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Intense proton beams driven by high-intensity lasers have several applications in high

energy density science, including radiographing laboratory plasmas, producing secondary neutron

sources, and generating extreme states of matter. Proton fast ignition (FI) for thermonuclear

fusion is also an important potential application that requires proton beam intensities at or above

1012 A/cm2, higher than current capabilities. With greater beam intensities, however, come beam

collective effects, requiring further investigations in beam transport and energy deposition. This

dissertation describes experimental, computational, and theoretical studies of proton transport

and energy deposition in warm and hot dense plasmas.

Towards generating extreme states of matter, an experiment conducted at the Matter

xix



in Extreme Conditions (MEC) end-station at SLAC National Accelerator Laboratory showed

that thin Al samples were heated by protons to approximately 1 eV , establishing a platform on

which to further study intense proton heating as well as properties of warm and hot dense matter.

Simulations further showed that the proton heating in the experiment was isochoric and that even

higher temperatures may be reached with higher laser energy and focused proton beams.

Toward investigating the transport of intense protons beams through a coronal plasma, a

second experiment on the OMEGA-EP laser at the Laboratory for Laser Energetics (LLE) imaged

the proton beam cross section at various (∼ mm) depths within a plastic foam of comparable

density. Simulations and post-processing were conducted to distinguish between the proton and

electron beam cross-sections, revealing that protons retain their beam qualities while electrons

scatter and contribute to an overall background emission. This study corroborates a major

underlying assumption in FI that protons are less likely than electrons to scatter in their transport

through coronal plasma. As previously mentioned, beam collective effects may alter this transport

at higher intensities, even if scattering does not. For the first time, a theoretical model for resistive

magnetic field generation for intense proton beams has been developed. Due to gradients in

(coupled) sample temperature and beam current density, magnetic fields above 100 T may be

generated by proton beams with total energy 10 J. When considering the time-of-flight of laser-

driven Maxwellian beams (not unlike proton FI), the model predicts an interesting self-similar

evolution of the magnetic field with respect to the distance between proton source and sample

foil.

This work has significant implications for the proton fast ignition scheme of inertial

confinement fusion. For the necessary proton beam requirements to heat a dense fusion fuel

to ignite, this work implies that beam transport and energy deposition will not be as trivial as

previous studies have assumed. Indeed, these results motivate further studies on the transport of

ultrahigh current density beams resulting from self-generated electromagnetic fields.
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Chapter 1

Introduction

Energy is a peculiar thing. Theoretically, it is connected to the passage of time on

unfathomably deep and profound scales. But at the same time, it is observable in our everyday

lives, so much so that the layman gives it no second thought. In the modern age, it is a non-

negotiable and readily assembled resource that powers daily life. To our knowledge, it is neither

created nor destroyed; it only ever manifests different forms, and therein lies the key. Humankind’s

pursuit to make life easier and to understand nature have been accelerated by machinery that

converts energy in some form (wind, hydro, solar, heat, chemical etc.) into work. The sources of

our energy, therefore, play a grand role in guiding our society.

Figs. 1.1 shows the global energy consumption by source from the year 1800 (estimated

consumption) until now. Since the industrial revolution, not only has the global energy consump-

tion increased, but the rate of energy consumption across all sources is also increasing (1). This

exponential growth of 3% on average per year implies that whatever sources we use today and in

the future, they must be sustainable and scalable. For over a century, almost all of our energy

has come from fossil fuels – coal, natural gas, crude oil and petroleum products. Apart from the

geopolitical issues tangled with fossil fuels, they are now known to be an unsustainable energy

source due to its limited quantities and severely negative climate impacts (30).
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Figure 1.1: (a) Global annual energy consumption categorized by energy source, and (b) year-
on-year percentage increase in global energy consumption. Data taken from Ref. (1).

Currently, the most sustainable alternative to fossil fuels is arguably nuclear energy for

several reasons. Unlike nuclear fission fuel, most notably Uranium-235 which may be produced

year-round, solar and wind energy largely depend on ambient weather conditions in the area. Per

kilogram, U-235 contains 2-3 million times the usable energy in oil or coal, making it a much

more fruitful energy source. This is fundamentally because the chemical energy extracted from

fossil fuels originates in chemical bonds with energy scale ∼ eV per reaction, as opposed to the

nuclear energy scaling of ∼ MeV per reaction. Even better, it is a near carbon emission-free

source, and therefore has little climate impact. Nevertheless, nuclear fission has its drawbacks.

For one, uranium is non-renewable and available in only finite quantities in the earth’s crust. The

largest issues, though, are the cost of nuclear power plant construction (which indirectly points

toward public convincing of their safety and efficacy) and the proper disposal of radioactive

nuclear waste. Suffice it to say that the process is complex and poses environmental and health

risks in the long term.

On a subatomic scale, nuclear fission is the process by which unstable heavy elements

split into two or more elements and release energy. The energy released is determined by the

nuclear binding energy of the reactants and products. For an element with atomic number Z and
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mass number A, the nuclear binding energy EB is given by:

EB = Zmpc2 +(A−Z)mnc2 −Mc2 (1.1)

where mp, mn, and M are the proton mass, neutron mass, and nuclear mass, respectively. The

higher the binding energy, the more stable the nucleus. The binding energy per nucleon EB/A

is a good measure of nuclear stability and is shown in Fig. 1.2 over increasing mass number.

Essentially, an increase in binding energy from reactants to products leads to a release of energy.

Current nuclear power plants, thus, take advantage of heavy elements naturally decaying.

Nuclear fusion, on the other hand, may be an even more sustainable energy resource by

bypassing all the obstacles of nuclear fission plants listed above. As shown in Fig. 1.2, fusion

works opposite to fission in that energy is released when two light nuclei fuse together to create a

more stable nucleus. The four most effective fusion reactions (for reasons that will be made clear

later) are:

D + T −→ α (3.52 MeV ) + n (14.06 MeV )

D + D −→ T (1.01 MeV ) + p (3.02 MeV ) (50%)

−→ 3He (0.82 MeV) + n (2.45 MeV ) (50%)

D + 3He −→ α (3.6 MeV ) + p (14.7 MeV )

where Deuterium is 2H, Tritium is 3H, and an α particle is 4He. Immediately, we observe that

the most common products in fusion reactions are less hazardous than the radioactive isotopes

of heavier fission products. As well, deuterium is simply obtained via industrial extraction from

seawater, and tritium may be produced by the fission of 6Li by neutrons.

But for all the clean energy that fusion promises, it is a monumental challenge to obtain

controlled net energy surplus, let alone that on a commercial scale. Fusion may occur on colossal

scales throughout our universe — indeed, this is how heavier elements were first formed in the

early stages of the universe, and our own sun is powered by fusion — but these processes rely
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Figure 1.2: Nuclear binding energy per nucleon as a function of nuclear weight. Data taken
from Ref. (2) and plotted in the style of Ref. (3).

on enormous length, time and mass scales untenable on Earth. The easiest way to accomplish

significantly large gains on Earth is with (uncontrollable) hydrogen bombs. Our challenge, then,

is to essentially create and harness the extreme conditions of the sun or a nuclear bomb on a

smaller scale, in controlled laboratory setting. The next section discusses the fundamentals with

which we may go about this analysis, and the experimental schemes that currently look most

promising.

1.1 Fundamentals of Nuclear Fusion

A fundamental characteristic of fusion reactions is the cross section σ of target particles

of, say, type 1. For now, this represents the cross sectional area of that particle, but can be related

to the probability of fusion reaction with beam particles (of type 2) in the following way. If target

particles with density n1 and area A occupy a volume dV = Adx in the way of beam particles,
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then the probability of beam particles colliding with the volume is dP = (n1dV )σ/A = n1σdx.

The number of beam particles with density n2 and velocity v2 going through the volume is

dN2 = n2Adx = n2A(v2dt) in a time dt. Then, we expect that the reaction rate (number of

collisions per time) per unit volume is:

R12 =
dN2dP
dV dt

= n1n2σv2

Assuming both species have distribution functions f1(r,v1, t) and f2(r,v2, t) (see Sec. 2.1), and

that the cross section depends on relative velocity σ = σ(|v2 −v1|), we may generalize this to:

R12 = n1n2⟨σv⟩12 (1.2)

where

⟨σv⟩12 =
1

n1n2

∫
d3v1 d3v2 f1(r,v1, t) f2(r,v2, t)σ(|v2 −v1|)|v2 −v1|

is the density-normalized reactivity of the reactants.

So, given the densities of two fusion reactants, most commonly deuterium (D) and/or

tritium (T), to maximize the rate of fusion reactions, one must maximize the reactivity of the

fuel. Apart from that, it is easy to check that the fractional mix of reactant species densities

that yields the maximum reaction rate is a 50-50 mix. The evaluation of reactivity is vastly

simplified if we assume both species have uniform density ni and have thermally equilibrated to a

Maxwell-Boltzmann distribution function:

fi(v) = ni

(
mi

2πkBT

)3/2

exp
(
− miv2

2kBT

)
(1.3)

at temperature T . An analytic approximation for the reactivity for several common pairs of fusion

reactants as functions of ion temperature is shown in Fig. 1.3. Clearly, DT reactions reach the

highest reactivity, and begin to do so at temperatures of a few keV , the lowest compared to the
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Figure 1.3: Reactivity of common pairs of fusion reactants as a function of temperature. Data
taken from Ref. (3).

other fusion pairings. For this reason, most efforts towards achieving fusion have focused on

igniting DT fuels.

But the nuclear fuel must also be self-sustaining in order to be a viable energy source. In

other words, a fusion burn must generate enough energy to power external loads and maintain

its fuel-burning temperatures as established above, while also overcoming energy losses. Using

Eq. 1.2 We can estimate the power generated per unit volume from DT reactions as:

Pf us = RDT QDT =
n2

4
⟨σv⟩DT QDT (1.4)

where n is the total fuel density (nD = nT = n/2) and QDT is the usable energy per reaction.

For DT reactions, the neutron energy 14.1 MeV is considered the usable energy since neutrons

may freely escape, and the alpha particle energy 3.5 MeV is used to self-heat the fuel. Radiative

cooling due to bremsstrahlung emission from electrons is the primary mechanism for energy loss
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in a fully ionized plasma, having a power loss per unit volume:

Pbrem ∝ n2
eT 1/2 (1.5)

We see that the reactivity must be large enough for the energy generation due to fusion to exceed

the energy losses. This is embodied in the Lawson Criterion, originally calculated for magnetic

confinement devices in Ref. (31) but generally applicable to thermonuclear fusion with a hot

plasma. In essence, the fusion fuel must yield enough energy in a time dictated by the confinement

configuration. In its original form, the fuel density n and confinement time τc are related such

that nτc must exceed a minimum value.

The critical issue, then, is to identify a confinement scheme for such a hot plasma in

the necessary time. One overarching scheme is dubbed magnetic confinement fusion (MCF), in

which particles are heated to the required temperatures and trapped by coiling magnetic field

lines. This is most commonly done with a toroidal (donut) configuration in a tokamak device,

where “toroidal” magnetic field lines combine with “poloidal” field lines so that a fusion plasma

flows in a helical trajectory whose axis is normal to the cross sectional disks of the toroid. In

general, MCF confines low-density plasmas with density n ∼ 1014 cm−3 in confinement times

τc ∼ seconds to minutes to satisfy the Lawson Criterion. In attempting to reach viable fusion

energy, tokamaks run into issues of plasma instabilities relating to the inner walls.

On December 5, 2022, more energy was generated from a fusion burn than was used

to ignite it, surpassing scientific breakeven in a controlled nuclear fusion test for the first time

in history. A monumental achievement for fusion energy research in its own right, this was

accomplished not from MCF, but from 192 high-intensity lasers housed in the National Ignition

Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). In an alternative confinement

scheme, these lasers indirectly drove the the radial compression of a spherical capsule containing

fusion fuel, igniting a fusion plasma within. By spherically irradiating the capsule, confinement
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is achieved via the capsule’s own inertia, hence the name inertial confinement fusion (ICF). This

scheme as well as important variations will be explained in the following section.

1.2 Inertial Confinement Fusion

In ICF, a spherical capsule approximately 2 mm in diameter has three distinct layers for

three essential purposes. The outermost thin shell is made of carbon, beryllium, or plastic to

contain the fusion fuel inside and absorb the incident energy and ablate, hence the ablation layer.

In direct-drive ICF, high-intensity lasers (∼ 1014 W/cm2) uniformly irradiate this outer shell,

causing a thin layer to ablate radially outward. This outward ablation has a rocket-like effect on

the remaining shell, spherically compressing it and everything within. In indirect-drive ICF, the

lasers instead irradiate the inner walls of a cylindrical hohlraum, made of a high-Z material (most

often gold), which encompasses the capsule. As the hohlraum absorbs the laser energy, an x-ray

bath is generated which more uniformly drives the rocket-like reaction to spherically implode the

capsule as described above.

Regardless of the driver of the compression, directly underneath the capsule’s ablation

shell is a layer of frozen DT fuel making up the majority of the fuel mass to be burned. Within

this DT ice layer, low-density (≲ 1 mg/cm−3) DT gas occupies the remainder of the capsule. As

the DT ice is compressed by the ablation layer, the gas cannot escape and is thus also compressed.

As PdV work is done on the gas, its internal energy i.e. temperature increases until the pressure

matches that of the compressed DT ice in an isobaric phase called stagnation. At this point, the

temperature of the DT gas is at several keV , enough to spark the fusion reactions and form a hot

spot. This implosion and stagnation evolution is depicted in Fig. 1.4, taken from a 1-D spherical

simulation (3).

Following Rosen et al. (32) the confinement time for ICF may be estimated by assuming

a capsule to be in the stagnation phase described above. Then, the amount of time before the hot

8



(d)

Figure 1.4: Evolution of radial profiles of electron temperature (a), density (b), and pressure (c)
at (1) t = 0; (2) t = 20 ns, (3) t = 22.4 ns; (4) t = 23.6 ns; and (5) stagnation time t = 24.46 ns
within capsule. (d) Capsule hot spot profiles at stagnation time t = 24.46 ns. Data taken from
Ref. (3).
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spot “realizes” there is a vacuum to expand into is dictated by the speed at which a rarefaction

wave from the capsule surface can “communicate” this information. For a capsule with radius R,

temperature T and average DT mass mDT = 2.5 amu, the wave has sound speed cs ∝
√

T/mDT ,

so the confinement time is of order τc ∝ R/cs. Assuming a uniform and constant density, a quick

integration shows that:

τc = R/4cs (1.6)

to account for the greater mass at larger radii.

In this confinement time between stagnation and fuel disassembly, as many fusion reac-

tions as possible must take place. Following from the definition of reactivity in Eq. 1.2, we can

calculate the burn rate of the DT fuel:

dn
dt

=−n2

2
⟨σv⟩ (1.7)

Here we again assume that the total density is n = 2nT = 2nD for a 50-50 mixture of deuterium

and tritium, and that temperature is mostly constant until fuel disassembly. We solve this by

integrating with time to obtain:

n(t)
n0

=

(
1+

n0⟨σv⟩t
2

)−1

for initial fuel density n0. The burn fraction of the fuel is defined by fb = 1−n/n0, which, within

a confinement time τc, becomes:

fb = 1− n(τc)

n0
=

1
2⟨σv⟩n0τc

1+ 1
2⟨σv⟩n0τc

.
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Noting that the fuel mass density is ρ = nmDT and plugging in Eq. 1.6, we obtain:

fb =
ρR

ρR+β(T )
(1.8)

where β(T ) = 8mDT cs/⟨σv⟩ is primarily temperature-dependent (recall that ⟨σv⟩ is density-

normalized), approximately 6.0 g/cm2 for 30 keV fuel temperatures. For high gain, an appropriate

burn fraction is fb ≥ 1/3, making our ρR ≥ 3 g/cm2. In essence, this is the ICF version of the

Lawson Criterion insofar as a minimum burn fraction requires a minimum value of ρR ∝ nτc as

mentioned in Sec. 1.1.

However, this applies to heating the entire fuel mass to 10 keV . In the conventional ICF

scheme known as central hot-spot (CHS) ignition, the hot spot density is ∼ 50 g/cm3, around 10%

that of the adjacent DT ice layer at stagnation, and contains fewer than 5% of the fuel mass. As the

hot spot reaches temperatures of several keV at stagnation, fusion reactions are initiated. While

the resulting neutrons may readily escape the hot spot and layers above, (ρR)HS ≈ 0.3 g/cm2,

which is approximately the stopping range of the resulting 3.5 MeV α-particles, which then

deposit their energy toward heating the hot spot further. As they make their way to the outer

reaches of the hot spot and impinge on the DT ice, a thin layer is heated to several keV , producing

more fusion reactions, which produce more α-particles, which heat the next thin layer, and so on.

In this way, the α-particles provide a self-heating burn wave propagating radially outward.

CHS ignition, however, does not come without obstacles. The analysis above is predicated

on a precisely spherical compression, which in practice is not easily accomplished. The primary

culprit is the hydrodynamic Rayleigh-Taylor (RT) instability, wherein perturbation amplitudes

along the interface of two fluids of differing densities exponentially increase if the lower-density

fluid pushes on the higher-density fluid. Everyday examples of this dynamic instability include

water (denser) suspended above oil (less dense) and suddenly allowed to mix, or air (less dense)

pushing into smoke (more dense) from a volcanic eruption or nuclear explosion, forming a
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mushroom cloud. In ICF implosions, the less dense ablative shell pushes on the DT ice at the

start of the implosion, and any mixing of the materials decreases the efficacy of the compression.

Miniscule nonuniformities in the smoothness of the ablative shell (i.e. bumps) during fabrication

may be exponentially amplified and cause such mixing, and therefore must be engineered

extremely precisely – bumps on the 2 mm capsule are limited to 10 nm! Near stagnation, when

the less dense DT gas pushes back on the DT ice, any mixing heats up the DT ice, decreasing the

energy efficiency of ignition. Asymmetries in the spherical compression must be mitigated lest

they beget unwarranted mixing.

In the next section, we introduce a different “flavor” of ICF in which the requirements

on compression symmetry are drastically reduced, yet may promise even higher gains than CHS

ignition.

