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ABSTRACT OF THE DISSERTATION

Joint and Post-Selection Confidence Sets for High-Dimensional Regression

by

Kun Zhou

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2020

Professor Qing Zhou, Chair

Construction of confidence sets is an important topic in statistical inference. In this disser-

tation, we propose an adaptive method to construct honest confidence sets for the regression

mean vector and a framework to construct confidence sets after model selection. The whole

dissertation is divided into two parts.

The issue of honesty in constructing confidence sets arises in nonparametric regression.

While the optimal rate in nonparametric estimation can be achieved and utilized to construct

sharp confidence sets, severe degradation of confidence level often happens after estimating

the degree of smoothness. Similarly, for high-dimensional regression, oracle inequalities for

sparse estimators could be utilized to construct sharp confidence sets. Yet the degree of

sparsity itself is unknown and needs to be estimated, which causes the honesty problem. To

resolve this issue, we develop a novel method to construct honest confidence sets for sparse

high-dimensional linear regression. The key idea in our construction is to separate signals

into a strong and a weak group, and then construct confidence sets for each group separately.

This is achieved by a projection and shrinkage approach, the latter implemented via Stein

estimation and the associated Stein unbiased risk estimate. After combining the confidence

sets for the two groups, our resulting confidence set is honest over the full parameter space

without any sparsity constraints, while its size adapts to the optimal rate of n−1/4 when the

true parameter is indeed sparse. Moreover, under some form of a separation assumption

between the strong and weak signals, the diameter of our confidence set can achieve a faster
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rate than existing methods. Through extensive numerical comparisons, we demonstrate that

our method outperforms other competitors with big margins for finite samples, including

oracle methods built upon the true sparsity of the underlying model.

Apart from the construction of joint confidence sets, the construction of confidence sets

after model selection is essentially a different and more challenging problem, as the sampling

distributions are restricted to irregular subsets, which increases the difficulty in maintaining

the confidence level. To address this problem, we develop a new framework, which con-

tains Bayesian interpretation and constructs credible sets conditioning on active sets of lasso

estimates. This framework provides flexible choices of the prior distributions serving as reg-

ularizers for the credible sets. Our preliminary research demonstrates that certain credible

sets are proved to be confidence sets in the frequentist framework, yet the size of credible

sets and the adaption of their diameters should be further studied. Lastly, we seek the pos-

sibility to generalize this framework into a large amount of generalized linear models and

into confidence sets conditioning on block lasso estimates.
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CHAPTER 1

Introduction

Statistical inference is one of the most important fields in the current research. Particularly,

high-dimensional inference has been receiving significant attention, since there is a growing

demand for methodologies and theories when data is insufficient compared to the number

of parameters in models. For example, in biology, especially genetics, researchers want to

screen out a small group of genes associated with one specific trait among millions of genes,

while the number of subjects is limited. More examples include finance, social networking,

online advertising and the list goes on. To broaden the scope of high-dimensional inference,

this dissertation aims at providing a novel adaptive method to construct confidence sets

for the mean vector in regression models and a new framework of constructing confidence

sets after model selection. Before formally presenting our ideas, we review three adaptive

methods for regression models, which correspond to three topics on statistical inference: the

inference on the mean vector, the inference on the coefficient vector and the inference on the

individual coefficient. Besides, we review Stein estimation (Li, 1989), on which our method

is based, and a simulation-based method for post-selection inference.

The Stein estimation and the adaptive method for the mean vector are discussed in

Section 1.1. The rest of two adaptive methods are discussed in Section 1.2 and Section 1.3,

respectively. The method for post-selection inference is discussed in Section 1.4. Lastly, we

describe the outline of this dissertation in Section 1.5.
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1.1 Inference on the mean vector

Our problem is directly related to the construction of confidence sets in nonparametric

regression, for which a line of work has laid down important theoretic foundations and

provided methods of construction (Li, 1989; Beran and Dümbgen, 1998; Baraud, 2004; Robins

and van der Vaart, 2006; Cai and Low, 2006). Beran and Dümbgen (1998) mentioned that

the problem of recovering a signal from observation of the signal plus noise may be formulated

as inference of the mean vector, which justifies the practical importance of inference on the

mean vector.

Li (1989) provided a fundamental study for this problem. The author considered the

nonparametric statistical model

y = µ+ ε,

where y ∈ Rn is the observed vector, µ ∈ Rn is the unknown mean vector and ε ∼

Nn(0, σ2In). Their aim is to construct an asymptotic confidence set Ĉ = Ĉn of small diameter

for µ, which achieves honesty in the sense that, for any significance level α ∈ (0, 1),

lim inf
n→0

inf
µ∈Rn

P{µ ∈ Ĉ} ≥ 1− α. (1.1)

Note that (1.1) means that the confidence set should achieve the nominal significance level

for any µ ∈ Rn. A naive confidence set can be constructed by {µ ∈ Rn : 1
n
‖µ−y‖2 ≤ σ2

n
χ2
n,α},

where χ2
n,α denotes the (1 − α)-quantile of χ2-distribution with n degrees of freedom. It is

easy to verify such a naive confidence set satisfies honesty property. However, the normalized

radius σ2

n
χ2
n,α is of the order of 1, indicating the diameter never converges, and thus it is of

limited interest. The author further proved that any honest confidence set satisfying (1.1)

cannot have a diameter converging at a rate faster than n−1/4.

The achievability of this optimal rate n−1/4 is demonstrated by a simplified Stein estimate

and the associated unbiased risk estimate. For a linear estimate µ̃ = Tny, where y ∼
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Nn(µ, σ2In) and Tn ∈ Rn×n, let Rn = In − Tn, and define

µ̂(y; µ̃) = y − σ2 tr(Rn)

‖Rny‖2
Rny, (1.2)

L̂(y; µ̃) = 1− σ2 (tr(Rn))2

n‖Rny‖2
, (1.3)

where µ̂(y; µ̃) is the Stein estimate associated with the initial estimate µ̃ and σ2L̂(y; µ̃) is

the Stein unbiased risk estimate (SURE). Li (1989) proved the uniform consistency of L̂.

Lemma 1 (Theorem 3.1 in Li (1989)). Assume that y ∼ Nn(µ, σ2In). For any α ∈ (0, 1),

there exists a constant cs(α) > 0 such that

lim inf
n→∞

inf
µ∈Rn

Pµ
{∣∣∣σ2L̂− n−1‖µ̂− µ‖2

∣∣∣ ≤ cs(α)σ2n−1/2
}
≥ 1− α, (1.4)

where µ̂ and L̂ are defined in (1.2) and (1.3).

By Lemma 1, we let µ̂ be the center and σ2L̂ + cs(α)n−1/2 be the radius to construct a

confidence set in the form of {µ : ‖µ − µ̂‖2 ≤ σ2L̂ + cs(α)n−1/2}. It follows from (1.4) that

such a confidence set satisfies (1.1). The Stein method can achieve the optimal rate of n−1/4

if µ̃ is close to µ in the sense of `2-norm. That is, y is shrunk to the subspace that µ lies

in. Baraud (2004) proposed another method with multiple hypotheses, which increases the

chance of adaption at the optimal rate.

Here, we introduce an adaptive method (Robins and van der Vaart, 2006), which con-

structs an honest confidence set for a Hilbert space-valued parameter including the mean

vector in Rn. The authors provided five different models as examples — a model with reg-

ular parameters, a finite sequence model, an infinite sequence model, a density estimator

and random regression — to illustrate the wide application of their method. Particularly,

under a finite sequence model, the observation is a vector following the n-dimensional nor-

mal distribution with a mean vector θ = θ(n) = (θ1, θ2, . . . , θn)T and a covariance matrix

σ2

n
In. The variance σ2 is known and the parameter θ belongs to a subset Θ of Rn, where

Θ is possibly equal to Rn. They justified that the confidence set by their method is honest

over the parameter space Θ and its diameter adapts to a subset of Θ to achieve the optimal

diameter rate n−1/4.
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Their method is based on sample splitting. Suppose an initial estimator θ̂ = θ̂(n) inde-

pendent of y is given. Their confidence set is connected with an estimator Rn = Rn(θ̂, y) of

the squared norm ‖θ − θ̂‖2 such that

lim
n→∞

inf
θ∈Θ

Pθ
{
Rn(θ̂)− ‖θ − θ̂‖2 ≥ −zατ̂n,θ|θ̂

}
≥ 1− α, (1.5)

where τ̂n,θ is a “scale estimator” and zα is a quantile. Following from (1.5), one can derive

an honest confidence set

Ĉn =

{
θ ∈ Θ : ‖θ − θ̂‖ ≤

√
zατ̂n,θ +Rn(θ)

}
. (1.6)

Note that Ĉ may not be a ball as the right hand side of (1.6) is also a function of θ̂. Tne

inequality (1.5) demonstrates that the confidence set (1.6) essentially depends on a good

estimator Rn to achieve the adaptive diameter, while being honesty over Θ. The authors used

the construction by Laurent (1996, 1997) for Rn. This construction is based on estimating the

squared norm of the projection of θ− θ̂ by ‖Πkθ−Πkθ̂‖2, where Πkθ = (θ1, . . . , θk, 0, . . . , 0),

and minimizing the total effect of the resulting bias and the variance of the estimator. The

bias can bounded above by a multiple of

B2
k := sup

θ∈Θ
‖θ − Πkθ‖2. (1.7)

Note that when Θ = Rn, B2
k =∞ for any k < n. The variance is of the order of

τ̂k,n,θ :=
2σ4k

n2
+

4σ2‖Πkθ − Πkθ̂‖2

n
. (1.8)

Let |Ĉ| denote the diameter of the confidence set. Combining (1.7) and (1.8) together, they

showed that Ĉ is honest over Θ with its diameter

|Ĉ| = Op(
σk1/4

√
n

+Bk + ‖θ − θ̂‖), (1.9)

where k can be chosen by an optimal value to minimize the order. For any Rn which is of

the same order as ‖Πkθ−Πkθ̂‖2, the result in (1.9) is still valid. One can see from (1.9) that

‖θ− θ̂‖ is the key to improve the diameter. If θ̂ performs well for a subset of Θ, k1/4/
√
n and

Bk dominate in (1.9). When Θ = Rn, |Ĉ| in (1.9) is reduced to |Ĉ| = Op(σn
−1/4 + ‖θ − θ̂‖)

verifying n−1/4 is the optimal rate for the honest confidence set over Rn.
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Further, under the aforementioned finite sequence model, they derived the estimator of

‖θ − θ̂‖2,

Rk,n(θ) =
k∑
i=1

(Xi − θ̂i)2 − kσ2

n
, (1.10)

and the associated scale estimator,

τ̂ 2
k,n,θ =

2kσ4

n2
+

4σ2

n

k∑
i=1

(θi − θ̂i)2. (1.11)

With such a choice, zα in (1.5) is the (1 − α)-quantile of the standard normal distribution.

Later, we will compare our method against this adaptive method by Robins and van der

Vaart (2006).

1.2 Inference on the coefficient vector

Consider a linear model

y = Xβ + ε, (1.12)

where y ∈ Rn, X ∈ Rn×p, β ∈ Rp and ε ∼ N (0, σ2In). The inference on β is of great

interest for various purposes: model selection, point estimation, hypothesis testing, etc.

Carpentier (2015) proposed a method to construct a confidence set for β, which adapts

to the unknown sparsity, under the assumption of a separation between large and small

coefficients. Recently, Ewald and Schneider (2018) provided an exact formula to compute

a lower bound of the coverage rate of a confidence set centered at the lasso, over the entire

parameter space for any significance level α ∈ (0, 1), and vice versa; however, low dimension

(p < n) is a vital condition in their proof, making it impossible to generalize their idea to

the high-dimensional problem that we are studying. Besides, Cai and Guo (2020) considered

semi-supervised inference for explained variance, i.e., βTΣβ, where Σ is the covariance matrix

of a random design matrix, and then applied it to construct a confidence set for β. We

present the important finding in Nickl and van de Geer (2013) in the rest of this section. In

Section 1.1, we have seen that as the space of µ = Xβ is Rn, the confidence set for µ cannot
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maintain the honesty with |Ĉ| = o(n−1/4). Nickl and van de Geer (2013) showed that this

conclusion is also valid to the confidence set for β and the adaption to sparsity at a faster

rate o(n−1/4) can only happen when a small region is removed from the parameter space of

β.

Denote by B0(k) = {β ∈ Rp : ‖β‖0 ≤ k} the subset of Rp, where the number of nonzero

coefficients is no more than k. The authors studied a sparse linear model (1.12) in the sense

that β ∈ B0(k1) and k1 = k1(a1) ∼ p1−a1 for 0 < a1 < 1. Here, a1 ∈ (0, 1
2
] is considered

as a moderately sparse case and a1 ∈ (1
2
, 1) is considered as a highly sparse case. Under

proper conditions and k1 = o(n/ log p), they proved that there exists a confidence set Ĉ that

is honesty over B0(k1) in the sense of

lim inf
n→∞

inf
β∈B0(k1)

Pβ
{
β ∈ Ĉ

}
≥ 1− α

with any given significance level. Moreover, for any k ≤ k1 and β ∈ B0(k), its diameter

satisfies

|Ĉ|2 = Op(
k

n
log p+ n−1/2). (1.13)

In high-dimensional inference, the equation (1.13) indicates that the construction of confi-

dence sets is essentially a different problem from the estimation of risk bound, where a sparse

adaptive estimator β̂ = β̂(X, y) can satisfy

‖β̂ − β‖2 .
k

n
log p

up to a multiplicative constant in high probability.

Their next interest is what kind of critical region could be removed from B0(k1) to

encourage adaption to sparsity at any rate o(n−1/4). Let B0(k0) be a subset of B0(k1) with

k0 ∼ p1−a0 . Clearly, k0 < k1 and a0 > a1. Then, remove those β ∈ B0(k1) that are close in

`2-distance to B0(k0) to get

B̃0(k1, ρ) = {β ∈ B0(k1) : ‖β −B0(k0)‖ ≥ ρ},

where ρ = ρn,p is a separation sequence and ‖β −B‖ := infb∈B ‖β − b‖ for any B ⊆ Rp. The

new model is studied over β ∈ B(ρ) :=B0(k0) ∪ B̃0(k1, ρ). The goal is to find a confidence

6



set Ĉn,p for β satisfying a weaker honesty property

lim inf
n→∞

inf
β∈B(ρn,p)

Pβ
{
β ∈ Ĉn,p

}
≥ 1− α (1.14)

for any α ∈ (0, 1). Besides, its diameter satisfies that, for some constant L > 0 and α′ ∈ (0, 1),

lim sup
n→0

sup
β∈B0(k0)

Pβ
{
|Ĉn,p|2 > L

k0

n
log p

}
≤ α′ (1.15)

and

lim sup
n→0

sup
β∈B̃0(k1,ρn,p)

Pβ
{
|Ĉn,p|2 > L

k1

n
log p

}
≤ α′. (1.16)

Assuming certain conditions as well as k0 = o(
√
n/ log p) and k1 = o(n/ log p), they proved

that a confidence set satisfying (1.14), (1.15) and (1.16) exists if and only if ρn,p & n−1/4,

where & denotes greater than up to a multiplicative constant. In a moderately sparse case

that 0 < a1 ≤ 1/2 < a0 ≤ 1, ρn,p attains the rate of n−1/4. On the other hand, in a

highly spare case that 1
2
< a1 < a0 ≤ 1, the rate of ρn,p can be potentially relaxed from

n−1/4 to min{k1
n

log p, n−1/4}. This conclusion affirms that (1.13) cannot be improved if the

confidence sets are honest over all B0(k1). One may question if the ρ-separation condition

can be avoided at the cost of a mild penalty added to the adaption rate in (1.15). The

authors remarked that such a penalty does not alter the necessity of ρn,p & n−1/4 by their

proof.

1.3 Inference on the individual coefficient

Under the linear model (1.12), the construction of confidence sets for µ = Xβ or β is

different in nature from the construction of confidence intervals for an individual βj or a

low-dimensional projection of β. For the latter, the optimal rate of an interval length can

be n−1/2 when β is sufficiently sparse (Schneider, 2016; Cai and Guo, 2017), such as the

intervals constructed by de-biased lasso methods (Zhang and Zhang, 2014; van de Geer

et al., 2014; Javanmard and Montanari, 2014). Although simultaneous inference methods

have been proposed based on bootstrapping de-biased lasso estimates (Zhang and Cheng,
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2017; Dezeure et al., 2017), these methods are shown to achieve the desired coverage only for

extremely sparse β such that ‖β‖0 = o(
√
n/(log p)3), which severely limits their practical

application. We introduce another adaptive method proposed by Cai and Guo (2017), which

is based on the convergence rates of the minimax expected length for confidence intervals.

Specifically, the authors considered constructing a confidence interval for a linear func-

tional T (β) = ξTβ, where ξ ∈ Rp is named as the loading vector. Let k denote the sparsity

level, i.e., ‖β‖0 ≤ k. Based on the sparsity of ξ, they define a sparse loading regime where

only a part of ξi is nonzero, say ‖ξ‖0 . k, and a dense loading regime where |ξ| � k. A typ-

ical example for sparse loading regime is T (β) = βi and a typical example for dense loading

regime is T (β) =
∑p

i=1 βi. We first introduce their “minimax expected length” framework.

They assume the Gaussian design that all rows of Xi.
i.i.d.∼ Np(0,Σ), and Σ and σ are both

unknown. Denote as θ = (β,Σ−1, σ) the tuple of all parameters. Given the significance level

α ∈ (0, 1), a parameter space Θ ⊆ Rp of β and a linear functional T (β), let Iα(Θ, T ) be the

set of all honesty confidence intervals for T (β) over Θ, namely,

Iα(Θ, T ) =

{
CIα(T, Z) = [l(Z), u(Z)] : inf

θ∈Θ
Pθ{l(Z) ≤ T (β) ≤ u(Z)} ≥ 1− α

}
,

where Z = (X, y) is the observed data, l(Z) is the lower bound and u(Z) is the upper bound.

For any honesty confidence interval CIα(T, Z) ∈ Iα(Θ, T ), define the maximum expected

length over a parameter space Θ as

L(CIα(T, Z),Θ, T ) = sup
θ∈Θ

EθL(CIα(T, Z)),

where L(CIα(T, Z)) = u(Z) − l(Z) is the length of that confidence interval. Given two

parameter spaces Θ1 ⊆ Θ, define

L∗α(Θ1,Θ, T ) := inf
CIα(T,Z)∈Iα(Θ,T )

L(CIα(T, Z),Θ1, T ).

Essentially, Iα(Θ, T ) is the infimum of the maximum length of confidence intervals over the

subspace Θ1, when these confidence intervals are honest over Θ with α significance level. If

Θ1 = Θ, L∗α(Θ, T ) = L∗α(Θ,Θ, T ) is exactly the minimax expected length of honest confidence

intervals over Θ. A confidence interval CIα(T, Z), which is honest over Θ and adapts to Θ1,
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should satisfy

L(CIα(T, Z),Θ1, T ) � L∗α(Θ1, T ), L(CIα(T, Z),Θ, T ) � L∗α(Θ, T ).

In other words, the length of this CIα(T, Z) should be of the order of the optimal length

simultaneously over Θ1 and Θ, while CIα(T, Z) maintains the honesty over Θ. As a conse-

quence, if L∗α(Θ1,Θ, T )� L∗α(Θ1, T ), the sparse adaption to Θ1 from Θ is unfeasible.

Let k and k1 respectively denote the sparsity of Θ and Θ1. For the sparse loading regime,

the authors proved that with the condition k1 < k ≤ min{pγ, n
log p
} for γ ∈ (0, 1),

L∗α(Θ, T ) � ‖ξ‖2

(
1√
n

+ k
log p

n

)
, (1.17)

L∗α(Θ1,Θ, T ) ≥ c1‖ξ‖2

(
1√
n

+ k
log p

n

)
σ, (1.18)

where c1 > 0 is a constant. It can bee seen from (1.17) that the length of the honest

confidence interval cannot adapt at o(n−1/2). The inequality (1.18) indicates that when
√
n

log p
� k . n

log p
and k1 � k, there does not exist an honest confidence interval that adapts

to Θ1, since

L∗α(Θ1,Θ, T ) � L∗α(Θ, T ) � ‖ξ‖2k
log p

n
� L∗α(Θ1, T ).

Therefore, the adaption can only be achieved in the ultra-spare case k .
√
n

log p
, while the

optimal rate n−1/2 does not depend on sparsity in this case. For the dense loading regime,

they proved that

L∗α(Θ, T ) � ‖ξ‖∞k
√

log p

n
, (1.19)

L∗α(Θ1,Θ, T ) ≥ c1‖ξ‖∞k
√

log p

n
σ, (1.20)

where c1 > 0 is a constant. It follows from (1.19) and (1.20) that

L∗α(Θ1,Θ, T ) & ‖ξ‖∞k
√

log p

n
� L∗α(Θ1, T ),

which means that the the adaption in the dense loading regime is impossible. Lastly, they

studied whether the prior knowledge Σ = In and σ = σ0 can improve the result. For the
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sparse loading regime, the minimax expected length is improved and becomes

L∗α(Θ, T ) � ‖ξ‖2√
n

so that an adaptive honest confidence interval for T (β) is possible over Θ with k = O( n
log p

),

while for the dense loading regime, the prior knowledge cannot improve the minimax expected

length.

1.4 Post-selection inference

Post-selection inference is a topic different from the previous topics and attracts increasing

interest in recent years. (Berk et al., 2013; Lee et al., 2016; Tibshirani et al., 2016; Tian and

Taylor, 2017; Taylor and Tibshirani, 2018; Liu et al., 2018).

