time required for the 2-D approximate 
inversion is less than 5 minutes on a Pentium-4 PC to 



 
obtain 650 conductivities from 604 complex Hz fields 
after 5 iterations. 
 
CONCLUSIONS 
 
The extended Born or LN approximation of IE solution 
has been applied to inverting crosshole EM data using a 
cylindrically symmetric model. The extended Born 
approximation is less accurate than a full solution but 
much superior to the simple Born approximation. When 
applied to the cylindrically symmetric model with a 
vertical magnetic dipole source, however, the extended 
Born approximation works well because electric fields 
are scalar and continuous everywhere. One of the most 
important steps in the inversion is the selection of a 
proper regularization parameter for stability. The LN 
solution provides an efficient means for selecting an 
optimum regularization parameter, because Green’s 
functions, the most time consuming part in IE methods, 
are repeatedly re-usable at each iteration. In addition, the 
IE formulation readily contains a sensitivity matrix, 
which can be revised at each iteration at little expense. 
The inversion scheme using the LN approximation 
developed in this study has been tested on its stability 
and efficiency using synthetic and field data.  
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