1.2.1 Fast Ignition

In CHS ignition, the compression of the capsule and the heating of the hot spot are

not independent of each other but instead are coupled – the parameters of the compression

are tuned so that appropriate heating goes into the hot spot near stagnation. This unfortunately

engenders vulnerabilities to instabilities as explained above. The fast ignition (FI) approach to ICF

essentially separates the compression and heating phases of the capsule, relaxing the constraints

put in place to mitigate RT instabilities (33). While there will usually be some semblance of hot

spot formation at the center, the difference in density between the DT gas (≲ 100 g/cm3) and DT

ice (≳ 500 g/cm3) in CHS will be much larger than that in FI.

Whereas in CHS ignition the densities and temperatures are approximately inverted (see

Fig. 1.4(d)) such that the compression is isobaric at stagnation, in FI the density is relatively

uniform at ∼ 300 g/cm3 so that the compression is isochoric. Fig. 1.5(a) shows a simplified

schematic of the compression and heating in CHS vs. FI. With the density of the majority of

the fuel less than that in CHS, less PdV work is required to heat the gas, which in turn implies

12



(a)

(b)

Figure 1.5: (a) Comparison of characteristic fuel assembly (a) and resulting target gain functions
of driver energy (b) for the central hot spot ignition scheme and fast ignition scheme. Figures
courtesy of Ref. (4).
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Figure 1.6: Target configurations for electron (a) and proton (b) fast ignition schemes.

less driver energy from the compression laser. Even more, because the fuel density is uniformly

lower than that in CHS to achieve the same ρR, more fuel mass may be used, leading to more

fuel burned and theoretically larger gains! These fundamental differences in the energetics and

gain are shown in Fig. 1.5(b). For reference, the point designs for the aforementioned Dec. 5

pioneering NIF shot are shown toward the left, with about an order of magnitude more driver

energy required to achieve less gain!

In FI, since less work is done on the gas, an external heating source is necessary to ignite

the fusion reactions and propagate an α-particle burn wave similar to that in CHS. When Tabak et

al. (33) first proposed FI, an intense laser pulse first irradiated the capsule to radially eject the

ablated plasma via the ponderomotive force (see Sec. 2.7.5), clearing a channel up to the critical

density (see Sec. 2.7.1). This is followed by a relativistically intense main ignitor pulse with

intensity IL ≳ 1019 W/cm2 accelerating ∼ MeV electrons to heat the core to ignition temperatures

and spark fusion reactions. This initial approach proved difficult, however, when it was shown

that filamentary structure formation and laser defocusing from the critical surface thwarted the

formation of clean channels (34).

In lieu of a preliminary laser pulse to form the channel, efforts turned toward incorporating

a re-entrant cone into the side of the spherical capsule, as shown schematically in Fig. 1.6(a). In
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principle, the cone acts as a barrier to the coronal plasma so that a clear channel is maintained for

the main ignitor beam. The cone has a flattened tip that impinges on the central hot spot so that

the generated hot electrons are as close as possible to the hot spot without being damaged from

the compression.

Proof-of-concept experiments and simulations have been conducted on a smaller scale

to assess the viability of electron FI. Kodama et al. (35) reports on one such experiment at the

GEKKO laser facility in Osaka, Japan, wherein 1.2 kJ of laser energy with pulse length 1 ns

was used to spherically compress a deuterated polystyrene (plastic doped with deuterium, or

CD) shell with diameter 500 µm and thickness 7 µm with an embedded gold cone. At maximum

compression, a second ignitor beam delivered 60 J of laser energy in 0.5 ps at the cone tip (50 µm

from shell center) to generate hot electrons to couple with and heat the compressed core. Core

heating was quantified by the thermonuclear neutron yield using time-of-flight neutron detectors.

To replicate the neutron yield with only a spherical CD shell implosion (without an embedded

cone or ignitor beam), 2.6 kJ of laser energy was needed, demonstrating the energy efficiency of

the FI approach compared to CHS ignition.

Theobald et al. (36) reports on another experiment at the OMEGA laser facility in

Rochester, NY USA wherein 20 kJ of UV laser energy imploded an 870 µm diameter CD shell

with inserted gold cone, followed by a 1 kJ ignitor beam (OMEGA-EP) with pulse length 10 ps

aimed at the cone tip (50 µm away from shell center) around the time of peak compression. Again,

the heating efficiency of the core by the short-pulse laser was inferred via the neutron yield. A

4x increase in neutrons was observed with the ignitor beam incident within a 100 ps window

around peak compression, which, according to simulations, corresponds to a heating efficiency of

3.5±1.0%.

The distance between the cone tip and hot spot is crucial to the configuration because

laser-driven hot electrons have been shown experimentally (37) to have wide divergence angles

(50◦ on average) and broad angular distributions – the more distance to travel, the more likely
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that hot electrons miss the ∼ 50 µm wide hot spot. In Kodama et al. outlined above, the estimated

electron coupling efficiency (electron energy → core heating) was 24±3%, primarily due to the

divergence and scattering of hot electrons in transit to the hot spot. With the right characteristics,

proton beams are perhaps an attractive alternative energy carrier to the scatter-prone electrons, as

detailed in the next section.

Proton Fast Ignition

Soon after the discovery of high intensity laser-driven proton beams (further details in

Sec. 3.1), Roth et al. (38) immediately recognized them as an alternative to electrons for FI.

Fundamentally, protons have far more inertia than electrons by three orders of magnitude, making

protons that much less prone to scattering in transit to the compressed core. Also, protons and

ions deposit almost all of their energy in a well-defined region near their stopping range (see

Sec. 3.2.1), so that longitudinally “aiming” for the compressed core amounts to tuning the particle

energies. A potential configuration for proton FI is shown in Fig. 1.6(b), similar to electron

FI insofar as a re-entrant cone allows a high-intensity short pulse to accelerate protons from a

curved foil and focus them through the cone tip. Crucially, protons accelerated in such a way

have transit time scales of several tens of ps, less than the confinement time in ICF compressed

cores. The focusability of laser-driven cone-guided proton beams has also been demonstrated

through experiment and simulations (see Sec. 3.1.3).

Based on a parametric simulation study by Atzeni et al. (39) for fast particles on ignition,

Roth et al. (38) conducted a preliminary analysis on the proton beam characteristics required

for ignition. For a precompressed DT fuel, the optimal values for total proton beam energy Eign,
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(a) (b)

Figure 1.7: (a) Proton range in DT fuel vs. ion temperature. The gradient shading roughly links
arriving proton energies with DT temperatures. (b) Minimum proton beam energy to ignite a
homogeneous DT fuel assembly for varying beam temperatures and gap distances. Figures taken
from Ref. (5).

proton beam pulse duration τp, and focal spot radius rp scale as:

Eign = (140 kJ) ρ̂
−1.85

τp = (54 ps) ρ̂
−0.85

rp = (60 µm) ρ̂
−0.97

(1.9)

where ρ̂ = ρ/(100 g/cm3) is the normalized fuel density. This assumes a simple proton beam

with flat radial and temporal profiles for proton energy bandwidth 15−23 MeV , yielding a range

ρR = 0.3−1.5 g/cm2 appropriate for a hot spot.

In a more detailed study, Atzeni et al. (5) conducted 2D simulations with the code DUED

(40) to determine the minimum proton beam energy Eign required to ignite a precompressed

homogeneous DT capsule (ρ = 400 g/cm3). DUED accounts for proton-fuel interaction and

plasma hydrodynamics, including equation-of-state, collisional transport, and nuclear reactions.
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For simplicity, the analysis assumed a cylindrical proton beam with an exponential energy

spectrum dN/dεp ∝ exp(−εp/Tp) for average proton energy Tp, originating a distance d from the

fuel. This transit and energy spectrum entail a velocity dispersion, where the high energy protons

reach the fuel first, followed gradually by lower energy protons. Fig. 1.7(a) shows the proton

range as a function of plasma temperature for various initial proton energies εp. In theory, as the

high energy protons arrive and begin to heat the fuel to ignition temperatures, the subsequent

lower energy protons experience an increased range due to the temperature increase, allowing

them to deposit their energy in roughly the same region. The approximately overlaid blue shading

indicates the time evolution of the relevant regime from top left to bottom right.

The results of the simulations varying the gap distance d and average proton energy

Tp are shown in Fig. 1.7(b). The distance between proton source and compressed fuel plays a

large role in the heating evolution, since larger gap distance results in larger transit times and

greater velocity dispersion. In other words, given a constant window of time, a shorter gap

distance means less dispersion and more energy deposited in that window. For this reason, we

observe that with increasing gap distance comes increasing Eign. Furthermore, for all practical gap

distances simulated, the average proton energy that minimizes Eign lies between 5−10 MeV . For

a 1 mm gap, we observe that broadband proton beams with average energy Tp = 5 MeV require a

minimum total beam energy of 15 kJ, larger than that predicted from Eqs. 1.9 by 50%. With an

estimated laser-to-proton conversion efficiency of ∼ 10%, the required laser energy comes out to

∼ 150 kJ.

Temporal et al. (6) conducted a similar analysis using 2D simulations, but took it a step

further by including the dynamics of fuel capsule implosion as the proton beam creates a hot

spot. The implosion is simulated with a 1D radiation-hydrodynamics code SARA (41) up to a

time close to maximum compression, and the resulting fuel assembly is then mapped onto DUED

to simulate ignition via injected proton beams. It should be noted that the implosion simulation

predicted peak fuel densities of 625 g/cm3, corresponding to an ideal beam radius of rb ≈ 10 µm
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(a) (b)

Case A

Figure 1.8: (a) Minimum proton beam energy required to ignite a simulated DT fuel assembly
for varying beam temperatures and source-fuel gap distances. (b) Evolution of fusion power
output of proton beam cases A, B, and C impinging on simulated fuel assembly. Figures taken
from Ref. (6).

according to Eqs. 1.9. Two proton energy distributions, the exponential distribution as above and

a potentially more accurate Maxwellian distribution dN/dεp ∝ ε
1/2
p exp(−εp/Tp), where now the

average proton energy is 1.5Tp), were compared to assess its effect on Eign. The results of the

simulations are shown in Fig. 1.8(a). For gap distance d = 4 mm, we observe that the Maxwellian

proton spectrum (solid lines) requires lower Eign compared to the exponential distribution (dashed

lines). This is because the effective pulse length of the exponential distribution is slightly longer,

and beam power is lower for εp ≥ 2Tp. We also observe that Eign is lower for the simulated DT

sphere, primarily because of the increased fuel density.

With a closer evaluation of Case A with Eign = 26 kJ as indicated in Fig. 1.8(a), it was

observed that much of the fusion power was produced in a time interval corresponding to the

fuel region mass 0.9 ≤ ρR ≤ 1.4 g/cm2, or proton energy range 7 ≤ εp ≤ 19 MeV . This spurred

further investigation by simulating a Case B where only protons in this energy range, making

up 40% of the beam energy or 10.5 kJ, were injected into the fuel; and a Case C where the total

proton spectrum was used, but with slightly less total beam energy (24 kJ vs. 26 kJ). Fig. 1.8(b)

shows the resulting fusion power outputs from each case. Naturally, we expect Case C to fail
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to ignite (considering that Eign is the minimum energy required for ignition), which we observe

around t ≈ 105 ps when the fusion burn is quenched in Case C. But remarkably, Case B ignites

and follows a similar fusion power evolution as in Case A! Even though Case C contained more

than double the beam energy as in Case B, Case C failed to ignite. This demonstrated (albeit via

simulation) that only a fraction of the beam energy corresponding to a particular proton bandwidth

is necessary for ignition!

Both electron FI and proton FI employ a re-entrant cone-in-shell configuration to protect

an incoming ignitor laser from the coronal plasma. Both schemes attempt to efficiently convert

the ignitor laser energy into DT fuel heat, and both schemes have their pros and cons. While

the conversion of laser energy to hot electrons may be high (30− 40%) (42), the coupling of

those hot electrons to heat the fuel is quite low due to scattering and divergence. While the

conversion of laser energy to protons is low (up to 15%), the coupling of protons to heat the fuel is

in principle much higher since protons are less prone to scattering and exhibit Bragg peak energy

deposition. Still, proton beam transport in the extreme conditions of a compressed capsule have

yet to be studied. The speed of MeV protons is comparable to that of thermal (keV ) electrons in

the capsule, placing this interaction in a regime of energy deposition that has only recently been

investigated experimentally (43). Indeed, further theoretical and experimental investigations into

intense beam transport and stopping power are necessary to gain a fuller understanding of proton

FI.

1.3 Intense Proton Beams in High Energy Density Science

In the preceding section, theory and simulations dictated the necessary proton beam

characteristics to achieve ignition: total energy Eign ≈ 10-30 kJ, average proton kinetic energy

Tp ≈ 5-10 MeV , and beam radius rp ≈ 15-50 µm. Assuming the proton beam pulse length is

τp ∼ 50 ps, these characteristics are equivalent to a time-averaged proton beam current density

20



⟨Jp⟩≳ 1012 A/cm2. While laser-driven proton beams can at present achieve the necessary beam

radii and kinetic energies, their current densities are limited to ∼ 109 A/cm2 due to total beam

energy of several joules. Nevertheless, with continued research into higher laser pulse energies

and laser-to-proton conversion efficiency, we may expect this current density to reach the above

conditions.

As it stands, ICF is not the only application for these laser-driven proton sources. Because

of their relatively short pulse duration (several 10s to 100s ps) and broadband energy spectrum

(up to several 10s of MeV ), these proton beams have found other applications in high energy

density science. Proton deflectometry and radiography techniques have been used to diagnose

electromagnetic fields and density perturbations in transient laser-generated plasmas (44). When

aimed at secondary thin foil samples, proton beams have demonstrated fast heating capabilities

to the warm dense matter regime (14), the significance of which will be discussed later in this

dissertation. If aimed at Beryllium samples, laser-driven deuteron sources have been shown

to generate intense, collimated beams of neutrons (45; 46) which have further industrial and

academic applications in biology and medicine. To an extent, a major increase in beam current

densities may benefit the above applications.

Yet, with higher current densities come potentially new obstacles in the form of beam

transport and energy deposition. Although proton transport and heating is fairly well understood

for low current densities (≲ 109 A/cm2), investigations of the role of plasma collective effects

with high proton current densities have only recently begun. Already, studies have shown that

with current densities not much greater than what is presently achievable, beam transport is

affected by self-generated resistive magnetic fields (25; 47). Also, recent experiments have shown

that discrepancies in proton energy deposition arise with increased current density (48). Indeed,

as continuing research and technology allow ever increasing proton beam intensities, further

investigations of beam transport will be necessary to unlock new regimes of high energy density

science. This dissertation builds on previous research to gain a fuller understanding of intense
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proton beam transport and energy deposition in warm and hot dense plasmas.

1.4 Outline of the Dissertation

CHAPTER 2 provides an introduction to the physics of plasmas, including basic concepts

that provide intuition. Fundamental length scales, time scales, and dimensionless parameters

which characterize the plasma regimes are also introduced to provide a conceptual foundation.

The treatment of particle collisions in various plasma regimes are explicated so that they may be

applied to later topics in this dissertation. High-intensity laser-plasma interactions are discussed

along with four primary laser absorption mechanisms through plasma electrons.

CHAPTER 3 introduces the target normal sheath acceleration (TNSA) mechanism,

which is the primary and most thoroughly understood mechanism for the acceleration of proton

and heavy ion beams from high-intensity lasers incident on thin foils. Theoretical models for

TNSA are discussed and compared with experimental investigations. Parametric studies on the

laser-to-proton energy conversion efficiency and beam focusing methods are summarized. Since

these proton beams may be incident on secondary samples, proton stopping power i.e. energy

deposition models are discussed for a range of proton and ambient material properties.

CHAPTER 4 outlines the fundamentals of a powerful tool used in this dissertation –

simulations. Various types of simulations used in the study of plasma physics are introduced, and

particle-in-cell (PIC) simulations in particular are explained in greater detail, including common

algorithms and computational techniques. The primary code used in this dissertation is the hybrid

fluid-PIC code LSP, whose algorithms combine the treatment of kinetic and fluid particles. This

is advantageous for intense proton beam transport simulations by relaxing some code stability

conditions that fully kinetic codes must satisfy. The treatment of particle collisions and effective

resistivities in LSP is summarized. Previous work on the implementation and benchmarking of

the proton stopping power model presented in Ch. 3 is described.
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CHAPTER 5 gives the setup details and results from an experiment comparing sample

heating due to laser-driven protons from flat and curved foils. This experiment was conducted at

the Matter in Extreme Conditions (MEC) end-station at SLAC National Accelerator Laboratory,

and was the first experiment to provide a platform upon which proton heating and transport

experiments may be done at this facility. Simulations of proton heating using the LSP stopping

power module discussed in Ch. 4 are given and compared with experimental results.

CHAPTER 6 describes a second experiment investigating the transport of intense cone-

guided proton beams through low-density foam samples. Conducted on the OMEGA-EP laser at

the Laboratory for Laser Energetics (LLE), this experiment utilized the spherical crystal imager

(SCI) diagnostic to essentially provide cross sectional images of the proton beam through foam

transit. This is accomplished when energetic protons and electrons “knock out” Cu K-shell

electrons, generating Cu-Kα emission. To distinguish between electron- and proton-induced

emission, a multi-step simulation and post-processing method was used whose results were

compared with experiment. Applications to proton FI and impacts on previous experimental

results for proton transport are discussed.

CHAPTER 7 develops a theoretical model for intense proton beam heating and magnetic

field generation in dense plasmas. The transport of intense proton beams induces a neutralizing

background current which generates resistive magnetic fields. Depending on gradients in resistiv-

ity or current density, these fields may act to focus or defocus the proton beam. The semi-analytic

model introduced here predicts the evolution of these resistive fields, and is benchmarked with

LSP simulations with good agreement. Limits of the model and applications to proton FI are

discussed.

CHAPTER 8 summarizes the results from experiments, simulations, and theory presented

in this dissertation, and provides conclusions. Future work on a self-consistent fluid beam transport

model is proposed and discussed.
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1.5 Role of the Author

The experiment detailed in Ch. 5 was designed by C. McGuffey and M. Bailly-Grandvaux,

with appreciated on-site coordination with and assistance by C. Curry and MEC staff. The

author assisted with experimental setup and target characterization, as well as aiding in pointing

and carrying out laser shots. J. Kim provided guidance and training for the use of LSP for

proton heating simulations. Using the experimental results of proton energy spectra (analyzed

by M. Gauthier), the author carried out all LSP simulations for proton heating of aluminum and

polypropylene targets.

The experiment detailed in Ch. 6 was designed by C. McGuffey, W. Theobald, and O.