Min and Zhou (2019) developed a novel method to construct a confidence set after lasso

variable selection. Their method takes advantages of the closed-form sampling density condi-

tioning on a lasso active set (Zhou, 2014) and a randomization step. Together with a carefully

developed Markov chian Monte Carlo (MCMC) algorithm, they empirically showed that the

confidence set constructed by their method can achieve the desired coverage rate with its di-

ameter substantially smaller than other state-of-the-art methods. We summarize their work

in the rest of the section. Consider (1.12) with a fixed design matrix X. The parameter of

interest is

ν :=X+
Aµ0 = argmin

β∈R|A|
‖µ0 −XAβ‖2, (1.21)

where µ0 = Xβ, namely, the projection of µ0 onto the column space spanned by XA. Infer-

ence on ν becomes more challenging when the selection of A is also based on the same data

set (X, y), because the distribution of ν essentially conditions on the model selection event.

In their method, the selection step is achieved by the lasso estimator, namely, A = supp(β̂).

The primary goal is to construct a marginal confidence interval for νj conditioning on

A = A with a desired coverage. One possible direction is to construct a confidence interval

from [{X+
A (y∗− µ̃)}j|A(y∗) = A] where µ̃ is an estimate of µ and y∗ denotes a sample drawn
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from an estimated distribution of y (e.g., y∗ ∼ Nn(µ̃, σ2In)). However, it is unrecommended

due to the lack of theories to support that [X+
A (y∗− µ̃)|A(y∗) = A] is a consistent estimator

for [X+
A (y − µ0)|A(y) = A]. Therefore, the coverage rates of this raw method could drop

with a poor choice of µ̃. We can theoretically develop a confidence interval for νj without

knowing the true value of µ0. Let a set C ⊆ Rn satisfy µ0 ∈ C and qj,α(µ) be the α-quantile

of [{X+
A (y∗ − µ)}j|A(y∗) = A] where y∗ ∼ Nn(µ, σ2In). For any α < 1/2, define

q∗j,α(C) = min
µ∈C

qj,α(µ), q∗j,1−α(C) = max
µ∈C

qj,1−α(µ).

If Ĉ is a (1− α/2) confidence set for µ0, then

P
{
νj ∈ [ν̂j − q∗j,α/4(Ĉ), ν̂j − q∗j,1−α/4(Ĉ)]

∣∣∣∣A(y) = A

}
≥ 1− α, (1.22)

where ν̂j = [X+
Ay]j is the center of this confidence interval. Determining its length by

the worst scenarios over all µ ∈ Ĉ, the confidence interval [ν̂j − q∗j,α/4(Ĉ), ν̂j − q∗j,1−α/4(Ĉ)]

maintains the significance level. Inspired by this conservative method, they proposed a

three-step simulation-based algorithm to trade off incorporating more variation than single

estimate µ̃ versus controlling the interval length:

1. Draw ũ(k) uniformly from a (1 − α) confidence set Ĉ for µ0. Denote the uniform

distribution over Ĉ as U(Ĉ). When n is large, one can sample from the boundary of

Ĉ, U(∂Ĉ), as most points in Ĉ are close to the boundary.

2. For each ũ(k), draw {y∗k,i}i from [y∗|A(y∗) = A], the density of which is derived by

estimator augmentation (Zhou, 2014) with a point estimate ũ(k) in place of the true

µ0.

3. Construct a confidence interval for νj based on the quantiles of {X+
A (y∗k,i− µ̂)j}, where

µ̂ is some estimate of µ0.

The randomization of the plug-in µ̃(k) has a Bayesian interpretation. Regard U(Ĉ) as a

posterior distribution for µ0 and let the density be p(µ0|y). Then samples are drawn from

the posterior distribution of y∗ conditioning on A, i.e.,

p(y∗|A(y∗) = A, y) =

∫
p(y∗|A(y∗) = A, µ0)p(µ0|y)dµ0.
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Further, the algorithm can be generalized to learn the joint distribution[
‖H(X+

Ay
∗ −X+

A µ̂)‖δ
∣∣∣∣A(y∗) = A

]
, (1.23)

where H ∈ Rm×|A|, m ≤ |A| and ‖.‖δ is the `δ-norm, and then a (1 − α) confidence set for

Hν can be

{η ∈ Rm : ‖η −Hν̂‖δ ≤ q}

where q is the (1 − α)-quantile of the distribution in (1.23). One typical choice is to let

H = Im×m and δ = 2 to do the inference on ν in (1.21).

1.5 Outline and overview

In this dissertation, we propose an adaptive method to construct a confidence set and a new

framework for post-selection inference. Remaining chapters of this dissertation are structured

as follows:

• Chapter 2 develops our two-step Stein method in details, including its theoretical

properties and algorithmic implementation.

• Chapter 3 presents three alternative methods to construct confidence sets. A various

amount of simulations and real-data analysis are conducted to illustrate the effective-

ness of our two-step Stein method.

• Chapter 4 establishes a new framework for constructing confidence sets after model

selection and includes a preliminary study of its theoretical properties.

• Chapter 5 concludes this dissertation with further discussions and future work.

Notations used throughout the dissertation are defined here. We denote by Pβ the dis-

tribution of [y | X] and Eβ the corresponding expectations, where the subscript β may be

dropped when its meaning is clear from the context. Denote by [p] the index set {1, . . . , p}

and by |A| the size of a set A ⊆ [p]. Write an = Ω(bn) if bn = O(an) and an � bn if an = O(bn)
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and bn = O(an). We use Ωp(.) and �p if the above statements hold in probability. For a vec-

tor v = (vj)1:m, let vA = (vj)j∈A be the restriction of v to the components in A. For a matrix

M = [M1 | . . . | Mm], where Mj is the jth column, denote by MA = (Mj)j∈A the submatrix

consisting of columns in A. Similarly, define MBA = (Mij)i∈B,j∈A and MB· = (Mij)i∈B. For

a, b ∈ Rn, 〈a, b〉 := aTb is the inner product. Define a ∨ b := max{a, b} and a ∧ b := min{a, b}

for a, b ∈ R.
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CHAPTER 2

A Two-Step Stein Method

Consider high-dimensional linear regression

y = Xβ + ε, (2.1)

where y ∈ Rn, X = [X1| · · · |Xp] ∈ Rn×p, β ∈ Rp, ε ∼ Nn(0, σ2In) and p > n. While there is

a rich body of research on parameter estimation under this model concerning signal sparsity

(e.g. Bickel et al. (2009); Zhang and Huang (2008); Negahban et al. (2012)), how to construct

confidence sets remains elusive. In this work, we focus on confidence sets for the mean

µ = Xβ with the following two properties: First, the confidence set Ĉ is (asymptotically)

honest over all possible parameters. That is, for a given confidence level 1− α,

lim inf
n→∞

inf
β∈Rp

Pβ
{
Xβ ∈ Ĉ

}
≥ 1− α, (2.2)

where Pβ is taken with respect to the distribution of y ∼ Nn(Xβ, σ2In), regarding X as

fixed. Second, the diameter of Ĉ is able to adapt to the sparsity and the strength of β. In

practical applications, sparsity assumptions are very hard to verify, and for many data sets

they are at most a good approximation. The first property guarantees that our confidence

sets reach the nominal coverage without imposing any sparsity assumption, while the second

property allows us to leverage sparse estimation when β is indeed sparse.

Throughout the chapter, we always assume model (2.1) with ε ∼ Nn(0, σ2In) unless

otherwise noted. The remainder of this chapter is organized as follows. We introduce more

detailed background, demonstrate our motivation and formulate the problem in Section 2.1.

Section 2.2 develops our two-step Stein method. Section 2.3 studies the size of the confidence

sets by our method. We provide a data-driven selection of the candidate set in Section 2.4

and develop the implementable algorithm in Section 2.5. Section 2.6 considers theoretical
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properties when estimated error variance is plugged in. Finally, all proofs are included in

Section 2.7.

2.1 Introduction

Despite notable advances of many developed methods in Section 1.1, lack of numerical sup-

port casts doubt on the merit of borrowing these nonparametric regression methods directly

for sparse regression. Taking the adaptive method based on sample splitting in Robins and

van der Vaart (2006) in Section 1.1 as an example, an honest confidence set for µ can be

constructed as Ĉa = {µ ∈ Rn : n−1/2‖µ − Xβ̂‖ ≤ rn}, where Xβ̂ is an initial estimate

independent of y, and its (normalized) diameter |Ĉa| := 2rn = Op(n
−1/4 +n−1/2‖Xβ̂−Xβ‖).

A common choice for β̂ under model (2.1) for p > n is a sparse estimator, such as the

lasso (Tibshirani, 1996) or `0-penalized least-squares estimator. With high probability, the

prediction loss of the lasso estimator typically satisfies

1

n
‖Xβ̂ −Xβ‖2 ≤ c

s log p

n
(2.3)

for some c > 0, uniformly for all β ∈ B(s) := {v ∈ Rp : ‖v‖0 ≤ s}; see for example Bickel

et al. (2009). Under this choice, the diameter |Ĉa| is of the order

|Ĉa| = Op

(
n−1/4 +

√
s log p/n

)
(2.4)

for all β ∈ B(s). For a precise statement, see Theorem 8 below. This method has nice

theoretical properties when s = o(n/ log p). But even for moderately sparse signals with

s/n → δ ∈ (0, 1), the bound on the right side of (2.4) approaches ∞ as p > n → ∞ and

thus offers little insight into the performance of the confidence set. The upper bound (2.3)

also critically depends on the regularization parameter used for the initial estimate β̂. In

fact, our numerical results show that, for finite samples with (s, n, p) = (10, 200, 800), this

confidence set can be worse than a naive χ2 region {µ : ‖y − µ‖2 ≤ σ2χ2
n,α}, where χ2

n,α

denotes the (1 − α)-quantile of the χ2 distribution with n degrees of freedom. A similar

issue occurs in the related but different problem of constructing confidence sets for β. Nickl

and van de Geer (2013) in Section 1.2 have shown that one can construct a confidence set
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for β that is honest over B(k1) for k1 = o(n/ log p), and for any s ≤ k1, the diameter is on

the same order as that in (2.4) for any β ∈ B(s). Compared to the unrestricted honesty in

(2.2) over the entire space Rp, the restriction on the honesty region to B(k1) also reflects

the challenge faced in the construction of confidence sets when p > n.

The construction of confidence sets is fundamentally different from the problem of in-

ferring error bounds for a sparse estimator (Nickl and van de Geer, 2013). It is seen from

(2.4) that no matter how sparse the true β is, the diameter of Ĉa cannot converge at a rate

faster than n−1/4. Indeed, results in Li (1989) imply that, for the linear model (2.1) with

p ≥ n, the diameter of an honest confidence set for µ, in the sense of (2.2), cannot adapt

at any rate o(n−1/4). This is in sharp contrast to error bounds for a sparse estimator, such

as that in (2.3), which can decay at a much faster rate when β is sufficiently sparse. It is

not desired to construct confidence sets directly from error bounds like (2.3) even we only

require honesty for β ∈ B(k1) with a given k1 = o(n/ log p), because its diameter, on the

order of
√
k1 log p/n, cannot adapt to any sparser β ∈ B(s) for s < k1.

Motivated by these challenges, we propose a new two-step method to construct a confi-

dence set for µ = Xβ, allowing the dimension p� n in (2.1). The basic idea of our method

is to estimate the radius of the confidence set separately for strong and weak signals defined

by the magnitude of |βj|. Using a sparse estimate, such as the lasso, one can recover the set

A of large |βj| accurately and expect a small radius for a confidence ball for µA, the projec-

tion of µ onto the subspace spanned by Xj, j ∈ A. By construction, (µ − µA) is composed

of weak signals. Thus, in the second step, we shrink our estimate of this part towards zero

by Stein’s method and construct a confidence set with Stein’s unbiased risk estimate (Stein,

1981). Combining the inferential advantages of sparse estimators and Stein estimators, our

method overcomes many of the aforementioned difficulties. First, our confidence set is honest

for all β ∈ Rp, and its diameter is well under control for all possible values of β including

the dense case. Second, by using elastic radii our confidence set, an ellipsoid in general, can

adapt to signal strength and sparsity. The radius for strong signals adapts to the sparsity

of the underlying model via sparse estimation or model selection, while the radius for weak

signals adapts according to the degree of shrinkage of the Stein estimate. Without any signal
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strength assumption, the diameter of our confidence set is Op(n
−1/4 +

√
s log p/n), the same

as (2.4), for β ∈ B(s). It may further reduce to Op(n
−1/4 +

√
s/n) under an assumption on

the separability between the strong and the weak signals, which shrinks to the optimal rate

n−1/4 when the signal sparsity s = O(
√
n), as opposed to s = O(

√
n/ log p) in (2.4). Third,

in addition to proving the optimal rates like many existing works, we made a lot of efforts in

approximating all involved constants in our method, making it practical in real data analysis.

We provide a data-driven selection of the set A from multiple candidates, which protects our

method from a bad choice and thus makes it very robust. We demonstrate with extensive

numerical results that our method can construct much smaller confidence sets than other

competing methods, including the adaptive method (Robins and van der Vaart, 2006) dis-

cussed above and oracle approaches making use of the true sparsity of β (the oracle). These

results highlight the practical usefulness of our method.

2.2 Method of construction

Dividing β into strong and weak signals, our method constructs a confidence set Ĉ(y) with an

ellipsoid shape for Xβ that is honest as defined in (2.2). Note that under a high-dimensional

asymptotic framework, all variables X = X(n), y = y(n), β = β(n) and s = sn depend on n

as p = pn � n→∞, while X(n) is regarded as a fixed design matrix for each n. We often

suppress the dependence on n to simplify the notation.

Now, consider the linear model (2.1) and let µ = Xβ. Given a pre-constructed candidate

set A = An ⊆ [p], independent of (X, y), define

µA = PAµ, µ⊥ = P⊥A µ = (In − PA)µ,

where PA is the orthogonal projection from Rn onto span(XA) and P⊥A is the projection to

the orthogonal complement. A good candidate set A is supposed to include all strong signals,

say A = {j : |βj| > τ}. With such a choice, ‖µ⊥‖ will be small. Typically, we split our data

set into two halves, (X, y) and (X ′, y′), and apply a model selection method on (X ′, y′) to

construct the set A. See Section 2.3 for more detailed discussion.
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We estimate µA and µ⊥, respectively, by µ̂A and µ̂⊥, compute radii rA and r⊥, and

construct a (1− α) confidence set Ĉ for µ in the form of

Ĉ =

{
µ ∈ Rn :

‖PAµ− µ̂A‖2

nr2
A

+
‖P⊥A µ− µ̂⊥‖2

nr2
⊥

≤ 1

}
. (2.5)

Note that Ĉ is an ellipsoid in Rn, where rA = rA(α) and r⊥ = r⊥(α) correspond to the major

and minor axes, respectively. Our method consists of a projection and a shrinkage step:

Step 1: Projection. Let µ̂A = PAy and k = rank(XA) ≤ |A|. Since A is independent of

(y,X), we have

‖µ̂A − µA‖2 = ‖PAε‖2 | A ∼ σ2χ2
k. (2.6)

Thus, we choose

r2
A = c1r̃

2
A = c1σ

2χ2
k,α/2/n, (2.7)

where χ2
k,α/2 is the (1−α/2)-quantile of the χ2

k distribution and c1 > 1 is a constant, so that

P
{
‖PAµ− µ̂A‖2

nr2
A

≤ 1/c1

}
= 1− α/2. (2.8)

Step 2: Shrinkage. Let y⊥ = P⊥A y. As mentioned above, under a good choice of A that

contains strong signals, ‖µ⊥‖ is expected to be small. Therefore, we shrink y⊥ towards zero

via Stein estimation to construct µ̂⊥. Note that y⊥ is in an (n− k)-dimensional subspace of

Rn. Letting µ̃ = 0 and Rn = P⊥A in (1.2) and (1.3), we obtain

µ̂⊥ = µ̂(y⊥; 0) = (1−B)y⊥, (2.9)

L̂ = L̂(y⊥; 0) = (1−B), (2.10)

where the shrinkage factor

B = (n− k)σ2/‖y⊥‖2. (2.11)

It then follows from Lemma 1 that

lim inf
(n−k)→∞

inf
β∈Rp

P
{∣∣∣σ2L̂− (n− k)−1‖µ̂⊥ − µ⊥‖2

∣∣∣ ≤ cs(α)σ2(n− k)−1/2
}
≥ 1− α, (2.12)
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for any sequence of A = An as long as (n− k)→∞. Therefore, if we choose

r2
⊥ = c2r̃

2
⊥ = c2

n− k
n

σ2
{
L̂+ cs(α/2)(n− k)−1/2

}
, (2.13)

where c2 > 1 is a constant, we have

lim inf
(n−k)→∞

inf
β∈Rp

P
{
‖µ⊥ − µ̂⊥‖2

nr2
⊥

≤ 1/c2

}
≥ 1− α/2. (2.14)

In practical implementation, we estimate the constant cs(α) in (2.12) by simulation, which

will be discussed in Section 2.5.

If 1/c1 + 1/c2 = 1, the confidence set (2.5) made up from (2.8) and (2.14) is honest and

the expectation of its (normalized) diameter |Ĉ| := 2(rA ∨ r⊥) can be calculated explicitly

for all β ∈ Rp:

Theorem 1. Assume 1/c1 + 1/c2 = 1, A is independent of (y,X) with rank(XA) = k, and

(n − k) → ∞ as n → ∞. Then the confidence set Ĉ (2.5) constructed by the two-step

Stein method is honest in the sense of (2.2). Furthermore, the squared diameter of Ĉ has

expectation

E|Ĉ|2 =4σ2 max

{
c1

χ2
k,α/2

n
, c2

n− k
n

(
1− E

n− k
χ2
n−k(ρ)

+ cs(α/2)(n− k)−1/2

)}
, (2.15)

where χ2
n−k(ρ) follows a noncentral χ2 distribution with n − k degrees of freedom and non-

centrality parameter ρ = ‖µ⊥‖2/σ2.

In the above result, we did not impose any assumptions on A except (n−k)→∞, which

allows many choices of A. Our confidence set Ĉ is honest as in (2.2) and its diameter is

under control for all β ∈ Rp. Since E[1/χ2
n−k(ρ)] > 0, a uniform but very loose upper bound

E|Ĉ|2 ≤ 4σ2 max

{
c1

χ2
k,α/2

n
, c2

n− k
n

(
1 + cs(α/2)(n− k)−1/2

)}
(2.16)

holds for all β ∈ Rp. In particular, when β is dense, the diameter will be comparable to

that of the naive χ2 region. As corroborated with the numerical results in Section 3.2.4,

this protects our method from inferior performance when sparsity assumptions are violated,

making it robust to different data sets. Next, we will show that our confidence set is adaptive:

When β is indeed sparse with separable strong and weak signals, the radii rA and r⊥ will

adapt to the optimal rate with a proper choice of A that contains strong signals.
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2.3 Adaptation of the diameter

To simplify our analysis, we set c1 = c2 = 2 in this section so that they can be ignored when

calculating the convergence rates of rA and r⊥. These rates do not change as long as c1 and

c2 stay as constants when n → ∞. Lemma 2 specifies conditions for the diameter of Ĉ to

converge at the optimal rate n−1/4.

Lemma 2. Suppose that k = rank(XA) and ‖µ⊥‖ = o(
√
n− k). Then

r2
A �p k/n, r2

⊥ = Op

(√
n− k
n

+
‖µ⊥‖2

n

)
.

Therefore, if k = O(
√
n) and ‖µ⊥‖ = O(n1/4), then the diameter of Ĉ

|Ĉ| = 2(rA ∨ r⊥) �p n−1/4.

The `2-norm of the weak signals ‖µ⊥‖ can be bounded by ‖βAc‖ under the sparse Riesz

condition on X and a sparsity assumption on β. A design matrix X satisfies the sparse Riesz

condition (Zhang and Huang, 2008) with rank s∗ and spectrum bounds 0 < c∗ < c∗ < ∞,

denoted by SRC(s∗, c∗, c
∗), if

c∗ ≤
‖XAv‖2

n‖v‖2
≤ c∗, for all A with |A| = s∗ and all nonzero v ∈ Rs∗ .

Under our asymptotic framework, s∗, c∗ and c∗ are allowed to depend on n.

Theorem 2. Suppose X satisfies SRC(s∗, c∗, c
∗) with s∗ ≥ | supp(β) ∩ Ac|, and let k =

rank(XA). If lim supn c
∗ <∞, k = o(n) and ‖βAc‖ = o(1), then

|Ĉ| = Op

{
(n−1/4 + ‖βAc‖) ∨

√
k/n

}
(2.17)

for the two-step Stein method. In particular, |Ĉ| �p n−1/4 if k = O(
√
n) and ‖βAc‖ =

O(n−1/4).

Remark 1. Let us take a closer look at the conditions in this theorem for |Ĉ| �p n−1/4.

Suppose that β has O(
√
n) strong coefficients that can be reliably detected by a model

selection method, while all other signals are weak such that ‖βAc‖ = O(n−1/4). Then we
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can have k ≤ |A| = O(
√
n) with high probability. This shows that the sparsity s = ‖β‖0

is allowed to be O(
√
n). The only additional constraint on s comes from the assumption

SRC(s∗, c∗, c
∗) with s∗ ≥ s, which holds for Gaussian designs if s log p = o(n) (Zhang and

Huang, 2008). Compared to (2.4) which requires s log p = O(
√
n), we have potentially

relaxed the sparsity assumption on β to attain the optimal rate n−1/4 by imposing a mild

condition on the decay rate of the weak signals ‖βAc‖. In the worst case, if all signals are

weak signals, which are of the order of
√

log p/n, the rate of |Ĉ| in (2.17) is reduced to (2.4),

the same rate derived by Robins and van der Vaart (2006).

