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Abstract

Patient-Derived Xenografts (PDXs) are tumor-in-mouse models for cancer. PDX collections, such 

as the NCI PDXNet, are powerful resources for preclinical therapeutic testing. However, variations 

in experimental and analysis procedures have limited interpretability. To determine the robustness 

of PDX studies, the PDXNet tested temozolomide drug response for three pre-validated PDX 

models (sensitive, resistant, and intermediate) across four blinded PDX Development and Trial 

Centers (PDTCs) using independently selected SOPs. Each PDTC was able to correctly identify 

the sensitive, resistant, and intermediate models, and statistical evaluations were concordant across 

all groups. We also developed and benchmarked optimized PDX informatics pipelines, and these 

yielded robust assessments across xenograft biological replicates. These studies show that PDX 

drug responses and sequence results are reproducible across diverse experimental protocols. In 

addition, we share the range of experimental procedures that maintained robustness, as well as 
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standardized cloud-based workflows for PDX exome-seq and RNA-Seq analysis and for 

evaluating growth.
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Introduction

Patient-Derived Xenografts (PDX) are in vivo preclinical models in which human cancers 

are engrafted into a mouse for translational cancer research and personalized therapeutic 

selection (1–4). Prior studies have shown that treatment responses of tumor-bearing mice 

usually reflect the responses in patients (5,6). PDXs have been used successfully for 

preclinical drug screens (4,5), to facilitate the identification of potential biomarkers of drug 

response and resistance (4,7), to select appropriate therapeutic regimens for individual 

patients (8), and to measure evolutionary processes in cancer in response to treatment (9). At 

the genomic level, engrafted human tumors have been shown to retain most genomic 

aberrations from the original patient tumor (8,10). These successes have led to the 

development of a number of PDX collections in both academia and industry (5,11,12) for 

use in preclinical testing.

Despite these successes, important questions remain for the use of PDXs as a model system 

for treatment response. The reproducibility of treatment response has not been well-

evaluated because research teams often perform experiments in models that are not used by 

other groups. Variations in engraftment, dosing, and response assessment protocols also 

frustrate comparisons of results. Moreover, intratumoral heterogeneity, genetic drift and 

selection during tumor collection, engraftment, and xenograft passaging can result in 

genomic variation among primary tumor samples and derived xenografts (10,13). Whether 

such variation impacts the accuracy of PDXs as a preclinical model has been unclear. 

Resolution of this issue requires not only controlled treatment replicates but also 

standardized PDX-specific sequence analysis pipelines to robustly identify genomic 

aberrations. Progress on these topics is important to the overall field of cancer patient-

derived models, as analogous concerns pertain for organoids and other 3D culture systems.

To resolve such questions for the use of PDXs in precision medicine, the US National 

Cancer Institute has supported a consortium of PDX-focused research centers, the NCI 

PDXNet. Here we in the PDXNet consortium report the results of experiments to test the 

robustness of PDX treatment responses across different research centers, using 

temozolomide treatment on three models because of prior data on their temozolomide 

responses from the NCI Patient Derived Models Repository (PDMR). We report on replicate 

evaluations across four additional PDX Development and Trials Centers (PDTC) using 

blinded treatment and response evaluation protocols. Simultaneously, we have performed 

exome and RNA sequencing at each center to determine biological and technical stability of 

genomic characterizations of samples from each center. These sequence analyses have been 

performed with optimized analysis pipelines chosen based on an extensive new 
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benchmarking of pipelines from each center on synthetic sequence sets. Finally, we have 

statistically analyzed the cohort growth curves for each model in each research center using 

five separate metrics. These studies allow us to answer whether PDXs have sufficiently 

robust behaviors to withstand variations in experimental procedures, response measurement 

algorithms, genomic variation among replicates, and alternative sequence analysis protocols. 

We also report effective SOPs for experimental procedures, pipelines for statistical 

assessment of response, and sequence analysis workflows. We expect these standards to 

advance the use of PDXs and other in vivo models in cancer precision medicine, a critical 

need for the evaluation of PDX results in the context of moving novel therapeutics or 

therapeutic combinations to the clinic.

Methods

Animal Models

Three PDX models were selected based solely on their temozolomide responsiveness. They 

were 625472–104-R (colon adenocarcinoma), 172845–121-T (colon adenocarcinoma), and 

BL0293-F563 (urothelial/bladder cancer). Cryopreserved PDX tumor fragments were 

shipped from the PDMR to the individual PDTCs including Huntsman Cancer Institute/

Baylor College of Medicine (HCI-BCM), MD Anderson Cancer Center (MDACC), 

Washington University-St. Louis (WUSTL), and The Wistar Institute/University of 

Pennsylvania/MDACC (WIST)., implanted for initial expansion and then passaged for the 

preclinical study. Briefly, cryopreserved PDX material was prepared into implantation size 

pieces as outlined in Table 1. The PDX material plus a drop of Matrigel (BD BioSciences, 

Bedford, MA.) was then implanted subcutaneously in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ 

(NSG) host mice. Mice were housed in sterile, filter-capped polycarbonate cages, 

maintained in a barrier facility on a 12-hour light/dark cycle, and were provided sterilized 

food and water, ad libitum. Animals were monitored weekly for tumor growth. The initial 

passage of material was grown to approximately 1000–2000 mm3 calculated using the 

following formula: tumor volume (mm3) = (tumor length x [tumor width]2)/2 (14). Tumor 

material was then harvested, a portion cryopreserved, and the remainder implanted into NSG 

host mice for the preclinical drug study. Related patient data, clinical history, representative 

histology and short-tandem repeat profiles for the PDX models can be found at https://

pdmr.cancer.gov; model BL0293-F563 was originally developed by The Jackson Laboratory 

(tumor model TM00016, http://tumor.informatics.jax.org/mtbwi/pdxSearch.do).