Deppert with excellent support from the OMEGA-EP laser operation team and target fabrication

by General Atomics. The author devised the multi-step simulation approach and carried out

simulations and post-processing for Cu-Kα emission, with guidance from J. Kim. To most

accurately reflect the proton beam source as experimentally measured, the author developed

a multi-injection algorithm which injects a proton beam according to both a measured energy

spectrum dN/dεp as well as an energy-dependent half-angle divergence function θ(εp) (which

may be measured with radiochromic film).

Concerning the work in Ch. 7, the author was motivated by the previous proton transport

simulation work in Ref. (47) and developed the model further by incorporating temperature-

dependent resistivity and heat capacity variation. With advisory support on theory from M.

Sherlock, the author then developed a script to numerically solve the coupled set of first-order

ordinary differential equations governing B-field generation and material heating, detailed further

in Ch. 7. The author also ran the LSP simulations to benchmark the results of the semi-analytic

model.
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Chapter 2

Plasma Theory & Laser-Plasma

Interactions

One of the first things everyone learns in their grade-school science class is that there are

three phases of matter – solid, fluid, and gas. The solid state of matter, the subject of condensed

matter physics, is characterized by the organized crystalline structure adopted by atoms making

up a material at low temperatures. Add enough heat, and the atoms gain enough energy to

partially overcome the inter-atomic bonds to become fluid. Heat it further, and the atoms gain

yet more energy to break free of all bonds and become airborne as a gas (which incidentally is

often modeled as a fluid). Heat it even further, and we reach the well-established fourth state of

matter – the plasma. Here, electrons overcome the intra-atomic forces and break free from the

nuclei, resulting in a hot gas of individually charged particles. The plasma state, indeed the most

prominent matter state in our universe, has been the subject of a century of research (49) and is

rich in both fundamental science and application. A basic overview of the physics of plasmas

relevant to this dissertation is presented in the following sections.
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2.1 Plasma Kinetic and Fluid Models

We begin with the heart of kinetic plasma theory – the distribution function. For each

particle species within a plasma (electrons, ions), the distribution function f (r,v, t) for that

species represents the number of particles within a phase-space volume d3r d3v, i.e. with position

between r and r+dr and velocity between v and v+dv. Note that in three-dimensional space,

f (r,v, t) is a 7-D equation. In the presence of an external force Fext and particle collisions, the

evolution of the distribution function is governed by the Boltzmann Equation:

∂ f
∂t

+v ·∇∇∇ f +
Fext
m

· ∂ f
∂v

=

(
d f
dt

)
coll

(2.1)

where m is the species’ particle mass, ∂/∂v is the velocity-space gradient, and (d f/dt)coll is the

collision term. The Boltzmann equation essentially states that particle numbers are conserved as

they flow through phase space.

The zeroth moment of Eq. 2.1 is obtained by integrating each term in velocity space and

simplifying:
∂n
∂t

+∇∇∇ · (nuuu) = 0 (2.2)

where n(r, t)=
∫

f (r,v, t) d3v is the particle number density in space and uuu(r, t)=
∫

v f (r,v, t) d3v

is the average particle velocity. The force term vanishes because it is assumed independent of

velocity (in the case of the magnetic force, ∂/∂v ⊥ v) and the collision term vanishes due to

conservation of momentum. This is regarded as the fluid continuity equation, essentially stating

that on a macroscopic scale, a change in fluid particle quantity in one region of space (first term on

LHS) must be accompanied by the flux of fluid particles along the boundary of that region (second

term on LHS). If there were any particle sources (+) or sinks (-) in the system, the appropriate

terms would appear on the RHS.

Subsequently, the first moment of Eq. 2.1 is obtained by multiplying by mvvv and again
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integrating in velocity space:

mn
(

∂uuu
∂t

+(uuu ·∇∇∇)uuu
)
+∇∇∇ ·P = nFext (2.3)

where P is the pressure tensor related closely to the momentum flux density. The diagonal terms

of the pressure tensor constitute the scalar pressure P, often related to temperature equilibria

through the ideal gas law P = nkBT , and off-diagonal terms relate to shear or viscous stresses.

Eq. 2.3 is regarded as the fluid momentum conservation equation. Similar to the continuity

equation, this states that a change in the momentum of a fluid particle must be accompanied by

a momentum flux density (the pressure tensor), and momentum sources and sinks i.e. external

forces are accounted for on the RHS.

The most prominent external force in the plasma fluid description is the Lorentz force,

Fext = q
(

E+
uuu
c
×B

)
(2.4)

where q is the particle charge, c is the speed of light, and E and B are the electric and magnetic

fields, respectively. Because plasmas may largely comprise charged particles, Maxwell’s equations

governing electromagnetic field generation must be included to close the system of fluid equations

described above:

∇∇∇ ·E = 4πρ (2.5)

∇∇∇ ·B = 0 (2.6)

∇∇∇×E =−1
c

∂B
∂t

(2.7)

∇∇∇×B =
4π

c
J+

1
c

∂E
∂t

(2.8)
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where

ρ(r, t) = ∑
s

qsns(r, t)

J(r, t) = ∑
s

qsns(r, t)uuus(r, t)
(2.9)

are the charge and current density summed over all species s.

2.2 Debye Shielding & Plasma Length Scales

A defining characteristic of an ideal plasma involves the scale length over which external

charges may be shielded out. Assume we have a fully ionized plasma with electron density ne

and ion density ni. To preserve quasi-neutrality,

Zni ≈ ne (2.10)

where Z is the atomic number of the ion. To a good approximation, the ions may be treated as

immobile relative to the electrons since ions’ inertia is far greater than electrons’.

If an artificial charge is suddenly placed within the plasma, an electric potential is intro-

duced and the electrons will react much faster than the ions to re-establish equilibrium. Assuming

thermal equilibrium at temperature T in the presence of an electric potential Φ(r), we may express

the electron density according to Maxwell-Boltzmann statistics:

ne = n0 exp
(

eΦ

kBT

)
ni =

n0

Z
exp
(
−ZeΦ

kBT

) (2.11)

where e is the elementary charge, n0 is the electron density when r → ∞ and Φ → 0 when r → ∞.

This essentially means that the mobile electrons act to form a sheath around the new charge,
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and that any spontaneous electric potential gradients are balanced by the electron pressures.

Combining Eqs. 2.11 with Poisson’s equation ∇∇∇
2
Φ = 4πe(ne −Zni) and assuming ZeΦ ≪ kBT ,

we may approximate the electric potential to first order:

∇∇∇
2
Φ =

4πe2n0(1+Z)
kBT

Φ (2.12)

The Debye length λD pops out as the characteristic scale length over which fields are shielded out

by the electrons (the ion contribution is frequently omitted).

λD ≡

√
kBT

4πe2n0
≈

√
T [eV ]

n0 [1021 cm−3]
(0.23 nm) (2.13)

As the plasma electron density increases, the Debye length decreases because electrons

within a smaller Debye sphere are sufficient to shield the encompassed charge. By contrast, if

electrons have a higher temperature, they are more agitated and augment the Debye sphere. For

an ionized gas with scale length L, any sporadic pockets of charge are shielded locally over a scale

length λD, maintaining the overall equilibrium of the plasma. In this sense, the Debye length

characterizes the neutrality of a plasma insofar as it is considered “quasi-neutral” when λD ≪ L.

The statistical treatment of the above discussion is valid only if there are enough electrons

within a Debye sphere to shield out a charge. Hence, another characteristic of a plasma is precisely

this number of electrons, which must satisfy the criterion:

ND ≡ n0λ
3
D ≈

0.013×
(
T [eV ]

)3/2(
n0 [1021 cm−3]

)1/2 ≫ 1 (2.14)

Hereafter, the Boltzmann constant kB which commonly accompanies temperatures will be dropped,

and temperatures T will assume units of energy (usually eV ).
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Other Plasma Length Scales

While the Debye length is a fundamental plasma scale length for any plasma, other length

scales determine the regimes in which various relevant physics effects must be taken into account.

The mean distance between free electrons in a plasma is the Wigner-Seitz radius, and may be

easily derived by assuming only one electron encompasses a Wigner-Seitz sphere:

rWS =

(
4πne

3

)−1/3

≈ 0.62 nm(
ne [1021 cm−3]

)1/3 (2.15)

Accounting for electrostatic fields, the Landau length r0 among free electrons is defined

as the distance at which the Coulomb energy between any two electrons equals the mean kinetic

energy (determined by the electron temperature) of each:

r0 =
e2

Te
≈ 1.44 nm

Te [eV ]
(2.16)

For any two particle species α and β with masses mα and mβ and charges Zαe and Zβe, a

generalized Landau length may be determined in the center-of-mass frame of a system of two

example particles. Given the relative velocity of the particles ∆vαβ ≡ |⟨vα⟩−⟨vβ⟩| and reduced

mass µαβ ≡ mαmβ/(mα +mβ), the Landau length is:

rαβ =
ZαZβe2

µαβ∆v2
αβ

(2.17)

Quantum mechanical effects must also be accounted for when scale lengths approach the

de Broglie wavelength λdB = h/p, where h is Planck’s constant and p is the particle momentum.

For a typical plasma electron with thermal velocity vth,e =
√

Te/me, the de Broglie wavelength

becomes:

λdB =
h

mevth,e
≈ 1.73 nm√

Te [eV ]
(2.18)
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Similar to the generalized Landau length, quantum effects between any two particle species may

be accounted for at the generalized de Broglie wavelength:

λdB,αβ =
h

µαβ∆vαβ

(2.19)

2.3 Plasma Oscillation

As with all physical systems, characteristic spatial scales are only part of the big picture.

While the Debye length characterizes the fundamental spatial scale of a plasma, the fundamental

time scales must also be determined. We may start by assuming, as before, a fully ionized plasma

at equilibrium, where the (effectively immobile) ions form a neutralizing background fluid. If all

the electrons are artificially displaced a short distance δx ≪ λD in the x direction, this space charge

separation would beget an electrostatic field acting to re-establish equilibrium. The electrostatic

field would essentially mimic that of a parallel-plate capacitor, E = 4πen0δx x̂. Assuming no

other forces at play, the individual electron equation of motion is:

d2δx
dt2 =−4πe2n0

me
δx (2.20)

with electron mass me. Clearly, high frequency harmonic oscillation ensues with electron plasma

frequency

ωp,e =

√
4πe2n0

me
≈
√

n0 [1021 cm−3] (1.8 rad/ f s) (2.21)

Plasma oscillations occur on time scales τp,e ∼ ω−1
p,e, which may be interpreted as that at

which quasi-neutrality is re-established after small perturbations. Note that the scenario above

assumed there were no electron collisions, and that the plasma frequency is dependent only on

the free electron density. With collisions, electron temperatures may be established, and plasma

oscillations are allowed to propagate. In this case, we note that the electron thermal velocity
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unites plasma oscillation with the Debye length:

vth,e = λDωp,e ≈
√

Te [eV ] (0.42 µm/ps) (2.22)

2.4 Coulomb Coupling

Given the plethora of length and time scales introduced above, we may be able to classify

plasmas based on the relative energies acting on the particles. Recalling the reasoning behind the

Landau length, the plasma coupling parameter Γ is defined as the ratio of the Coulomb coupling

energy to the kinetic energy of electrons:

Γ =
e2

rWSTe
≈

2.3×
(
ne [1021 cm−3]

)1/3

Te [eV ]
(2.23)

where the Wigner-Seitz radius was chosen to yield an average potential energy between electrons.

In the case Γ ≪ 1, the electrons’ kinetic energy outweighs the Coulomb potential, in which case

electric fields sparsely bump electron trajectories and are therefore practically collisionless. The

dynamics of this weakly coupled plasma are governed by collective effects. In the opposite case

of Γ ≫ 1, the kinetic energy of the electrons is insufficient to overcome the Coulomb potential.

This strongly coupled plasma is characterized by fluid or solid structure, where electron dynamics

are governed primarily by fields.

Reducing Eq. 2.13, 2.14, 2.15 and 2.23 to their scalings with density n0 and temperature

Te, we observe that they are related by

ND ∝ Γ
−3/2 (2.24)

In essence, when the Debye sphere is largely populated (ND ≫ 1), the potential is shielded out

quickly and electron-electron interactions are sparse in both time and space, suitable for ideal
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plasmas and conducive to dominant collective effects. The scalings suggest that weakly coupled

plasmas generally run hot with low density, similar to gases, whereas strongly coupled plasmas

run cold with high density, much like fluids or solids.

2.5 Warm Dense Matter and Electron Degeneracy

So far, we have introduced two overarching plasma regimes – ideal and non-ideal. Warm

dense matter (WDM) is considered the intermediate state and is the subject of a highly active field

of research. It is “warm” because its temperatures Te ∼ 1-100 eV are high enough to partially

but not fully ionize atoms i.e. not as hot as ideal plasmas, and “dense” with densities ne ∼ 1021-

1023 cm−3 close to solid state. Electrons, as indistinguishable fermions, must abide by the Pauli

exclusion principle, wherein at most one electron may occupy a quantum state in a system. In a

many-electron system, electrons are energetically assembled from the ground state up, ultimately

leading to a Fermi-Dirac energy distribution function

fFD(E) =
1

1+ exp
(

E−EF
Te

) (2.25)

where EF is the Fermi energy characteristic of the WDM regime and takes the form:

EF =
ℏ2

2me
(3π

2ne)
2/3 ≈

(
ne [1021 cm−3]

)2/3
(0.36 eV ) (2.26)

with free electron number density ne. Typical Fermi energies are 7 eV for copper, 11.7 eV for

aluminum, and 5.5 eV for gold, all at room temperature.

The plasma degeneracy parameter Θ is defined as the ratio of the electron kinetic energy
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Figure 2.1: Concept illustration of electron degeneracy when temperature and density are varied.
Wigner-Seitz radius is here represented by d while deBroglie wavelength is represented by ∆x.
Figures taken from Ref. (7).

Te to the characteristic energy at which quantum mechanical effects must be accounted for:

Θ =
Te

EF
≈

2.74×
(
Te [eV ]

)(
ne [1021 cm−3]

)2/3 (2.27)

In particular, it describes the point at which the Pauli exclusion principle precludes electrons

(fermions) from bunching into the same quantum states. This may be seen if we compare the

typical inter-electron distance with quantum electron scale lengths:

Θ ∝

(
rWS

λdB

)2

(2.28)

Low electron temperatures (Θ ≲ 1) implies that the average inter-electron distance is less than

quantum scale lengths. In this case, the degenerate plasma obeys Fermi-Dirac statistics along

with Eq. 2.25 to accurately model the quantum behavior of electrons. Fig. 2.1 illustrates the

degeneracy parameter with respect to Eq. 2.28 as temperature and density vary.

In the ideal plasma limit with high electron temperatures and/or low densities (Θ ≫ 1),
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quantum effects are negligible and the nondegenerate electrons act as classical particles in thermal

equilibrium. It can be shown in this case that Eq. 2.25 reduces to the classical Maxwell-Boltzmann

(or Maxwellian) energy distribution:

fMB(E) ∝ exp
(
−E −EF

Te

)
(2.29)

2.6 Collisions in Dense Plasmas

Collisions play a fundamental role in plasma dynamics. For one, using a fluid or kinetic

model to describe a plasma system is largely determined by the frequency and manner of particle

collisions. Fundamentally, collisions manifest the exchange of energy and momentum among

particles and fields, whatever the state of matter. The length and time scales associated with

these exchanges vary significantly in astrophysical or laboratory experiments, but they allow

estimations of the negligible processes. In particular, the collisions of electrons with various

objects, including other electrons, largely determines the essential dynamics at play in many

scenarios (50).

The following sections describe the electron collision frequencies νe and the relaxation

times τe = 1/νe relevant to this dissertation. One may interpret the collision frequency as not only

the number of collisions, but also the probability of encountering a collision event, per unit time.

The complementary length scale is the electron mean free path λm f p, and these two parameters

are generally linked by the average or characteristic electron velocity vth in the medium:

λm f p =
vth

νe
(2.30)
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2.6.1 Electrons in Lattice

In solids close to room temperature, atoms have a quasi-static lattice arrangement with

vibrations determined by the ion temperature Ti. These lattice vibrations are represented by

phonons which may propagate and collide with electrons. As previously explained, electrons

in this state are strongly coupled and degenerate, so that they travel at approximately the Fermi

velocity vF =
√

2EF/me. In the limit of cold solids where the bulk ion temperature Ti ≪ EF , the

electron collision frequency is calculated with the expression (51; 52):

νe−ph ≈ ks
2e2

ℏ2vF
Ti ≈ ks

Ti [eV ](
ne [1021 cm−3]

)1/3

(
1.87×1016 Hz

)
(2.31)

where ks is a unitless constant used to match with room temperature measurements. The first

approximation is made in the cold solid limits of vF ≪ c and ℏωpi ≪ Ti where ω2
pi = 4πZ2e2ni/mi

is the ion plasma frequency.

As cold solids are heated and approach the Fermi temperature Te ≲ EF , more electrons

gain kinetic energy and become free above melting temperature, entering into the fluid regime.

Electron-electron interactions begin to dominate the electron collision frequency, determined by

(53; 54):

νe−e = Aν

T 2
e

ℏEF
≈ Aν

(
Te [eV ]

)2(
ne [1021 cm−3]

)2/3

(
4.2×1015 Hz

)
(2.32)

where Aν is a unitless constant varying with materials. Since electron-electron and electron-

phonon interactions are independent processes, we approximate the total electron collision

frequency in the cold regime Te < EF by adding the two primary contributions:

ν
cold
e = νe−e +νe−ph (2.33)
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Figure 2.2: Classical configuration of particle α scattering off particle β in their center-of-mass
reference frame, with scattering angle θ dependent on the impact parameter b.

2.6.2 Electrons in Ideal Plasma

In the ideal plasma regime where Θ ≫ 1 and Γ ≪ 1, atoms are assumed approximately

fully ionized. Electrons are therefore nondegenerate and interact primarily with each other in

binary Coulomb collisions. Consider an isolated classical system in which one particle of species

α approaches with impact parameter b and scatters off another particle of species β via the

Coulomb potential, as in Fig. 2.2. It has been established that in the center of mass reference

frame particle α exhibits a hyperbolic trajectory with scattering angle θ such that:

tan
θ

2
=

b⊥
b

(2.34)

where

b⊥ ≡
qαqβ

µαβv2
αβ

(2.35)

is the impact parameter for the particular case of θ = 90◦ scattering. Here, the particles have

charges qα and qβ, reduced mass µαβ = mαmβ/(mα +mβ), and relative velocity vαβ = vα −vβ.