Now we discuss a few methods to find A so that our confidence set can adapt to the

sparsity and signal strength of β. We split the whole data set into (X, y) and (X ′, y′), with

respective sample sizes n and n′, so that they are independent. Henceforth, we assume an

even partition with n′ = n, which simplifies the notation and is commonly used in practice,

unless otherwise noted. The first method is to apply lasso on (X ′, y′):

β̂ = β̂(y′, X ′;λ) := argmin
β∈Rp

[
1

2n
‖y′ −X ′β‖2 + λ‖β‖1

]
, (2.18)

where λ is a tuning parameter. Then choose

A = {j : β̂j 6= 0}, (2.19)

that is, we define strong signals by the support of the lasso. This choice of A is justified by

the following corollary. Let A0 = supp(β) and S0 = {j ∈ A0 : |βj| ≥ K
√
s log p/n} for a

sufficiently large K.

Corollary 3. Suppose that X and X ′ satisfy SRC(s∗, c∗, c
∗), where 0 < c∗ < c∗ are constants.

Let the confidence set Ĉ (2.5) be constructed by the two-step Stein method with A chosen by

(2.19) and λ = c0σ
√
c∗ log p/n, c0 > 2

√
2. Assume s ≤ (s∗ − 1)/(2 + 4c∗/c∗) and s log p =

o(n). Then for any β ∈ B(s) we have

|Ĉ| = Op

(
n−1/4 +

√
s log p/n

)
. (2.20)

If in addition ‖βA0\S0‖ = O(n−1/4), then

|Ĉ| = Op

(
n−1/4 ∨

√
s/n
)
. (2.21)
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The rate of |Ĉ| in (2.20) does not depend on any assumption on signal strength, and

it is identical to (2.4). However, our method can achieve a faster rate (2.21) if ‖βA0\S0‖ =

O(n−1/4). Together with the definition of S0, this essentially imposes a separability assump-

tion between the strong and the weak signals when s log p�
√
n.

To weaken the beta-min condition on strong signals in S0, we may apply a better model

selection method to define A, such as using the minimax concave penalty (MCP) (Zhang,

2010):

ρ(t;λ, γ) =

∫ |t|
0

(
1− u

γλ

)
+

du =


|t| − t2/(2γλ) if |t| ≤ γλ

γλ/2 if |t| > γλ

, (2.22)

for γ > 1. Accordingly, a regularized least-squares estimate is defined by

β̂mcp
λ,γ = β̂mcp

λ,γ (y′, X ′) := argmin
β∈Rp

[
1

2n
‖y′ −X ′β‖2 + λ

p∑
j=1

ρ(|βj|;λ, γ)

]
. (2.23)

Suppose we choose A = supp(β̂mcp
λ,γ ) in our two-step Stein method. The model selection

consistency of β̂mcp
λ,γ makes it possible for |Ĉ| to adapt at the rate (2.21) under the same SRC

assumption but a weaker beta-min condition than Corollary 3.

Corollary 4. Suppose that X and X ′ satisfy SRC(s∗, c∗, c
∗), where 0 < c∗ < c∗ are con-

stants, s∗ ≥ (c∗/c∗ + 1/2)s, and s log p = o(n). Choose a sequence of (λn, γn) satisfying

λn �
√

log p/n and γn ≥ c−1
∗
√

4 + c∗/c∗. If β ∈ B(s) and infA0 |βj| ≥ (γn + 1)λn, then

P{supp(β̂mcp
λn,γn

) = A0} → 1, and consequently the Ĉ constructed by the two-step Stein method

with A = supp(β̂mcp
λn,γn

) has diameter

|Ĉ| = Op

(
n−1/4 ∨

√
s/n
)
. (2.24)

Remark 2. Compared to (2.4) for confidence sets centering at a sparse estimator, the diameter

of our method in (2.21) and (2.24) converges faster by a factor of (log p)1/2 when s =

Ω(
√
n). Accordingly, our method achieves the optimal rate when s = O(

√
n) instead of

s = O(
√
n/ log p) as for (2.4). Under a high-dimensional setting with p� n, say p = exp(na)

for a ∈ (0, 1/2), this improvement in rate can be very substantial, which is supported by

our numerical results. The faster rate of our method is made possible by its adaption to
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both signal strength and sparsity, while the rate of (2.4) is obtained by adaption to sparsity

only (cf. Theorem 8). We emphasize that our method achieves the adaptive rates in the

above results, while being uniformly honest over the entire Rp (Theorem 1). One could

construct a confidence set with diameter Op(
√
s/n) using only the covariates selected by a

consistent model selection method, which would be faster than the rate (2.24). However,

such a confidence set is not honest over Rp, because it cannot reach the nominal coverage

rate for those β that do not satisfy the required beta-min condition for model selection

consistency. Our method overcomes this difficulty with the shrinkage step, based on the

uniform consistency of the SURE (Lemma 1).

Remark 3. For an uneven partition of the whole data set, the conclusions of Corollaries 3

and 4 still hold as long as both n′ � n→∞. However, it is a common and reasonable choice

to have n = n′, since (X ′, y′) and (X, y) can be swapped to construct a confidence set for

X ′β, making full use of the whole data set.

2.4 Multiple candidate sets

It is common to have multiple choices for the candidate set A in our two-step Stein method.

Let

H = {Am ⊆ [p], m = 1, . . . ,Mn}

be a collection of candidate sets. We can apply the two-step Stein method to construct

M = Mn confidence sets for µ, denoted by Ĉm, and then choose an optimal set Ĉm∗ by certain

criterion such as minimizing the volume or the diameter. Furthermore, the cardinality of

H may be unbounded as n increases, i.e., Mn → ∞. In what follows, we show that under

mild conditions, (2.8) and (2.14) hold uniformly for all A ∈ H after modifying rA and r⊥

accordingly, which implies Ĉm∗ is asymptotically honest.

Put k = rank(XA) for A ∈ H and kmax = maxA∈H k. Intuitively, the cardinality of H

(i.e. M) and the maximum size of A in H (i.e. kmax) determine the radii and the coverage

probability of Ĉm.
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For strong signals, we apply the following concentration inequality to show (2.8) holds

uniformly:

Lemma 3. Suppose χ2
n follows a χ2 distribution with n degrees of freedom. Then for any

δ > 0,

P
{√

n

∣∣∣∣1− 1

n
χ2
n

∣∣∣∣ ≥ δ

}
≤ 2 exp

(
−δ

2

4

)
. (2.25)

This lemma with a union bound implies

P
{

sup
A∈H

√
k

∣∣∣∣χ2
k

k
− 1

∣∣∣∣ ≥ δ

}
≤
∑
A∈H

P
{√

k

∣∣∣∣χ2
k

k
− 1

∣∣∣∣ ≥ δ

}
≤ 2M exp

(
−δ

2

4

)
.

Then choosing

r2
A = c1r̃

2
A =

c1σ
2

n

[
k + 2

√
k log(4M/α)

]
(2.26)

as the radius for strong signals, we have

P
{

sup
A∈H

‖PAµ− µ̂A‖2

nr2
A

≤ 1/c1

}
≥ 1− α/2.

For weak signals, we establish (2.14) uniformly over H via the following result:

Lemma 4. Suppose all components of ε in (2.1), εi, i = 1, . . . , n, have mean 0, common

second, forth and sixth moments and their eighth moments are bounded by some constant d.

For any δ > 0 there exists a positive number D depending on d such that

P
{

sup
A∈H

√
n− k

∣∣∣σ2L̂− (n− k)−1‖µ̂⊥ − µ⊥‖2
∣∣∣ ≥ σ2δ

}
≤ P

{
sup
A∈H

√
n− k

∣∣∣∣σ2 − 1

n− k
‖P⊥A ε‖2

∣∣∣∣ ≥ σ2 δ

2

}
+D

∑
A∈H

1

(n− k)2
+D

M

δ4
. (2.27)

The proof of Lemma 4 mainly follows the ideas in Li (1985). In our model with ε ∼

Nn(0, σ2In), the first term on the right hand side of (2.27) simplifies to

P
{

sup
A∈H

√
n− k

∣∣∣∣σ2 − 1

n− k
‖P⊥A ε‖2

∣∣∣∣ ≥ σ2 δ

2

}
≤ 2M exp

(
− δ

2

16

)
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via Lemma 3. Assume that the cardinality of H and the maximum size of A ∈ H satisfy

M � (n− kmax)2. To achieve the desired coverage for weak signals, it is sufficient to pick δ

such that δ2 = Ω(logM) and δ4 = Ω(M). Therefore, we can set

δ = cm(α/2)M1/4 � (logM)1/2

for some constant cm(α/2) > 0, and the corresponding radius

r2
⊥ = c2r̃

2
⊥ = c2

n− k
n

σ2

{
L̂+ cm(α/2)

M1/4

√
n− k

}
(2.28)

for any A ∈ H, so that the upper bound in (2.27) is ≤ α/2. Now we generalize Theorem 1

to establish asymptotic honesty uniformly over H:

Theorem 5. Given H, construct confidence sets Ĉm,m = 1, . . . ,M , with rA and r⊥ as in

(2.26) and (2.28), respectively, for A = Am. Suppose limn→∞M/(n − kmax)2 = 0, 1/c1 +

1/c2 = 1, and each Am is independent of (X, y). Then the confidence sets Ĉm are uniformly

honest over H, i.e.,

lim inf
n→∞

inf
β∈Rp

P

[⋂
m

{
Xβ ∈ Ĉm

}]
≥ 1− α.

Consequently, Ĉm∗ chosen by any criterion is asymptotically honest.

Remark 4. The increment of r2
A in (2.26), 2

√
k log(4M/α)/n, reflects the cost for achieving

uniform honesty over H. But this factor will not cause a slower rate for rA if logM = Op(k),

where the k here is the size of the selected candidate set Am∗ . Compared with (2.13), the

factor M1/4/
√
n− k in (2.28), also the cost for uniform honesty, will in general lead to

slower convergence of r⊥. However, this is a worthwhile price to protect our method from an

improper candidate set A that does not satisfy the assumptions in Theorem 2. For example,

if the candidate set A misses some strong signals, we may end up with L̂ �p 1 and the radius

of weak signals r⊥ will not converge to 0 at all. Such bad choices of A will be excluded if Ĉm∗

is chosen by minimizing its volume over H. In this sense, our method provides a data-driven

selection of an optimal candidate set.

To construct H, we threshold the lasso β̂ in (2.18) calculated from (X ′, y′) to obtain

Am = {j ∈ [p] : |β̂j| > τm}, (2.29)
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for a sequence of threshold values τm = amλ, e.g. am ∈ [0, 4]. It is possible for two different

τm to define the same A, which will be counted once in H. By setting τm = 0 for some m,

A = supp(β̂) will be included in H, though it may not be selected as the optimal Ĉm∗ . In

the proof of Corollary 3, we have shown ‖β̂‖0 = Op(
√
n), and therefore both M and kmax

are Op(
√
n), which means M � (n − kmax)2 with high probability. As a result, we can

guarantee uniform honesty over all Ĉm. Other choices of H are possible, such as stepwise

variable selection with BIC. It is possible that A = ∅ for a large value of τm. In this special

case, rA = 0, so the confidence set reduces to a ball, i.e., {µ ∈ Rn : ‖µ− µ̂⊥‖2 ≤ nr2
⊥}.

2.5 Algorithm and implementation

We implement our method with a sequence of candidate sets Am defined by (2.29). Given

the data set, σ2, λ in (2.18) and threshold values {amλ}1≤m≤M , this section describes some

technique details in our algorithm to construct the confidence set (2.5) by the two-step Stein

method.

Data splitting. We split the original data set into (X ′, y′) and (X, y). Apply lasso on

(X ′, y′) to get β̂ in (2.18) with the tuning parameter λ. Threshold β̂ by τm = amλ for

m = 1, . . . ,M in (2.29) to define candidate sets Am. Note that Am, m = 1, . . . ,M , are

independent of (X, y).

Choice of c1 and c2. When A 6= ∅, we consider two criteria to choose the constants c1 in

(2.7) and c2 in (2.13). The first criterion is to minimize the log-volume of Ĉ, namely,

log V (Ĉ) = k log(rA) + (n− k) log(r⊥)

up to an additive constant, which becomes a constrained optimization problem

min
c1,c2
{k log(

√
c1r̃A) + (n− k) log(

√
c2r̃⊥)} , (2.30)

subject to 1/c1 + 1/c2 = 1 and 1 < c1, c2 ≤ E,
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where r̃A and r̃⊥ are defined in (2.7) and (2.13) and E > 2 is a pre-determined upper bound.

It is easy to obtain the solution

c1 =
E

E − 1
∨
(n
k
∧ E

)
, c2 =

E

E − 1
∨
(

n

n− k
∧ E

)
. (2.31)

For all numerical results in this dissertation, we use E = 10. Without the constraint

c1, c2 ≤ E, the minimizer would be (c1, c2) = (n/k, n/(n − k)) so that under the condi-

tions of Corollary 3, rA =
√
n/kr̃A �p 1 and thus the diameter |Ĉ| would not converge to 0.

Therefore, a finite upper bound E must be imposed.

The second criterion is to minimize the diameter |Ĉ|

min
c1,c2

max{rA, r⊥}, subject to 1/c1 + 1/c2 = 1, (2.32)

which yields the solution

c1 = (r̃2
A + r̃2

⊥)/r̃2
A, c2 = (r̃2

A + r̃2
⊥)/r̃2

⊥. (2.33)

As a result, we have rA = r⊥ = (r̃2
A + r̃2

⊥)1/2 and the confidence set reduces to a ball. Since

rA and r⊥ are less than (r̃A + r̃⊥), all theoretical justifications in Section 2.3 hold.

Computation of cs(α). For any candidate set A, the radius r⊥ (2.13) depends on the

constant cs(α), which is essentially the quantile of the deviation between σ2L̂ and the loss of

the Stein estimator µ̂⊥. We use the following simulation procedure to estimate cs(α): First

draw Y̌j ∼ Nn(0, σ2In) for j = 1, 2, . . . , N . For each j, compute

µ̌j =

(
1− nσ2

‖Y̌j‖2

)
Y̌j and Ľj =

(
1− nσ2

‖Y̌j‖2

)
+

. (2.34)

Then the (1− α)-quantile of the empirical distribution of
√
n

σ2

∣∣σ2Ľj − n−1‖µ̌j‖2
∣∣ , j = 1, . . . , N, (2.35)

is a consistent estimator of cs(α) as long as ‖µ⊥‖ = o(
√
n), which is the case under the

assumptions of Corollary 3. Expression (2.35) can be written as a function of a χ2
n random

variable, which simplifies its simulation.

Clearly, the estimate of cs(α) does not depend on A and is used for any candidate set

A ∈ H in our implementation. Moreover, we find the multiple set adjustments on the radii,
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i.e., the factors of (logM)1/2 and M1/4, are usually negligible given a reasonable sample size,

say n ≥ 100. Therefore, we simply use the radii rA and r⊥ in (2.7) and (2.13) for each

A ∈ H.

Algorithm 1 summarizes the two-step Stein method with multiple candidate sets Am.

Algorithm 1 Two-step Stein method

for m = 1, . . . ,M do

A = Am

compute µ̂A = PAy and µ̂⊥ by (2.9)

compute c1 and c2 according to one of the two criteria

compute rA and r⊥ by (2.7) and (2.13)

construct Ĉm in the form of (2.5)

end for

find m∗ by minimizing the volume or the diameter of Ĉm over m

Remark 5. In the calculation of r⊥ and cs(α), we use truncated Stein estimation for µ̂ =

(1 − B)+y⊥ in (2.9) and L̂ = (1 − B)+ in (2.10) as well as for µ̌j and Ľj in (2.34). Such a

truncated rule has been used for the James-Stein estimator (Efron and Morris, 1973) and

does not affect the asymptotic validity of our method.

2.6 Estimated noise variance

In practice, the noise variance σ2 is usually unknown. Consequently, an estimated variance

σ̂2 will be used in (2.7) and (2.13) to construct the confidence set Ĉ (2.5). Similar to the

candidate set A, we use sample splitting to estimate σ̂2 = σ̂2(y′, X ′) from (X ′, y′) so that we

may assume that σ̂2 is independent of (X, y). Under a suitable convergence rate of σ̂2, we

establish that Ĉ is honest and its diameter adapts at the same rate as that in Theorem 2.

Our first step is to generalize Lemma 1 with σ̂2 in place of the true error variance σ2,

based on which we show that Ĉ is honest over the whole parameter space β ∈ Rp.

Lemma 5. Assume that y ∼ Nn(µ, σ2In). Let µ̃ and L̃ be the Stein estimate µ̂(y, 0) in (1.2)
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and L̂(y, 0) in (1.3) with σ2 replaced by σ̂2. For any α ∈ (0, 1) and any sequence σ̂2 = σ̂2
n

satisfying |σ̂2
n − σ2| ≤ M1/

√
n when n is large, there exists a constant c′s(α) > 0 (depending

on M1) such that

lim sup
n→∞

sup
µ∈Rn

P
{∣∣∣σ̂2L̃− n−1‖µ̃− µ‖2

∣∣∣ ≥ c′s(α)σ̂2n−1/2
}
≤ α. (2.36)

Theorem 6. Suppose all assumptions in Theorem 1 hold and in addition that k = o(n). Let

σ̂2 = σ̂2
n be a sequence satisfying |σ̂2

n− σ2| ≤M1/
√
n when n is large. Let rA be computed as

in (2.7) with σ̂2 in place of σ2 and r⊥ be computed as in (2.13) with σ̂2 and c′(α) in place of

σ2 and cs(α). Then the confidence set Ĉ (2.5) is honest.

The key assumption in the above theorem on σ̂2 is its
√
n-consistency, under which the

next lemma shows that the radii of the strong and weak signals, rA and r⊥, computed with

σ̂2 converge at the same rates as in Lemma 2.

Lemma 6. Suppose all assumptions in Lemma 2 hold. Let σ̂2 = σ̂2
n be a sequence satisfying

|σ̂2
n − σ2| ≤ M1/

√
n when n is large. Let rA and r⊥ be computed with σ̂2 as in Theorem 6.

Then

r2
A = Op

(
k

n

)
, r2

⊥ = Op

(√
n− k
n

+
‖µ⊥‖2

n

)
,

which are exactly the same rates in Lemma 2.

It follows from Lemma 6 that Theorem 2 holds when σ̂2 is used in place of σ2. As discussed

in Remark 3, we split the whole data into two equal halves with sample sizes n = n′. In

the above results, we have assumed that σ̂2 − σ = O(1/
√
n). Consequently, if σ̂2 is

√
n-

consistent, then all nice properties of our method are reserved with probability approaching

one. The scaled lasso (Sun and Zhang, 2012) provides one way to construct a
√
n-consistent

estimator under certain conditions. Given the design matrix X ′, define a compatibility factor

(van de Geer and Bühlmann, 2009) as κ(ξ, T ) with ξ > 1 and T ⊆ [p]. Suppose the infimum

κ∗(ξ) = inf |T |≤s κ(ξ, T ) > 0 exists and s log p �
√
n. Then their Theorem 2 demonstrates

that for any s-sparse β, σ̂2 estimated by scaled lasso is the
√
n-consistent estimator and

the central limit theorem about σ̂ holds, i.e., n1/2(σ̂/σ − 1)
d→ N (0, 1/2). This conclusion
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together with Theorem 6 directly justifies that our method maintains the desired honesty and

achieves the adaptive radii in probability converging to 1 when the even splitting and scaled

lasso are applied. Lastly, we emphasize that σ̂2 and the candidate set A can be estimated

by different methods, as long as the estimators satisfy their respective conditions with high

probability.

Remark 6. Note that cs(α) is invariant to the value of the true σ2. Even if we plug σ̂2 in the

simulation of cs(α) discussed in Section 2.5, we will still estimate the cs(α) associated with

the true σ2 instead of c′s(α). However, the empirical study in Section 3.2.5 shows that using

so estimated cs(α) with σ̂2 does not lead to any decrease in coverage. On the other hand, the

proof of Lemma 5 provides a conservative way to theoretically compute c′s(α) from cs(α). In

particular, if σ̂2 is estimated by scaled lasso, we propose an efficient method to approximate

c′s(α). See the Supplementary Material for more details.

2.7 Proofs

Proof of Lemma 2. By the law of large number, we have

χ2
k,α − k√

2k
= o(1) + Φ−1(α)⇒ χ2

k,α = k + o(
√

2k) +
√

2kΦ−1(α) � k, (2.37)

where Φ−1 is the inverse of the cumulative distribution function of N (0, 1). It follows from

(2.7) and (2.37) that

r2
A = c1 · σ2χ2

k,α/n � k/n. (2.38)

Let ε⊥ = P⊥A ε. Under the normality assumption of ε, we have

1/B =
‖y⊥‖2

(n− k)σ2
=
‖ε⊥‖2 + 2〈µ⊥, ε⊥〉+ ‖µ⊥‖2

(n− k)σ2

= 1 +Op

(
1√
n− k

)
+Op

(
‖µ⊥‖
n− k

)
+
‖µ⊥‖2

(n− k)σ2
.

It follows, by noting ‖µ⊥‖ = o(
√
n− k), that

L̂ = 1−B = Op

(
1√
n− k

)
+Op

(
‖µ⊥‖2

n− k

)
. (2.39)
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By plugging (2.39) in (2.13), we obtain

r2
⊥ = c2 · σ2n− k

n

{
Op

(
1√
n− k

)
+Op

(
‖µ⊥‖2

n− k

)
+ cs(α/2)

1√
n− k

}
= Op

(√
n− k
n

)
+Op

(
‖µ⊥‖2

n

)
. (2.40)

If k = Op(
√
n) and ‖µ⊥‖ = O(n1/4), it follows from (2.38) and (2.40) that |Ĉ| �p n−1/4.