Preclinical Studies

Specific tumor staging size, implantation method, and cohort size at the PDMR and each 

PDTC are outlined in Table 1 based on each site’s standard practices. In general, tumors 

were staged to a preselected size (weight = 100–200 mm3). Tumor-bearing mice were 

randomized before initiation of treatment and assigned to each group. Body weight was 

monitored 1–2 times weekly and tumor size was assessed 2–3 times weekly by caliper 

measurement. For all sites, drug studies were performed at passage 3 for 625472–104-R, 

passage 4 for 172845–121-T, and passage 6 for BL0293-F563 (passage 0 = first implanted 

host). Temozolomide (NSC 362856) was obtained from the Developmental Therapeutics 

Program, NCI and administered at the times and doses indicated in Table 1. Animals were 
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sacrificed when the tumors reached an individual PDTC’s animal welfare endpoint or a 

maximum tumor size; if tumor growth delay was observed a tertiary endpoint was used by 

some sites (Table 1).

Ethics Statement

The Frederick National Laboratory for Cancer Research (location of the PDMR) is 

accredited by the Association for Assessment and Accreditation of Laboratory Animal Care 

International and follows the USPHS Policy for the Care and Use of Laboratory Animals. 

All the studies were conducted according to an approved animal care and use committee 

protocol in accordance with the procedures outlined in the “Guide for Care and Use of 

Laboratory Animals” (National Research Council; 1996; National Academy Press; 

Washington, D.C.).

All patients and healthy donors gave written informed consent for study inclusion and were 

enrolled on institutional review board-approved protocols of record for the sites that 

developed the PDX models (DCTD, NCI and The Jackson Laboratory). The study was 

performed in accordance with the precepts established by the Helsinki Declaration. The 

study design and conduct complied with all applicable regulations, guidances, and local 

policies and was approved by the institutional review board of record for each PDTC.

Statistical Analysis of Tumor Growth Data

There is not a single consensus in literature in terms of which endpoint to use to measure 

tumor response in PDX models. There are a number of potential options. Rather than 

considering just one, our strategy was to consider a wide range of potential analytical 

strategies, each of which captures different aspects of the response and has its own strengths 

and weaknesses. Analytical strategies for evaluating tumor growth data include Percent 

Change in tumor volume (ΔVt, normalized relative to starting volume before treatment), 

Area under the tumor growth curve up to time t (aAUCt), Adjusted area under the curve 

(aAUCmax), RECIST criteria (RECISTt,c). Metrics computed to evaluate antitumor activity 

of the treatment group compared to the control group include Tumor Growth Inhibition 

(TGIt) and Progression-free Survival (PFSδ) (See Supplementary Materials 1 and 2, 

Supplementary Table 1 and Supplementary Figures 1–10 for details, including percentages 

and parameters used to classify tumor response). Here, we compare and contrast these 

metrics in this pilot study and assess the robustness of sensitivity assessments across 

different analytical strategies, with the goal of making recommendations for the broader 

community. Towards this goal, we built an R analysis pipeline that computes all of the 

following measures as well as generates a set of useful graphical summaries.

One-way ANOVA or two-sample t-tests were performed to test the difference of tumor 

Volume changes (ΔVt) at day t=21 between treatment and control groups as appropriate, and 

similar analyses were done for the AUC measures. Fisher’s exact test was performed to test 

the association between treatment and drug response (non-PD vs. PD). The log‐rank test was 

used to compare PFS distributions between treatment and control groups. All of the analysis 

was implemented using R.
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We have developed an R markdown script that can be used to automatically run these 

analyses and produce summary plots given the input data is formatted as described in 

Supplementary Materials 1. Email cgc@sbgenomics.com to request the R script that we 

freely share with this publication for other researchers to use to analyze their PDX data.

Computational Workflows

All analyses were performed on the Cancer Genomics Cloud (CGC, https://

cgc.sbgenomics.com/ )(15) with workflows and tools implemented using Common 

Workflow Language. Human and mouse data were aligned to GRCh38 and mm10 

assemblies, respectively. All workflows are available in the Temozolomide Pilot Workflows 

Project on the CGC). CGC users can request access to the workflows by emailing 

cgc@sbgenomics.com.

Human-mouse read deconvolution

We compared several tools for mouse-human read deconvolution. These were Xenome 

(v1.0.0) (16), BBSplit (v37.93) (https://sourceforge.net/projects/bbmap/), Disambiguate 

(v1.0; commit c52402a) (https://sourceforge.net/projects/bbmap), ICRG (17), and 

XenofilteR (v1.5) (18). For the WES data benchmark and the RNA-seq benchmark, we 

respectively used experimental WES series and RNA-seq data to simulate human-mouse 

mixture for evaluation. For tools requiring aligned data inputs (BAM Files), BWA-Mem was 

used for alignment. Only reads unambiguously classified as human by a tool were labeled 

“human.” All other reads were considered “not human” for the true/false positive/negative 

calling. See Supplementary Materials 3 for additional details.

Tumor-normal WES variant calling

Five tumor-normal WES data analysis workflows from PDXNet research groups were tested 

on the benchmark sets, as detailed in (Supplementary Table 2 and 3, Supplementary Figures 

11–13), with the goal of evaluating the accuracy in the presence of variable mouse 

contamination, coverage, and VAF. Starting from FASTQ data the workflows performed 

mouse-human disambiguation, alignment, and variant calling with one or more somatic 

variant callers (Mutect (19,20), VarScan (21), Strelka (9), Manta (22) and Pindel (23)). Two 

simulated whole exome-seq datasets were used in the benchmark for the tumor-normal 

variant calling workflow. The first dataset (DN) was prepared by researchers from HCI-

BCM and consisted of data based on two normal samples, variants from ClinVar spiked in 

and with 10 and 50 % mouse contamination. The second dataset (BS) was NA12878 WES 

data contaminated with 10% mouse reads which was spiked with BamSurgeon [i] at 0.05, 

0.1, 0.2, and 0.3 VAF using both the ClinVar variant set used for DN, variants from TCGA 

BRCA SNPs combined, and with indels from the ClinVar set (BS-BRCA). For all the 

submitted workflows, default parameters were used as specified by the workflow authors. 