As the impact parameter increases indefinitely, the scattering angle θ → 0, and we may

infer that small-angle deflections far outnumber large-angle deflections. Assuming small-angle

elastic collisions for a particle α moving with initial velocity v∥, Eq. 2.34 allows us to approximate
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the transverse velocity gain per collision ∆v⊥ = v∥ tanθ ≈ 2v∥b⊥/b. Due to the equal probability

of scattering in one transverse direction or the other, we expect ∆v⊥ to vanish over many collisions,

but that its square (∆v⊥)2 should not. The number of particles β that particle α will encounter in

a time ∆t between impact parameters b and b+db is nβ(v∥∆t)(2πb db). The cumulative spread

of (∆v⊥)2 over ∆t is then obtained by integrating their product over the impact parameter:

∑
(
∆v⊥

)2
=

∫ (
2v∥

b⊥
b

)2

nβ(v∥∆t)(2πb db) = 8πv3
∥b2

⊥nβ∆t lnΛ (2.36)

where Λ = bmax/bmin will be discussed shortly.

Typically in an ideal plasma, repeated small-angle deflections add to a large-angle deflec-

tion. In this sense, we may define a relaxation time τ as the time over which the initial momentum

of particle α converts to transverse momentum:

v2
∥ ≃ ∑

(
∆v⊥

)2
= 8πv3

∥b2
⊥nβτ lnΛ (2.37)

The corresponding collision frequency is naturally the inverse of the relaxation time. For mobile

electrons colliding with (practically) immobile fully ionized ions, b⊥ ≈ Ze2/mev2
e and the electron

collision frequency is

ν
sp
e =

1
τ
=

8πniZ2e4

m2
ev3

e
lnΛ ≈ ni [1021 cm−3] Z2 lnΛ(

Te [eV ]
)3/2

(
7.7×1015 Hz

)
(2.38)

assuming the electrons have self-thermalized to temperatures Te. The above collision frequency

for an ideal plasma is conceptually derived from the Spitzer model (55), at which a more rigorous

derivation with accurate numerical multipliers (e.g. for electrons with Maxwellian distributions,

etc.) may be obtained.

Eq. 2.38 highlights the main scalings with density, temperature, and the “Coulomb

logarithm” lnΛ. This log of the ratio of bmax to bmin quantifies the relative importance of small-
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vs. large-angle deflections. Recalling that plasma electrons exhibit Debye shielding, we may

infer that impact parameters are significant up to approximately the Debye length, i.e. bmax ∼ λD.

Of course, in the derivation of Debye shielding, it is assumed that many particles within the

Debye sphere are contributing to the screening, so naturally a lower limit for bmax should be the

inter-electron distance, so

bmax = max(λD,rWS) (2.39)

On the other end, small impact parameters yield large-angle deflections, the threshold for which

may be approximated by b⊥. At impact parameters sufficiently close where quantum effects must

be accounted for, we may use for bmin the deBroglie wavelength:

bmin = min(b⊥,λdB) (2.40)

As an example, we may take for electrons scattering off ions

Λ =
λD

b⊥
∝

T 3/2
e

n1/2
e

(2.41)

Even though Λ depends on temperature and density, their containment within the logarithm

suppresses these very dependencies. Recalling Eq. 2.14 and noting that Λ ∝ ND, we observe that

the plasma condition implies Λ ≫ 1. In general, lnΛ ranges between 5 and 20 over a wide range

of plasmas including intense laser-generated plasmas and thermonuclear fusion cores.

2.6.3 Electrons in Dense Plasmas

We have so far observed that the electron collision frequency increases with electron tem-

perature in the condensed matter regime (Te ≲ EF), but decreases with temperature in the Spitzer

regime (Te ≫ EF). Assuming constant electron density, we may infer that in the intermediate

temperature range Te ≳ EF , the electron collision frequency must reach a local maximum within
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Figure 2.3: Harmonic mean of electron collision frequencies in cold (blue), warm (purple), and
hot (red) regimes for solid density aluminum.

the WDM regime.

Eq. 2.30 shows that an upper limit of the electron collision frequency corresponds to

a lower limit of the electron mean free path between collisions. It is reasonable to constrain

λm f p by noting that on average, any one electron travels at least the inter-atomic spacing before

encountering another collision, i.e. λm f p ≥ ri. Therefore, using Eq. 2.30, the maximum electron

collision frequency is:

ν
max
e =

vch

ri
(2.42)

where in this regime, vch =
√

(Te +EF)/me is the characteristic electron velocity and ri = n−1/3
i

is the inter-atomic spacing. The Drude model, which will be explained in Sec. 4.3, shows that

plasma resistivity is proportional to the total electron collision frequency. In this context, the

maximum collision frequency shown above for the WDM regime provides the fundamental

mechanism for collisional or resistive saturation, which has been demonstrated experimentally

(56; 22) and computationally (57; 58) in metals such as copper and aluminum.
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Having introduced the electron collision frequency in the condensed matter (Eq. 2.33),

warm dense matter (Eq. 2.42) and Spitzer (Eq. 2.38) regimes, we are interested in combining

them into one smooth analytic expression applicable to all regimes. Taking cue from Ref. (52),

the total electron collision frequency νtot
e is calculated via a harmonic mean of each regime’s

relaxation time: (
ν

tot
e
)−2

=
(
νe−e +νe−ph

)−2
+(νsp

e )−2 +(νmax
e )−2 (2.43)

In combining the individual collision frequencies this way, to first order the lowest calculated

collision frequency has the greatest impact νtot
e . At the intersection of two regimes, νtot

e is not

far from either of their corresponding collision frequencies while still allowing a smooth i.e.

differentiable transition. This bodes well for the unclear intersection of the warm dense matter

regime (Te ≳ EF) to Spitzer regime (Te ≫ EF); we note that the cutoff is roughly five to ten times

the Fermi energy (56; 59; 60). Fig. 2.3 depicts the total collision frequency of solid aluminum

as a function of temperature, along with its comprising asymptotes for each regime described

above. The Eidmann-Chimier model above has been used in laser-plasma interaction modeling as

in Refs. (52; 59; 60).

2.7 Laser-Plasma Interactions

Having outlined the important quantities and characteristics of plasmas, we are now in a

position to discuss the interactions of electromagnetic waves in plasmas. In this section, we will

first derive the basic dispersion relations for a light wave in plasma and deduce the limits of its

propagation. With high intensity lasers, various mechanisms for laser energy absorption into the

plasma come to light (pun intended). We outline four dominant mechanisms, which vary with

plasma gradients and laser intensities up to relativistic levels.
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2.7.1 Laser Dispersion in Plasma

The dispersion relation relates the wave vector |kL| = 2π/λL to the frequency ωL for

wavelength λL of an electromagnetic wave, and governs its propagation through a medium. To

start simply, let us assume propagation in a vacuum i.e. source terms (ρ,J) = 0 in Maxwell’s

Equations 2.5-2.8. Taking the curl of Faraday’s Law (Eq. 2.7) and using the curl identity

∇∇∇× (∇∇∇×A) = ∇∇∇(∇∇∇ ·A)−∇2A we obtain:

∇
2E =

1
c

∂

∂t
(∇∇∇×B)

noting that ∇ ·E = 0. Inserting Ampere’s Law (Eq. 2.8) with J = 0, we obtain the wave equation

for the electric field:

∇
2E =

1
c2

∂2E
∂t2 (2.44)

Similarly, if we instead took the curl of Ampere’s Law and inserted Faraday’s Law, we would

obtain the wave equation for the magnetic field:

∇
2B =

1
c2

∂2B
∂t2 (2.45)

Assuming both fields oscillate in space and time as:

E ∝ exp[ i(kL · r−ωLt) ]

B ∝ exp[ i(kL · r−ωLt) ]
(2.46)

we may make the substitutions ∇∇∇ → ik and ∂/∂t →−iω into Eqs. 2.44-2.45 to obtain the familiar

dispersion relation for electromagnetic waves in vacuum:

k2
Lc2 = ω

2
L (2.47)
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Of course, taking either Ampere’s or Faraday’s Law individually and using the above dispersion,

we note that the electric and magnetic fields are orthogonal to one another and to the direction of

propagation k̂×E = B, painting the common picture of a light wave.

When this vacuum-propagating light wave is incident onto plasma, the oscillating fields

drive plasma motion, and the source terms may no longer be nonzero. This is manifested by

adding the current term from Ampere’s Law into Eq. 2.44:

∇
2E =

1
c2

∂2E
∂t2 +

4π

c2
∂J
∂t

(2.48)

Assuming again that ions are relatively immobile compared to electrons, the laser will primarily

couple to the electrons, whose equation of motion is then:

me
∂ve

∂t
=−e

(
E+

ve

c
×B

)
(2.49)

Assuming for a moment that the electric field is not intense enough to accelerate electrons

relativistically, we may ignore the magnetic component. Then,

∂J
∂t

≈−ene
∂ve

∂t
=

nee2

me
E (2.50)

Physically, this means that an oscillating wave induces oscillatory motion in the plasma. Plugging

this back into Eq. 2.48 and replacing ∇ and ∂/∂t as before, we obtain the dispersion relation:

k2
Lc2

ω2
L

≡ ε = 1−
ω2

p,e

ω2
L

(2.51)

where ε is the dielectric function. Note that in vacuum, ωp,e = 0 and we recover Eq. 2.47.

This brings to bear a crucial property of laser propagation in plasma. As the plasma

frequency approaches the laser frequency, the wave vector approaches zero, which means there
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exists a critical plasma density ncr above which the laser cannot propagate. This may be found by

equating the laser and plasma frequencies:

ncr =
meω2

L
4πe2 =

1.1×1021 cm−3(
λL [µm]

)2 (2.52)

where we have used ωL = 2πc/λL. In an overdense plasma (ne > ncr or ωp,e > ωL), ε < 0 and kL

becomes imaginary so that and the fields exponentially decay (recall Eqs. 2.46). The scale length

over which the field attenuates is given by the skin depth:

δ =
1
kL

=
c

iωL
√

ε
, (2.53)

which is real since in this case ε < 0. Beyond the critical surface i.e. where ne = ncr, the laser

becomes evanescent; on a macroscale, the laser simply reflects off the critical surface.

2.7.2 Inverse Bremsstrahlung

The preceding analysis assumes that electrons, having been excited by the laser, are

thereafter undisturbed, as described in Eq. 2.50 by not accounting for ions. Coupled with Eq. 2.46,

this shows that any energy imparted to electrons in a half-cycle of the laser would be reversed in

the the next half-cycle (in mathematical terms, ve ∝ iE/ωL follows behind E by a phase angle).

Evidently, when a laser propagates into and subsequently leaves a plasma, the electrons have no

net energy gain and are ultimately left with the same energy as before the laser arrived!

While ions may still be approximated as immobile due to their large inertia, their effect on

laser absorption does not end there. As analyzed in Sec. 2.6.2, electrons indeed undergo collisions

with ions, and precisely this process is behind collisional absorption. In essence, electrons may

be dephased, or “knocked out” of the electric field oscillation upon collisions with ions, and

may therefore steal the laser energy it had absorbed before the dephasing. This mechanism is
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also called inverse bremsstrahlung because it is the bremsstrahlung process (photon produced

by electron deflections from ions) in reverse (photon absorbed). Following the analysis in (61),

this mechanism is investigated by adding a collisional damping term to Eq. 2.49 (again assuming

non-relativistic motion):
∂ve

∂t
=−eE

me
−νeive (2.54)

where νei is evaluated from Eq. 2.38. Following the shorthands (∇ and ∂/∂t) from the preceding

derivation, the electron velocity is now:

ve =
−ie

me(ωL + iνei)
E (2.55)

and the new current density is:

J =−eneve =
iω2

p,e

4π(ωL + iνei)
E = σE (2.56)

where σ is the electrical conductivity of the plasma.

Plugging our modified current density into Eq. 2.48, we obtain the dispersion relation for

collisionally damped fields in plasma:

k2
Lc2

ω2
L

≡ ε = 1−
ω2

p,e

ω2
L

1− i νei
ωL

1+ ν2
ei

ω2
L

(2.57)

As before, wave damping occurs when the wave number becomes imaginary. If we assume that

νei ≪ ωL, we may approximate the wave number above to first order in νei/ωL:

kL ≈ ωL

c

√
1−

ω2
p,e

ω2
L

1+ i
ω2

p,e

ω2
L

νei

2ωL

1

1− ω2
p,e

ω2
L

 (2.58)

Noting that ne/ncr = ω2
p,e/ω2

L, we may obtain the inverse bremsstrahlung damping rate κIB by
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doubling the imaginary part of kL:

κIB = 2 I{kL} ≈
νei

c
ne/ncr√

1−ne/ncr
(2.59)

We observe that the laser damping rate is greatest as it approaches the critical surface. It is also

most dominant for high-Z, low temperature plasmas through its dependence on electron-ion

collision frequency. Collisional absorption is the dominant laser absorption mechanism for laser

intensities under ∼ 1015 W/cm2 (62), and preferentially heat low-energy non-relativistic electrons

(63).

2.7.3 Resonance Absorption

When a high intensity laser irradiates a target, it is often the case that this generates a

blow-off, or coronal plasma. This in turn creates an electron density gradient stretching from

the target surface into the vacuum, over a gradient scale length Ln ≡ ne/∇∇∇ne. For a laser whose

propagation direction is parallel to this gradient i.e. E ·∇∇∇ne = 0, the laser permeates the plasma up

to the critical density according to Eq. 2.51. If, however, the laser propagates at an angle relative

to the plasma gradient with a co-planar polarization i.e. p-polarized or E ·∇∇∇ne ̸= 0, the electric

field of the laser will have a component in the direction of the plasma gradient. This scenario is

depicted in Fig. 2.4, wherein a laser is incident from vacuum onto a plasma at an angle θ0 relative

to the density gradient (or target normal). Using Snell’s Law of refraction along with the fact

that the refractive index of a plasma is nre f =
√

ε with Eq. 2.51, we find that the laser gradually

refracts up the plasma gradient and reflects when ne = ncr cos2 θ0, notably before reaching critical

density!

At this turning point, the electric field is fully parallel to the density gradient and drives

longitudinal density oscillations, which generate electrostatic fields and excite electron plasma

waves (EPW) down the density gradient. If part of the electric field tunnels through and reaches
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Figure 2.4: Resonance absorption configuration – laser incident at angle θ0 with the plasma
gradient direction reflects when plasma density is a fraction of the critical density, but may still
drive electron plasma waves beyond critical density if the laser field reaches the critical surface.

the critical density where ωp,e = ωL, the EPW is resonant with the laser frequency. This laser

absorption mechanism, called resonance absorption, is inherently a collisionless process, unlike

inverse bremsstrahlung from the previous section. The electrostatic driving field is given by (64):

Ed =
ε(ne)φ(τ)√
2πωLLn/c

E (2.60)

where τ = (ωLLn/c)1/3 sinθ0 relates the density scale length to the incidence angle, and

φ(τ)≈ 2.3τ e−2τ3/3 (2.61)

describes the exponential decay of the field between the laser reflection point and critical density.

An underlying assumption here is that the density varies linearly (ne/ncr = z/Ln) and gently

across one laser wavelength, Ln ≫ λL.

Energy transfer then occurs when the electron plasma wave is damped, generally through

Landau damping. Assuming a small damping frequency ν ≪ ωL, the fraction of laser energy

47



absorbed by the plasma may be approximated by (64):

fRA ≈ φ
2(τ)/2 (2.62)

If the laser incidence angle is close to normal, the longitudinal electric field is brief and narrow; if

the incidence angle is close to 90◦, the field significantly decays and plasma waves are inefficiently

excited. The optimum incidence angle for maximum laser energy absorption is such that τ =

(1/2)1/3 ≈ 0.8. Resonance absorption is the dominant mechanism for laser intensities between

∼ 1015 −1017 W/cm2, when the laser is able to heat the plasma to high enough temperatures that

electrons become collisionless
(

recall that νei ∝ T−3/2
e

)
. Particle-in-cell simulations (65; 66)

have shown that hot (relativistic) electrons are accelerated from overdense to underdense plasma

regions, forming a high-energy Maxwellian tail whose temperature scales as

Thot ∼
(

Te [keV ] ILλ
2
L

[
1016 Wcm−2µm2

])1/3

(14 keV ) (2.63)

over the background Maxwellian distribution characterized by cold temperature Te at critical

density.

2.7.4 Vacuum Heating

With resonance absorption, we observe that as the density scale length Ln decreases, φ(τ)

also decreases, and with it the laser absorption fraction. Assuming the laser is still obliquely

incident and therefore reaches a turning point where the electric field is along target normal, if the

density gradient becomes too steep relative to the laser wavelength Ln ≪ λL, the electric field may

be intense enough to pull electrons free from the plasma into vacuum within half a laser cycle. In

the next half-cycle, these electrons are accelerated back into the plasma, and with enough energy

to clear the critical surface, they may break free from the laser oscillation as well!
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This may be demonstrated by first noting the equation of motion for an electron within an

electromagnetic field:

meẍ =−eEL cos(ωLt) (2.64)

We are omitting the magnetic field term from the Lorentz force for now because we assume

nonrelativistic motion, to be justified later. Integrating Eq. 2.64 once, we may define the electron

quiver speed vosc ≡ eEL/meωL due to the oscillating E-field. Noting that the laser intensity in

vacuum is related to its electric field via the Poynting vector IL = ⟨S⟩= cE2
L/8π, we may define

the laser parameter a0 as the normalized vector potential:

a0 =
vosc

c
=

posc

mec
=

eEL

mωLc
≈ 0.85

√
ILλ2

L [1018 Wcm−2µm2] (2.65)

From this estimation, laser intensities exceeding ∼ 1018 W/cm2 (usually λL ∼ µm) are dubbed

relativistic, since at these intensities the electron quiver velocities approach light speed. Integrating

a second time gives the electron oscillation amplitude xosc ≡ eEL/meω2
L, which may be compared

with the plasma density scale length as:

xosc

Ln
=

eEL

mω2
LLn

=
eEL

mωLc
c

ωLLn
∼ a0

λL

Ln
≫ 1 (2.66)

for intensities ≳ 1016 W/cm2. It is clear that electric fields are strong enough to pull electrons into

vacuum, then launch them back beyond the critical surface and into the plasma. This mechanism,

called vacuum heating or Brunel heating, was first investigated by Brunel (67) in 1987.