Proof of Theorem 2. Under sparse Riesz condition, letting G = Ac ∩ supp(β), we have

‖µ⊥‖ = ‖P⊥AXAcβAc‖ = ‖P⊥AXGβG‖ ≤ c∗
√
n‖βG‖ = c∗

√
n‖βAc‖,

which, together with k = o(n) and ‖βAc‖ = o(1), implies ‖µ⊥‖ = o(
√
n) = o(

√
n− k). Thus,

by Lemma 2, r2
⊥ = Op(n

−1/2 + ‖βAc‖2) and the rest of the proof is straightforward.

Proof of Corollary 3. Under the choice of λ in this corollary and the assumption that s ≤

(s∗− 1)/(2 + 4c∗/c∗), Theorem 1 and Theorem 3 in Zhang and Huang (2008) imply that, for

any ε > 0, there exists N such that when n > N ,

P
{
|A| ≤M∗

1 s and ‖β̂ − β‖ ≤M∗
2σ
√

(s log p)/n
}
> 1− ε, (2.41)

where M∗
1 and M∗

2 are two constants depending on c0, c∗ and c∗. It follows from (2.41) that

k ≤ |A| = Op(s) = op(n), ‖β̂ − β‖ = Op

(√
s log p/n

)
.

Thus, we have

‖βAc‖ ≤ ‖β̂ − β‖ = Op

(√
s log p/n

)
= op(1). (2.42)

Now, all the conditions in Theorem 2 are satisfied, leading to (2.20). Further, (2.42) implies

that S0 ⊂ A and thus ‖βAc‖ = ‖βAc∩A0‖ ≤ ‖βA0\S0‖ = O(n−1/4) with probability at least

1− ε. Consequently, (2.21) follows from (2.17).

Proof of Corollary 4. If P(A = A0) → 1, then the rate of |Ĉ| in (2.24) follows immediately

from (2.17) in Theorem 2. Thus, it remains to show that β̂mcp
λn,γn

= β̂mcp
λ,γ (y′, X ′) (2.23) is

model selection consistent by verifying the conditions of the following corollary, which is a

simplified version of Corollary 4.2 in Huang et al. (2012).
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Corollary 7. Let λmin be the smallest eigenvalue of (X ′A0
)TX ′A0

/n, τn = σ
√

2 log s/(nλmin)

and λ∗ = 2σ
√

2c∗ log(p− s)/n. Suppose that X ′ satisfies SRC(s∗, c∗, c
∗), where 0 < c∗ <

c∗ are constants and s∗ ≥ (c∗/c∗ + 1/2)s. If a sequence of (λn, γn) satisfies infA0 |βj| ≥

γnλn + anτn with an → ∞, λn ≥ anλ
∗, nλ2

n/(4c
∗) > σ2 and γn ≥ c−1

∗
√

4 + c∗/c∗, then

P{supp(β̂mcp
λn,γn

) = A0} → 1.

Under the SRC assumption λmin is bounded from below by c∗ > 0. It follows from

τn = O(
√

log s/n), λ∗ = O(
√

log p/n) and λn �
√

log p/n that there exists an → ∞ such

that λn ≥ an(λ∗ ∨ τn). Then we have the following: infA0 |βj| ≥ (γn + 1)λn ≥ γnλn + anτn,

λn ≥ anλ
∗, and nλ2

n/(4c
∗)� log p > σ2 when n is sufficiently large. Thus all the conditions

in Corollary 7 are satisfied under the assumptions of Corollary 4. This completes the proof.

Technically, we did not invoke the assumption s log p = o(n) in the proof. But it is

required for the sparse Riesz condition to hold (e.g. for Gaussian designs).

Proof of Lemma 3. We have the following inequalities for any positive x and degree of free-

dom of n from Lemma 1 in Laurent and Massart (2000):

P
{
χ2
n − n ≥ 2

√
n
√
x+ 2x

}
≤ e−x, (2.43)

P
{
χ2
n − n ≤ −2

√
n
√
x
}
≤ e−x. (2.44)

The solutions of 2
√
n
√
x1 +2x1 =

√
nδ and 2

√
n
√
x2 =

√
nδ are plugged in (2.43) and (2.44)

to obtain

P
{
χ2
n

n
− 1 ≥

√
nδ

}
≤ exp

{
−(
√

1 + 2δ/
√
n− 1)2

4
n

}
,

P
{
χ2
n

n
− 1 ≤ −

√
nδ

}
≤ exp

{
−δ

2

4

}
,

so that

P
{√

n

∣∣∣∣1− 1

n
χ2
n

∣∣∣∣ ≥ δ

}
≤ 2 exp

{
−(
√

1 + 2δ/
√
n− 1)2

4
n

}
.

To finish the proof, we will show that

f(n) =

(√
1 + 2δ/

√
n− 1

)2

n (2.45)
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is bounded by δ2 for any n. Replacing
√

1 + 2δ/
√
n with its Taylor expansion 1 + δ/

√
n +

O(δ2/n) in (2.45), we get f(n) = δ2 + O(n−1/2) → δ2, as n → ∞. If f(n) is monotonically

increasing in n, then δ2 is a tight upper bound of f(n) for all n. Lastly, to prove the

monotonicity, it suffices to show the derivative

f ′(n) = 2 + δ/
√
n− 2 + 3δ/

√
n√

1 + 2δ/
√
n
≥ 0,

which can be verified easily. Now the proof is completed.

Proof of Lemma 4. Let

Q(A) = E‖P⊥A y‖2 = E‖P⊥A (µ+ ε)‖2

= ‖P⊥A µ‖2 + tr(P⊥A )σ2 = ‖P⊥A µ‖2 + (n− k)σ2.

A few steps of derivation shows that

σ2L̂− (n− k)−1‖µ̂⊥ − µ⊥‖2

= σ2 − σ4(n− k)

‖P⊥A y‖2
− 1

n− k

∥∥∥∥(1− (n− k)σ2

‖P⊥A y‖2

)
P⊥A y − P⊥A µ

∥∥∥∥2

= σ2 − 1

n− k
‖P⊥A ε‖2 +

2σ2

‖P⊥A y‖2

(
〈ε, P⊥A µ〉+ ‖P⊥A ε‖2 − σ2(n− k)

)
. (2.46)

It follows from (2.46) that

P
{

sup
A∈H

√
n− k

∣∣∣σ2L̂− (n− k)−1‖µ̂⊥ − µ⊥‖2
∣∣∣ ≥ σ2δ

}
≤ P

{
sup
A∈H

√
n− k

∣∣∣∣σ2 − 1

n− k
‖P⊥A ε‖2

∣∣∣∣ ≥ σ2δ/2

}
+ P

{
sup
A∈H

√
n− k

∣∣∣∣ 2σ2

‖P⊥A y‖2

(
〈ε, P⊥A µ〉+ ‖P⊥A ε‖2 − σ2(n− k)

)∣∣∣∣ ≥ σ2δ/2

}
,

where the second probability on the right hand side is bounded by∑
A∈H

P
{∣∣∣∣ 2σ2

‖P⊥A y‖2

(
〈ε, P⊥A µ〉+ ‖P⊥A ε‖2 − σ2(n− k)

)∣∣∣∣ ≥ σ2δ

2
√
n− k

}
≤
∑
A∈H

[
P
{
‖P⊥A y‖2 ≤ 1

2
Q(A)

}
+P
{

2
∣∣‖P⊥A ε‖2 − (n− k)σ2

∣∣ ≥ δQ(A)

23
√
n− k

}
+P
{

2
∣∣〈ε, P⊥A µ〉∣∣ ≥ δQ(A)

23
√
n− k

}]
. (2.47)
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To prove the theorem, it suffices to show that all three probabilities in (2.47) can be bounded

by eitherD/(n−k)2 orD/δ4 for some constantD > 0. Before that, we introduce the following

three inequalities derived from Theorem 2 in Whittle (1960):

E
(
‖P⊥A y‖2 −Q(A)

)4 ≤ D1

[
σ4(n− k)2 + ‖P⊥A µ‖4

]
, (2.48)

E
(
‖P⊥A ε‖2 − (n− k)σ2

)4 ≤ D1σ
4(n− k)2, (2.49)

E
(
〈ε, P⊥A µ〉

)4 ≤ D1‖P⊥A µ‖4, (2.50)

for some constant D1 depending on the moments of εi. In our case, D1 only depends on the

upper bound d of the eighth moment. The first term of (2.47) can be bounded by

P
{
‖P⊥A y‖2 ≤ 1

2
Q(A)

}
≤ P

{∣∣‖P⊥A y‖2 −Q(A)
∣∣ ≥ 1

2
Q(A)

}
≤

E
(
‖P⊥A y‖2 −Q(A)

)4(
1
2
Q(A)

)4 by Chebyshev inequality

≤ 16D1
σ4(n− k)2 + ‖P⊥A µ‖4

Q(A)4
by (2.48)

≤ 16D1

(n− k)2
.

Similarly, using (2.49) and (2.50), we can also show that both the second and the third terms

are bounded by D2/(σ
2δ4) for some D2 > 0 depending only on d. Lastly, the proof is finished

by letting D = (16D1) ∨ (D2/σ
2).

Proof of Lemma 5. Let

g(σ2) =

√
n

σ2

(
σ2L̂− n−1‖µ̂− µ‖2

)
=

√
n

σ2

(
σ2 − 1

n
‖ε‖2 +

2σ2

‖y‖2

(
〈ε, µ〉+ ‖ε‖2 − σ2n

))
=
√
n

(
1− ‖ε‖

2

nσ2
+

2

‖y‖2

(
〈ε, µ〉+ ‖ε‖2 − σ2n

))
. (2.51)

First, we find a constant M2 to bound |g(σ̂2) − g(σ2)|. To be exact, we show that for any

ξ > 0, there exists N and M2 such that for any n > N and µ ∈ Rp,

P
{
|g(σ̂2)− g(σ2)| ≤M2

}
≥ 1− ξ. (2.52)
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Note that

g(σ̂2)− g(σ2) =
‖ε‖2

√
n

(
1

σ̂2
− 1

σ2

)
+

2n3/2

‖y‖2
(σ̂2 − σ2). (2.53)

It is easier to separately bound the two terms on the right side of (2.53). The first term

‖ε‖2

√
n

∣∣∣∣ 1

σ̂2
− 1

σ2

∣∣∣∣ =
‖ε‖2

n

|σ2 − σ̂2|/
√
n

σ2σ̂2
= Op(1).

Therefore, there exists an upper bound M3 so that

P
{
‖ε‖2

√
n

∣∣∣∣ 1

σ̂2
− 1

σ2

∣∣∣∣ ≤M3

}
≥ 1− ξ/2 (2.54)

as n > N1 for some large integer N1. For the second term, we have

P
{

2n3/2

‖y‖2
|σ̂2 − σ2| ≤M4

}
= 1− P

{
2
√
n|σ̂2 − σ2|
M4

≥ ‖y‖
2

n

}
≥ 1− P

{
2
√
n|σ̂2 − σ2|
M4

≥ ‖ε‖
2

n

}
, (2.55)

for any constant M4 > 0. The inequality (2.55) holds for any µ for the following reason.

For any R, P{R2 ≥ ‖y‖2} is the integral of the standard normal density φ(z) over the ball

B(−µ,R) centering at −µ with radius R, while the ball is B(0, R) for P{R2 ≥ ‖ε‖2}. For

any ε1 ∈ B(−µ,R)\B(0, R) and any ε2 ∈ B(0, R)\B(−µ,R), we always have φ(ε1) ≤ φ(ε2).

Consequently, the integral over B(−µ,R) is no greater than that over B(0, R), which implies

the last inequality. Since ‖ε‖2/(nσ2) = 1 +Op(
1√
n
), we can find a large M4 so that 2M1

M4
< 1.

In this way, for any ξ/2 > 0, there exists some N2 so that (2.55) is at least 1− ξ/2 for any

µ ∈ Rn as n > N2.

Letting N = max{N1, N2} and M2 = M3 +M4, we have shown that |g(σ̂2)−g(σ2)| ≤M2

with probability at least 1 − ξ uniformly for all µ ∈ Rn when n > N . Now choose c′s(α) =

c(α− ξ) +M2. It follows that

sup
µ∈Rn

P
{
g(σ̂2) > c′s(α)

}
≤ sup

µ∈Rn
P
[{
g(σ̂2) > c′s(α)

}
∩
{
|g(σ̂2)− g(σ2)| ≤M2

}]
+ sup

µ∈Rn
P
{
|g(σ̂2)− g(σ2)| > M2

}
≤ sup

µ∈Rn
P
{
g(σ2) > c′s(α)−M2

}
+ ξ

= sup
µ∈Rn

P
{
g(σ2) > cs(α− ξ)

}
+ ξ. (2.56)

Then the conclusion follows from Lemma 1 by taking upper limit on both sides as n→∞.
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Remark 7. Based on (2.53) in the above proof of Lemma 5, we propose an empirical method

to estimate c′s(α). First consider σ̂2. Although Lemma 5 assumes a fixed sequence of σ̂2, σ̂2

is estimated from a data set (X ′, y′) independent of (X, y), when constructing a confidence

set in practice. Without loss of generality, assume the size of (X ′, y′) is n. Sun and Zhang

(2012) prove that σ̂2 estimated by scaled lasso satisfies the central limit theorem under

certain conditions

n1/2

(
σ̂

σ
− 1

)
→ N1(0,

1

2
). (2.57)

Second, let g(σ2, y;µ) = g(σ2) based on (2.51). Regarding g(σ̂2, y;µ) as a random variable,

c′s(α) is approximately the supremum of the (1−α)-quantile of g(σ̂2, y;µ), denoted as c′s(α;µ),

over µ ∈ Rn. Given a fixed µ, c′s(α;µ) can be easily estimated by sampling from g(σ̂2, y;µ).

Note that g(σ̂2, y;µ) = g(σ2, y;µ)+[g(σ̂2)− g(σ2)], the first term of which is a function with

respect to y/σ through σ2L̂ and µ̂, and the second term of which is approximately a function

with respect to y/σ and (σ̂ − σ)/σ. Write g(y/σ, (σ̂ − σ)/σ) = g(σ̂2, y;µ), where the two

arguments are independent. In conclusion, we independently draw y/σ ∼ Nn(µ/σ, In) and

(σ̂ − σ)/σ ∼ N1(0, 1
2
) and get desired samples through g(y/σ, (σ̂ − σ)/σ). Lastly, we argue

that it is unnecessary to take supremum of c′s(α;µ) over µ ∈ Rn to estimate c′s(α) but simply

let use c′s(α; 0). Because we only need c′s(α) for weak signals and ‖µ‖ is usually close to 0

with a well estimated candidate set.

Proof of Theorem 6. Without ambiguity, all σ2 in expressions are replaced by σ̂ for rA (2.7),

r⊥ (2.13), (2.8) and (2.14) in the rest of this proof. To complete the proof, it suffices to

prove (2.8) and (2.14), the latter of which is a direct result from Lemma 5.

For (2.8), one can derive

P
{
‖PAµ− µ̂A‖2

nr2
A

≤ 1/c1

}
= P

{
χ2
kσ

2

χ2
k,α/2σ̂

2
≤ 1

}

= Fχ2
k

(
σ̂2

σ2
χ2
k,α/2

)
= Fχ2

k

([
1 +

σ̂2 − σ2

σ2

]
χ2
k,α/2

)
, (2.58)

where χ2
k is χ2 distribution with k degrees of freedom, Fχ2

k
(x) is the cumulative distribution

function of χ2
k and χ2

k,α/2 is the (1−α/2)-quantile. Let fχ2
k
(x) be probability density function

36



of χ2
k. We can further bound (2.58) by Taylor expansion as follows. Note that the maximum

of fχ2
k
(x) is at x = k − 2. Then we have

Fχ2
k

([
1 +

σ̂2 − σ2

σ2

]
χ2
k,α/2

)
≤ Fχ2

k
(χ2

k,α/2) + fχ2
k
(k − 2)

|σ̂2 − σ2|
σ2

χ2
k,α/2

=
α

2
+

1

2k/2Γ(k/2)
(k − 2)k/2−1e−(k−2)/2 σ̂

2 − σ2

σ2
χ2
k,α/2

=
α

2
+

1

2Γ(k/2)
(
k − 2

2e
)k/2−1 |σ̂2 − σ2|

σ2
χ2
k,α/2. (2.59)

Approximating Γ(k/2) by Stirling’s formula, one can derive

Γ(k/2) =

(
k

2
− 1

)(
k

2
− 2

)
. . . 1 · Γ(1) =

(
k

2
− 1

)
!

=
√
π(k − 2)

(
k − 2

2e

)k/2−1

eθk , (2.60)

if k is even, and

Γ(k/2) =

(
k

2
− 1

)(
k

2
− 2

)
. . .

1

2
· Γ
(

1

2

)
=

(k − 2)!!

2(k−1)/2
Γ

(
1

2

)
=

(k − 1)!

(k − 1)!!2(k−1)/2
Γ

(
1

2

)
=

(k − 1)!(
k−1

2

)
!2(k−1)

Γ

(
1

2

)
=
√

2

(
k − 1

2e

)(k−1)/2

Γ

(
1

2

)
eθk , (2.61)

if k is odd. Here, θk is a real number that depends on k and satisfies limk→∞ θk = 0.

Based on χ2
k,α/2 � k (see the proof of Lemma 2), it follows from (2.59), (2.60) and (2.61)

that for some constant M5,

Fχ2
k

([
1 +

σ̂2 − σ2

σ2

]
χ2
k,α/2

)
≤ α

2
+M5

√
k(σ̂2 − σ2). (2.62)

Since
√
k(σ̂2 − σ2) = O(

√
k/n) = o(1) by assumption, the honesty for strong signals is

proved.

Proof of Lemma 6. Note that in this proof, rA and r⊥ are calculated with σ̂2 in place of σ2.
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Based on the rate of rA with true σ, we have

r2
A = c1σ̂

2
χ2
k,α/2

n
=
σ̂2

n
(k +O(

√
k))

=
σ2

n

σ̂2

σ2
(k +O(

√
k))

=
σ2

n

(
1 +O(

1

n
)

)
(k +O(

√
k))

=
σ2

n

(
k +O(

√
k)
)
.

For the radius of weak signals

r2
⊥ = c2

n− k
n

σ̂2

{
1− (n− k)σ̂2

‖y⊥‖2
+ cs(α/2)(n− k)−1/2

}
. (2.63)

The reciprocal of the stein shrinkage factor is given by

‖y⊥‖2

(n− k)σ̂2
=
‖ε⊥‖2 + 2〈µ⊥, ε⊥〉+ ‖µ⊥‖2

(n− k)σ̂2

=
σ2

σ̂2

[
1 +Op

(
1√
n− k

)
+Op

(
‖µ⊥‖
n− k

)
+
‖µ⊥‖2

(n− k)σ2

]
=
σ2

σ̂2

[
1 +Op

(
1√
n− k

)
+Op

(
‖µ⊥‖
n− k

)]
= 1 +Op

(
1√
n− k

)
+Op

(
‖µ⊥‖
n− k

)
. (2.64)

Plugging (2.64) back into (2.63), we further get

r2
⊥ = c2

n− k
n

σ2 σ̂
2

σ2

[
Op

(
1√
n− k

)
+Op

(
‖µ⊥‖
n− k

)
+ cs(α/2)(n− k)−1/2

]
=
n− k
n

[
Op

(
1√
n− k

)
+Op

(
‖µ⊥‖
n− k

)]
.
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CHAPTER 3

Empirical Study: Two-Step Stein Method v.s. Other

Competitors

To demonstrate the advantages of our method, we develop in Section 3.1 a few competing

methods making use of the lasso prediction or the oracle of the true sparsity. Then we

provide extensive numerical comparisons in Section 3.2 to show the superior performance

of our two-step Stein method, relative to the competitors, in a variety of sparsity settings,

including when β is quite dense. Lastly, we end this chapter with a real-data example in

Section 3.3.

3.1 Competing methods

To illustrate the effectiveness of our two-step Stein method, we first present three alterna-

tive procedures that can be derived by extending ideas from construction of nonparametric

regression confidence sets in conjunction with lasso estimation. Since all of them make use

of lasso, we review an error bound for lasso prediction according to Bickel et al. (2009).

3.1.1 Lasso prediction error

Given X, y and λ > 0, consider the lasso estimator β̂ = β̂(y,X;λ) defined as in (2.18). Let

ω(X) = maxj(‖Xj‖2/n). Error bounds of lasso prediction have been established under the

restricted eigenvalue assumption (Bickel et al., 2009). For S ⊆ [p] and c0 > 0, define the

cone

C (S, c0) :=

{
δ ∈ Rp :

∑
j∈Sc
|δj| ≤ c0

∑
j∈S

|δj|

}
. (3.1)
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We say the design matrix X satisfies RE(s, c0), for s ∈ [p] and c0 > 0, if

κ(s, c0;X) := min
|S|≤s

min
δ 6=0

{
‖Xδ‖√
n‖δS‖

: δ ∈ C (S, c0)

}
> 0. (3.2)

Lemma 7 (Theorem 7.2 in Bickel et al. (2009)). Let n ≥ 1 and p ≥ 2. Suppose that ‖β‖0 ≤ s

and X satisfies Assumption RE(s, 3). Choose λ = Kσ
√

log(p)/n for K > 2
√

2. Then we

have

P
{
‖X(β̂ − β)‖2 ≤ 16K2σ2ω(X)

κ2(s, 3;X)
s log p

}
≥ 1− p1−K2/8. (3.3)

Remark 8. The original theorem in Bickel et al. (2009) assumes that all the diagonal elements

of the Gram matrixXTX/n are 1 for simplicity, while we remove this assumption by including

the term ω(X).