See Supplementary Materials 4–6 for additional details. All workflows are accessible 

through the CGC upon request.
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Tumor-only WES variant and CNV calling

Because a substantial number of PDXs among the broader research community lack 

matched normal DNA, we also developed a workflow for tumor-only mutation calling 

(Supplementary Figure 14). Preprocessing steps include quality control filtering, removing 

adaptors, mouse reads were removed with xenome, trimmed reads were aligned to human 

genome (build GRCh38.p5), duplicate reads were removed with PicardTools, and 

BaseRecalibrator from the Genome Analysis Tool Kit (GATK) v4.0.5.1 (24,25) was used to 

adjust the quality of raw reads. Variants were called in Mutect2 using the Exome 

Aggregation Consortium (26) database lifted over to GRCh38 as a germline reference with 

the allele frequency of samples not in reference set to 0.0000082364. Variant calls were then 

filtered using GATK FilterMutectCalls v 4.0.5.1. See Supplementary Materials 6 for 

additional details. Workflow is available from the CGC upon request.

To call copy number, we built a pooled normal reference using CNVkit v0.9.3 (27) from the 

three samples that used the same exome-seq capture kit and with sex matching. Afterward 

we used CNVkit to call the CNV segments from each sample using the pooled normal 

reference. MDACC samples exhibited low mean target coverage so we turned on the --drop-

low-coverage option in CNVkit to reduce the noise in the CNV profile.

RNA-seq expression calling

Because the disambiguation of mouse and human reads was sharp for both DNA and RNA 

data, we did not expect expression calling workflows to have issues specific to PDXs. 

Therefore, we dockerized only one PDX RNA-seq expression workflow (Supplementary 

Materials 7, Supplementary Figure 14) that was submitted by The Jackson Laboratory 

(JAX). The transcriptomes of hg38 and NOD (based on the mm10 mouse genome) were 

used to construct the xenome (version 1.0.0) (16) indices (k=25), and then reads were 

classified as human, mouse, both, neither or ambiguous at default xenome parameters. 

Reference indices for the alignment were built by rsem-prepare-reference using ENSEMBL 

annotation (version GRCh38.91) for STAR aligner (version 2.5.1b) (28). Human-specific 

reads were mapped to reference indices using STAR, and expression estimates were 

computed using rsem-calculate-expression v1.2.31 (29) at default parameters. Picard 

CollectRnaSeqMetrics: (broadinstitute.github.io/picard/picard-metric-definitions.html) was 

used to calculate the post-alignment mapping statistics. An implementation of this workflow 

has been deployed on the CGC.

Comparisons of xenograft sequence data across PDTCs

Each PDTC submitted WES and RNA-seq data from untreated xenografts that had been 

successfully grown in mice at the respective sites (Supplementary Tables 4–7, 

Supplementary Figures 15–22). These data are available through the Sequencing Read 

Archive at accession number PRJNA608267. Groups were asked to submit xenograft 

sequence data according to their standard practices, without pre-specification of the sample 

passage number or the sequencing protocol. In the intersection analysis, only variants with 

allele frequency > 0.2 were retained. We note that MDACC had fewer calls that passed the 

allele frequency filter in comparison to other centers. This is because MDACC provided 

samples had mean target coverage ~30X whereas samples from other centers were 
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sequenced to a depth of ~150X (Supplementary Table 7). We also analyze mutational 

differences in cancer-related genes, using the CancerMine database: http://bionlp.bcgsc.ca/

cancermine/. We listed the top 15 genes, by citation count, associated with each of the terms 

cancer driver, oncogene and tumor suppressor from the database and then combined these to 

get 33 unique cancer genes (Supplementary Figures 17–19).

For the copy number comparisons, the copy number alteration (CNA) segments obtained 

from CNVkit using a pooled normal were median-centered and visualized in IGV v2.4.13 

(30). To determine the overall concordance of the CNA between each pair of samples, we 

first intersected the CNA segments for each pair of samples and then binned them into 

100kb-windows using Bedtools v2.26.0 (31).

RNA-seq data provided by each center were generated using different kits and protocols, and 

the data from HCI-BCM was sequenced in single end mode (Supplementary Table 6). 

Sequence data were analyzed with the ‘PDXnet RNA Expression Estimation’ and the 

‘PDXnet RNA Expression Estimation – SE’ workflows on the CGC. RNA expression 

estimates were downloaded from CGC for additional analyses. The single-end data provided 

by HCI-BCM yielded estimates of RNA expression that were twice as high when compared 

to the paired-ended sample provided by other centers due to differential handling of paired-

end and single-end data by RSEM (29) tool. To eliminate the biases in the count estimation 

across centers, HCI-BCM, estimated transcript counts were divided in half. From the 

mapping stats and from automatic library type detection algorithm in the tool Salmon, we 

noted that RNA-Seq library generated at MDACC are non-directional though the sequencing 

protocol used is for directional library thus we decided to consider MDACC library as non-

directional during the analysis.

Results

Study design and treatment results

A critical, yet unresolved, question that motivated the inception of the PDXNet was what the 

inter-laboratory reproducibility of PDX drug studies would be across centers with 

independently established practices for preclinical testing, i.e. how much standardization 

would be needed to run large-scale, multicenter preclinical studies. To address this question, 

the NCI Patient Derived Models Repository (PDMR) reviewed preclinical studies performed 

by the Biological Testing Branch (BTB/DCTD/NCI), which has performed numerous in 

vivo studies with PDX models. The PDMR selected three PDX models with non-published 

known responses to temozolomide for an inter-laboratory reproducibility pilot. The three 

PDX models selected were 625472–104-R (colon adenocarcinoma, non-responsive model), 

172845–121-T (colon adenocarcinoma, intermediate response), and BL0293-F563 

(urothelial/bladder cancer, complete response). Patient data, clinical history, and 

representative histology and sequence data can be found at https://pdmr.cancer.gov.