Assuming the laser pulls out sheets of electrons at a time, we may approximate these

sheets as the cathode of a dynamic capacitor model driven by a standing electrostatic wave

with amplitude Ed = 2EL sinθ0, where the factor of 2 arises from the reflected wave – the laser

trajectory in Fig. 2.4 is modified such that incident and reflected waves are mostly linear, since

refraction only occurs close to the critical surface. The areal charge density σ ≡ dq/dA is then
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found by equating the driving electric field with the classic capacitor field:

σ =
2EL sinθ0

4π
(2.67)

Assuming electron sheets are pulled every laser cycle, the power gained by electrons per unit area

is then:

IV H ∼
(

1
2

mev2
d

)
σ

e
ωL =

vdE2
d

8π
(2.68)

where vd ≡ eEd/meωL, and the absorption fraction from vacuum laser intensity is:

fV H =
IV H

IL
∼ 8a0 sin3

θ0 (2.69)

A more empirical formulation for the laser absorption fraction fV H has been given by Brunel

(67):

fV H ≈ η

2π

sin3
θ0

cosθ0
8a0 (2.70)

where η is an efficiency factor measuring how much electron oscillations go towards heating

the plasma. Kato et al. (68) later determined that the efficiency depends on the plasma density

like η ≈
(
1−ω2

L/ω2
p,e
)−1. For laser intensities ∼ 1016 W/cm2 and density gradient Ln/λL ∼ 0.1,

absorption fractions may be as large as 70% (62). As the intensity increases to relativistic levels,

however, the absorption fraction levels off around 10-15% as another absorption mechanism

begins to dominate, as described in the next section.

2.7.5 Ponderomotive Force & J×B Heating

Theoretically, it is often assumed that lasers (electromagnetic waves) are plane wave

and spatially homogeneous. A resting charged particle in the vicinity of the laser would then

experience an equal and opposite displacement in one half cycle of the field oscillation as in the

next, essentially oscillating about an equilibrium position. In reality, lasers are often spatially

50



inhomogeneous, more intense along the laser axis and decaying outward. This inhomogeneity

has the fundamental effect of pushing particles towards regions of less intensity, for the following

reason. A particle initially at rest on the laser axis would be displaced by the field, in one

half-cycle, to a region with a less intense field. In the next half-cycle, the decreased field intensity

manifests as a smaller displacement, not quite reaching the initial position. On average over the

course of many field oscillations, the particle exhibits a drift toward regions of less intense fields

due to the so-called ponderomotive force, essentially because the less intense fields cannot fully

restore the particle to the regions of more intense fields.

To demonstrate this analytically, we may start with the equation of motion of a charged par-

ticle (charge q, mass m) in the vicinity of a linearly polarized laser field with E = E(x)cos(ωLt)x̂.

In this scenario, we may assume the laser propagates in the +z direction, but since the motion

of the particle is along the x-axis, we may take z = 0 (for now, we assume the particle motion is

nonrelativistic). The equation of motion of the particle is then:

mẍ = qE(x)cos(ωLt) (2.71)

We may break up the motion into the guiding center motion x0(t) associated with the (slow)

spatial variation of the electric field, and an oscillatory component x1(t) associated with the (fast)

oscillation (∼ ωL) of the electric field, so that x = x0 + x1. Plugging this into Eq. 2.71 and Taylor

expanding around the guiding center x0, we obtain:

m(ẍ0 + ẍ1) = q

(
E(x0)+ x1

∂E
∂x

∣∣∣∣
x0

)
cos(ωLt) (2.72)

Straightaway, the Taylor expansion implicitly assumes that x1 ≪ E/∂E
∂x

∣∣
x0

i.e. the scale

length of the electric field gradient is much larger than the oscillation amplitude due to the electric

field. By breaking up the motion into fast oscillation and slow drifts, we also recognize that

ẍ1 ≫ ẍ0 i.e. the acceleration of the guiding center will generally be much smaller than that of
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the oscillation. Then, to zeroth order in space, we have mẍ1 = qE(x0)cos(ωLt) whose solution is

easily found to be:

x1(t) =− q
mω2

L
E(x0)cos(ωLt) (2.73)

To first order in space, we have for the ponderomotive force on the guiding center:

Fp = mẍ0 = qx1
∂E
∂x

∣∣∣∣
x0

cos(ωLt) =− q2

mω2
L

E(x0)
∂E
∂x

∣∣∣∣
x0

cos2(ωLt) (2.74)

After cycle-averaging the oscillation ⟨cos2(ωLt)⟩ and generalizing the spatial gradient, we obtain

the cycle-averaged ponderomotive force:

⟨Fp⟩=− q2

4mω2
L

∇∇∇E2 (2.75)

Uniquely, the −q2 implies (1) that both ions and electrons respond in the same direction, and (2)

this direction is toward lesser field intensities. Since electrons are far more mobile than ions, the

ponderomotive force drives steep charge separation, and the corresponding electrostatic field may

accelerate ions over longer time scales.

The preceding analysis assumed that the laser intensity was not relativistic i.e. a0 ≪ 1.

At relativistic intensities, the magnetic field component in the Lorentz force cannot be ignored

and the electron motion is consequently very different. For relativistic intensities, we may start

with the simplified case of a normally incident uniform plane wave E = E0x̂ ei(kLz−ωLt) where â

propagating in the ẑ direction and polarized in the x̂ direction. Conceptually, we predict that the

electric field will accelerate the electrons from rest along x̂. Since the magnetic field is orthogonal

to both x̂ and ẑ, it will then accelerate the moving electrons longitudinally so that the electron

motion remains in the x-z plane.
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The equation of motion for an electron fluid is:

∂p
∂t

+(v ·∇∇∇)p =−e
(

E+
v
c
×B

)
(2.76)

Using the relativistic momentum p = γmev, where γ =
√

1+a2
0 for circularly polarized light and

γ =
√

1+a2
0/2 for linearly polarized light, and the electromagnetic vector and scalar potentials

to replace E =−1
c

∂A
∂t and B = ∇∇∇×A, Eq. 2.76 becomes:

∂p
∂t

+
(p ·∇∇∇)p

γme
=

e
c

∂A
∂t

+
e

γmec
(p×∇∇∇×A) (2.77)

An electric potential term ∇∇∇Φ may be added to modify the electric field, but it would generally

drop into the final results (Eq. 2.79) untouched.

We may decompose the momentum and Eq. 2.77 into its longitudinal (ẑ,∥) and transverse

(x̂,⊥) components, noting that p×∇∇∇×A=∇∇∇(A ·p)−(p ·∇∇∇)A where A=A(z, t)x̂ and ∇∇∇→ ∂/∂z.

The transverse component is:

(
∂

∂t
+ v∥

∂

∂z

)(
p⊥− eA

c

)
=

d
dt

(
p⊥− eA

c

)
= 0 (2.78)

The differential operator on the left hand side of Eq. 2.78 represents the time rate of change in the

frame of reference of the electron, or d/dt. This can be seen by making the change of variable

ξ = kLz−ωLt and noting that its total time derivative is dξ/dt = kLv∥−ωL. From this result, we

may define the canonical momentum P = p− eA/c noting that P⊥ = 0 and P∥ = p∥. Plugging

this back into Eq. 2.77 and solving for the longitudinal component yields:

d p∥
dt

=−mec2
∇∇∇(γ−1) (2.79)

This is the relativistic ponderomotive force, often associated with a ponderomotive
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potential bearing a striking resemblance to the kinetic energy:

Up = mec2(γ−1) (2.80)

Taking the nonrelativistic limit (a0 ≪ 1) of Eq. 2.79 for linearly polarized light, we easily

recover Eq. 2.75. The primary difference between the two is that with relativistic laser intensities,

electrons propagate along with the laser far more than transversely, mainly due to the J×B

term. This acceleration and subsequent plasma heating mechanism is consequently dubbed J×B

heating, dominant for laser intensities ≳ 1018 W/cm2 (69). The J×B force may be represented

as:

Fp =−
mec2 ∇∇∇

(
a2

0
)

4
(1− cos(2ωLt)) (2.81)

where the second term is the oscillating component. Similar to vacuum heating, electrons are

pulled out into vacuum and accelerated into the plasma, but here at twice the laser frequency. At

relativistic velocities, electrons may clear the critical surface and dephase from the laser. The

hot electrons resulting from this mechanism assume an effective temperature scaling with the

ponderomotive potential:

Thot ≈

√1+
ILλ2

L
1.37×1018 Wcm−2µm2 −1

 511 keV (2.82)

This has been demonstrated both computationally (70) and experimentally (71; 72). The experi-

ments explained in this dissertation have used relativistic laser intensities, making J×B heating

the primary heating mechanism to drive hot electrons.
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Chapter 3

Proton Acceleration & Transport

When a high-intensity laser interacts with a cold (read: room temperature) solid target,

the various laser absorption mechanisms described in the preceding section effect a wide energy

spectrum of electrons. Laser intensities ranging between 109 - 1021 W/cm2 may interact with

steep or gentle density gradients at various times in the target evolution. For this reason, and

because they are far more mobile than ions, electrons are the primary absorbers of laser energy,

gaining kinetic energies from keV up to several tens of MeV . After the laser couples primarily

with the electrons, the electrons are free to transfer their energy to other radiation particles,

including neutrons, gamma and x-ray photons, positrons, and significant to this dissertation, ions.

3.1 Target Normal Sheath Acceleration

The hot electrons
(
≳ MeV

)
traveling close to the speed of light are essentially colli-

sionless
(

νei ∝ T−3/2
e

)
and disperse quickly throughout the ∼ µm-size target within tens of

femtoseconds. Electrons at the high-energy tail of the spectrum are able to fully escape the target

(73), but a significant number of electrons assemble a spatial charge separation over the target

surface area and consequently an electrostatic sheath field. Electrons reaching the rear surface

thereafter may not have enough kinetic energy to overcome the potential, so they reflux back

55



Figure 3.1: TNSA mechanism: hot electrons generated from relativistic laser-matter interaction
form a strong sheath field at target rear surface, which ionizes and accelerates hydrogen atoms
away from the surface. Figure taken from Ref. (8).

into the target and spread out transversely. As these hot electrons thermally equilibrate toward a

Boltzmann distribution nhot ∼ exp(eΦ/Thot), we would expect that the sheath field scales with

the characteristic energy of the hot electrons over the hot electron Debye length:

E ≈ Thot

eλD
≈

√
Thot [MeV ]

nhot [1021 cm−3]
(4.25 MV/µm) (3.1)

where Thot is given by Eq. 2.82 and λD is for the hot electron population.

This sheath field is actually strong enough to instantly ionize atoms on the rear surface,

where there is usually a thin hydrocarbon contaminant layer (oils, water vapor etc.) (74). Once

ionized, ions as heavy as oxygen are accelerated in the direction of the sheath field normal to the

surface. Having the highest charge-to-mass ratio, protons are preferentially accelerated toward the

electrons forming a quasi-neutral expanding plasma and mitigating further field acceleration for

surface ions thereafter. This ion acceleration mechanism is illustrated in Fig. 3.1 and aptly named

target normal sheath acceleration (TNSA) because the generated electric sheath always directs

ions normal to the surface. It was first explained by Wilks et al. (75) and is the most thoroughly
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understood laser-ion acceleration mechanism since its discovery. Classic TNSA assumes that the

laser does not penetrate deep into the target, especially to the rear surface affecting the charge

separation and sheath field (76; 77). The following sections introduce a simple fluid model for

TNSA, and outline significant experimental and computational studies to optimize proton beam

characteristics over the past couple of decades.

3.1.1 Analytic 1D Expansion Models

The plasma expansion may be analytically investigated in 1-D where ions at rest with

density ni occupy the half-infinite space z < 0 with a sharp front, and electrons with temperature

Te excited by an intense laser pulse are continuous over all space according to the Boltzmann

distribution:

ne = n0 exp
(

eΦ

Te

)
(3.2)

where n0 is the initial electron density in the undisturbed plasma (z →−∞). Combining this with

Poisson’s equation
d2Φ

dz2 = 4π(ne −Zni) (3.3)

and noting that ni(z > 0) = 0, one can show (78) that at t = 0 the electrons form a cloud extending

beyond the ion front given by:

eΦ

Te

∣∣∣∣
z>0

=−1−2ln(1+ ẑ)

ene

n0

∣∣∣∣
z>0

= (1+ ẑ)−2
(3.4)

where e = 2.718.. is Euler’s number and ẑ = z/λD
√

2e is the normalized sheath distance. The

corresponding solutions for z < 0 may be solved numerically, and the full solutions are depicted

in Fig. 3.2(a). From this, we observe that the electric field at the ion front is indeed E ∼ Te/eλD.

As the electron sheath begins to pull the ions out into vacuum and expand the plasma for

57



𝑡 = 𝑡1
𝑡 = 𝑡2

𝑣𝑖
𝑐𝑠
= −

𝑒Φ

𝑇𝑒

e𝑍𝑛𝑖
𝑛0

𝒛 = −𝒄𝒔𝒕𝟏𝒛 = −𝒄𝒔𝒕𝟐 0

𝑒Φ

𝑇𝑒

𝑛𝑒/𝑛0

𝑛𝑖/𝑍𝑛0

𝑒𝜆𝐷𝐸

𝑇𝑒

(a) (b)

Figure 3.2: (a) Ion and electron density profiles along with electric potential and field profiles (9)
for a neutral plasma occupying the half-infinite space z < 0. (b) Self-similar plasma expansion
solution for ion density, velocity, and electric potential at t2 > t1 > 0 (10).

t > 0, the ions may be modeled via the fluid continuity equation:

∂ni

∂t
=− ∂

∂z
(nivi) (3.5)

and the fluid momentum equation with the electrostatic force:

∂vi

∂t
+ vi

∂vi

∂z
=−Ze

mi

∂Φ

∂z
=−c2

s
ni

∂ni

∂z
(3.6)

where cs ≡
√

ZTe/mi is the ion sound speed. Here, we assume ions are collisionless so that we

may neglect the pressure term. The last equality assumes that quasi-neutrality (ne ≈ Zni) and an

isothermal electron Boltzmann distribution (Eq. 3.2) are maintained throughout expansion. A

solution to Eqs. 3.5-3.6 exists when the self-similar velocity variable ξ = z/cst is used (79; 10):

vi

cs
= 1+

z
cst

eZni

n0
= exp

(
− z

cst
−1
)

eΦ

Te
=− z

cst
−1

(3.7)
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from which we may derive that the self-similar electric field Ess =−dΦ/dz = Te/ecst decreases

with the ion density scale length Li ≡ cst. Depicted by Fig. 3.2(b), this solution describes an ion

rarefaction wave initialized at z = 0 moving backward with speed −cst and ion front propagating

forward with velocity cst. By combining particle energies εi = miv2
i /2 with the density equation,

we may obtain the self-similar ion energy spectrum (ions per unit energy per unit surface area):

dNi

Adεi
=

n0cst
Z2Te

√
ZTe

2εi
exp

(
−
√

2εi

ZTe

)
(3.8)

The self-similar solution, however, is only valid while λD < Li, or ωp,it < 1 where ωp,i =√
4πn0Ze2/mi = cs/λD is the ion plasma frequency. As the plasma expands, the hot electrons

disperse and their density decreases, which increases their Debye length. Mora numerically

solves Eqs. 3.2, 3.3, 3.5, and 3.6 without assuming quasi-neutrality to obtain an ion beam with a

finite-velocity beam front (11). This gives rise to a varying electric field in space with a sharp

peak at the beam front whose characteristics are:

E f r ≈
4Te

ecst
(3.9)

v f r ≈ 2cs ln(2τ) (3.10)

z f r ≈ 2cst(ln2τ−2) (3.11)

where τ = ωp,it/
√

2e ≫ 1 is assumed. The charge separation, electric field and ion energy

distribution are compared with the self-similar solutions in Fig. 3.3 at varying times. Importantly,

the ion front also gives rise to a cut-off energy given by:

εmax = 2ZTe ln2 2τ (3.12)

Mora later describes an adiabatic model of plasma expansion where electrons gradually

impart their energy to the fields and ions and therefore exhibit decreasing temperature with time
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Figure 3.3: Numerical solutions to ion fluid expansion without the quasi-neutrality assumption,
compared with self-similar solutions (Eqs. 3.7) shown in dotted curves. Figures taken from
Ref. (11).
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(80; 81). These 1D expansion models also predict a time-dependent ion energy distribution given

by:
dNi

Adεi
=

n0R0

Z
√

εiTe f f
exp
(
− εi

Te f f

)
(3.13)

where R0 is the initial characteristic scale length of the plasma, and Te f f is the time-dependent

effective electron temperature which converges to the (measured) hot electron temperature Te as

t → ∞.

3.1.2 Previous Studies on Maximum Proton Energy and Conversion Effi-

ciency

Soon after the TNSA mechanism was discovered (82), it was immediately recognized that

these laser-accelerated protons could be a viable alternative to electrons in the fast ignition scheme

introduced in Sec. 1.2.1 (38). To that end, prolific research was conducted to optimize three

primary proton beam properties – laser-to-proton energy conversion efficiency (CE), maximum

proton energy εmax and/or Maxwellian beam temperature Tp, and proton focusing techniques. As

previously discussed, these are the primary beams characteristics driving the proton fast ignition

scheme.

Mackinnon et al. (83) experimentally demonstrated that TNSA protons exhibited several

times higher εmax and Tp on thinner targets (∼ 3 µm) compared to thicker targets (∼ 100 µm).

Using 2D particle-in-cell simulations, Sentoku et al. (84) showed that when the target thickness

L is less than half the laser pulse length Lp, electron recirculation in the target enhances the

hot electron density at the rear surface, which enhances the sheath field and therefore proton

acceleration. The maximum proton energy was found to scale inversely with target thickness,

εmax ∝ 1/L. Recognizing that the hot electron density plays a significant role in proton energy,

Hey et al. (85) investigated the role of target thickness on CE and found that it too exhibits a

1/L scaling for thick targets (L ≫ csTe/(dεe/dt)). This is because the electron energy loss rate
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Figure 3.4: Variation of maximum proton energy εmax and laser conversion efficiency to TNSA
protons with laser’s intensity and pulse duration. Curves represent theoretical model by Mora
(11). Figures taken from Ref. (12).

dεe/dt due to bulk plasma collisions far exceeds that due to adiabatic expansion.