3.1.2 Another adaptive method

Here we develop another adaptive method following the procedure in Section 3 of Robins

and van der Vaart (2006), which constructs a confidence set for µ from y ∼ Nn(µ, σ2In)

via sample splitting. The basic idea is introduced in Section 1.1. Applied to the linear

model (2.1), the method can be described as follows. Split the original data set into (X ′, y′)

and (X, y), of which the former is used to obtain an initial lasso estimate β̂ = β̂(y′, X ′;λ)

(2.18), and the latter is used to compute two quantities

Rn =
1

n
‖y −Xβ̂‖2 − σ2, τ̂ 2

n =
2σ4

n
+

4σ2

n2
‖Xβ −Xβ̂‖2, (3.4)

where Rn is an estimate of the loss ‖Xβ −Xβ̂‖2/n. Then, a confidence ball for µ = Xβ is

constructed in the form of

Ĉa =

{
µ ∈ Rn :

Rn − n−1‖µ−Xβ̂‖2

τ̂n
≥ −zα

}
, (3.5)

where zα is the (1 − α)-quantile of the standard normal distribution. Note that τ̂n in (3.5)

contains the term ‖µ−Xβ̂‖ as well so an explicit form of the confidence ball is{
µ ∈ Rn :

1

n
‖µ−Xβ̂‖2 ≤ r2

a = Rn +O
(√

(Rn + 1)/n
)}

,
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where ra is the radius.

To establish the convergence rate of the diameter of Ĉa, we need an assumption, similar

to RE(s, c0), on the restricted maximum eigenvalue of XTX/n over the cone C (S, c0) (3.1).

For s ∈ [p] and c0 > 0, let

ζ(s, c0;X) := max
|S|≤s

max
δ 6=0

{
‖Xδ‖√
n‖δS‖

: δ ∈ C (S, c0)

}
.

Theorem 8. The (1−α) confidence set Ĉa (3.5) is honest for all β ∈ Rp. Suppose s log p =

o(n), the sequence X = X(n) satisfies

lim inf
n→∞

κ(2s, 3;X) = κ > 0, lim sup
n→∞

ζ(s, 3;X) = ζ <∞, lim sup
n→∞

ω(X) = ω <∞,

and so does the sequence X ′ = X ′(n). Then with a proper choice of λ �
√

log p/n, for any

β ∈ B(s) the diameter

|Ĉa| = Op

(
n−1/4 +

√
s log p/n

)
. (3.6)

These properties have been informally discussed in the introduction (Section 2.1). Al-

though Ĉa is also honest over the entire parameter space, the upper bound on its diameter

critically depends on the sparsity of β. The scaling s log p = o(n) is the minimum require-

ment for the lasso to be consistent in estimating µ or β. In general, this scaling is also needed

for the RE assumption to hold with lim infn κ(2s, 3;X) > 0 (Negahban et al., 2012) and for

the upper bound on |Ĉa| to be informative. This is different from the universal bound (2.16)

on E|Ĉ|2 for the two-step method. The diameter |Ĉa| adapts to the optimal rate for suf-

ficiently sparse β as s log p = O(
√
n); see Remark 2 for related discussion. Our numerical

results in Section 3.2.4 demonstrate that |Ĉa| can be 10 times larger than the diameter of

our two-step Stein method when β is not sparse.

Proof of Theorem 8. The honesty of Ĉa in (3.5) is guaranteed by Theorem 3.1 and Proposi-

tion 2.1 in Robins and van der Vaart (2006) with the only assumption

y/
√
n ∼ Nn(µ/

√
n, σ2In/n).
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It is not difficult to verify that (X ′, y′) satisfies all the conditions in Corollary B.2 and

Theorem 7.2 of Bickel et al. (2009). Thus, with probability approaching one, we have ‖β̂ −

β‖2 = O(s log p/n) and (β̂ − β) ∈ C (A0, 3), as defined in (3.1), with A0 = supp(β). By the

definition of ζ(s, 3;X), this implies that

1

n
‖X(β − β̂)‖2 ≤ ζ‖β̂ − β‖2 = Op(s log p/n) = op(1). (3.7)

Again, by Theorem 3.1 in Robins and van der Vaart (2006), we have

|Ĉa|2 = Op

(
n−1/2 +

1

n
‖X(β − β̂)‖2

)
= Op

(
n−1/2 + s log p/n

)
,

which completes the proof.

3.1.3 An oracle lasso method

We calculate the lasso β̂ = β̂(y,X;λ) from the whole data set without sample splitting,

which we denote by (X, y) in this subsection.

Assuming the true sparsity sβ = ‖β‖0 is known (the oracle), a (1−α) confidence ball for

Xβ is constructed as{
µ ∈ Rn :

1

n
‖µ−Xβ̂‖2 ≤ co(α)σ2 sβ log p

n
:= r2

o

}
,

where co(α) is a constant depending on the design matrix X and the tuning parameter λ.

We estimate co(α) by a similar procedure to be described in Section 3.1.4 for a two-step

lasso method. Although there are sharper upper bounds, e.g. O(sβ log(p/sβ)/n), for lasso

prediction error (e.g. Chapter 11 in Hastie et al. (2015)), our choice of λ is tuned to achieve

the desired coverage rate in our numerical results and thus the corresponding ro is already

optimized in this sense.

It should be pointed out that the oracle lasso is not implementable in practice since the

true sparsity sβ is unknown. In theory, it can build a confidence set with a diameter on the

order of (sβ log p/n)1/2, potentially faster than the rate n−1/4, however, the constant co(α)

can be large and difficult to approximate. Indeed, in comparison with the oracle lasso, our

method often constructs confidence sets with a smaller volume even under highly sparse

settings, which highlights the practical usefulness of our two-step method.
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3.1.4 A two-step lasso method

To appreciate the advantage of using Stein estimates in the shrinkage step of our construction,

we compare our method with a two-step lasso method, in which we replace the Stein estimate

by the lasso to build a confidence set for µ⊥, the mean for weak signals. Consider the two-

step method in Section 2.2 with a given candidate set A. Let k = rank(XA) and further

assume A contains strong signals only, that is, A ⊆ supp(β). We use the same method to

find µ̂A and rA (2.7) in the projection step. Like the oracle lasso, we assume the true sparsity

sβ = ‖β‖0 is given and construct a confidence set for µ⊥ based on the error bound for lasso

prediction.

Apply lasso on (P⊥AX, y⊥) = (P⊥AX,P
⊥
A y) with a tuning parameter

λ2 = Kσ
√

log(p− k)/n, K > 2
√

2, (3.8)

to find the estimate

β̃ = β̃(λ2) = argmin
β∈Rp

[
1

2n
‖y⊥ − P⊥AXβ‖2 + λ2‖β‖1

]
. (3.9)

It is natural to estimate the center µ⊥ = P⊥A µ by the lasso prediction µ̂⊥ = P⊥AXβ̃. As a

corollary of Lemma 7, we find an error bound for ‖µ̂⊥ − µ⊥‖2:

Corollary 9. Let n ≥ 1 and p ≥ 2. Suppose that ‖β‖0 ≤ s and Assumption RE(s, 3) holds

for X. Choose λ2 as in (3.8). Then for any fixed A ⊆ supp(β) with k = rank(XA) < s, we

have

P
{
‖P⊥AX(β̃ − β)‖2 ≤ 16K2σ2ω(X)

κ2(s, 3;X)
(s− k) log(p− k)

}
≥ 1− (p− k)1−K2/8. (3.10)

Accordingly, the radius for weak signals is chosen as

r2
⊥ = c2r̃

2
⊥ = c2cl(α/2)σ2 (sβ − k) log(p− k)

n
, (3.11)

where cl(α/2) = cl(α/2;P⊥AX) is a constant. Lastly, we combine (µ̂⊥, r⊥) with (µ̂A, rA) as

in (2.5) to define the confidence set Ĉ.
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Again we use sample splitting to define the candidate set A by thresholding the lasso

estimate β̂(y′, X ′;λ) in (2.18) with a threshold value τ = Ωp(‖β̂ − β‖∞) so that

P (A ⊆ supp(β))→ 1,

satisfying the assumption in Corollary 9. Upper bounds on ‖β̂ − β‖∞ are available under

certain conditions; see, for example, Theorem 11.3 in Hastie et al. (2015).

Remark 9. Suppose β is sufficiently sparse so that sβ log p �
√
n. Then, it follows that

both rA and r⊥ of the two-step lasso converge faster than the rate of n−1/4. This is not

surprising and shows the advantage of the oracle knowledge of the true sparsity sβ. Of

course, in practice we do not know sβ and therefore, this two-step lasso method, like the

oracle lasso, is not implementable for real problems. The numerical comparisons in the next

section will show that our two-step Stein method, which does not use the true sparsity in

its construction, is more appealing than the two-step lasso: Its adaptation to the underlying

sparsity is comparable to the two-step lasso, while its coverage turns out to be much more

robust.

We follow the same procedure as the two-step Stein method to implement the two-step

lasso method with multiple candidate sets Am,m = 1, . . . ,M — threshold β̂(y′, X ′;λ) with

a sequence of threshold values to construct Am (2.29) and then choose the confidence set

with the minimum volume or diameter. The main difference is how to approximate cl(α) in

(3.11), which is done by the following approach.

We first use b = maxi∈[p](X
′T
i y
′)/‖X ′i‖2 as a rough upper bound for ‖β‖∞. For j =

1, 2, . . . , N , we draw an sβ-sparse vector, γj ∈ Rp, of which the nonzero components fol-

low U(−b, b). Then we sample Y ∗j ∼ Nn(Xγj, σ
2In) and calculate lasso estimate γ̂j(λ) =

β̂(Y ∗j , X;λ) as in (2.18) with the tuning parameter λ for all j. Let

cj = ‖X(γ̂j(λ)− γj)‖2/(σ2sβ log p).

For a large N , cl(α) can be approximated by the (1 − α)-quantile of {cj}. Here, λ =

ν ·Kσ2
√

log p/n, where ν ≤ 1 is a pre-determined constant. This choice is slightly smaller

than the theoretical value in Lemma 7, but gives a stable estimate of cl(α) with the desired
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coverage. As we calculate b with (X ′, y′) in the above, our estimate of cl(α) is independent

of the response y. It is possible that a candidate set Am defined by (2.29) may contain s or

more predictors. In this case, we will only include the largest s − 1 predictors in terms of

their absolute lasso coefficients, as Corollary 9 requires |Am| < s.

Proof of Corollary 9. Rewrite orthogonal matrix P⊥A = V V T, where V ∈ Rn×(n−k) consists

of orthogonal unit column vectors. Write the lasso estimate in (3.9) as β̃ = F (y⊥, P
⊥
AX;nλ2),

where F is understood as a mapping with a parameter nλ2 > 0. Since P⊥AXA = 0, the loss

in (3.9) becomes

1

2n
‖y⊥ − P⊥AXβ‖2 + λ2‖β‖1 =

1

2n
‖y⊥ − P⊥AXAcβAc‖2 + λ2‖β‖1

=
1

2n
‖V Ty − V TXAcβAc‖2 + λ2‖β‖1,

which demonstrates that β̃A = 0 and β̃Ac = F (V Ty, V TXAc ;nλ2). Moreover, we have

‖V TXAc(β̃Ac − βAc)‖ = ‖P⊥AX(β̃ − β)‖. (3.12)

We will verify that the lasso problem, β̃Ac = F (V Ty, V TXAc ;nλ2), satisfies all the assump-

tions in Lemma 7 so that we can apply (3.3) to bound the prediction error on the left side of

(3.12). Since A ⊆ supp(β), we have ‖βAc‖0 ≤ s − k. Next, we show V TXAc ∈ R(n−k)×(p−k)

satisfies RE(s − k, 3). Let D be any subset of [p − k] such that |D| ≤ (s − k). For any

nonzero γ ∈ Rp−k in the cone C (D, 3), a vector δ = (η, γ) ∈ Rp can always be constructed

satisfying

XAη + PAXAcγ = 0,

since PAXAcγ ∈ span(XA). Define a mapping g : i 7→ i + |A| for i ∈ [p] and let B =

[|A|] ∪ g(D) ⊂ [p]. Then |B| = |A|+ |D| ≤ s, and δ ∈ C (B, 3) because

∑
i∈Bc
|δi| =

∑
i∈Dc
|γi| ≤ 3

∑
i∈D

|γi| ≤ 3
∑
i∈B

|δi|,

where the second step is due to γ ∈ C (D, 3). Based on that X satisfies RE(s, 3), we arrive
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at the following inequality:

‖V TXAcγ‖√
n− k‖γD‖

=
‖XAη + PAXAcγ + P⊥AXAcγ‖√

n− k‖γD‖

=

√
n√

n− k
‖Xδ‖√
n‖γD‖

≥
√
n√

n− k
‖Xδ‖√
n‖δB‖

≥
√
n√

n− k
κ(s, 3;X),

which shows that RE(s− k, 3) holds for V TXAc and

κ(s− k, 3;V TXAc) ≥
√
n/(n− k)κ(s, 3;X).

Lastly, nλ2 = Kσ
√
n log(p− k) ≥ Kσ

√
(n− k) log(p− k), as required in Lemma 7.

So far, we have shown that (V TXAc , V
Ty) and λ2 satisfy all the conditions in Lemma 7,

which with (3.12) implies that

P
{
‖P⊥AX(β̃ − β)‖2 ≤ 16nK2σ2ω(V TXAc)

(n− k)κ2(s− k, 3;V TXAc)
(s− k) log(p− k)

}
≥ 1− (p− k)1−K2/8,

for anyA ⊆ supp(β). Then inequality (3.10) immediately follows by noting that ω(V TXAc) ≤

ω(X) and substituting κ(s− k, 3;V TXAc) with
√
n/(n− k)κ(s, 3;X).

3.2 Numerical results

We will first compare our method with the above competing methods when β is sparse

relative to the sample size, i.e., s/n is small, and then consider the more challenging settings

in which the sparsity s is comparable to n.

3.2.1 Simulation setup

The rows of X and X ′, both of size n × p, are independently drawn from Np(0,Σ) and

the columns are normalized to have an identical `2-norm. We use three designs for Σ as in
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Dezeure et al. (2015):

Toeplitz: Σi,j = 0.5|i−j|,

Exp.decay: (Σ−1)i,j = 0.4|i−j|,

Equi.corr: Σi,j = 0.8 for all i 6= j,Σi,i = 1 for all i.

The support of β is randomly chosen and its s nonzero components are generated in two

ways:

1. They are drawn independently from a uniform distribution U(−b, b).

2. Half of the nonzero components follow U(−b, b) and the other half of the components

follow U(−0.2, 0.2), so there are two signal strengths under this setting.

Lastly, y and y′ are drawn from Nn(Xβ, σ2In) and Nn(X ′β, σ2In), respectively. In our

results, we chose n = n′ = 200, p = 800, σ2 = 1 and s = 10, and b took 10 values evenly

spaced between (0, 1) and (1, 5). In total, we had 60 simulation settings, each including one

design for Σ, one way of generating β, and one value for b. Under each setting, 100 data sets

were generated independently, so that the total number of data sets used in this simulation

study was 6,000.

The confidence level 1 − α was set to 0.95. The threshold values {am} in (2.29) were

evenly spaced from 0 to 4 with a step of 0.05. All the competing methods use lasso in some

of the steps, and the tuning parameter λ was chosen by three approaches: 1) the minimum

theoretical value in Bickel et al. (2009), λval = 2
√

2σ
√

log p/n, 2) cross validation λcv, and 3)

one standard error rule λ1se. For the one standard error rule, we choose the largest λ whose

test error in cross validation is within one standard error of the error for λcv. Since it is time-

consuming to approximate co(α) = co(α;X,λ) for the oracle lasso when λ is chosen by a data-

dependent way, we set co(α;X,λcv) = η1co(α;X,λval) and co(α;X,λ1se) = η2co(α;X,λval),

where the factors ηk were chosen such that the overall coverage rate across data sets simulated

with b > 0.3 was around the desired level.

Unlike the adaptive method in Section 3.1.2 and our two-step methods, the oracle lasso

method does not require sample splitting. Consequently, a confidence set is constructed
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based on the whole data set including both (X, Y ) and (X ′, Y ′) for a fair comparison. We

compare the geometric average radius r̄ = (r
|A|
A r

n−|A|
⊥ )1/n of our two-step methods with ra of

the adaptive method and ro of the oracle lasso. This is equivalent to comparing the volumes

of the confidence sets.

3.2.2 Results on the two-step Stein method

In this subsection we compare the two-step Stein method with the adaptive method and the

oracle lasso. The constants c1 and c2 of our method were chosen by minimizing the volume

in (2.30) with upper bound E = 10.

Figure 3.1 compares the geometric average radius r̄ among the three methods against

the signal strength b under the first way of drawing β. Every point in a panel was computed

by averaging r̄ from 100 data sets under a particular simulation setting. It is seen from the

figure that r̄ by our method was dramatically smaller than the other two methods for almost

every setting. This suggests that the volumes of our confidence sets were orders of magnitude

smaller than the other two methods, as the ratio of the radii will be raised to the power of

n = 200 for comparing volumes. When X was drawn from the equal correlation (Equi.corr)

design, r̄ of the oracle lasso and the adaptive methods kept increasing as b increased, while

r̄ by our method became stable after b > 2. Overall, the equal correlation design was

more challenging than the other two designs, for which our method outperformed the other

two methods with the largest margin. Unlike the other two methods, our method was less

sensitive to the choices of λ and the designs of X. Essentially, rA and r⊥ by our method are

determined by the candidate set A. Even if a different λ is used, our method can choose

adaptively an optimal A close to supp(β), showing the advantage of using multiple candidate

sets.

In a similar way, Figure 3.2 plots r̄ against b in the second scenario of drawing β. When

b is large (e.g, b ≥ 1), the β contains a mixture of weak and strong signals. Again, we see

that r̄ of our method was smaller than the other two competitors for most settings. The

average radius by our method often decreased as b > 1, which shows that our method can
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Figure 3.1: Geometric average radius against b under the first way of generating β. Each

panel reports the results for one type of design (row) and one way of choosing λ (column),

where the dashed line indicates the naive χ2 radius.

properly distinguish strong signals and weak signals.

The coverage rates, each computed from 100 data sets, for each of the three ways of

choosing λ are summarized in Figure 3.3. We pooled the results from three types of design

matrices together in the figure, because the coverage rates distributed similarly across them.

The coverage rates of our method matched the desired 95% confidence level very well, with

coverage rate > 0.9 for 96% of the cases. This result is particularly satisfactory for a quite

small sample size of n = 200. The adaptive method also showed a good coverage, but

slightly more conservative than the desired level. The oracle lasso had the most variable

coverage rate across different settings when λ was selected in a data-dependent way (λcv
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Figure 3.2: Average radius r̄ against b in the second scenario of generating β.
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Figure 3.3: Box plots of coverage rates for each choice of λ, pooling data from three designs.

The dashed lines indicate the desired confidence level of 95%.

or λ1se). In fact, its coverage could drop below 0.5 for these two cases (not shown in the

figure). This shows the difficulty in practice to construct stable confidence sets using error

bounds like (3.3) even with a known sparsity. Together with the results in Figures 3.1 and

3.2, this comparison demonstrates the advantage of the proposed two-step Stein method: It

builds much smaller confidence sets, while closely matching the desired confidence level. In

particular, our confidence sets were uniformly smaller than those by the adaptive method

(Section 3.1.2) for all simulation settings and all choices of λ.

3.2.3 Comparison with the two-step lasso method

We discussed in Section 2.5 two ways to choose c1 and c2, that is, by minimizing the volume

or by minimizing the diameter of the confidence set for our proposed two-step framework.

Here we compare the two-step Stein method and the two-step lasso, each with the two ways

to choose the constants. The two-step Stein method by minimizing the volume (abbreviated

as TSV) is the same method used in the previous comparison. Similarly, we use the short-
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Figure 3.4: Average radius r̄ against b in the first scenario of generating β.

hand TSD, TLV, and TLD for the two-step Stein method by minimizing diameter, the two-

step lasso method by minimizing volume and by minimizing diameter, respectively. The true

sparsity s = 10 was given to the two-step lasso methods. Only the first scenario of generating

β was considered in this comparison, since most results in the second scenario were similar.

Figure 3.4 shows the plots of radius against b by the four methods under different settings,

while Figure 3.5 reports the distribution of the coverage rates. The two-step lasso methods

apply the lasso twice, one to generate candidate sets Am and the other to compute µ̂⊥ and

r⊥ for weak signals. To clarify, the three ways of choosing λ in these figures refer to the step

to generate candidate sets Am, while λ2 in (3.9) was set to νKσ2
√

log(p− |A|)/(n− |A|),

where ν = 0.5 in our simulation.

We make the following observations from the two figures. First, the two-step Stein
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Figure 3.5: Box plots of coverage rates for each choice of λ. The dashed lines indicate the

desired confidence level of 95%.

methods showed a substantially more satisfactory coverage than the two-step lasso methods.

The coverage was close to 0.95 for both TSV and TSD, while the coverage rates of TLV

and TLD had a much larger variance and were especially poor when λ was chosen via cross

validation. The confidence sets by the two-step lasso methods had a slightly smaller average

radius than the two-step Stein methods for the Toeplitz and the exponential decay designs.

However, given their low and unstable coverage rates, this does not imply the two-step lasso

methods constructed better confidence sets. Recall that |Ĉ| = Op(n
−1/4 ∨

√
s/n) for the

two-step Stein methods and |Ĉ| = Op(
√
s log p/n) for the two-step lasso methods. The

signals were very sparse in our simulation, with s = 10 much smaller than p, favorable for

the two-step lasso methods. Even so, we find the two-step Stein methods very competitive,

noting that the radii of both TSV and TSD were actually comparable or slightly smaller

than the two-step lasso methods for the equal correlation designs, in which the predictors

were highly correlated. This comparison demonstrates that the two-step Stein method is

more appealing in practice, as it does not require any prior knowledge about the underlying

sparsity but gives a better and more stable coverage. Second, both ways of choosing the
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constants c1 and c2 worked well for the two-step Stein method. On the contrary, it is seen

from Figure 3.5 that the coverage rate of TLV was significantly lower than that of TLD in

the bottom two panels. Lastly, between using λcv and λ1se in the lasso for defining candidate

sets Am, we recommend the latter, as it tends to give comparable radii but a better coverage,

especially for the two-step lasso.