For the study set-up (Figure 1a), the four PDTCs – Huntsman Cancer Institute/Baylor 

College of Medicine (HCI-BCM), MD Anderson Cancer Center (MDACC), Washington 

University-St. Louis (WUSTL), and The Wistar Institute/University of Pennsylvania/

MDACC (WIST) – were directed to use their standard preclinical study set-up (Figure 1b) 
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and monitoring SOPs (Figure 1c) and to use literature searches to determine temozolomide 

dosing and schedule. Each group also performed exome and RNA-seq of untreated tumors 

that had been successfully engrafted (Figure 1d). All PDTCs were kept blinded to which 

models were temozolomide sensitive or resistant and to all other groups’ preclinical study 

set-ups. In addition, none of the PDTCs had previous experience with temozolomide; so the 

reference doses/schedules would need to be determined independently at each center. The 

exceptions to blinding were that all PDTCs were required to use NSG host mice and implant 

PDX material subcutaneously. In addition, the PDTCs used drug prepared by the 

Developmental Therapeutics Clinic (DTP/NCI) to ensure that there were no variations in 

manufacture.

The laboratory SOPs for the preclinical study set-ups were collated by the PDMR (Table 1). 

While all centers staged tumors to between 100–200 mm3, implantation methodologies 

varied. Three groups directly implanted ~1 mm3 PDX fragments into each host mouse, one 

group minced a ~1 mm3 PDX fragment into a slurry for implantation, and one dissociated 

PDX material and implanted 3–5 × 106 cells per host (For each model all hosts had the same 

number of cells injected in all control and treated animals. Variation was only across 

models). Comparison of vehicle control growth curves for all groups demonstrated overall 

similar growth kinetics of the models at each site irrespective of the implantation 

methodology used (Supplementary Figure 1).

Each PDTC independently researched published literature to select a temozolomide dosing 

and schedule for its site, with key references noted: HCI-BCM (32–34), MDACC (35), 

WUSTL (34,36–39), and WIST (40,41). While diverse literature was considered, all sites 

selected a 50 mg/kg dose and one of two different dosing schedules. These schedules were 

either daily temozolomide treatment for 5 days followed by 23 days of rest (28-day cycle) or 

5 days of treatment followed by 2 days of rest (7-day cycle); 1–4 cycles were used (Table 1).

Overall, all sites reported similar responses irrespective of the methodology, dosing, or 

schedule used (Figure 2a–o), with especially strong concordance in the non-responsive and 

complete response model results, as detailed quantitatively below. If the drug x model 

combination had been performed as part of an exploratory study, these independent 

experiments would likely yield similar decisions about treatment efficacy. The intermediate 

response models showed more variation in growth across centers. The intermediate cases 

were also more clearly affected by the variability in SOP end-point times, one of the biggest 

variations among methodologies (Table 1). For example, some groups sacrificed all mice 

once the vehicle control group reached a threshold volume, while other groups ended after a 

defined length of time after the last dosing. This resulted in some studies observing strong 

tumor inhibition through the end of study, while others observed regrowth after initial 

inhibition (Supplementary Figure 2). Nevertheless, the similarities in response indicated that 

the existing range of methodologies is sufficient and robust enough to capture the critical 

cases of strong response and non-response. After discussion of these results, the PDXNet 

Consortium has agreed on a standard of continued monitoring of all cohorts where response 

is observed for at least 1.5–2 cycle lengths beyond the last dosing cycle, provided animal 

health end-points are not reached. Detailed quantitative comparisons and statistical analysis 

are addressed in the next section.
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Statistical Robustness of PDX Treatment Response

Statistical approaches for evaluating cohort drug response—A challenge of 

evaluation of PDX response is that there is still no standard statistical approach for analysis 

of tumor response for PDX growth data. Common measures of tumor size include percent 

change in volume from baseline to a fixed time end-point; area under the tumor growth 

curve; tumor growth inhibition, defined as the ratio of the average tumor size at a given time 

point relative to control; and time to progression, a potentially censored end-point measuring 

time from baseline until growth to a certain multiple of baseline. Classification of growing 

PDX tumors into RECIST-like categories (42) (Complete Response-CR, Partial Response-

PR, Stable Disease-SD, and Progressive Disease-PD) is another assessment that has the 

advantage of congruence with clinical trials, but it can be strongly dependent on category 

thresholds that do not analogize straightforwardly with patient primary tumors. Each of 

these measures has their own strengths and limitations. For example, the percent change 

from baseline is intuitive, interpretable, and unlike RECIST does not require specification of 

a cut point. In contrast to the area under the curve (AUC) approaches it does not use all of 

the tumor time course information but only the first and last points. Here we consider all of 

these measures and assess concordance of results across analytical strategies as well as 

across growth data from each center.

PDX tumor volume analysis software—We have devised an automated analysis script 

in R that, given data in a prespecified format and a time point of interest, will automatically 

plot the tumor growth curves and group mean curves, compute all of these statistical 

measures and their associated plots, and produce an annotated .html report in R markdown 

that serves as a complete summary of the results (see Methods). In the supplementary 

materials (Supplementary Materials 1 and Supplementary Table 1), we describe a standard 

format for the recorded data that is compatible with our analysis scripts and we also provide 

instructions for researchers to use this script to analyze their own data. We believe that this 

automated script can enhance reproducibility and transparency of analyses and can be 

revised and adapted as a standard analysis script for general use.