Fuchs et al. (12) later investigated the dependence of CE and εmax on laser intensity

IL ∼ 1018 - 1019 W/cm2 and pulse duration τL ∼ 0.1 - 10 ps using thin aluminum foils. This

was accomplished by varying either the laser energy EL or τL while keeping the other – and

laser spot size – constant. The experimental results were also compared with the fluid model

predictions for εmax (Eq. 3.12) and dN/dε (Eq. 3.8). As shown in Fig. 3.4, εmax and CE both

increase with increasing EL, and are in rough agreement with the isothermal model. The model’s

accuracy was more keenly assessed when keeping the pulse energy constant and varying τL, with

experimental results showing good agreement. It should be noted, however, that in utilizing

Eq. 3.8, the acceleration time used was tacc = 1.3τL to best fit to the experimental data.
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Figure 3.5: Experimental results measuring εmax and CE for higher laser energies and pulse
durations. Figures taken from Ref. (13).

Robson et al. (13) expanded on Fuchs’ work by increasing the laser energy and intensity

range up to 400 J and 6× 1020 W/cm2, respectively, over 10 ps. They also compare their

experimental results with not only the model above but also a revised two-phase model in which

the hot electron temperature first rises linearly then decreases according to the adiabatic model.

While the isothermal model predicts CE and εmax sufficiently accurately for laser intensities up to

6×1019 W/cm2, it is insufficient at higher intensities. As shown in Fig. 3.5(a-b), the revised 1D

two-phase model gets closer to experimental results, and including 3D effects (radial expansion

of hot electrons and ceasing the proton acceleration when a particular 3D expansion geometry is

reached) brings the model sufficiently close to experimental results. The laser-to-proton energy

CE also increases by an order of magnitude at higher intensities.

3.1.3 Previous Studies on Beam Focusing

With the TNSA mechanism, the incidence angle of the laser pulse on target plays a minor

role in the resulting proton beam – in particular, the initial proton acceleration was more or less

normal to the rear surface regardless of laser incidence angle. This led scientists to investigate

whether beam focusing is possible through simple target geometry. Ruhl et al. (86) ran 3D particle-

in-cell simulations to model the proton acceleration resulting from intense laser interaction with
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Figure 3.6: (a) Configurations of proton heating from flat and curved foil targets, with (b) their
corresponding heating profile evolution from rear surface thermal emission. Figures taken from
Ref. (14).

spherical thin foil targets. With spherical foils, all rear surface normal vectors point toward the

sphere center, so the protons would in principle focus to that point. The simulations modeled the

interaction of 1021 - 1022 W/cm2 laser with a spherical shell with thickness 15 µm and radius

22 µm, and results indicated that this method can indeed focus TNSA protons to a spot near the

spherical center.

Focusing with spherical targets was first experimentally demonstrated by Patel et al. (14),

in which protons were accelerated from 10 µm thick flat foils and from 10 µm thick hemispherical

(“hemi”) shells. To demonstrate both focusing and heating capabilities, the protons in both cases

were directed toward secondary 10 µm aluminum foils. The schematic and results may be seen

in Fig. 3.6. Planckian thermal emission at wavelength 570 nm from the secondary samples was

recorded using streaked optical pyrometry, where the horizontal axis represents 1D space and

the vertical axis represents time. The more narrow and brighter emission from the hemi shell

64



(a)

(b)

Figure 3.7: Comparison of beam radius measurements (a) and simulation results (b) with 2D
isothermal expansion model (green curves). Six colors in (b) represent accelerated bunch of
carbon ions at times t = 8, 16, 24, 32, 40, and 44 ps from left to right. Figures taken from
Ref. (15).

demonstrates better focusing and, importantly, higher heating (up to 23±6 eV ) compared with

the flat foil target. Importantly, this confirmed that laser-driven focused proton beams are capable

of heating thin samples to the warm dense matter regime, setting the foundations for a warm

dense matter research platform.

With the studies on hemi focusing of proton beams, the question still remained of whether

the quasi-neutral proton plasma jet focused ballistically to reach a 0D focal point. Offerman et

al. (15) demonstrated that although the protons’ trajectories are initially normal to the spherical

surface, they follow a hyperbolic curve as shown in Fig. 3.7. In the interest of proton fast ignition,

the hemispherical shell was reduced to a partial hemisphere attached to a conical structure (“hemi-

cone”), which has the dual advantage of shielding the proton ignitor beam from the imploding

target and channeling the proton beam through the cone tip. In principle, the hot electrons
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(a)

(b)

Figure 3.8: Experimental setup (a) of laser-driven cone-guided proton beam generation from
various structured targets. Focal diameters of resulting beams as a function of proton energy
shown in (b). Figures taken from Ref. (16).

generated from the laser interaction with the hemi-cap permeate the entire hemi and travel into

the cone, generating an additional sheath structure along the interior cone surface that assist in

focusing the protons.

Bartal et al. (16) was the first to experimentally compare proton beam characteristics

among partial hemi, full hemi, and hemi-cone structured targets, as shown in Fig. 3.8(a). As shown

in Fig. 3.8(b), the proton focal diameters from hemi targets are significantly larger than those

from conic structures. In the context of fast proton heating, McGuffey et al. (17) demonstrated

that kilojoule-class multi-ps lasers coupled with hemi-cone structured targets are quite effective at

isochorically heating warm and hot dense plasmas. Measuring the sample temperature via Cu-Kα

emission spectroscopy, they compared the heating capabilities of protons from hemi, hemi-wedge,

and hemi-cone structures and found that the latter produced a more tightly focused area on a thin

Cu sample heated to 100 eV , as shown in Fig. 3.9.

Simulations (8; 18) further showed that the electric fields in the plasma and along the cone

surfaces are the primary drivers of beam focusing in hemi-only and hemi-cone targets. With hemi-

only targets, the hot electrons propagating transversely along the curved surface generate focusing

sheath fields further out longitudinally that assist in focusing the protons. In the hemi-cone targets,
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Figure 3.9: Comparison of measurement of Cu foil heating by laser-driven protons from (a,d)
free-standing hemi, (b,e) hemi-wedge structure, and (c,f) hemi-cone structure. Figure taken
from Ref. (17).

the hot electrons further propagating through the cone bulk maintain a focusing sheath field well

into the vacuum interior, significantly extending and enhancing the proton focusing all the way

to the cone tip. This may be seen in Fig. 3.10(a-f). However, a direct result of hot electron

expansion into the cone is their absence behind the hemi surface. With fewer hot electrons, the

longitudinal sheath field along the hemi surface decreases significantly at later times leading to a

measurable decrease in proton acceleration, as shown in Fig. 3.10(g-r). Simulations show that

this results in a factor of 3 decrease in CE, as shown in Fig. 3.11. Ultimately, the addition of a

cone structure significantly increases the focusing of the proton beam to the necessary spot size,

but unfortunately at the expense of the energy conversion efficiency.
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Figure 3.10: Simulation results of transverse (a-f) and longitudinal (g-l) fields resulting from
laser interaction of freestanding hemi (respective top rows) vs hemi-cone (respective bottom
rows) targets, resulting in proton acceleration as shown in density map (m-r). Figures taken
from Ref. (18).
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Figure 3.11: Simulation results of laser energy conversion efficiency to protons (solid colored
curves) for flat foil, freestanding hemi, and hemi-cone targets. Black line shows the total laser
energy and dashed lines show the intermediate laser conversion to hot electrons. Figure taken
from Ref. (18).

3.2 Proton Stopping and Energy Deposition

The preceding section discussed the generation of quasi-neutral, energetic proton beams

via intense laser irradiation of thin targets. This discovery led to an onslaught of proposed

applications, including warm dense matter sample generation, proton radiography and imaging,

inertial confinement fusion schemes, and possibly even medical therapy. All of these applications,

however, necessitate an understanding of how these protons transport through various media

such as solids and plasma. One fundamental aspect in particular has been the subject of over

a century of investigation, from the time that charged particles revealed their existence, before

even Bohr’s atomic model. Here, we discuss the dynamics with which energetic protons are

able to deposit their energy and gradually slow down as they penetrate a medium. The stopping

power S ≡−dEK/dlll is defined as the incremental kinetic energy loss dEK of a projectile particle

per unit path length dlll in its transport through a medium. This is dependent on both targets

parameters (density, temperature, ionization state) as well as projectile parameters (energy, charge
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state).

3.2.1 Stopping Power from Bound Electrons

In the early days of stopping power investigation circa late 1800s, models were more or

less inconclusive, since in the first place an accurate model of the atom did not exist. Soon after

Niels Bohr put forth the classical prototypical atomic model establishing a central heavy nucleus

with orbiting electrons, he published a pioneering analysis in 1913 on the slowing of projectile

ions via electromagnetic interactions with target atoms (87). Using a configuration and analysis

similar to that in Fig. 2.2 wherein an ion projectile (atomic number Zp, mass mp, and speed vp)

within a target (density ni, atomic number Z) passes near a bound electron (e, me) with impact

parameter b, Bohr calculated that the stopping power of the projectile is:

S =
4πZ2

pZnie4

mev2
p

L (3.14)

where L is the stopping number, Bohr’s version of which is the Coulomb logarithm LBohr =

ln(bmax/bmin). With his new atomic model in which electrons harmonically oscillate with atomic

resonance frequency ω, Bohr noted that no energy would be transferred if the interaction was

long compared with the orbital frequency, so bmax ∼ vp/ω. Also, Rutherford’s elastic scattering

model should also dictate that the distance of closest approach is bmin ∼ Zpe2/mev2
p, yielding

Bohr’s classical nonrelativistic model for stopping power:

SBohr =
4πZ2

pZnie4

mev2
p

ln

(
Cmev3

p

Zpe2ω

)
(3.15)

where C = 2e−γE and γE ≈−0.5772.. is Euler’s constant.

As quantum mechanics gradually developed, stopping power theory developed alongside

it. Using the Born series approximation for the quantized momentum transfer of ions scattering
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off bound electrons (quantum analogy to Bohr’s approach), Bethe (1930) developed the first

fully quantum theory of stopping power (88). While the pre-factor remained the same as in

Eqs. 3.14-3.15, the stopping number proposed by Bethe read as:

LBethe = ln

(
2mev2

p

⟨I⟩

)
(3.16)

where ⟨I⟩ is the weighted mean excitation energy per bound electron and may be written as ℏ⟨ω⟩.

Soon after, Bloche (1933) analyzed the differences between the classical (Bohr) and

quantum (Bethe) approaches and found that the quantum approach was still correct for large

impact parameters or low momentum transfer. For large momentum transfers, he found that

quantum wave packets would still scatter classically, validating the Bohr approach. He bridged

the two formulas by adding a correction to the Bethe equation to obtain the Bethe-Bloche stopping

number (89):

LB−B = ln

(
2mev2

p

⟨I⟩

)
+Ψ(1)−R

{
Ψ

(
1+ i

Zpe2

ℏvp

)}
(3.17)

where Ψ is the digamma function and Ψ(1) =−γE is Euler’s constant. It is interesting to note

that by plugging in ⟨I⟩= ℏ⟨ω⟩ and asymptotically expanding RΨ(1+ iy)≈ lny+1/12y2 in the

limit Zpe2 ≫ ℏvp, we recover the Bohr stopping number with a quantum correction:

LB−B ≈ ln

(
2mev3

p

Zpe2ω

)
− 1

12

(
ℏvp

Zpe2

)2

(3.18)

For completeness, we also include the relativistic Bethe-Bloche stopping number with

various correction terms (90):

Lrel
B−B = ln

(
2mec2γ2

pβ2
p

⟨I⟩

)
−β

2
p +Ψ(1)−R

{
Ψ

(
1+ i

Zpα

βp

)}
−

∑ j C j

Z
− δ

2
(3.19)

where α ≡ e2/ℏc ≈ 1/137 is the fine structure constant, βp = vp/c and γp is the projectile’s
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(a) (b)

Figure 3.12: (a) Proton stopping power from bound electrons as a function of proton energy
for various media. (b) Stopping power of protons with varying initial energies as a function of
penetration depth in solid-density room temperature aluminum, clearly displaying the Bragg
peak.

Lorentz factor. The first term is the relativistic analog to Eq. 3.16, and the second term is the

relativistic spin contribution (91). The next two terms represent the Bloche correction (Eq. 3.17)

to harmonize with the classical Bohr model. The jth shell corrections C j/Z come into play when

the projectile velocity is not much faster than the bound electron velocity, i.e. orbital shells must

be considered in energy transfer. Fortunately, this correction is maximized at about 6%. The

density effect δ/2 corrects for target polarization by the projectile, i.e. the interaction fields are

reduced by the dielectric of the medium. Eq. 3.19 is the most widely used stopping number for

ion projectiles interacting with bound electrons. A significant assumption is the projectile charge

state Zp be constant, which could break down at low velocities as the projectile may capture

electrons. This begets a lower energy limit of ∼ 1 MeV/amu.

The stopping power of protons for various target materials may be found in the proton

stopping power and range (PSTAR) (92) database, or may be simulated using the stopping and

range of ions in matter (SRIM) software (93). These resources take into account the contributions

listed in Eq. 3.19 as well as those from the relatively heavy atomic nuclei. Although infrequent,

nuclear stopping power plays a significant role at relativistic proton energies, but is generally
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negligible by a factor of Zmi/me relative to electronic stopping power. In Fig. 3.12(a), we observe

that the increase of stopping power with decreasing kinetic energy is characterized by the v−2
p

term in the pre-factor, and gives rise to the Bragg peak, shown explicitly in Fig. 3.12(b) near the

well-defined stopping range. These energy deposition curves are unique to protons and dictates

that the slower the proton, the more energy it deposits such that most of the proton energy is

deposited close to its stopping depth. Physically, as the proton velocity eventually slows to close

to the electron thermal velocity, their interactions become significantly stronger and quickly draw

out the remaining proton energy. This peculiar feature makes protons well-suited for cancer

therapy — instead of x-rays depositing damaging radiation to tissue above and below a tumor site,

a proton may deposit minimal energy to surrounding tissue and maximum energy to the tumor site.

The sharpness of the Bragg peak depends on the assumption of cold materials i.e. (Te ≪ 1 eV ).

At finite temperatures, the Bragg peak effect is diminished, as explained in Sec. 3.2.3.

3.2.2 Stopping Power from Free Electrons

The preceding section dealt with the stopping power of ions due to electrons bound to the

atomic nucleus. This is highly relevant for room temperature materials and gases whose atoms

have not been ionized (excepting valence electrons). In dense and ideal plasmas, however, atoms

are at least partially ionized and free electrons abound. These free electrons indeed contribute to

the slowing of ions in the plasma, but must be treated differently from bound electrons. Assuming

for now that the plasma is fully ionized, the pre-factor in Eq. 3.14-3.15 remains the same insofar

as the density of free electrons is Zni. Then, following Jackson (91) in the center-of-mass frame of

binary collisions between energetic ions and free electrons (equilibrated to a thermal Maxwellian

distribution), the stopping number is:

L f ree = G
(

vp

vth

)
ln
(

0.764
bmin

vp

ωp,e

)
(3.20)
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where vth ≡
√

2Te/me introduces a dependence on electron temperature to the stopping number

and

G(ξ) = erf(ξ)− 2√
π

ξexp
(
−ξ

2) (3.21)

is a modified error function. The inclusion of G(vp/vth) is a result of a rigorous treatment of

ion-electron collision frequencies (94) and ensures that L f ree → 0 as vp → 0. The Coulomb

logarithm in Eq. 3.20 contains similar bmax ∼ vp/ωp,e as in Bohr’s model and thus accounts for

local plasma excitations. The minimum impact parameter, however, now decides between the

classical distance of closest approach or the quantum electron deBroglie wavelength,

bmin = max
(

Ze2

m∗⟨u⟩2 ,
ℏ

2m∗⟨u⟩

)
(3.22)

where u = vp−ve is the projectile velocity relative to electrons, and m∗ ≡ memp/(me+mp)≈ me

is the binary reduced mass.

3.2.3 Comprehensive Stopping Power Models

In the preceding sections, the evaluation of electronic stopping powers are largely founded

on binary collision and scattering theory. While the presented equations agree sufficiently well

with experiments in their own regimes of applicability, each regime offers significantly different

results. In the warm dense matter regime, present in astrophysical objects and ICF implosions,

atoms are partially ionized, so that both bound and free electrons are present in varying proportions.

Configurations such as these require comprehensive stopping power models to account for a

number of variables, including relative projectile speeds, impact parameter ranges, and target

temperatures and densities. The following models have been proposed to gain a clearer picture of

stopping power and apply to a wide range of target and projectile parameters.
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Ad-Hoc Bound + Free Formulation

Since the preceding sections primarily distinguish between bound and free electrons, it is

only natural to have a bound + free model in which the two are combined such that each applies

to its intended population (95; 96; 97). An important parameter is therefore the average ionization

(charge) state Z∗ of the plasma as a function of density and temperature. This is often calculated

via the Saha equation or using the equation of state (EOS) of the target material. In this scheme,

It is not uncommon to replace Z in the common pre-factor with Z∗ or (Z −Z∗), insofar as those

stopping calculations pertain to the bound or free electrons per atom:

Sb+ f = κp
[
(Z −Z∗)ni Lb +Z∗ni L f

]
(3.23)

for (new) pre-factor κp = 4πZ2
pe4/mev2

p, bound electron density (Z−Z∗)ni coupled with stopping

number Lb, and free electron density Z∗ni coupled with stopping number L f .

In essence, Eq. 3.23 simply adds the stopping power due to bound electrons Sb = κp(Z −

Z∗)niLb to that due to free electrons S f = κpZ∗niL f in an ad-hoc way Sb+ f = Sb + S f . In our

treatment, Lb is given by Eq. 3.19 (omitting the shell correction and density effect terms), and

L f is given by Eq. 3.20. Fig. 3.13 compares the bound and free stopping powers as a function

of incident proton energy for various temperatures of solid-density aluminum. Note that the

stopping powers change by only ∼ 10% in going from room temperature to 10 eV , but changes

significantly in shape and magnitude as the temperature increases further.

In treating the bound and free electrons separately, the distinguishing parameter is a

locally averaged ionization state Z∗ based on material temperature and density. One drawback

of this is an establishment of local thermodynamic equilibrium (LTE), which is not guaranteed

for small time scales. The bound + free model also ambiguously defines the boundary between

“slow” and “fast” projectile ions relative to electrons. Nevertheless, this model yields reasonably

accurate results for the proton energies and dense ICF plasmas that are relevant to this dissertation
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Figure 3.13: Electronic stopping power contributions in solid-density aluminum as functions of
incident proton energy, for room and warm dense matter temperatures.