We also compared the performance between the oracle lasso method and TLD, both

constructing confidence sets based on the lasso prediction (3.3) with a known sparsity. The

coverage rates of the two methods were quite comparable as reported in Figures 3.3 and 3.5.

The geometric average radius of the oracle lasso method (Figure 3.1) was 2 to 5 times that

of TLD (Figure 3.4). The difference was especially significant when the signal strength was

high (large b). This comparison confirms that, by separating strong and weak signals, our

two-step framework can greatly improve the efficiency of the constructed confidence sets.

3.2.4 Dense signal settings

We have shown the advantages of our two-step Stein method in the last two subsections

under sparse settings. Recall that the dimension of our data was (n, p) = (200, 800) with

sparsity s = 10 for β in the previous comparisons. The goal of this subsection is to illustrate

the stable performance of our method when the true signal is dense. As such, we changed

the sparsity to s = 100 for the first way of generating β and s = 200 for the second way of

generating β. We focused on the equal correlation design, which was the most difficult one

among the three designs. With the same set of values for the signal strength b, we had 20

distinct parameter settings for data generation in this comparison, and again we simulated

100 data sets under each setting. The tuning parameter λ was selected as λ1se for all the

results here.

Figure 3.6 compares the geometric average r̄ against b and the coverage among the

adaptive method, the oracle lasso and our two-step Stein method. In all the scenarios

reported in panels (a) and (b), our method outperformed the other two methods with very

big margins in terms of the volume of a confidence set. For b > 1, the radius of our method
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Figure 3.6: Comparison results under dense signal settings. (a) and (b) Geometric average

radius against b. (c) and (d) Box plots of the coverage rates.
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Figure 3.7: The box plot of k across data sets for each value of b

approached the naive radius (χ2
n,α/n)1/2 as suggested by Theorem 1, while the radii of the

oracle lasso and the adaptive methods kept increasing to much greater than the naive χ2

radius. This shows that the two competing methods failed to construct acceptable confidence

sets when the signal was dense. Since the sparsity level s is comparable to n for the data sets

here, the upper bounds for the diameters of these two methods, |Ĉo| = Op(
√
s log p/n) and

|Ĉa| = Op(n
−1/4+

√
s log p/n), are no longer useful or even valid. It is seen from Figure 3.6(c)

and (d) that the coverage rates of the two-step Stein method were much better than the oracle

lasso, but slightly lower than the adaptive method. Nevertheless, our confidence sets still

maintained a minimum coverage of 0.9 in most cases, which is quite satisfactory given the

way smaller diameters than the adaptive method.

To understand the behavior of our method in this dense signal setting, we examined the

number of variables selected as strong signals in the set A, i.e., k = |A|. Figure 3.7 displays

the box plot of k across 100 data sets for each value of b under the first way to generate β.

When b ≤ 1, our two-step method still chose a nonempty candidate set, but k dropped to

0 for b ≥ 2, i.e., A = ∅. Note that the radius of our method will be close to the naive χ2

radius when k = n or k = 0; see (2.15) in Theorem 1. When the signal strength b ≤ 1, some

small nonzero coefficients are close to zero so β is effectively quite sparse, in which case the

lasso can select a good subset A of strong signals. On the contrary, when b is large, the lasso

will not be able to select a majority of the strong signals, leaving ‖µ⊥‖ = ‖P⊥A µ‖ too big. In

this setting, our method automatically adjusts its “optimal” choice to A = ∅, constructing

a confidence set centered at the Stein estimate µ̂(y; 0) (2.9) with radius estimated via the

SURE.
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3.2.5 Estimated error variance

We further examine the performance of our method using a plug-in σ̂2 instead of the true

variance σ2. Recall that we split our sample into (X ′, y′) and (X, y). First, an estimated

variance σ̂2 = σ̂2(X ′, y′) was calculated by ordinary least-squares regression of y′ onto X ′A′

where A′ is the set of variables selected by the scaled lasso (Sun and Zhang, 2012, 2013).

Although the scaled lasso provides a consistent estimator for σ2, it sometimes yielded ex-

tremely large σ̂2, which led to inaccurate inference by all the methods. In contrast, the least

squares estimate after the scaled lasso selection gave a much more stable value. To simplify

the comparison, we only used a single candidate set A = supp(β̂) in this comparison, where

β̂ is the lasso estimate with λ chosen by the three approaches in Section 3.2.1. In particular,

σ̂2 was used in place of σ2 to calculate the theoretical value λval. We input the same σ̂2 for

the adaptive and the oracle lasso methods.

For brevity, we only present results on the datasets simulated under the first way of

generating β as in Section 3.2.1. The average radii and coverage rates are reported in

Figures 3.8 and 3.9, respectively. It is seen from Figure 3.8 that the trend of r̄ against

the signal strength b is quite similar to Figure 3.1 for all three methods. Our two-step

Stein method constructed smaller confidence sets than the other two methods for most

settings, except for the equal-correlation designs under which the r̄ of our method was quite

comparable to that of the adaptive method when λ was selected by cross validation or the

one standard error rule. As shown in Figure 3.9, the overall coverage of the adaptive method

and our method was around or above the desired level of 95% for most settings. In particular,

the coverage rates of our method were slightly higher than the adaptive methods when using

λcv or λ1se, two practical ways of choosing the lasso tuning parameters. There are some

outliers in the box-plots, representing low coverage rates for some datasets generated under

the equal correlation design — the most difficult design due to high correlation among the

predictors. Using λval, the adaptive method and our method yielded almost an equal number

of outliers, while using λcv or λ1se our method had fewer outliers.

As expected, the coverage rates here in Figure 3.9 are somewhat lower than those reported
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Figure 3.8: Average radius r̄ against b with estimated error variance σ̂2.
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Figure 3.9: Box plots of coverage rates for each choice of λ with estimated σ̂2. The dashed

lines indicate the desired confidence level of 95%. Outliers below 0.75 are truncated.

in Figure 3.3 assuming σ2 is known. Among those data sets for which either our method or

the adaptive method failed to cover the true β, the σ̂2 for more than 60% of them were either

< 0.8 or > 1.2 (recall σ2 = 1), suggesting that the lower coverage was mostly caused by

inaccuracy of σ̂2. On the other hand, the pattern of r̄ of our method under the Toeplitz and

the exponential designs is very similar between Figure 3.1 for known σ2 and Figure 3.8 here,

while the r̄ of the adaptive method increased slightly when σ̂2 was plugged in. Under the

equal correlation design, the r̄ of our method also increased but not faster than the adaptive

method.

3.2.6 Normality and homogeneity assumptions

Our method is developed under normality and homogeneity assumptions that the error vector

ε ∼ Nn(0, σ2I), which may not hold in practice. In this subsection, we test the robustness

of our two-step Stein method when the above assumptions are violated in comparison with

the adaptive method. To this end, we designed the following four simulation settings. Let
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td denote the t-distribution with d degrees of freedom. In the first setting, all components

of ε were independently drawn from t4 with a scale parameter σ, while in the second setting

from t7. These two settings were designed to test the robustness against the violation of

normality, and the next two settings against the homogeneity assumption. Let µα be the α-

percentile of the components µi, i ∈ [n] of the mean vector µ = Xβ. We drew εi ∼ N (0, σ2
i )

independently for i = 1, . . . , n, where

σi = σ + 4σ(µi − µ0.05)+/(µ0.95 − µ0.05)

in the third setting and

σi = σ + 9σ{(µi − µ0.05)+/(µ0.95 − µ0.05)}2

in the fourth setting. These two models were motivated by the observation that the variance

of εi usually increases with µi. In particular, σi increases quadratically with µi in the forth

setting, severely against the homogeneity error assumption. We only tested the Toeplitz

design in this study, while using the same choices of the other parameters in data generation

as in Section 3.2.2. The lasso tuning parameter λ for both methods was selected by the one

standard error rule, and σ̂2 was estimated in the same way as in Section 3.2.5. For simplicity,

our method still used a single candidate set A = supp(β̂) in the comparison.

The average radii and coverage rates of the constructed confidence sets are summarized

in Figure 3.10. It is comforting to see that the coverage rates of both methods across all

settings were above or close to the nominal level of 95%, with only mild drop compared to

their coverage rates under i.i.d. normal errors (lower panel of Figure 3.9). This observation

shows that both methods are quite robust against possible violation of error assumptions. On

the other hand, the average radius of our two-step Stein method was uniformly smaller than

that of the adaptive method (top panels of Figure 3.10) in all the four settings, demonstrating

the higher relative efficiency of our confidence sets when model assumptions are not satisfied,

or even severely violated.

As shown in Figure 3.10, as b increased, the average radius of the adaptive method

approached or exceeded an estimated naive χ2 radius, σ̂(χ2
n,α/n)1/2, under i.i.d. normal

60



linear quadratic

t_4 t_7

0 1 2 3 4 5 0 1 2 3 4 5

0.0

0.3

0.6

0.9

1.2

0
1
2
3
4
5

0.0

0.5

1.0

1.5

0

1

2

3

b

ra
di

i

adaptive two−step stein

●

●

●

●
● ●●

t−distribution inconstant variance

adaptive two−step stein adaptive two−step stein

0.8

0.9

1.0

co
ve

ra
ge

Figure 3.10: (Upper) Average radius r̄ against b and (lower) box-plots of coverage rates of all

settings under t-distributions or heterogeneous error variance. The dashed lines in the four

top panels indicate the average naive χ2 radius. The dashed lines in the box-plots indicate

the nominal coverage level of 95%.

errors, where σ̂2 is the estimated error variance. This trend suggests that the adaptive

method could be too conservative when the model assumptions are violated, with diameter

not necessarily converging to 0. In contrast, the average radius of our two-step Stein was

stable and uniformly < σ̂ for all values of b.

For our method, the shrinkage factor B = (n − k)σ̂2/‖y⊥‖2 defined in (2.11) plays a

vital role against heterogeneity. Note that the left-hand side of the inequality in (2.12)

is essentially determined by B. Even the error variances are different, ‖y⊥‖2/
√
n− k still

follows approximately a normal distribution when n − k is large, similar to the case with

homogeneous errors. Consequently, the distribution of B does not change that much and

the inequality (2.12) still holds in spite of error heterogeneity, guaranteeing good coverage

for our method.
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Figure 3.11: Hierarchical clustering of gene expression vectors among 72 individuals.

3.3 Real data analysis

We apply the two-step Stein method on the riboflavin data set compiled by Bühlmann et al.

(2014) to demonstrate its practical significance. This data set contains a real-valued response

variable y, which is the logarithm of the riboflavin production rate, and the expression levels

in log-scale of p = 4088 genes as covariates. There are n = 71 individuals in total so that

the design matrix X is 71× 4088. Unlike van de Geer et al. (2014) and Dezeure et al. (2015)

that aim at gene selection, we focus on joint inference about the mean riboflavin production

rates for a group of individuals, which is also a scientifically significant problem. Before our

analysis, the columns of X was normalized to have an identical `2 norm and y was centered

to have zero mean.

Since the true riboflavin production rate is unknown, we conducted a simulation based

on the real data set to verify the performance of our method. First, we estimated the error

standard deviation σ̃ = 0.320 from (X, y) by least-squares after scaled lasso selection. Next,

we perturbed y to simulate y∗ ∼ Nn(y, σ̃2In). In what follows, we will apply an inference

method on the perturbed data (X, y∗) to construct a confidence set and check if it covers
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the original response vector y. Although y is the mean of y∗, the relation between y and the

predictors X is noisy and could be nonlinear, which makes this test more challenging than

those simulation studies in the previous section. Again, we split (X, y∗) into two subsamples.

One of them is used to calculate an initial lasso estimate β̂ (2.18) for the adaptive method

and a single candidate set A = supp(β̂) for our method, as well as an estimated variance

σ̂2. The tuning parameter for the lasso estimate β̂ is chosen by the one standard error rule.

The other subsample will be used to construct a confidence set. In our analysis, two ways

of sample splitting were considered. The first way is to randomly split the whole data set

into two even halves, while the second is to split according to the gene clustering pattern

of the n individuals. Define the distance between two individuals by 1 − |ρ|, where ρ is

the correlation coefficient between their gene expression vectors. The hierarchical clustering

dendrogram on the n gene expression vectors is shown in Figure 3.11, from which we see

a clear separation into two clusters. It makes sense to infer the riboflavin production rates

simultaneously for individuals in the same cluster, due to the strong correlation among their

gene expression profiles. When splitting by clustering, we also swap the two subsamples to

build two confidence sets, one for each subsample.

The whole process, starting from the simulation of y∗, was repeated 400 times. The

average results are summarized in Table 3.1. Compared with the adaptive method, our

method achieved much smaller average radius r̄ with higher coverage that is above or close

to the nominal level of 95% for both ways of sample splitting, randomly or by clusters.

Besides, the r̄ of the adaptive method was greater than the average radius of the naive

χ2 set, making it not practical useful, while the r̄’s of our method were all below the naive

radius. This is a very satisfactory result given that the relationship between y and X is noisy

and could be nonlinear, as we mentioned above, and that the sample sizes here n ≤ 44 are

much smaller than p > 4000. For such a small sample size, the candidate set A calculated

from the initial lasso estimate may not be stable. Therefore, we also tested our method

with A = ∅, i.e. using only the weak signals to construct a confidence set. The results are

reported in Table 3.1 as well. In this case, the r̄ = r⊥ of our method was slightly smaller

than that with A = supp(β̂), showing that our method was quite robust with respect to the
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Table 3.1: Comparison between the two-step Stein method and the adaptive method over

400 data sets based on the riboflavin data set.

split evenly split by clustering

group size 36 27 44

χ2 radius 0.530 0.541 0.424

adaptive
r̄ 0.781 0.745 0.985

coverage 0.819 0.898 0.942

two-step Stein

A = supp(β̂)

r̄ 0.490 0.530 0.411

rs 0.615 0.631 0.482

r⊥ 0.450 0.478 0.404

coverage 0.968 0.96 0.933

A = ∅ r⊥ 0.489 0.522 0.406

coverage 0.968 1.000 0.915

candidate set A.

Next, we applied both our two-step Stein method and the adaptive method to the ri-

boflavin data set to construct confidence sets. The results are summarized in Table 3.2.

For random splitting, we repeated the process 100 times independently and report the av-

erage results over the 100 random subsamples. For our method, we chose the candidate set

A = supp(β̂) or A = ∅, like what we did in Table 3.1. One sees that, for both ways of sample

splitting, the r̄ of the adaptive method was substantially greater than the r̄ of our method

regardless of how A was chosen, consistent with the results on the perturbed data. Consid-

ering ‖y‖/
√
n = 7.038, the confidence sets constructed by our method achieved substantial

reduction in the uncertainty in µ, especially given the small sample sizes (≤ 44) after sample

splitting and the large number p > 4000 of covariates. We observe that r̄ of A = supp(β̂)

was smaller than r̄ of A = ∅ for random splitting, while it was greater for cluster-based

splitting. One reason for this observation is that the strong signals can be better detected

with a random subsample, since the variance among the gene expression vectors (covariates)

reduces when the individuals are partitioned into clusters.
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Table 3.2: Confidence sets constructed on the riboflavin data set.

split evenly split by clustering

group size 36 27 44

adaptive r̄ 0.657 0.641 0.943

two-step Stein

A = supp(β̂)

r̄ 0.389 0.372 0.337

rs 0.449 0.404 0.175

r⊥ 0.358 0.349 0.347

A = ∅ r⊥ 0.399 0.351 0.289

Lastly, it is worth reiterating that our confidence set makes simultaneous inference on

all µi, i = 1, . . . , n. As the sample size n becomes large, the diameter of the set will shrink

to zero at certain rate (e.g. n−1/4). This is particularly useful when we wish to control

family-wise error rate over a large number of individuals (n large). On the contrary, if we

apply Bonferroni correction on n individual inferences, each on a single µi, the power can

be much lower than our approach. This highlights one aspect of the practical significance of

our inference method.
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CHAPTER 4

Post-Selection Inference with Estimator Augmentation

We have introduced post-selection inference in Section 1.4 and emphasized its difficulty

regarding the restriction of sampling distribution to an irregular subset of Rn. Min and

Zhou (2019) showed that a randomization step and estimator augmentation can effectively

construct an honest confidence set conditioning on any active set A = A. However, the

lack of theoretical justifications casts doubt on whether the nominal significance level can

be achieved, whether the honesty can be maintained over the full parameter space, and

whether the diameter of the confidence set converges to 0 under the asymptotic framework.

This chapter intends to explore the potential answers to the aforementioned questions. We

mainly consider the linear model

y = Xβ + ε, (4.1)

where y = y(n) ∈ Rn, X = X(n) ∈ Rn×p, β = β(n) ∈ Rp and ε ∼ Nn(0, σ2In) under

the asymptotic framework. Throughout this chapter, the active set A is defined by lasso

estimator, A = supp(β̂) with β̂ defined as

β̂ := argmin
β∈Rp

1

2n
‖y −Xβ‖2

2 + λ

p∑
j=1

|βj|,

where λ > 0 is a tuning parameter, unless otherwise noted. We propose a new framework to

construct confidence sets, which is organized as follows:

1. Derive the distribution of β̂ conditioning on A = A, i.e., π(β̂|A = A; β).

2. Design a prior of β (or µ) π(β) and then derive the conditional posterior π(β|β̂,A)

under Bayesian framework.
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3. Construct a credible set based on the conditional posterior π(β|β̂,A).

4. Study the properties of the credible set in the frequentist view. One of the most

important question is whether Ĉ is a confidence set satisfying

lim inf
n→∞

inf
β∈Rp

P{β ∈ Ĉ|A = A} ≥ 1− α.

The rest of this chapter is organized as follows: Section 4.1 introduces estimator augmen-

tation (Zhou, 2014), an effective method to derive a closed-form probability density function

of β̂ conditioning on A. Section 4.2 presents our current progress regarding the posterior

and the construction of credible sets in the Bayesian view. We propose a decision-theoretic

framework to generalize this problem to generalized linear models (GLMs) in Section 4.3.

Section 4.4 discusses the potential of applying this framework with A defined by the block

lasso estimator.

4.1 Estimator augmentation

The first step in our framework has been solved by estimator augmentation (Zhou, 2014).

We present his idea, as it is also associated to the generalization of GLMs later. In this

section, we consider a more general distribution of ε with mean zero and variance σ2, and

redefine β̂ as a general `1-penalized estimator given by the minimizer of the loss function

`(β) =
1

2n
‖y −Xβ‖2

2 + λ

p∑
j=1

wj|βj|,

where wj > 0, j = 1, . . . , p and λ > 0. By Karush–Kuhn–Tucker (KKT) conditions, β̂ is

characterized by

1

n
XTy =

1

n
XTXβ̂ + λWS, (4.2)

where W = diag(w1, w2, . . . , wp) and S is the subgradient of ‖β̂‖1, namely, for j = 1, 2, . . . , p,
Sj = sgn(β̂j) if β̂j 6= 0,

Sj ∈ [−1, 1] if β̂j = 0,
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where sgn(.) is the sign function. The idea is to find out the distribution of the augmented

estimator (β̂, S) instead of β̂. Further, let A = supp(β̂) be the set of nonzero coefficients

and I = {1, 2, . . . , p} \ A be its complement. Then (β̂, S) can be equivalently represented

by the triplet (β̂A, SI ,A) and vice versa, by noting β̂I is a zero-vector and SA = sgn(β̂A).

It can be directly seen that the triplet (β̂A, SI ,A) lies in the set

Ω = {(bA, sI , A) : A ⊆ {1, 2, . . . , p}, bA ∈ (R \ {0})|A|, sI ∈ [−1, 1]p−|A|}, (4.3)

where I = {1, 2, . . . , p}\A. Clearly, Ω is a subset of the product space of Rp and a finite dis-

crete space, i.e., RP ×2{1,2,...,p}, where 2{1,2,...,p} is the collection of all subsets of {1, 2, . . . , p}.

Let C = 1
n
XTX and U = 1

n
XTε = 1

n
XTy − Cβ. Rewrite (4.2) as

U =
(
CA CI

)β̂A
0

+ λ
(
WA WI

)SA
SI

− Cβ
= D(A)

β̂A
SI

+ λWAsgn(β̂A)− Cβ :=H(β̂A, SI ,A; β), (4.4)

where D(A) =
(
CA λWI

)
. By permuting the rows of D(A), its determinant is

det(D(A)) =

∣∣∣∣∣∣CAA 0

CIA λWII

∣∣∣∣∣∣ = λ|I|det(CAA)
∏
j∈I

wj. (4.5)

If CAA has full rank, |det(D(A))| > 0.

In the low-dimensional setting (p ≤ n), Lemma 2 in Zhou (2014) proves that if rank(X) =

p ≤ n, the mapping H : Ω→ Rp defined in (4.4) between Ω (4.3) and Rp is bijective. Based

on this lemma, one is able to find the sampling distribution of (β̂A, SI ,A). Let ξk denote

k-dimensional Lebesgue measure. Denote by φk(z;µ,Σ) the probability density function of

k-variate normal distribution with mean µ and covariance matrix Σ.

Theorem 10 (Theorem 1 and Corollary 1 in Zhou (2014)). Assume rank(X) = p and let

fU be the probability density function of U with respect to ξp. For (bA, sI , A) ∈ Ω, the joint

distribution of (β̂A, SI ,A) is given by

P(β̂A ∈ dbA, SI ∈ sI ,A = A) = fU(H(bA, sI , A; β))|det(D(A))|ξp(dbAdsI), (4.6)
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and the distribution of (β̂A,A) is a marginal distribution given by

P(β̂A ∈ dbA,A = A) =

[∫
[−1,1]p−|A|

fU(H(bA, sI , A; β))|det(D(A))|ξp−|A|(dsI)
]
ξ|A|(dbA).