Comparisons across statistical methods

We statistically assessed drug response for the measures mentioned above across all research 

groups. Table 2 contains the p-values for assessing treatment vs. control differences for each 

of the statistical tests (see Methods). Figure 3 shows associated plots from the HCI-BCM 

studies for each of the three models (Figure 3, columns) for several data representations and 

statistical evaluation approaches (Figure 3, rows). Associated plots for drug response at 

other sites i.e. MDACC, WUSTL, PDMR and WIST are shown in Supplementary Figures 3, 

4, 5, and 6, respectively. Overall, we found that assessments of drug response were robust 

across research groups, with particularly decisive evaluations for the non-responsive and 

responsive models. The various analytical methods (Supplementary Figures 7, 8, 9 and 10) 

also gave results consistent with one another, with a few exceptions noted below. However, 

the intermediate group was difficult to classify. For the intermediate group most of the 

statistical measures showed clear difference from control, but the results were inconsistent 

for RECIST criteria.
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RECIST yielded qualitatively similar ordering of the models as the other methods, but it had 

the lowest power and showed considerable variability across cut points, complicating its use. 

The percent change in tumor size and area under the curve measures largely agreed and 

showed good statistical power. The tumor growth inhibition measure also yielded consistent 

results. The natural statistical test is whether this ratio is less than 1, but this should be 

accompanied by an assessment of the clinical significance of the effect size, since it is 

possible to have a small p-value with minimal inhibition in a preclinical study, e.g. 10% or 

20%, that might not ultimately correspond to a clinical response. We recommend statistical 

testing vs. control while accompanied by an assessment of clinical significance that may 

depend on the context.

Cloud Workflows for PDX Sequence Analysis

Robust sequence analysis pipelines are essential for understanding cancer genetics from 

PDX models. While prior PDX pipelines have been published, e.g. (13,43), it can be time-

consuming for researchers to implement and evaluate other groups’ methods. To address this 

problem, five PDXNet teams provided sequence analysis workflows for PDX exome-seq 

mutation calling, and the PDXNet Data Commons and Coordinating Center (PDCCC) 

dockerized these for co-localized application and sharing with the research community via 

the National Cancer Institute Cancer Genomics Cloud (CGC). The Seven Bridges Genomics 

team in the PDCCC also independently evaluated each of these pipelines. Each submitting 

group also specified parameters as part of the workflow submission. Evaluations were 

performed on simulated benchmark mixtures of human and mouse reads with various 

mouse/human read ratios and variant allele frequencies (see Methods).

Benchmarking of human-mouse read disambiguation

We first compared the efficacy of the five pipelines (Supplementary Table 2) for human-

mouse read disambiguation using a series of simulated benchmark WES and RNA-Seq 

datasets. The simulated WES and RNA-Seq datasets were used to test the five commonly 

used human-mouse read deconvolution tools: BBSplit, Xenome, Disambiguate, Xenofilter, 

and ICRG. All tools achieved >99 % precision for both WES and RNA-Seq benchmarks 

(Figure 4a). Xenofilter showed the lowest recall (96.60 % and 89.63 % recall in WES and 

RNA-seq benchmarks, respectively), whereas BBSplit showed the best overall performance 

i.e. highest precision without any loss in recall (99.87 % and 99.64 % precision in WES and 

RNA-seq benchmarks, respectively.

Benchmarking of WES analysis pipelines

We next compared WES results generated by the five pipelines including variant calling and 

the effectiveness of mouse-human disambiguation. For this analysis, two simulated 

benchmark datasets were created, with two levels of mouse contamination (10% and 50%) 

and a range of variant allele frequencies (VAFs) - 0.025, 0.05, 0.1, 0.2, and 0.3, with spike-

ins of point mutations and indels (See Methods). For performance metrics, we used 

precision/recall (across SNPs, INS, DELs) and pseudo-ROC curves (see Methods). We 

observed minimal impact of different percentages of mouse contamination on the 

performance of the five workflows (Supplementary Table 3). The overall best performing 

workflow, Workflow 2, is shown in Figure 4b and performance results across workflows are 
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shown in Figure 4c. When analyzing variant caller performances, we observed that MuTect2 

(used in Workflows 2 and 4) performed consistently well across all samples for all the tested 

VAF levels. Supplementary Figure 11 shows SNP performance across 0.05 and 0.3 VAFs for 

BS-DN dataset across different coverage values (although we only show 2 VAF levels, the 

caller performed well across all VAF levels tested i.e. 0.05 – 0.3); however, indel recall 

decreased at lower VAFs. VarScan2 (used in Workflows 3 and 4) called only a small number 

of variants at lower VAFs as evident from the very low recall values. We also observed 

marked differences in performance of two VarScan2 PDTC workflows, e.g. the DN dataset 

when processed through workflow 3 at low VAFs i.e. at 0.025 and 0.05 VAF had SNP 

precision values of 0% and 1.71%, respectively, and when processed through workflow 4 

had SNP precision values of 2.16% and 12.4%. The difference in performance between 

workflows 3 and 4 is possibly due to the fact that in workflow 3 Varscan2 was run 

independently, whereas in workflow 4 the final calls are a union of VarScan2 and Mutect2 

calls. Recall was good at higher VAFs, but precision varied. For example, the DN dataset 

when processed through workflow 3 at 0.2 and 0.3 VAF had SNP precision values of 

98.43% and 99.13%, respectively, and when processed through workflow 4 had SNP 

precision values of 33.04% and 45.03. Strelka2 (part of workflows 1 and 5) was the most 

aggressive caller, achieving considerable recall even at the lowest VAFs tested. However, 

Strelka2 performance varied between the two workflows that used it, i.e. workflow 1 and 

workflow 5, possibly because workflow 1 used the recommended settings for running 

Strelka (combining it with Manta), whereas workflow 5 ran Strelka independently. We 

observed similar trends in the pseudo-ROC curves consistent with results described above.