(96; 98) and is therefore used in both the hybrid-PIC simulations explained in Sec. 4.4 as well as

in theoretical calculations explored in Chapter 7.

Dielectric Formulation

An alternative, possibly more holistic approach to a comprehensive stopping power model

is the self-consistent dielectric formulation by Lindhard and associates (99; 100; 101). They

consider the ion projectile as a source of an electric field perturbation in a free electron gas

medium. In other words, the ion projectile locally polarizes the medium, and the induced electric

field acts to slow the projectile i.e. lose energy. This formulation of stopping power is distinct

from the bound + free formulation, and draws the attention and analysis toward the medium’s

properties rather than toward a magnified view of the projectile and binary collisions. At zero

temperature, the stopping power of an ion projectile through a uniform free electron gas is given
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by:

SLh =
4πZ2

pe4

mev2
p

neLLh(ne,vp) (3.24)

where ne is the electron number density and LLh is again the stopping number. It is clear that the

pre-factor still matches that in Eq. 3.14 (for ne = Zni), and the physics of this new approach is

contained in the stopping number:

LLh(ne,vp) =
i

πω2
p,e

∫
∞

0
dk

∫ +kvp

−kvp

dω
ω

k

(
1

ε(ω,k)
−1
)

(3.25)

where ε(ω,k) is the local dielectric function in the projectile’s trajectory. Here, plasma excitations

and electron screening is taken into account.

Eq. 3.24 may be extended to nonuniform electron gases with ne(r) by using a local density

approximation (LDA) (102), wherein the density is assumed uniform in smaller volume elements

and then summed to obtain the total stopping power:

SLDA
Lh =

4πZ2
pe4

mev2
p

∫
d3r ne(r)LLh(ne,vp) (3.26)

Wang et al. (103) showed that for protons with energy ≳ MeV , the effective interaction time

τe f f ∼ |∇ne|/nevp on the length scales of atomic shell structure (∼ Bohr radius) is still far less

than the plasma oscillation period ω−1
p,e, meaning the LDA is appropriate in this formulation. They

then extended the zero-temperature formulation of Lindhard to include a temperature dependence

on the stopping number, yielding a self-consistent generalized stopping power formula:

Sgen
Lh =

4πZ2
pe4

mev2
p

∫
d3r ne(r)LLh(ne,Te,vp) (3.27)

The difficulty with this formulation comes down to choosing (1) an atomic-scale electron

density distribution model for ne(r), and (2) a temperature-dependent dielectric function, both suf-

ficiently accurate over a large range of ICF-relevant temperatures and densities. The former may
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utilize the first-principles average-atom model in the self-consistent approach for astrophysical

and laboratory plasmas (SCAALP) based on density-functional theory (DFT). The latter utilizes

the random phase approximation (RPA) proposed by Maynard and Deutsch (104). Taken together,

this stopping power calculation is quite sophisticated in that the nonlinear differential equations

for DFT must be solved throughout the projectile’s trajectory. While this level of sophistication

yields a more accurate and self-consistent stopping power calculation, the spatial and temporal

resolutions that make this calculation accurate are far more resolved than those relevant to this

dissertation. Also, the dielectric formulation is not readily implemented in a plasma simulation

code alongside other computationally expensive algorithms outlined in the following chapter. For

these reasons, the dielectric formulation will not be used in this dissertation. In contrast, the bound

+ free model is a relatively simple equation which may be evaluated quickly. Its only requirement

is a sufficiently accurate calculation of Z∗, which as we will see may be readily implemented into

plasma simulation codes. In the next chapter, we introduce the computational tools necessary to

self-consistently simulate the transport and stopping power of intense proton beams. In doing

so, the simply evaluated bound+free stopping power model may be benchmarked against the

state-of-the-art quantum theoretical SCAALP for the proton beam and target parameters relevant

to this dissertation.
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Chapter 4

Numerical Methods & Simulations

As with all science and technology, the study of plasma physics has been drastically

improved through the use of computers. Acting as both an aide to and motivator for laboratory

experiments, computer simulations have been integral to our understanding of many plasma

phenomena, not the least of which include laser-plasma interactions, plasma turbulence, laboratory

astrophysics, and others. In general, when studying a plasma phenomenon, an experiment may

be performed, after which a simulation may be conducted to mimic the experiment as closely

as possible. Comparing the simulation and experimental results, the simulation methods may

then be appropriately modified to better reflect the underlying physics. Once they reflect the

experiment sufficiently accurately, simulations may be used to further predict another or more

advanced plasma phenomenon, at which point the process starts over. In this way, experiments

and simulations iterate in tandem to advance the study of plasmas.

At their core, computer simulations attempt to solve the equations governing plasma

dynamics. The methods with which they do so generally fall into three camps which reflect

the underlying equations. Kinetic Vlasov-Fokker-Planck (VFP) codes evolve the distribution

functions of particle species in time through electromagnetic field interactions, collisions, diffusion

etc. While there may be fewer equations to solve i.e. Eq. 2.1 along with Maxwell’s equations,
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Figure 4.1: Basic particle-in-cell configuration of macroparticles among a grid of nodes. Figure
taken from Ref. (19)

the multidimensional phase space requires the distribution function itself to be between 3- and

7-D, which makes phenomena like collisions impressively complex to compute. Zooming out

to macroscopic plasma flows, the magnetohydrodynamic (MHD) or fluid approach solves the

fluid continuity and momentum equations (Eqs. 2.2-2.3) along with energy conservation and

Maxwell’s equations to model plasma dynamics and shock physics on larger length and time

scales. MHD codes are useful when quasi-neutrality is assumed and the plasma Debye length and

plasma oscillation time need not be resolved.

The kinetic particle-in-cell (PIC) approach is a fundamentally different approach wherein

a large number of particles, once assembled for t = 0, are simulated to move under the influence

of various forces in 1- to 3-D space. Because of the immense processing power needed to simulate

the dynamics of so many particles at small time scales, PIC simulations use macroparticles. Each

macroparticle represents a large number of particles of a single species – electrons, protons,

ions etc., thereby conserving the charge-to-mass ratio of real particles. As shown in Fig. 4.1,

macroparticles exist over a grid of “cells”, and may be summed, averaged, or otherwise operated

on to yield continuous quatities such as density, temperature, current, pressure etc.
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PIC’s basic method is the following: at one time step, source quantities like charge and

current densities are calculated from the instantaneous position and velocities of all macroparticles,

according to Eq. 2.9. These quantities are then used to compute the electromagnetic fields

according to Ampere’s and Faraday’s Laws:

∆E
∆t

= c∇∇∇×B−4πJ

∆B
∆t

=−c∇∇∇×E,
(4.1)

where ∆t is a time step. The electromagnetic fields are calculated on an overlaid discretized grid

and interpolated to the macroparticles’ positions. Since each macroparticle conserves charge-to-

mass ratio, the Lorentz force on all macroparticles are calculated and act almost equivalently to

individual particles.

In the time-explicit PIC algorithm, the particles’ momenta advances are usually calculated

in a leap-frog scheme, or staggered with positions advance in half-integer time steps:

∆p
∆t

=
pn+1/2 −pn−1/2

∆t
=

q
m

(
En(xn)+

⟨p⟩n

γnmc
×Bn(xn)

)
(4.2)

∆x
∆t

=
xn+1 −xn

∆t
=

⟨p⟩n

γnm
(4.3)

where ∆t is a time step and γn and ⟨p⟩n = (pn+1/2 +pn−1/2)/2 are the Lorentz factor at and

averaged momentum around the nth time step, respectively. We observe that the fields En and

Bn are calculated alongside particles’ positions in the integer time steps. As mentioned, the q/m

dependence allows the forces on the macroparticles to be equivalent to those on real particles. In

the particle-push stage, the macroparticles evolve in space to their next positions and velocities in

the subsequent time step.

To maintain numerical accuracy and stability, it is reasonable to have to limit the time

step relative to the spatial step. In particular, for explicit time integration schemes for differential
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equations, the Courant-Friedrichs-Lewy (CFL) condition (105) must be met:

N

∑
i

ui∆t
∆xi

≤Cmax (4.4)

where ∆xi and ui are the spatial step and the velocity in the ith dimension, respectively, N is the

number of spatial dimensions used, and Cmax ∼ N for explicit solvers. The CFL condition implies

that the time step should be chosen such that the largest speed encountered in the simulation

e.g. for a wave should not move more than ∆xi in one time step. This ensures that the numerical

solution remains stable in time. For plasma simulations, the condition on the time step is even

stronger i.e. ∆t < ω−1
p,e to resolve plasma oscillation, and that on the spatial grid is ∆xi < λD to

resolve the Debye length. For solid density plasmas where ne ∼ 1023 cm−3, the requisite time

step is ∆t ≪ 1 f s, which makes any meaningful simulation long and computationally expensive.

The hybrid fluid-PIC simulation code LSP (106) utilizes a direct-implicit time integration scheme

that greatly relaxes the time step conditions, as discussed in the following section.

4.1 Direct-Implicit Method

To relax the previously mentioned strong stability conditions such that we may have

ωp,e∆t ≫ 1 and ∆xi/λD ≫ 1, LSP utilizes a direct implicit (D1) time integration algorithm

(107; 108). This scheme is particularly beneficial for simulations involving near solid-density

plasmas, where the Debye length and plasma frequency do not play important roles in the

dynamics and therefore need not be resolved. With larger time steps, the direct-implicit scheme

is able to evolve the plasma dynamics over time scales ∼ several 10s of ps, as opposed to ≲ ps

of standard explicit PIC schemes. This is at the cost of resolving high-frequency modes, but,

importantly, also at the cost of exact energy conservation, as will be discussed in the next section.

In this algorithm, the particles’ momenta push follows Eq. 4.2 except that the electric field
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is modified to include both past and future fields:

En(xn)→
En−1(xn−1)+En+1(xn+1)

2
(4.5)

However, this requires knowledge of the future field before it is calculated. Actually, particles

are pushed twice: first assuming no future electric field En+1(xn+1) = 0, and again with a linear

correction term to predict the effect of the future field. This new scheme may be summarized by

pn+1/2 = ⟨T⟩Ai. The (dimensionless) magnetic field rotation tensor is:

⟨T⟩= 1
1+Ω2


1+Ω2

1 Ω1Ω2 +Ω3 Ω1Ω3 −Ω2

Ω1Ω2 −Ω3 1+Ω2
2 Ω2Ω3 +Ω1

Ω1Ω3 +Ω2 Ω2Ω3 −Ω1 1+Ω2
3

 (4.6)

where

ΩΩΩ =
qBn

2γmc
∆t (4.7)

is the relativistic angular rotation vector normalized to the time step, and subscripts denote axes

directions. The source vectors are used for the two pushes:

A1 =
qEn−1

m
∆t
2
+pn−1/2 +(pn−1/2 ×ΩΩΩ) (4.8)

A2 =
qEn+1

m
∆t
2

(4.9)

Before the second particle push, the linear correction term to the future electric field is

calculated via perturbation analysis of the current density. In lieu of the details, we present the

resulting susceptibility tensor given by:

⟨S⟩= ρ

γn+1/2

q
m

∆t
2

(
⟨T⟩−

vn+1/2vn+1/2

c2

)
(4.10)

83



which is incorporated into Ampere’s law to determine the future electric field via a current

perturbation δJ = ⟨S⟩E:
∂E
∂t

= ∇∇∇×B− (J+δJ) (4.11)

Essentially, the algorithm averages the past (n−1)th EM fields and particle momenta with the

future (n+1)th quantities, and then linearly corrects the fields through the susceptibility term.

4.2 Hybrid Fluid Method

Fully kinetic simulations run into issues with numerical heating/cooling due to the finite

size of macroparticles and grid discretization, leading to artificial particle interactions and energy

transfer fluctuations. Likewise, intrinsic to the implicit time integration algorithm discussed in

the previous section is non-exact conservation (dissipation) of energy, as detailed in Ref. (109).

Combined with large time and spatial steps, numerical cooling is likely to occur as slow-moving

particles may artificially encounter drag and decelerate.

Uniquely, LSP evades this issue by allowing certain macroparticles to represent non-

relativistic Maxwellian-distributed particle ensembles, often dubbed “fluid” particles. This

is, however, a partial misnomer since neither the Navier Stokes equations (Eqs. 2.2-2.3) nor

MHD equations are invoked in the macroparticles’ advancements. Actually, fluid macroparticles

obey the same kinetic equations as their kinetic counterparts except for the elastic scattering

terms, which are replaced by a pressure gradient force term for intra-species collisions and a

frictional force term for inter-species collisions. But the primary difference in implementing fluid

macroparticles is that they obey an additional energy equation:

3
2

ni
dTi

dt
=−niTi ∇∇∇ ·vi +∇∇∇ · (κ∇∇∇Ti)+2mini ∑

j

Tj −Ti

m jτ ji
+∑

j
ν ji

mim j

mi +m j

∣∣∣∣ pi

mi
−

p j

m j

∣∣∣∣2 (4.12)

where ni, Ti, vi, pi and mi are, respectively, the density, temperature, velocity, momentum and
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particle mass of fluid species i, κ is the thermal conductivity, and τ ji and ν ji are the thermalization

time and collision frequency between species j and i. From left to right, the terms on the

RHS are PdV work, thermal conduction, inter-species energy exchange, and Ohmic heating, all

contributing to the time rate of change of energy density.

By also obeying an internal energy equation, the issue with energy conservation and

numerical cooling is mostly resolved. While the fluid macroparticles still advance kinetically

to new positions and momenta, their internal energies are advanced and saved such that any

numerical cooling effects are mostly balanced by changes in internal energy. This is particularly

advantageous for energy conservation in dense plasmas for long simulation times (110). In the

simulations relevant to this dissertation, background electrons and background ions making up

the dense plasma (Al, Si, polypropylene, etc.) are given the fluid macroparticle treatment, as long

as neither species incurs temperatures above 10s of keV . The simulated beam protons and beam

electrons incident on these dense plasmas are treated kinetically.

4.3 Collisions and Resistivity

Since solid-density plasmas are extremely relevant to this dissertation, treatment of particle

collisions must be given special scrutiny. LSP utilizes primarily two approaches for particle

collisions. High-energy relativistic particles (mostly electrons) are treated as test particles and

given binary collision and scattering treatment with collective processes, as detailed in (111). For

slow-moving particles, LSP assigns either a binary scattering method or a statistical scattering

method. The binary scattering method evaluates binary Coulomb collisions for randomly selected

pairs of particles in each grid cell. This yields accurate results when particles exhibit non-

Maxwellian distributions (read: non-thermalized), but is more computationally expensive.

The statistical scheme treats particle collisions with the Jones algorithm (112), which

utilizes a grid-based “collision field” to mediate the collisional forces among particles within
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each cell. This scheme advantageously conserves energy and momentum exchange locally. The

momentum and energy transfers among different species are given by:

∆pi = mi∆t ∑
j

(
p j

m j
− pi

mi

)
ν ji (4.13)

∆Ti = ∆t ∑
j

[
4m2

i n2
i

m jτ ji
(Tj −Ti)+

2
3γ

ν ji
mim j

mi +m j

∣∣∣∣ p j

m j
− pi

mi

∣∣∣∣2
]

(4.14)

where the energy equation is akin to the final two terms in Eq. 4.12 i.e. thermalization and Ohmic

heating. We note that these equations assume that the particles in each cell follow a drifting

Maxwellian distribution characterized by an average drift momentum as well as a temperature for

the energy variation.

The preceding discussion on the treatment of particle collisions in LSP is important

because it governs the collective dynamics of dense plasmas in a PIC setting. On a microscopic

scale, test particles transporting through materials encounter resistance in their trajectory due to

collisions with background electrons and ions. This resistance induces an electric field given by

Ohm’s law, E = ηJc for resistivity η and current density Jc in the conductor. In some fluid and

hybrid-PIC simulation codes (113), resistivity is input as simply another property of a simulated

dense solid. In LSP by contrast, an effective resistivity emerges as a direct consequence of

Coulomb collisions among background particles. The collision frequencies used by LSP in

Eqs. 4.12-4.13 for fluid particles are taken from the Lee-More model (114) with corrections by

Desjarlais (28). The required inputs for this model are ion density, local electron temperature, and

locally averaged ionization state Z∗, which in turn depends on electron temperature and density.

We utilize the Prism Opacity and EOS code (PrOpacEOS) (24) to generate EOS tables for the

average charge state as a function of density and temperature.

Using the Drude model for resistivity

η =
me

e2n f
νe (4.15)
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Figure 4.2: Comparison of experimental measurements (20; 21; 22; 23), LSP LMD model
outputs, and Eidmann-Chimier analytical model output of solid-density aluminum resistivity as
a function of temperature.

where n f is the free electron density and νe is the total electron collision frequency, we may

compute the effective resistivity simulated by LSP and compare it with the Eidmann-Chimier

model of total electron collision frequencies (54) introduced in Sec. 2.6, i.e. Eq. 2.43. Fig. 4.2

shows the experimental (20; 21; 22; 23), computational, and analytical resistivity of aluminum

assuming solid density. The blue curve shows the continuous Drude resistivity using the analytic

model of Eq. 2.43. We note that n f is actually dependent on the charge state Z∗ gathered from

PrOpacEOS as a function of temperature. We observe that with the proper parameters, this

analytic model agrees quite well with the effective resistivity calculated by the LMD model used

in LSP (solid blue dots). Both are also in relative agreement with experimental measurements,

except for Milchberg et al. The discrepancy is likely due to the assumption of electron-ion thermal

equilibrium in the analytic model, which is broken in Milchberg’s ultra-short pulse laser-matter

interaction experiments to measure resistivity.
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4.4 Benchmark of Proton Stopping Power

Of significant importance to an accurate simulation of proton transport and energy deposi-

tion is the numerical modeling of stopping power. In Sec. 3.2.3, we introduced two widely used

comprehensive stopping power models – the analytic bound + free formulation (Eq. 3.23), which

is relatively easy to implement and computationally inexpensive; and the dielectric formulation

(Eq. 3.27), which is more accurate but requires a sophisticated atomic-scale electron density

and dielectric function for the medium. Implementing the dielectric model into LSP would be

cumbersome and greatly increase the computational expense. Instead, it is more efficient to verify

that both models yield similar results for the proton energies and dense plasma conditions relevant

to this dissertation.