(4.7)

Furthermore, if ε ∼ Nn(0, σ2In), the joint density of (β̂A, SI ,A) is

π(bA, sI , A) = φk(z;µ(A, sA; β),Σ(A;σ2))1((z, A) ∈ Ω), (4.8)

where z = (bA, sI), 1(.) is an indicator function and

µ(A, sA; y) = D(A)−1(Cβ − λWAsA),

Σ(A;σ2) =
σ2

n
D(A)−1CD(A)−T.

In the high-dimensional setting (n > p), U = 1
n
XTε only lies in an n-dimensional subspace

of Rp, i.e., row(X). Consequently, some constraint must be imposed on Ω to obtain a

bijective mapping. Let vj ∈ Rp, j = 1 . . . , n, be eigenvectors of C = 1
n
XTX, which also form

a basis for row(X). Select orthonormal vectors vn+1, . . . , vp to form a basis for null(X).

Naturally, V = (v1| . . . |vp) forms a basis for Rp. Let R = {1, . . . , n} and V = {n+ 1, . . . , p}

be two index sets corresponding to the columns of V that form a basis for row(X) and

null(X), respectively. Since U ∈ Row(X), it follows from V T
NU = 0 and (4.4) that

0 = λV T
NWS = λ

(
V T
ANWAASA + V T

INWIISI
)
, (4.9)

which implies that WS must lie in row(X). Therefore, Ω must be restricted to

Ωr = {(bA, sI , A) ∈ Ω : V T
ANsgn(bA) + V T

INWIIsI = 0}

for the augmented estimator (β̂A, SI ,A). According to Lemma 3 (Zhou, 2014), the restriction

of the mapping H to Ωr, denoted as H|Ωr : Ωr → row(X), is bijective. Represent U by

coordinates with respect to VR and let R = V T
R U to get

R = V T
RCAβ̂A + λV T

ARWAASA + λV T
IRWIISI − V T

RCβ :=Hr(β̂A, SI , A; β). (4.10)

69



Differentiating (4.9) and (4.10) with respect to (β̂A, SI), respectively, we have

dR = V T
RCAdβ̂A + λV T

IRWIIdSI , (4.11)

V T
INWIIWdSI = 0, (4.12)

implying that dSI is in null(V T
INWII). Under a mild assumption on X, the dimension of

null(V T
INWII) is n− |A| ≥ 0 so there exists a B(I) ∈ R|I|×(n−|A|), which is an orthonormal

basis for null(V T
INWII). Let dS̃ denote coordinates so that dS = B(I)dS̃. Then (4.11)

becomes

dR = V T
RCAdβ̂A + λV T

IRWIIB(I)dS̃ = T (A)

dβ̂A
dS̃

 ,

where T (A) =
(
V T
RCA λV T

IRWIIB(I)dS̃.
)

is the Jacobian of the map Hr.

Theorem 11 (Theorem 2 in Zhou (2014)). Assume that p > n and every n columns of X

are linearly independent and every (p − n) rows of VN are linearly independent. Let fR be

the probability density of R with respect to ξn. For (bA, sI .A) ∈ Ωr, the joint distribution of

(β̂A, SI ,A) is given by

P(β̂A ∈ dbA, SI ∈ dsI ,A = A) = fR(Hr(bA, sI , A; β))|det(T (A))|ξn(dbAds̃). (4.13)

If ε ∼ Nn(0, σ2In), then fR(·) = φn(·; 0, σ
2

n
V T
RCVR). Finally, it is straightforward to

derive the conditional density of [β̂A, SI |A = A; β] from (4.6) or (4.13).

4.2 Posterior distribution and inference after model selection

The second step, the third step and the forth step in our framework are closely related. We

are currently researching on these three steps. For simplicity, we consider the low-dimensional

setting (n > p) with ε ∼ Nn(0, σ2In) and known σ2.
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4.2.1 Conditional posterior distribution

It follows from (4.8) that the probability of A = A is given by

ZA(β) :=

∫
ΩA

φk(H(bA, sI , A; β);µ(A, sA; β),Σ(A;σ2))ξp(dbAdsI), (4.14)

where ΩA is the subspace of Ω (4.3) restricted to A = A, i.e.,

ΩA = {(bA, sI) ∈ Rp : bA ∈ (R \ {0})|A|, sI ∈ [−1, 1]p−|A|}. (4.15)

So the conditional density of (β̂A, SI) given A = A is

π(bA, sI |A = A; β) =
1

ZA(β)
π(bA, sI , A) =

1

ZA(β)
φk(H(bA, sI , A; β);µ(A, sA; β),Σ(A;σ2))

(4.16)

According to the Bayesian view, we should find out a proper prior of β, π(z), in order

to obtain the posterior and then to construct credible sets. However, unlike the Bayesian

view, which requires the prior is independent of the data set (X, y), we can design the prior

based on (X, y), n, p,A = A or any quantities related to (X, y), since our eventual objective

is to prove that the credible sets constructed from the posterior distribution are also (1−α)

confidence sets according to frequentist view. As a preliminary study, let π(z) ∝ 1. Then

one can derive the implied posterior distribution of β given the triplet (β̂A, SI ,A), for any

z ∈ Rp

π(z|β̂A = bA, SI = sI ,A = A) ∝ π(z)π(bA, sI |A = A; β = z)

∝ 1

ZA(z)
exp

−1

2

bA
sI

− µ(A, sA; z)

T

Σ(A;σ2)−1

bA
sI

− µ(A, sA; z)




∝ 1

ZA(z)
exp

− n

2σ2

D(A)

bA
sI

+ λWAsA − Cz

T

C−1

D(A)

bA
sI

+ λWAsA − Cz




∝ 1

ZA(z)
exp

(
− n

2σ2
[Cb+ λWs− Cz]TC−1[Cb+ λWs− Cz]

)
∝ 1

ZA(z)
exp

(
− n

2σ2
[z − (b+ λC−1Ws)]TC[z − λ(b+ C−1Ws)]

)
∝ 1

ZA(z)
φp(z; b+ λC−1Ws,

σ2

n
C−1). (4.17)
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Note that 1
ZA(z)

depends on z and thus cannot be dropped. In fact, without conditioning on

A = A, the posterior distribution of β becomes

π(z|β̂A = bA, SI = sI) ∝ φp(z; b+ λC−1Ws,
σ2

n
C−1) ∝ φp(z; β̂(ols),

σ2

n
C−1),

where β̂(ols) is the ordinary lest square estimator of (X, y), by the equation

1

n
XTXβ̂(ols) =

1

n
XTy =

1

n
XTXβ̂ + λWS.

Note that the respective dimensions of bA and sI in π(z|β̂A = bA, SI = sI) are not fixed and

any n-dimensional vector could be values of different (bA, sI)’s with different A = A, which

is a significant difference from π(z|β̂A = bA, SI = sI ,A = A) where A is fixed. Therefore,

the construction of credible sets based on π(z|β̂A = bA, SI = sI ,A = A) is a non-trivial and

even more complicate problem due to the irregular function ZA(z).

To further simplify this problem, we assume C = 1
n
XTX = In and let β̂ be the lasso

estimator (i.e., wj = 1 for j = 1, 2, . . . , p). Under this assumption, the expression (4.17) is

rewritten as

π(z|β̂A = bA, SI = sI ,A = A) ∝∏
j:bj>0

φ(zj; bj + λ, σ2/n)

Φ

(
zj−λ√
σ2/n

) ∏
j:bj<0

φ(zj; bj − λ, σ2/n)

Φ

(
−λ−zj√
σ2/n

) ∏
j:−1≤sj≤1

φ(zj;λsj, σ
2/n)

Φ

(
λ−zj√
σ2/n

)
− Φ

(
−λ−zj√
σ2/n

) ,
(4.18)

where φ(·; ·, ·) is φ1(·; ·, ·) and Φ is the cumulative distribution of the standard normal distri-

bution. Note that (4.18) is the product of p terms, each of which is a function with respect

to a single value of bj, which means all [βj|β̂A, SI ,A] are independent of each other. Usually,

the inference on the active set is of more interest (e.g., ν in (1.21)), so we next look at a

single coefficient [βj|β̂A, SI ,A], where the corresponding estimated coefficient is positive, i.e.,

β̂j > 0, and study the closed-form marginal posterior distributions.

We frequently use the result (4.19) in the following paragraphs. The tail probability of

the standard normal distribution, Φ(z)c, is bounded by

z

z2 + 1

e−z
2/2

√
2π
≤ Φ(z)c = 1− Φ(z) ≤ 1

z

e−z
2/2

√
2π

, (4.19)
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for z > 0. In other words, Φc(z) ∝ (1
z

+O( 1
z3

)) e
−z2/2
√

2π
for z > 0.

Checking the tail probability of [βj|β̂A, SI ,A] for β̂j > 0, we have, if zj → −∞,

π(zj|β̂ = b, S = s,A = A, β̂j > 0) ∝ e−
n

2σ2
(zj−bj−λ)2

/
Φ(

zj − λ√
σ2/n

)

∝ e−
n

2σ2
((zj−bj−λ)2

/[
1

|zj − λ|
√
n/σ2

+O(
1

|zj − λ|3(n/σ2)3/2
)

]
e−

n
2σ2

(zj−λ)2

∝ 1

σ
e−

nb2j

2σ2
√
n(λ− zj)e−

n
σ2
bj(λ−zj)

(
1 +O(

1

(zj − λ)2n/σ2
)

)
, (4.20)

and, if zj → +∞,

π(zj|β̂ = b, S = s,A = A, β̂j > 0) ∝ e−
n

2σ2
(zj−bj−λ)2

/[
1− Φc(

zj − λ√
σ2/n

)

]

∝ e−
n

2σ2
(zj−bj−λ)2

/[
1−

(
1

|zj − λ|
√
n/σ2

+O(
1

|zj − λ|3(n/σ2)3/2
)

)
e−

n
2σ2

(zj−λ)2

]

∝ e−
n

2σ2
(zj−bj−λ)2

(
1 +O(

1

|zj − λ|
√
n/σ2

e−
n

2σ2
(zj−λ)2)

)
. (4.21)

One can immediately see from the left and right tails that [βj|β̂A, SI ,A] for β̂j > 0 is

approximately the mixture of a Gamma distribution Γ(2, 1) and a normal distribution. This

observation can be verified by the simulation below.

Set n = 500, p = 3, σ = 1. We numerically computed the density function of the posterior

distribution [βj|β̂A, SI ,A] for β̂j > 0 associated with the flat prior in Figure 4.1. Here, β̂j

took values of 0.005, 0.01 and 0.1, respectively. It can be seen from β̂j = 0.005 that the

left tail of the density function decayed at a rate slower than the right tail, which matches

our derivation in (4.20) and (4.21). Though [βj|β̂A, SI ,A] is approximately a mixture of a

Gamma distribution and a normal distribution, the weight of each component varies and

depends on how close β̂j is to zero. If β̂j is close to zero, the Gamma distribution dominates.

In contrast, if β̂j is much greater than 0, say β̂ = 0.1, the normal distribution dominates.

This uncertainty of the weights causes great trouble in the construction of credible intervals.

We also tested a Gaussian prior and the result is similar to Figure 4.1, indicating that a

non-trivial and informative prior must be provided in order to overcome such uncertainty.
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Figure 4.1: The conditional density function of [βj|β̂A, SI ,A]

4.2.2 Construction of credible sets

Based on the conditional sampling distribution derived in the last subsection, we conduct

an initial investigation on the construction of credible sets and then study their significance

level according to frequentist view. Throughout this subsection, we focus on the conditional

marginal distribution of [βj|β̂A, SI ,A] for β̂j > 0.

The first proposed credible interval has the form of

I1(j; β̂, S,A) :={βj : β̂j + λ− σ√
n
qα/2 ≤ βj ≤ β̂j + λ+

σ√
n
qα/2}, (4.22)

where qα/2 is the (1− α)-quantile of the standard normal distribution. It is common to use

I1(j; β̂, S,A) as a confidence interval under the assumption of normality. Alternatively, we

can construct a credible interval in the form of

I2(j; β̂, S,A) :={βj : − σ2

nβ̂j
γ

(2,1)
α/2 + λ ≤ βj ≤ β̂j + λ+

σ√
n
q1−α

2
}, (4.23)

where γ
(2,1)
α/2 is the (1− α)-quantile of the gamma distribution, Γ(2, 1). This construction is

based on the approximation of the distribution [βj|β̂A, SI ,A] in (4.20) and (4.21). Comparing

the two credible intervals, one can find that the length of I1(j; β̂, S,A) does not depend on

β̂j and converges to 0 as n → ∞, while the length of I2(j; β̂, S,A) depends on both n and

β̂j and may not converge. If β̂j is fixed and n → ∞, I2(j; β̂, S,A) shrinks to [λ, β̂j + λ].
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Therefore, I1(j; β̂, S,A) is better in the sense of the length. However, the significance level

in the frequentist framework is our main concern and should be studied for the two credible

intervals as well. Let β∗j = β∗j (n) be the jth component of the true β∗. Under the orthogonal

design of X, the lasso estimator of the jth component is

β̂j = sgn(|XT
j y|/n)

(
|XT

j y|/n− λ
)

+

= sgn(β∗j +
σ√
n
εj)

(
β∗j +

σ√
n
εj − λ

)
+

, (4.24)

where εj = XT
j ε/n is the standard normal in distribution. Now we consider the asymptotic

properties of the conditional probability

P{β∗j ∈ Ik(j; β̂, S,A)|A = A} = P{β∗j ∈ Ik(j; β̂, S,A)|β̂j > 0}, (4.25)

for k = 1, 2. Note that the equation in (4.25) holds because of the independence of βj for

j = 1, . . . , p and the assumption on β̂j > 0. The event {β̂j > 0} is equivalent to{
ε :

XT
j ε

n
> λ− β∗j

}
≡
{
εj : εj >

√
n

σ
(λ− β∗j )

}
. (4.26)

Plugging (4.24) and (4.26) in (4.25) for I1(j; b, s, A), we have

P
{
β̂j + λ− σ√

n
qα/2 ≤ β∗j ≤ β̂j + λ+

σ√
n
qα/2

∣∣∣∣β̂j > 0

}
= P

{
−qα/2 ≤ εj ≤ qα/2

∣∣∣∣εj > √nσ (λ− β∗j )
}

=
P{−qα ≤ εj ≤ qα ∩ ε >

√
n
σ

(λ− β∗j )}
P{εj >

√
n
σ

(λ− β∗j )}
, (4.27)

One can derive that if
√
n(λ−β∗j ) < 0 or

√
n(λ−β∗j ) = o(1), the limit of (4.27) with respect

to n is at least (1−α); however, if
√
n(λ− β∗j )→ 0, then the probability in (4.27) decreases

to 0, which means I1(j; β̂, S,A) can never be a (1 − α) confidence interval for β∗j over R

conditioning on A = A. Applying a similar technique to I2(j; β̂, S,A). It follows from (4.23)

that, if β∗j − λ > 0,

− σ2

nβ̂j
γ

(2,1)
α/2 + λ ≤ β∗j ≤ β̂j + λ+

σ√
n
qα

2

⇔ max

(
−σ2γ

(2,1)
α/2

n(β∗j − λ)
− (β∗j − λ), − σ√

n
qα/2

)
≤ σ√

n
ε,
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and then (4.25) for k = 2 becomes

P
{

max

(
−σ2γ

(2,1)
α/2

n(β∗j−λ)
− (β∗j − λ), − σ√

n
qα/2, −(β∗j − λ)

)
≤ σ√

n
εj

}
P{εj > −

√
n
σ

(β∗j − λ)}

≥
P{max(−qα/2,−

√
n
σ

(β∗j − λ)) ≤ εj}
P{εj > −

√
n
σ

(β∗j − λ)}

≥ 1− α.

On the other hand, if β∗j − λ < 0, the event (4.23) is

− σ√
n
qα/2 ≤

σ√
n
ε ≤

σ2γ
(2,1)
α/2

n(λ− β∗j )
+ (λ− β∗j )

and the probability (4.25) is

P
{

(λ− β∗j ) ≤ σ√
n
εj ≤

σ2γ
(2,1)
α/2

n(λ−β∗j )
+ (λ− β∗j )

}
P{εj >

√
n
σ

(λ− β∗j )}
≥ const,

where const is a constant only depending on γ
(2,1)
α/2 and the inequality uniformly holds for

all β∗j − λ < 0. If β∗j − λ = 0, we can obtain a similar conclusion that (4.25) converges to

1. Consequently, we have proved that the credible interval I2(j; β̂, S,A) for [βj|β̂A, SI ,A]

achieves a “post-selection version” of honesty over R conditioning on A = A, if γ
(2,1)
α′/2 is

carefully chosen, i.e.,

lim inf
n→∞

lim
β∗j∈R

P
{
β∗j ∈ I2(j; b, s, A)|A = A

}
≥ 1− α.

Through the two examples, we illustrate the idea of constructing credible intervals and

how to prove that they are also confidence intervals in the frequentist view. A credible

interval, like I1(j; β̂, S,A) which shrinks to a point, may not be honest over R, while a

credible interval, like I2(j; β̂, S,A) which achieves honesty, may not have its length converge

to 0. As a result, there are many general questions raised from this preliminary study.

Does there exist an honest confidence set for [β|β̂A, SI ,A] over the full parameter space Rp

with the diameter converging to 0 conditioning on A = A? If there exists, how fast the

convergence of its diameter could be? If not, is the diameter unbounded and whether can
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we construct an honest confidence set with the diameter converging to 0 after removing a

small region from Rp? We are still researching on these problems as well as the design of the

prior π(z) for β in Bayesian framework. Lastly, we look at another example based on our

simulation.

In simulation, p = 3, n took values of 50 or 500 and β∗j took values between 0 and 1.

The tuning parameter λ was taken by the minimum theoretical value in Bickel et al. (2009),

λval = 2
√

2σ
√

log p/n. First, we only generated y, for which β̂j > 0. Next, we derived the

density function of [βj|β̂A, SI ,A] from (X, y) and applied the Metropolis–Hastings algorithm

to obtain a sequence of random samples from the density. Finally, we constructed the credible

intervals based on the 2.5th and 97.5th percentiles of the samples. Under each setting, 200

data sets were generated independently in order to present a reliable summary.

β∗j length coverage P{β̂j > 0}

n = 50

1 0.553 0.955 1.000

0.1 1.886 0.875 0.365

0.01 2.645 0.800 0.163

0.005 3.189 0.750 0.154

0.00001 3.234 0.735 0.146

n = 500

1 0.175 0.950 1.000

0.1 0.739 0.810 0.137

0.01 1.165 0.800 9.46× 10−3

0.005 1.348 0.785 6.45× 10−4

0.00001 1.427 0.765 4.34× 10−4

Table 4.1: Credible intervals conditioning on β̂j > 0.

The result is summarized in Table 4.1. We considered the length of credible intervals,

the coverage rate and the probability of the event conditioned on. Clearly, as n was fixed

and the true value β̂∗j decreased from 1 to 0, the length of the credible intervals increased

but the coverage dropped. Surprisingly, a wider credible interval even failed to maintain
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the nominal significance level when β∗j was small, which indicates that a non-trivial prior

must be assumed to “regularize” the credible intervals. One can see the difference between

general statistical inference and post-selection inference from the last column. If β̂∗ was large,

P{β̂j > 0} was close to 1 so the posterior distributions of [βj|β̂A, SI ,A, β̂j > 0] and [βj|y,X]

were close. This is the reason why I1(j; b, s, A) maintains the nominal significance level for
√
n(λ− β∗j ) < 0. However, if β̂∗ was small, post-selection inference considered a rare event,

which could almost be ignored by the general statistical inference. See for example n = 500

and β∗j = 0.00001. It turns out that constructing an honest credible interval becomes harder

if a rarer event is conditioned on. Besides, the sample size n affects the values of P{β̂j > 0}

and in turn affects the length and the coverage through (4.26). The increase of n from 50 to

500 helped construct smaller credible intervals and improve higher coverage rate. Thus, it

comes to the question of how n and the value of β∗j together affect the size and the honesty of

the credible intervals under asymptotic framework. Many questions of this new framework

are unclear and we are researching on it. See Chapter 5 for our future plan.

4.3 Estimator augmentation in GLMs

While we are studying the post-selection inference in linear models, we are also exploring the

possibility to generalize the idea to GLMs. The key prerequisite of constructing credible sets

conditioning onA = A is to derive a continuous posterior distribution of the parameters. The

continuity of the posterior in turn depends on the continuity of the sampling distribution

of (β̂, S). In linear regression, the sampling distribution of (β̂, S) is derived through the

mappings H(β̂A, SI ,A; β) in (4.4) and Hr(β̂A, SI ,A; β) in (4.10). If the noise ε and thus y

have a continuous distribution, this mapping allows us to derive the continuous distribution

of the augmented estimator (β̂, S). However, for a generalized linear model, the response y

is often a discrete variable. Such a mapping would result in a discrete distribution of (β̂, S),

which may not be desirable for making inference. Thus, we present a novel framework to

solve this problem.
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4.3.1 Decision-theoretic framework

Let xi = (xi1, xi2, . . . , xip)
T ∈ Rp be covariates for a response yi ∈ R for i = 1, 2, . . . , n.

Consider a generalized linear model with a link function ψ(E[yi|xi]) = xTi β. Suppose the

probability density or probability mass function of [yi|xi] is p(yi|xTi β). Define the prediction

loss by the negative log-likelihood

h(yi, x
T
i β) :=− log p(yi|xTi β). (4.28)

As two well-known examples, for logistic regression and Poisson regression, we have, respec-

tively

h(yi, x
T
i β) = −yi(xTi β) + log

(
1 + exp(xTi β)

)
,

h(yi, x
T
i β) = −yi(xTi β) + exp(xTi β).