PDXNet Exome, RNA-seq, and CNV workflows

According to the achieved precision and recall values across SNPs, INS, and DELs (F1 

statistic), Workflow 2 was the best performing WES workflow for PDX data. Consequently, 

we recommend using Workflow 2 for somatic calling in PDX tumor-normal paired WES 

samples. As the other workflows (Supplementary Figures 12 and 13) may be suited for other 

datasets we are releasing all workflows on the CGC. In addition, we are releasing a tumor-

only exome-seq variant calling pipeline, an RNA-seq expression pipeline, and a CNV calling 

from exome-seq pipeline (See Methods and Supplementary Figure 14). The tumor-only 

exome-seq, RNA-seq, and CNV calling pipelines were used to analyze samples from each 

PDTC in the temozolomide experiments.

Robustness of PDX Sequence Evaluations

To test the robustness of these sequence analysis workflows, we applied them to PDX 

samples from the temozolomide study. Each PDTC generated an independent biological 

sample of an untreated PDX for each of the three patient models. They then sequenced these 

independently and submitted the sequence data to the coordinating center.

Variant Calls from Exome-Seq

FASTQ files from whole exome sequencing were obtained from the four PDTCs (MDACC, 

HCI-BCM, WUSTL, and WIST). Each center provided WES and RNA sequencing data 

from the PDX models: 625472–104-R, 172845–121-T, and BL0293-F563. No matched 

normal data were available for these models.
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The WES data were analyzed with the optimal WES pipeline that was modified to take into 

account the lack of normal DNA, i.e. the ‘PDX WES Tumor-Only: Mutect2’ workflow. The 

exome capture kits used by each center covered different regions and total amounts of the 

genome (Supplementary Table 4), resulting in disparate variant calls among centers. The 

length of the genome covered by the intersection of the capture loci across all groups was 

33.71Mb. Filtering out variants from non-intersecting regions or with low allele frequencies 

(AF<5%) made the average number of variant calls across centers for each model 

comparable (Figure 4d, Supplementary Table 5, Supplementary Figure 15), though centers 

with lower sequencing depth had fewer calls meeting the QC threshold. A distribution of 

allele frequencies for calls meeting the QC threshold for each sample across each center is 

shown in Supplementary Figure 16. Mutations in cancer genes showed similarities across 

centers (Supplementary Figures 17–19), though there were variations related to sequencing 

depth and allele frequency, e.g. the lower depth of the MD Anderson samples resulted in 

fewer variant calls. When found, mutations appeared at similar AFs across centers, and 

shared mutations tended to have higher AFs. These results indicate that, although our chosen 

pipeline is an improvement over prior ones, increased sequencing depth would still be 

valuable.

Copy number calls from Exome-Seq

We called the copy number for each sample using CNVkit with a pooled normal approach 

(27) (Supplementary Figure 20). Overall, we observed similar profiles among samples from 

the same model. The most apparent difference between samples was an overall shift relative 

to the baseline. As such, comparing absolute copy number gain and loss calls between 

samples remains challenging. Supplementary Figure 21 shows the Pearson correlation 

coefficients between samples. We observed higher Pearson coefficients (>0.746) for 

pairwise comparisons for samples of the same tumor among the HCI-BCM, WUSTL, and 

WIST PDTCs, compared to samples of different tumors. On the other hand, the MDACC 

profiles were noisier due to lower coverage, despite using the “drop low coverage” option in 

CNVkit, and we were unable to identify strong correlations between samples of the same 

tumor for MDACC.

Expression calls from RNA-Seq

Data provided by each PDTC were generated using different RNA-seq protocols 

(Supplementary Table 6) and were analyzed with the rsem-1–2-31-workflow-with-star-

aligner (single-end data) and rsem-1–2-31-workflow-with-star-aligner-pe (paired-end data) 

workflows on the CGC, with small adjustments based on single vs. paired end sequencing or 

directionality parameters (see Methods). To account for differences in library size, data were 

normalized by Trimmed Mean of M-values (TMM), and further converted to count per 

million (CPM) with the R package edgeR (29,44). Following normalization and CPM 

conversion, significant batch effects were still present in these data (Supplementary Figure 

22). To correct for batch effect among centers, median polish by center was applied to TMM 

normalized CPM data as implemented in the MBatch R package (github.com/MD-

Anderson-Bioinformatics/MBatch). Following batch correction, samples tended to cluster by 

model rather than sample, though with some exceptions (Figure 4e).
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Discussion

Our work demonstrates the robustness of PDXs as a model system for studying cancer drug 

response. In particular, we have demonstrated the experimental robustness of PDX response 

for three different models even among research groups blinded to the expected response and 

who followed independently developed preclinical protocols. As has been published 

numerous times, reproducibility of experimental results is a confounding factor in the ability 

to build on previously published data (45–47). These results demonstrate that in the context 

of a cytotoxic agent, even when groups are not told what experimental protocol to use, PDXs 

can yield accurate and consistent treatment responses. Even given these results we feel that it 

is important to standardize preclinical methodologies and analyses tools so that data can be 

compared across the PDTCs over time. For example, one change that will be implemented at 

all sites will be to monitor tumor volume changes for at least 1.5–2 cycle lengths beyond the 

last dosing cycle to assess durability of response. It is also important to recognize that 

different classes of drugs, more heterogeneous tumors, as well as some histologies may have 

wider variation in reproducibility or response; standardization of methodologies will help 

minimize the experimental variables that may affect interpretation of the data.

While prior studies have also investigated the robustness of PDX drug response, they have 

not included comparisons across research groups. For example, Izumchenko et al (6) 

demonstrated similar responses between 92 patients and matched xenografts, and Gao et al 

(5) and Townsend et al (48) showed that 1×1×1 (animal, model, treatment) xenograft 

experiments were predictive of response in larger cohorts, including for resistance 

mechanisms to MAPK inhibition in melanoma (5) and to MDM2 inhibition in hematologic 

malignancies (48). However, such results may depend on the chosen treatment protocols. 