Then define an `1-penalized estimator

β̂P = argmin
β

L(β; y,X) = argmin
β

{
1

n

n∑
i=1

h(yi, x
T
i β) + λ‖β‖1

}
. (4.29)

Since β̂P is a function with respect to y, it will follow a discrete distribution due to the

discreteness in y.

We propose a decision-theoretic framework to define a penalized estimator for which

estimator augmentation can be developed for sampling and inference. Our approach has a

Bayesian interpretation and regards the parameter β as a random vector. Let η ∈ Rp be a

decision regarding β that incurs a penalized loss,

`B(η; β) :=EβL(η; y,X) =
1

n

n∑
i=1

Eβ [h(yi, xiη)] + λ‖η‖1, (4.30)

which is the expectation of the `1-penalized loss function in (4.29) with respect to the dis-

tribution p(yi|xTi β).

Suppose that h(yi, x
T
i η) is a linear function of yi. It follows from (4.30) that

`B(η; β) :=EβL(η; y,X) =
1

n

n∑
i=1

h(ψ−1(xTi β), xTi η) + λ‖η‖1, (4.31)
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by taking inverse of the link function ψ(.) to find E(yi|xi). Here, the `1-norm is used to

encourage a sparse optimal decision β̂ by minimizing `B(η; β) over η for a given parameter

β:

β̂ := argmin
η∈Rp

`B(η; β). (4.32)

In many generalized linear models, it is easy to verify that `B(η) is convex in η. Thus, the

minimizer β̂ in (4.32) is characterized by KKT conditions, often in the form of

F (Xβ,Xβ̂) + λS = 0, (4.33)

where S is the subgradient of ‖η‖1 at the minimizer β̂ and F : Rn×Rn → Rn is a mapping.

We call (β̂, S) the augmented estimator under this decision-theory framework. Then the

KKT conditions (4.33) implicitly define a mapping H : (β̂, S) → Xβ, which plays a role

similar to the mapping in (4.4) for linear regression.

Since β is a random vector in Bayesian inference, the posterior distribution of [Xβ|y]

determines the joint posterior distribution of the augmented estimator (β̂, S) via the above

KKT conditions (4.33). Denote the posterior density by p(µ|y) for µ = Xβ ∈ Rn. In

principle, a change of measure according to the mapping H will lead to the density of

[β̂, S|y] at (β̂, S) = (b, s) in the form of f(b, s|y) = p(H(b, s)|y)J(b, s), similar to (4.6) and

(4.13), where J(b, s) is the Jacobian for the mapping H. Since β̂ can be sparse, due to the

`1-regularizer in (4.31), we will employ the same triplet parameterization (β̂A, SI ,A). Both

the mapping H and the Jacobian J will depend on the active set A in the above.

When p > n, the posterior distribution of β under a commonly used prior is well-defined.

However, what we need is instead the posterior distribution of µ = Xβ, which actually exists

under a few common choices of prior π(µ) over the mean vector. Examples of the prior include

the non-informative and improper prior π(µ) ∝ 1 and a conjugate prior µ ∼ Nn(0, τ 2
o In)

with τ0 being a positive constant. To illustrate the idea of a conjugate prior, consider a

Gaussian linear model for which the link function, ψ(x) = x, is the identity map. Since

y|µ ∼ Nn(µ, σ2In), it is easy to see that the posterior distribution µ|y ∼ Nn(y, τ 2
nIn) under

the conjugate prior, where τn = τ 2
n(τ 2

0 , σ
2). In fact, under this prior, the estimator β̂ in (4.32)
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is expected to be close to that defined by (4.29) with an additional `2-regularizer like the

elastic net (Zou and Hastie, 2005).

4.3.2 Exponential families

We extend Theorem 10 and Theorem 11 to generalized linear models for exponential families

under the decision-theoretic framework discussed in Section 4.3.1. Consider a canonical form

of a probability density (mass) function, for i = 1, 2, . . . , n

f(yi|θi) = h(yi, τ) exp{θiyi − a(θi)

d(τ)
}, (4.34)

where yi ∈ R is a response variable, τ ∈ R is a dispersion parameter and the canonical

link function is θi = xTi β for xi, β ∈ Rp. Under the canonical form, the space of θ, denoted

as Θ, is a convex set and a(θi) is a convex function. Additionally, assume a(θi) is twice

differentiable. Write the matrix form as y = (y1, . . . , yn)T and X = (x1, . . . , xn)T.

The expectation of yi is E[yi|xTi β] = a′(θi) = a′(xTi β), which is monotonically increasing

with respect to θi (or xTi β). Moreover, the variance is Var[yi|xTi β] = a′′(θi) = a′′(xTi β). The

negative log-likelihood in (4.28) has the form of

h(yi, x
T
i β) =

1

d(τ)

[
−yi(xTi β) + a(xTi β)

]
− log h(yi, τ)

and the penalized loss `B(η; β) in (4.30) becomes

`B(η; β) =
1

nd(τ)

n∑
i=1

[
−E[yi|xTi β](xTi η) + a(xTi η)− E[log(yi, τ)|xTi β]

]
+ λ

p∑
j=1

wj|ηj|, (4.35)

where λ > 0 and wj > 0 for j = 1, . . . , p. Naturally, `B(η; β) is a convex function by

noting that it is the summation of convex functions with respect to η. However, one should

be aware that the minimizer β̂ = argminη `B(η; β) may not exist for some Xβ ∈ Θ. For

example, consider a logistic regression with n = p = 1. In this case, the penalized loss

`B(η; β) is reduced to, up to a constant,

`B(η1; β1) = − 1

1 + e−(x11β1)
(x11η1) + log(ex11η1 + 1) + λw1|η1|,
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where x11, β1, η1 ∈ R. When e−(x11β1)

1+e−(x11β1)
> λw1, `B(η1; β1)→ −∞ with η → −∞. Therefore,

unlike the linear model where any (X, y) gives at least one lasso solution, the nonexistence of

β̂ affects how we build the domain and the image of a bijective mapping later. Nevertheless,

if such a β̂ exists, β̂ can be characterized by the KKT conditions

1

nd(τ)

n∑
i=1

[
−a′(xTi β) + a′(xTi β̂)

]
xi + λWS = 0, (4.36)

where W = diag(w1, w2, . . . , wp) and S is the subgradient of ‖η‖1 at β̂. Define A′(θ) =

(a′(θ1), a′(θ2), . . . , a′(θn))T. Rewrite (4.36) as a matrix expression

1

n
XTA′(Xβ) =

1

n
XTA′(Xβ̂) + λd(τ)WS. (4.37)

If y|xTi β follows a normal distribution, the generalized linear model is exactly a linear model.

In this case, a(θi) = θ2
i and (4.37) is in accordance with (4.2) with λ = λd(τ).

Let U = 1
n
XTA′(Xβ), which is a linear combination of the mean vector of y, and A =

supp(β). Following the idea in Section 4.1, (β̂, S) can be equivalently represented by the

triplet (β̂A, SI ,A). Partitioning β̂ as (β̂A, 0) and S as (sgn(β̂A), SI), we can rewrite (4.37)

as

U =
1

n
XTA′(XAβ̂A) + λd(τ)

(
WAsign(β̂A) +WISI

)
:=H(β̂A, SI ,A). (4.38)

One main concern is to find Ω1 and Ω2, which are two respective subspaces of U and

(β̂A, SI ,A) such that the mapping H : Ω2 → Ω1 is bijective. If there exists such Ω1 and Ω2,

according to the Bayesian view, the posterior distribution of U can be learned from obser-

vational data and its prior. Subsequently, a posterior distribution of (β̂, S) can be derived

through the bijection between U and (β̂, S). Finally, we can develop Monte Carlo algorithms

to sample from the joint distribution (β̂, S) and obtain the sampling distribution of β̂. We

are presently looking for a general rule to find Ω1 and Ω2 due to the nonlinearity of a′(θi).

Hereafter, we assume the bijection H can be found. Following the same idea in Section 4.1,

we consider the low-dimensional setting and the high-dimensional setting separately.
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4.3.3 Low-dimensional setting

In the low-dimensional setting (n ≥ p), differentiating (4.38) with respect to (βA, SI ,A)

gives

dU =
1

n
XTA′′(XAβ̂A)XAdβ̂A + λd(τ)WIdSI ,

=
(

1
n
XTA′′(XAβ̂A)XA λd(τ)WI

)dβ̂A
dSI

 , (4.39)

where A′′(XAβ̂A) = diag(a′′(xT1 β̂A), a′′(xT2 β̂A)T, . . . , a′′(xTn β̂A)) and a′′(xTi β̂A) is essentially

the variance of yi|xTi β. Denote the p × p matrix by D2(A). Permuting the rows of D2(A),

one can see

|det(D2(A))| =

∣∣∣∣∣∣
1
n
XT
AA
′′(XAβ̂A)XA 0

1
n
XT
IA
′′(XAβ̂A)XA λd(τ)WII

∣∣∣∣∣∣
= det(

1

n
XT
AA
′′(XAβ̂A)XA) (λd(τ))|I|

∏
j∈I

wj > 0

Now we can use the bijectionH to derive the distribution of (β̂, S,A) from the distribution

of U .

Proposition 12. Assume there exists a bijective mapping H : Ω2 → Ω1. Let fU be the

density of U over Ω1. For (bA, sI , A) ∈ Ω2, the joint density distribution of (β̂, S,A) is given

by

P{β̂A ∈ dbA, SI ∈ dsI ,A = A} = fU(H(β̂A, SI ,A))|det(D2(A))| dbA dsI

:= π(bA, sI , A) dbA dsI , (4.40)

and the distribution of (β̂A,A) is a marginal distribution given by

P
{
β̂A ∈ dbA,A = A

}
=

[∫
[−1,1]p−|A|

π(bA, sI , A) dsI

]
dbA.

Zhou (2014) enumerated two advantages of such a density π(bA, sI , A). First, the density

function has a closed-form expression without involving multidimensional integral as long as

fU is given. Second, the total dimension of (β̂, S) is p so that Monte Carlo algorithms avoid

dealing with sampling spaces of different dimensions.
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Remark 10. To be rigorous, (4.40) is derived by assuming (bA, sI) is an inner point of Ω2

restricted to A = A. This happens if and only if |sj| = 1 for some j ∈ I and the Lebesgue

measure of the boundary is zero. Therefore, it causes no trouble when computing probability

of any events.

Remark 11. fU can be obtained in the Bayesian view. Suppose β has the prior π(β). Then

the posterior of β is

π(β|y) = π(β)
n∏
i=1

p(yi|xTi β; τ).

Lastly, the posterior of U can be derived from π(β|y) by the mapping U = 1
n
XTA′(Xβ̂), if

the inverse of a′(.) exists and is differentiable. One may question why we still need (4.40) if

π(β|y) can be directly obtained. Note that the post-selection inference eventually conditions

on A = A, so it is easier to derive the conditional density from (4.40) by fixing A = A than

to find the event {β : A(β) = A}.

To help understanding the density π, we look at a simple example of linear regression.

With the flat prior π(β) ∝ 1, one can derive its posterior as

π(β|y) ∝ π(β)
n∏
i=1

f(yi|xTi β) ∝ φ(β; (XTX)−1XTy, τ 2(XTX)−1).

If rank(X) = p, then U |y = 1
n
XTXβ = Np( 1

n
XTy, τ

2

n
XTX) and (4.38) is simplified as

U = D(A)

β̂A
SI

+ λWAsgn(β̂A),

According to Proposition 12, we have

π(bA, sI , A|y) = Np(z;µ(A, sA; y),Σ(A; τ 2)), (4.41)

where

µ(A, sA; y) = D(A)−1(
1

n
XTy − λWAsgn(bA)) (4.42)

Σ(A; τ 2) =
τ 2

n
D(A)−1XTXD(A)−T.

This result is consistent with the result in (4.8), where a similar π to (4.41) is derived

with 1
n
XTXβ in place of 1

n
XTy in (4.42). If β is estimated by the least square estimator

β̂(ls) = (XTX)−1XTy, then (4.8) is exactly the same as (4.41).
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4.3.4 High-dimensional setting

Under the high-dimensional setting, we assume rank(X) = n < p and use the same strategy

in Section 4.1. The mapping H in (4.38) is restricted to the inverse of Ω2 ∩ row(X). Under

certain conditions, the new mapping is bijective. Then, left multiply (4.38) by V T
R and V T

N ,

respectively, to get

V T
RX

TA′(Xβ) = V T
RX

TA′(XAβ̂A) + λd(τ)
(
V T
RAWAAsign(β̂A) + V T

RIWIISI

)
:=Hr(β̂A, SI ,A)

V T
NAWAAsign(β̂A) + V T

NIWIISI = 0.

Under certain conditions, we can differentiate both equations with respect to (βA, SI ,A)

to gain

V T
INWIIdSI = 0,

V T
RX

Td(A′(Xβ)) = V T
RX

Td(A′(XAβ̂A)) + λd(τ)V T
IRWIIB(I)dS̃

= V T
RX

TA′′(XAβ̂A)XAdβ̂A + λτV T
IRWIIB(I)dS̃

⇒ d(A′(Xβ)) = A′′(XAβ̂A)XAdβ̂A + λd(τ)(V T
RX

T)−1V T
IRWIIB(I)dS̃, (4.43)

where B(I) ∈ R|I|×(n−|A|) is an orthonormal basis for null(V T
INWII) and dS̃ denote coordi-

nates of dSI with respect to B(I). In the end, we derive the distribution of (β̂A, SI ,A). Let

T2(A) =
(
A′′(XAβ̂A)XA λd(τ)(V T

RX
T)−1V T

IRWIIB(I)
)

.

Proposition 13. Assume there exists a bijective mapping Hr. Let fµ be the density of the

mean vector µ = A′(θ). The joint density distribution of (β̂, S,A) is given by

P{β̂A ∈ dbA, SI ∈ dsI ,A = A} = fµ(Hr(β̂A, SI ,A))|det(T2(A))| dbA dsI ,

for (bA, sI , A) in the sample space.

4.4 Post-selection inference with blocked lasso

Zhou and Min (2017) generalized estimator augmentation to blocked lasso, which provides

another direction to generalize our proposed post-selection framework. Regarding this prob-
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lem, we still consider the linear model (4.1). However, instead of the lasso estimator, we

consider a so-called block lasso estimator defined via block norm regularization. Partition

the predictors β into J disjoint groups Gj ⊆ [p] for j = 1, . . . , J . Let βj denote the jth

component of β and β(j) = (βk)k∈Gj denote the jth group. The block lasso is defined by

minimizing a penalized loss function L(β;α):

β̂ ∈ argmin
β∈Rp

L(β;α) = argmin
β∈Rp

{
1

2n
‖y −Xβ‖2 + λ+

J∑
j=1

wj‖β(j)‖α,

}
(4.44)

where ‖.‖α is the `α-norm and the weights wj > 0 usually depend on the group size. If α = 1

and β(j) = βj, the expression (4.44) is reduced to the lasso problem.

Similar to Section 4.1 and Section 4.3, we work with an augmented estimator (β̂, S),

where S is the subgradient of β̂. Let α∗ be conjugate to α in the sense that 1
α

+ 1
α∗

= 1. One

distinct difference is that S is defined by η = η(x) = sgn(x)|x|α∗/α and
S(j) = η−1(β̂(j)/‖β̂(j)‖α) if β̂(j) 6= 0,

‖S(j)‖α∗ ≤ 1 if β̂(j) = 0.

Further, let C = 1
n
XTX be the Gram matrix. By the KKT conditions, we obtain

U = Cβ̂ + λWS − Cβ0, (4.45)

where W = diag(w1Ip1 , . . . , wJIpJ ) and pj = |Gj|, j = 1, . . . , J . Zhou and Min (2017) proved

that under certain conditions, a bijective mapping defined by (4.45) exists so that the closed-

form density of the distribution of (β̂, S) can be derived from U . In this case, (β̂, S) can

also be equivalently expressed by a triplet (β̂A, SI ,A), where A ⊆ [J ] is the active group

set and I = [j] \ A is the inactive group set. Lastly, the authors derived the closed-form

density of (β̂A, SI ,A) in their theorems. The closed-form density π(β̂A, SI ,A; β) is useful

in post-selection inference. Based on our framework, we can design a prior of β and then

derive the conditional posterior of [β|β̂, SI ,A], from which credible sets can be constructed.

The combination of the augmented estimator of block lasso and our post-selection frame-

work have broader application and more robust results. When the number of predictors p is
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much greater than the number of observations n, the ordinary lasso estimate could be un-

stable, and thus a post-selection credible set could condition on a candidate set significantly

different from the true candidate set. In that case, P{A = A} could be small. As we can see

from Table 4.1, conditioning on a rare event can usually increase the size of the credible set

as well as lower the coverage rate. On the other hand, the block lasso can alleviate this issue,

since essentially the event conditioned on by the block lasso estimator is less rarer than the

event conditioned on by the ordinary lasso estimator.
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CHAPTER 5

Summary and Discussion

We consider constructing joint and post-selection confidence sets for high-dimensional re-

gression throughout this dissertation.

For high-dimensional regression, oracle inequalities for sparse estimators cannot be di-

rectly utilized to construct honest and adaptive confidence sets due to the unknown signal

sparsity. To overcome this difficulty, we have developed a two-step Stein method, via pro-

jection and shrinkage, to construct confidence sets for µ = Xβ in (2.1) by separating signals

into a strong group and a weak group. Not only is honesty achieved over the full param-

eter space Rp, but also our confidence sets can adapt to the sparsity and strength of β.

We also implemented an adaptive way to choose a proper subspace for the projection step

among multiple candidate sets, which protects our method from a poor separation between

strong and weak signals. Our two-step Stein method showed very satisfactory performance

in extensive numeric comparisons, outperforming other competing methods under various

parameter settings.

The focus of this work is on the confidence set for µ = Xβ. Although related, it is

different from the problem of inference on β. In general, it is difficult to infer a confidence

set for β from the confidence set for Xβ without any constraint on X and β, because X

does not have a full column rank under the high-dimensional setting. However, if we know

that ‖β‖0 ≤ s, then a confidence set Ĉ for µ can be converted into a confidence set for β as

B̂ := {β ∈ B(s) : Xβ ∈ Ĉ}, which is the union of s-dimensional subspaces intersecting Ĉ.

It is interesting future work to study the convergence rate of B̂ and related computational
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issues, such as how to draw β from B̂. On the other hand, if X satisfies SRC(s, c∗, c
∗), then

c∗‖β‖2 ≥ ‖Xβ‖2/n, ∀ β ∈ B(s).

A hypothesis test about the mean Xβ can be carried out by using the confidence set Ĉ to

obtain a lower bound on ‖Xβ‖, which carries over to a lower bound on ‖β‖ with the above

inequality and thus can be used to perform a test about β. See Nickl and van de Geer (2013)

for a related discussion. We have also demonstrated that our method works well even when

the underlying β is dense, e.g. ‖β‖0 � n, which is important for practical applications. See

Bradic et al. (2018) for recent theoretical results on high-dimensional inference for non-sparse

β.

Another direction is to incorporate the confidence set Ĉ with the method of estimator

augmentation (Zhou, 2014; Zhou and Min, 2017) for lasso-based inference. Estimator aug-

mentation can be used to simulate from the sampling distribution of the lasso without solving

the lasso problem repeatedly, based on a point estimate of µ = Xβ. Given Ĉ, one may ran-

domize the point estimate of µ by sampling from the confidence set, which has been shown to

improve the inferential performance of estimator augmentation (Min and Zhou, 2019). Fol-

lowing this idea, we propose a new post-selection framework with estimator augmentation.

This framework contains Bayesian interpretation and has great flexibility to design the prior

and to construct the credible sets from the conditional posterior. However, many problems

regarding its theoretical properties are unclear. Meanwhile, there are a lot of generalizations

we can make for this framework. Our future work is summarized as follows:

• Under the assumption of the orthogonal design of X, we first need to figure out whether

there exists a better credible interval for βj than I2(j; β̂, S,A) in (4.23) by designing

a proper prior, in the sense of smaller length of the interval and reaching the nominal

significance level. In what follows, we will generalize this result to any design matrices

X in the low-dimensional setting and later in the high-dimensional setting. Note

that the low-dimensional setting and the high-dimensional setting could be essentially

different. In the low-dimensional setting, we start from assuming the prior of a p-

dimensional random vector such as β and U in (4.4). In contrast, we assume a prior
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of n-dimensional random vector such as R in (4.10) in the high-dimensional setting,

since in this case, the subgradient S of β̂ only lies in a subspace of Rp by (4.12).

• We propose a decision-theoretic framework for generalized linear models to overcome

the discreteness of observations. Though we can derive the differential equations in

(4.39) and (4.43), the prerequisite is that there exists a bijective mapping between U

in (4.4) and the triplet (β̂A, SI ,A). We will work out a universal method to find such

bijective mappings for a group of distributions, e.g, exponential families. Moreover, the

post-selection framework with estimator augmentation needs to be justified in theory

for GLMs. If a randomization step (Min and Zhou, 2019) is applied, we also need to

construct the joint confidence set for the mean vector as the prior. Therefore, like the

two-step Stein method, it is interesting to apply the idea of splitting β into strong and

weak signals onto GLMs.

• Block lasso could be more useful than the ordinary lasso as p � n, so we can further

develop the post-selection framework with estimator augmentation of the block lasso.

Unlike the ordinary lasso, where the event {A = A} can be somehow represented by

a truncate normal distribution (e.g., expression (4.26)), the event is more irregular for

the block lasso, making it more challenging to conduct theoretical analysis.
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