Our findings further show that PDX treatment results can be robust enough to withstand 

protocol variations and blinding. Moreover, this work extends prior investigations to 

standardize statistical analysis of PDX growth data (49) by showing that statistical analyses 

can tolerate a wide range of variations in experimental protocols and statistical parameters.

In addition, we have developed standardized PDX sequence analysis pipelines for tumor-

normal variant calling, tumor-only variant calling, and RNA-seq expression calling. We have 

provided these as public tools on the CGC, making them easily accessible for other 

researchers and applicable to the broad data collections shared on the CGC. Not only have 

these pipelines been tested on extensive benchmark datasets, but we have also applied the 

tumor-only variant calling and RNA-seq pipelines to sequence data generated across the 

PDTCs in the temozolomide study. These give similar results across the groups, 

demonstrating both the efficacy of the pipelines and the minor sequence evolution from PDX 

to PDX during the process of generating test cohorts across groups.

Importantly, we have also developed biostatistical analysis workflows for tumor volume 

data, which we are releasing here as well. Our results show a high level of concordance 

among the various biostatistical analysis strategies, but with some caveats. The RECIST 

criteria is heavily threshold dependent, has lower statistical power, and less consistent with 

results from the other strategies. Since each strategy has its own strengths and weaknesses, 

we recommend testing multiple strategies for PDX analyses. It is also important to consider 
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clinical as well as statistical significance, considering effect sizes to be sure any effect is of 

sufficient magnitude to be meaningful, a determination that may depend on the clinical 

context. Classifying PDX volume data into meaningful patient-analogous categories of 

complete response, stable disease and partial response remains challenging, though this may 

become possible as datasets with paired clinical and PDX response data increase. In the 

meantime, our automated analysis scripts, which collate the results and analytical steps into 

an automated report, provide a standard tool for the PDX field, and future PDXNet volume 

data will be released in a data format consistent with these scripts. We encourage others to 

follow the volume data standards we have developed here, which will assist in the 

quantitative application of PDX treatment data for predicting the efficacy of drugs in 

patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of Significance

The PDXNet Consortium shows that Patient-Derived Xenografts (PDXs) drug responses 

and sequence results are reproducible across diverse experimental protocols, establishing 

the potential for multi-site preclinical studies to translate into clinical trials.
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Figure 1. 
a) Three models were distributed for experimentation to 4 centers: Huntsman Cancer 

Institute/Baylor College of Medicine (HCI-BCM), MD Anderson Cancer Center (MDACC), 

Washington University-St. Louis (WUSTL), and The Wistar Institute/University of 

Pennsylvania/MDACC (WIST). These three centers were chosen based on prior results on 

temozolomide treatment response obtained by the NCI Patient-Derived Models Repository 

(PDMR). b) Each of the three models were treated with temozolomide by the 4 centers 

under blinded protocols. c) Treatment responses were comparatively assessed under several 

biostatistical protocols. d) Sequence data were collected by each center and assessed.
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Figure 2. 
Comparison of PDX tumor volume control and temozolomide treatment arms at the PDMR 

(a-c), HCI-BCM (d-f), MDACC (g-i), WIST (j-l), and WUSTL (m-o). Model 625472–104-

R (a, d, g, j, m), 172845–121-T (b, e, h, k, n), and BL0293-F563 (c, f, i, l, o). Axes are held 

constant for comparison between studies. Dashed lines, vehicle control groups, Solid lines, 

temozolomide treatment groups. Median ± SD. For statistical assessments, see Figure 3 and 

Table 2. (PDMR - NCI Patient-Derived Models Repository, HCI-BCM - Huntsman Cancer 

Institute/Baylor College of Medicine, MDACC - MD Anderson Cancer Center, WUSTL - 
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Washington University-St. Louis, and WIST - The Wistar Institute/University of 

Pennsylvania/MDACC.)
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Figure 3. 
Analytical Summaries, HCI-BCM Study. Analytical results from HCI-BCM study for 

progressive model (625472–104-R), stable disease model (172845–121-T) and complete 

response model (BL0293-F563) (columns 1, 2, and 3 respectively), with interpolated 

individual curves (row 1), mean curves for treatment and control with 95% confidence bands 

(row 2), waterfall plots demonstrating ΔV21(row 3), boxplots of aAUC21(row 4) and 

aAUCmax(row 5) for treatment and control, and a boxplot of TGI21(row 6), along with p-

values comparing treatment to control for each measure.
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Figure 4. 
Workflow Benchmarking and Analysis Summary. a) Panel A shows results of the evaluation 

of mouse-human disambiguation tools (Xenome, BBSplit, Disambiguate, ICRG, 

XenofilteR). Each figure shows precision (blue) and recall (green) for a simulated data. Left 

figure shows results of mouse disambiguation for whole exome data. Right figure shows 

results of mouse disambiguation for RNA-seq data. b) The panel shows the wiring diagram 

for the whole exome workflow selected to process data for this study. The selected workflow 

was selected from 5 workflows submitted by the PDTCs. Wiring diagrams for submitted 

Evrard et al. Page 23

Cancer Res. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



whole exome workflows submitted by the PDX Development and Trials Centers. Wiring 

diagrams include nodes and connections. Nodes depict inputs - , outputs - , tools - , 

and workflows - . Connections between nodes depict that input to a node is from the 

output of another node. Orange nodes -  identify a tool or a workflow with an available 

update. c) Panel shows performance evaluations of five workflows submitted by the PDTC. 

Each workflow was evaluated by SNP (top), INS (middle), and DEL (bottom) with a range 

of variant allele frequencies (0.025, 0.05, 0.3, 0.2, 0.3). Each plot shows recall and precision 

respectively on the x and y axis. Results for each of the workflow are shown with the same 

color: Workflow 1- blue, Worfklow 2 – green, Workflow 3- light blue, Workflow 4 – purple, 

and Workflow 5 – black d) A Venn diagram showing the overlap in high-quality variant calls 

for model BL0293-F563 by model using intersected array and removing lower allele 

frequency (AF) calls. e) Dendrogram of median polish by center (by MBatch) using TMM 

normalized count per million values. Foe d) and e), HCI-BCM -Huntsman Cancer Institute/

Baylor College of Medicine, MDACC -MD Anderson Cancer Center, WUSTL -Washington 

University-St. Louis, and WIST -The Wistar Institute/University of Pennsylvania/MDACC.
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Table 1.

Comparison of preclinical study set-ups and end-points at the PDMR and individual PDTCs for the 

temozolomide Reproducibility Pilot.

PDMR HCI-BCM MDACC WUSTL WIST

Implantation

 Implantation Type ∼1mm3 Fragment ∼1mm3 Fragment ∼1mm3 Fragment ∼3.0 ×106 cells, 

dissociated*
<1 mm3 fragments in 
slurry, ∼150uL of 
slurry implanted

 Implantation Site Subcutaneous, 
single flank

Subcutaneous 
single flank

Subcutaneous 
single flank

Subcutaneous 
single flank

Subcutaneous single 
flank

 Staging Site (mm3) 200 100–200 200 200 100

 Cohort Size 8 8 10 10 8

Dosing and Schedule

 Temozolomide 
Dose (mg/kg)

50 50 50 50 50 and 100

 Schedule QDx5 28d cycle QDx5 28d cycle QDx5 28d cycle QDx5 7d cycle QDx5 7d cycle

 Number of cycles of 
Treatment

2 1 2 4 2

 Route of 
administration

Oral Oral Oral Oral Intraperitoneal

Study End -Points

  A Animal Health Animal Health Animal Health Animal Health Animal Health

  B Max. tumor size, 
4000 m3

Max. tumor size, 
4000 m3

Max. tumor size, 
1600–2000 m3

Max. tumor size, 
1500 m3

Max. tumor size, 
1500 m3

  C 300 days, if Max. 
TV not reached

0.5 cycles after last 
dose

When Control TV, 
1600–2000 mm3

4 weeks after last 
dose

When Control arm 
TV, 1500 mm3

PDMR - NCI Patient-Derived Models Repository, HCI-BCM - Huntsman Cancer Institute/Baylor College of Medicine, MDACC - MD Anderson 
Cancer Center, WUSTL - Washington University-St. Louis, and WIST - The Wistar Institute/University of Pennsylvania/MDACC.

Abbreviations: QDx5 (Once daily for 5 days), TV (tumor volume).

*:
This is an average across WUSTL models. The numbers of implanted cells per mouse for each model are: BL0293-F563: 4.0 × 106; 172845-121-

T: 2.6 × 106; and 625472-104-R: 2.5 × 106.
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Table 2.

Statistical tests of treatment vs. control difference Statistical tests of treatment vs. control difference.

PD (Model 625472-104-R)

Site ΔV21 aAUC21 aAUCmax TGI21

RECIST21

−95,−50,10 −95,−30,20 −95,−30,50 −95,−30,100 −95,−50,50 −95,−50,100

MDACC 0.163 0.236 0.448 0.067 1.000 1.000 1.000 1.000 1.000 1.000

WUSTL 0.918 0.376 0.470 0.538 1.000 1.000 1.000 1.000 1.000 1.000

HCI-
BCM

0.143 0.072 0.177 0.814 1.000 1.000 1.000 1.000 1.000 1.000

PDMR 0.404 0.756 0.501 0.751 1.000 1.000 1.000 1.000 1.000 1.000

SD (Model 172845-121-T)

Site ΔV21 aAUC21 aAUCmax TGI21

RECIST21

−95,−50,10 −95,−30,20 −95,−30,50 −95,−30,100 −95,−50,50 −95,−50,100

MDACC <.00
1

0.003 <.001 <.001 0.048 0.048 0.008 0.048 0.008 0.048

WUSTL <.00
1

<.001 <.001 <.001 1.000 0.474 0.211 <.001 0.211 <.001

HCI-
BCM

<.00
1

<.001 <.001 <.001 0.200 0.026 <.001 <.001 <.001 <.001

PDMR <.00
1

<.001 <.001 <.001 0.003 <.001 <.001 <.001 <.001 <.001

WIST* <.00
1

<.001 <.001 <.001 1.000 1.000 1.000 0.200 1.000 0.200

<.00
1

<.001 <.001 <.001 1.000 1.000 0.200 0.026 0.200 0.026

CR (Model BL0293-F563)

Site ΔV21 aAUC21 aAUCmax TGI21

RECIST21

−95,−50,10 −95,−30,20 −95,−30,50 −95,−30,100 −95,−50,50 −95,−50,100

MDACC <.00
1

<.001 <.001 <.001 <.001 0.008 0.008 0.008 0.008 0.008

WUSTL <.00
1

<.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001

HCI-
BCM

<.00
1

<.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001

PDMR <.00
1

<.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001

WIST* <.00
1

<.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001

<.00
1

<.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001

PDMR - NCI Patient-Derived Models Repository, HCI-BCM - Huntsman Cancer Institute/Baylor College of Medicine, MDACC - MD Anderson 
Cancer Center, WUSTL - Washington University-St. Louis, and WIST - The Wistar Institute/University of Pennsylvania/MDACC.

This table presents the p-values reported for various analytical measures, including change from baseline to 21 days (ΔV21), adjusted area under 

the curve for 21 days (aAUC21), adjusted area under the curve until last measurement (aAUCmax), tumor growth inhibition at day 21 (TGI21), 
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and RECIST criteria for various choices of boundaries between CR/PR, PR/SD, and SD/PD given by (c1, c2, c3). For RECIST, p-values are testing 

PD vs. not PD.

*
For WIST, the first row is for temozolomide treated at 50mg/kg and the second row is 100 mg/kg.
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