Kim et al. (25) were the first to implement the bound + free stopping power model i.e.

Eq. 3.23 into LSP and used it to investigate the self-consistent transport of intense proton beams

in materials. To briefly reiterate, the bound electron stopping number is given by Eq. 3.19. Within

this expression, the mean excitation energy ⟨I⟩ is a function of the local charge state as in (96):

⟨I⟩(Z∗) =
Z2

(Z −Z∗)2 ⟨I⟩(Z −Z∗) (4.16)

where the scaling ⟨I⟩(Z−Z∗) = 16(Z−Z∗)0.9 is used from empirical data. Also in this expression,

the shell correction term is based on experimental shell corrections matching stopping powers

to the NIST database (90), and the density effect correction is excluded. The free electron

stopping number is given by Eq. 3.20. As previously mentioned, PrOpacEOS is used to obtain

the necessary charge state Z∗ of the material given the electron density and temperature. Fig. 4.3

shows the temperature dependence of the average charge state of aluminum, as calculated by

PrOpacEOS.

To benchmark this newly LSP-implemented stopping power module, proton stopping

simulations were conducted and compared with simulations using the self-consistent approach
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Figure 4.3: PrOpacEOS (24) output of average charge state of solid-density aluminum as a
function of electron temperature.

for astrophysical and laboratory plasmas (SCAALP) along with the random phase approximation

(RPA) under the dielectric formulation (26). Fig. 4.4 displays the results from this simulation

comparison. In Fig. 4.4(a), several discrete LSP simulations evaluate the projected range of

protons with varying initial energies as they slow through constant-temperature solid-density

aluminum. These simulations agree quite well with SCAALP’s theoretical stopping range

calculations (black curves). The small discrepancy for 1 MeV protons at high temperatures

may be explained in Fig. 4.4(b), where we observe that the stopping power models significantly

diverge for proton energies below 1 MeV and at or above 100 eV temperatures. Even so, the

proton energies relevant to this dissertation fall between several MeV up to several tens of MeV ,

for which range the bound + free stopping power model is sufficiently accurate.
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(a)

(b)

Figure 4.4: (a) Comparison of proton stopping range from novel LSP dynamic stopping module
(25) with that from SCAALP (26). (b) Proton stopping power as a function of energy at varying
temperatures in the warm dense matter regime using the new LSP module and SCAALP. Figure
taken from Ref. (27).
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Chapter 5

Development of a platform at the Matter in

Extreme Conditions end station for

characterization of matter heated by

intense laser-accelerated protons

5.1 Introduction

Warm dense matter (WDM) is an extreme state of matter in which the thermal energy,

Coulomb energy, and Fermi energy of a system are all within an order of magnitude of each

other. This corresponds to temperatures ∼ 1−100 eV and densities 1−100× solid density, at

the very intersection of condensed matter physics and ideal plasma physics. Understanding the

dynamics of WDM is important in modelling systems compressed to states of extreme pressure

and temperature, including planetary and sub-stellar objects (115; 116; 117) and capsules for

thermonuclear inertial confinement fusion (ICF) (118).

The advent of chirped-pulse amplified lasers near the turn of the century made possible the
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creation of warm dense states of matter on a time scale much shorter than that of hydrodynamic

expansion, i.e. isochoric heating. In direct laser heating, a high-intensity laser deposits much

of its energy into the first ∼ 100 nm of a solid, confined to a skin depth beyond critical density

(i.e. the density beyond which the laser can no longer propagate and evanescently decays). The

hot electrons resulting from laser absorption scatter through and subsequently heat the rest of

the material. Unlike direct laser irradiation, proton and heavy ion beams follow a Bragg curve

when passing through materials; as the particle loses energy to the material, its energy loss rate

increases. The particle beam may volumetrically and more uniformly heat the sample as long as

its thickness is less than the depth at the Bragg peak for the relevant proton/ion energies in the

beam.

Over the last two decades, the target normal sheath acceleration (TNSA) mechanism

for such beams has been investigated at length (119). Protons accelerated via relativistic laser

interactions with thin foil targets have demonstrated isochoric heating of materials to WDM

conditions, and much higher sample temperature was reached when the target foil was spherically

curved, focusing the protons (14). Further experiments with corroborating simulations have

shown that uniform heating over the thickness of materials (several µm) is achievable with

appropriate proton or ion sources (≳ 100 keV per nucleon, ≳ 109 A/cm2) (120; 121; 25). The

isochoric and uniform heating possible with laser-accelerated ions has been combined with

high-resolution imaging techniques that probe the heated materials to enable measurements to

benchmark equation-of-state models (122; 123).

In this manuscript, we detail for the first time the characterization of proton-driven

isochorically heated samples at the Matter in Extreme Conditions (MEC) end-station at SLAC

National Accelerator Laboratory’s LCLS, which employs both a high-intensity optical laser

and a high brightness x-ray source driven by a free electron laser (FEL). The energetic protons

produced by the optical beam heat material to WDM conditions, which may then be probed by

the precision-timed LCLS beam. Previous proton-heated WDM studies involve experimentally
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verifying equation-of-state values (124; 125) and improving proton stopping power calculations

(126; 25; 127; 128) at various high-intensity laser facilities. The record peak brightness of the

FEL combined with ultrashort pulse duration and ∼ 10 µm focal spot allows for an unprecedented

high-resolution x-ray scattering diagnostic. Warm dense matter generated from direct laser

irradiation has been successfully characterized via XRTS on several MEC experiments (129; 130),

yet that from proton heating has not yet been characterized by the same method on MEC. The

goal of the experiment was to heat Al and polypropylene (PP) targets to WDM conditions using

laser-accelerated protons and measure the spatial and temporal evolution of the temperature in

the targets. Here we show that the MEC laser-driven proton source is suitable for heating and

present our first attempts to simultaneously probe the sample with the FEL.

5.2 Experimental Setup

Fig. 5.1 depicts the top-down view of the experimental layout, with sample raw data from

each diagnostic and a 3-D rendering of the target orientation with respect to the optical and LCLS

beams.

The linearly polarized MEC optical laser (λL = 800 nm, peak power 20 TW ) delivered

about 0.7 J on target with pulse duration 45 f s. The laser spot size was about 7 µm focused with

an f/6 off-axis parabola (OAP), yielding peak intensities above the relativistic limit and close

to 1019 W/cm2 onto the Cu source foil at 15◦ incidence. The Cu was either flat or a spherical

cap (hereafter referred to as ”hemi”). The LCLS beam operated in self-amplified spontaneous

emission (SASE) mode with pulse energy 3 mJ, photon energy hν ≈ 7.49 keV (> 1012 photons),

and spot size 10 µm. Several sample foil species were heated: 1.1 µm (thick) Al, 650 nm (thin)

Al, and 3.8 µm PP (C3H6,0.9 g/cm3).

The targets were arranged on cartridges to simplify alignment. Each of 68 cartridges

had an aluminum frame with silicon wafer comb-cut slot structures. Each slot comprised a
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Figure 5.1: Experimental setup within the MEC chamber, with an enlarged view of the target
orientation with respect to beamlines
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hemispherically curved (for proton beam focusing) or flat Cu source foil (3.8 µm thick) and a flat

sample foil separated by a 300−400 µm vacuum gap. The latter was absent in shots measuring

proton beam spectra.

Target alignment proved to be a major obstacle for experimental execution, given that the

Rayleigh range of the optical beam focal point was ∼ 75 µm. The OAP mirror alignment axes

were chosen to be colinear with the incident laser wavefront (k-vector) so that the focus could

be moved in space without introducing aberrations. Unfortunately, this meant translation of the

OAP axis could not be colinear with the hemi axis, making it tedious to properly orient targets

with both the LCLS and optical beams. In addition, the parallelism and wrinkling of the two

foils, coupled with variations of the gap distance, strongly complicated the target alignment to

the beams. For the future use of the platform, it is essential to use targets that are individually

characterized or nearly identical.

Beryllium lenses were inserted in the target chamber to expand the LCLS beam spot to

900 µm and backlight the target area. This technique proved useful, albeit time-consuming, for

subsequently aligning the parabolic mirror and targets to the LCLS beam axis before each shot. A

sample LCLS radiograph (pre-shot) is shown in Fig. 5.1 (center right). The curved limb-darkened

features outline the Cu hemi, enabling alignment of the target and sample to the optical laser

focal plane and LCLS axis, respectively. The bright spot at the apex of the hemi is the bright

center of the defocused LCLS radiation profile. The dark vertical line to the right of the hemi is

the edge of the Cu foil in the cartridge slot. The sample can be seen to the right. Cu hemi foils

were replaced with flat foils to improve proton beam reproducibility at the cost of beam focusing.

Proton beam intensities on-target decreased by an order of magnitude, and consequently heated

the target foils to several eV, as opposed to the intended 10s of eV .

Proton beam spectra were measured by a Thomson Parabola (TP) spectrometer in line

with target normal. Particles passing through the TP are collected on a micro-channel plate (MCP)

with a phosphorescent screen and recorded by a CCD camera. Particle species appear as parabolic
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traces with curvature dependent on charge-to-mass ratio, where more energetic particles collect

closer to the vertex (represented by a bright spot). These are directly translated to energy spectra

via a MATLAB interface developed based on the technical parameters of the TP. The benefits

of this system include high spatial resolution (80−100 µm) and high repetition rate (1−5 Hz)

(131). The distinguishable parabolic traces shown in Fig. 5.1 reflect the varying charge-to-mass

ratio of different ion species. The central bright spot represents x-rays and neutral particles whose

trajectories would be unaffected by the fields within the TP. The lowest parabolic trace represents

protons (with the highest charge-to-mass ratio), while the higher traces with smaller curvature

represent several charge states of carbon and oxygen.

Streaked optical pyrometry (SOP) (132) was fielded to enable measurement of the temper-

ature evolution of the heated target rear surface with high temporal resolution. As the aluminum

foil is heated, it generates a black-body (Planckian) emission spectrum dependent only on its

temperature. The field of view of the streak camera focused on the intersection of the proton

source normal with the Al foil sample, presumably the point of maximum temperature on the rear

surface. Specifically, since light cannot penetrate beyond the critical density, the streak camera

collected most of the thermal (450±50 nm FWHM) emission at its (rear) critical surface, where

the density is (5.6±1.2)×1021 cm−3, for absolute temperature measurement in one dimension.

The SOP was absolutely calibrated prior to the experiment using the doubled Ti:Saph Europa

laser at the Lawrence Livermore National Laboratory (125) — using the wavelength sensitivity

from the manufacturer of the streak camera (Hamamatsu S20) and in-situ measurements of the

optical transmission through optics and filters with a 450 nm laser diode, we could convert the

counts on the detector to an emitted temperature, assuming black-body emission.

X-ray Thomson Scattering (XRTS) (133) measurements of the LCLS beam have proven

an invaluable asset to the precise characterization of WDM state properties (temperature, density)

on MEC. Two x-ray spectrometers were placed to measure the scattering of the LCLS beam in the

forward and backward direction with respect to proton beam direction. The scattering spectra can
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enable density and temperature characterization of the heated samples. Both spectrometers were

calibrated by irradiating standard metal foils and measuring the fluorescence of the characteristic

K-shell emission lines.

A sample TP spectrum is shown in Fig. 5.2. The proton beam exhibited a maximum

kinetic energy of 2.5 MeV and temperature of 250 keV , as shown with the fitted dashed line.

These beam properties are consistent with previous TNSA studies (134). The projected cold-

stopping range of 750 keV protons through Al and PP are 9.4 µm and 14.3 µm, respectively. The

sample foils were therefore sufficiently thin to be volumetrically heated by the protons. The

low-energy fall-off of the proton spectrum below 790 keV is due to the circular edge of the MCP

which cuts off the proton trace, as can be seen in Fig. 5.1 (bottom center).
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Figure 5.2: Sample proton energy spectrum from Thomson Parabola spectrometer

97



The XRTS spectrometers were calibrated by irradiating cold 30 µm Ni targets and 650 nm

Al targets (with Fe contaminant typically under 7000 parts per million per manufacturer) with the

FEL. Fig. 5.3 depicts the calibration spectrum of cold Al and Ni targets, showing a clear elastic

scattering peak of the 7.49 keV LCLS beam on both targets, unresolved 7.47 keV Ni-Kα and the

7.06 keV Fe-Kβ peak with the Al target. Irradiation of Cu by the optical laser, however, masked

the LCLS x-ray signal with bremsstrahlung emission over the same energy bandwidth such that

the background noise was comparable to the scattered x-ray signal.
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Figure 5.3: X-ray spectra of cold nickel-iron-cobalt alloy and iron-contaminated aluminum
samples for calibration
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5.3 Results & Analysis

Simulations of proton-heating were performed using LSP and HELIOS independently.

2D simulations of the proton heating were performed using the hybrid-PIC code LSP with an

advanced dynamic proton stopping power module (47). Protons and co-propagating electrons

were initialized as kinetic particles, whereas target ions and electrons were initialized as fluid

particles with EOS table (from Prism’s PrOpacEOS software (24)) dynamically updating target

conditions. The total proton beam energy was 2.88 mJ (0.5% of laser energy) with energy

spectrum approximately matching that taken from the experimental TP data (Fig. 5.2). It should

be noted that proton time-of-flight was not taken into account in LSP simulations, albeit the

total energy of the proton beam passing through the targets remained accurate. Whereas the

higher energy protons phenomenologically reach the target before the lower energy protons, the

entire proton spectrum continuously bombarded the target foil for 10 ps i.e. both low energy and

(fewer) high energy protons reached the target at any one point in time. To simulate greater energy

deposition at the center of the beam, the spatial distribution of proton density was Gaussian in the

transverse direction and independent of proton energy.

In the 2D LSP simulations, the proton beam (along with co-propagating electrons) was

injected into the Cartesian (x-z) simulation space and heated the target foils (thin/thick Al, PP)

from the left. Two beam sizes were injected, 300 µm and 50 µm, corresponding to an unfocused

beam from a flat source foil and a focused beam from curved foil, respectively. Fig. 5.4(a) depicts

the resulting temperature map of the 1.1 µm Al foil after all protons in a focused beam of diameter

50 µm have passed through. Since the temperature is more or less constant longitudinally, the

central dashed line perpendicular to beam propagation represents the target electron temperature

at the rear facing surface, to be compared with the SOP diagnostic results. The temperature

map follows a self-similar distribution for all other combinations of target material/thickness and

proton beam diameter.
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(a) (b) (c)

Figure 5.4: (a) Simulated temperature map of Al target. Temperature lineouts of different
materials (dashed line) are shown in (b) for the 300 µm unfocused proton beam and (c) for the
50 µm focused beam. Peak temperatures from 1D HELIOS simulations are shown as filled
squares with corresponding colors.

Figs. 5.4(b) and (c) show the transverse temperature variation mid-thickness for each

target from a 300 µm (unfocused) beam and a 50 µm (focused) beam, respectively. In both cases,

the PP is heated to a final temperature several times cooler than that of aluminum. In the case of

the unfocused beam, the simulated final temperature of Al is 0.1 eV . Had the beam been focused

by the Cu hemis (as opposed to flat Cu foils), simulations show that the Al could have reached

temperatures up to ∼ 4 eV , as shown in Fig. 5.4(c). Beam intensity increases by a factor of 36

with the focused beam, so proton energy deposition and resulting temperature increased by a

similar factor.

We also used the code HELIOS (135), which is a 1D radiation-hydrodynamics code that

can model target ionization and hydrodynamic evolution of a plasma. The code provides a particle

beam module as a source of external radiation. The proton beam is input with a beam power

and proton kinetic energy varying in time and thus allows for the proton time-of-flight to be

accounted for. We again used Prism’s PrOpacEOS tables for the material equation of states and

opacity, and the Spitzer conductivity model for the plasma thermal conduction. The proton beam

stopping power is calculated using the ion deposition model of Mehlhorn (Eqs. 3.19-3.23). The

overlaid points in Fig. 5.4(b-c) corresponding to each target represent the peak temperatures from

the 1D HELIOS simulations (135). Unlike LSP, the HELIOS simulations do not include proton
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scattering within the target, confining the heat transfer to the single dimension and thus slightly

overestimating the peak temperature when below 1 eV . This effect is suppressed for temperatures

of several eV or higher because heat conductivity tends to decrease with increasing temperature.

In Fig. 5.5(b), the experimental SOP data from a proton-heated 0.65 µm Al foil are shown

as a light red band (including uncertainty) using a lineout width of 40 µm and smoothed with

a moving average of 13 ps corresponding to the streak temporal resolution of the 300 µm slit

used). Given the noise of the raw data (main contribution to measurement error), we estimate a

peak temperature of 0.9±0.15 eV . We compare the time history of the temperature measured by

the SOP diagnostic via 1D-hydrodynamic simulations with the code HELIOS. The proton beam

intensity is input in the particle beam module of the code, accounting for energy dispersion from

proton time-of-flight. We assume a single-exponential energy distribution, for which an analytic

formula of the proton beam intensity may be derived (6):

I(t) =
8
(W

τ

)(
τ

t

)5
e−(τ/t)2

πφ2 (5.1)

where τ= d/
√

2Tp/mp is the characteristic transit time of a proton beam with temperature Tp over

a source-target gap distance d, W the total proton beam energy and φ the proton beam diameter

(FWHM) incident on target. Using d = 300 µm, Tp = 250 keV , W = 2.8 mJ and φ = 140 µm,

we report in Fig. 5.5(a) the map of electron temperature in radius-time phase space. The dashed

black line represents the rear-side surface on which the SOP imaging was focused.

In Fig. 5.5(b), we added the corresponding lineouts varying the proton beam diameters:

300 µm (half-angle divergence of 26◦) in purple, 150 µm (14◦) in blue, 140 µm (13◦) in teal and

130 µm (12◦) in light green. It appears that, for the measured proton spectrum parameters, the

simulated temperature evolution matches fairly well the data for the case of a relatively low beam

divergence of 13±1◦ (φ = 140±10 µm). This divergence seems rather low compared to what is

usually measured for a TNSA proton beam from a flat foil (∼ 20◦ (136)), unless the total energy
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Figure 5.5: For 0.65 µm Al foil heated by the proton beam: (a) Simulated (1D HELIOS)
evolution of the Al electron temperature. (b) Temperature evolution at the target rear-side
recorded by the SOP diagnostic (red). Lineouts from additional HELIOS simulations varying
the proton beam size are shown.
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of the proton beam was higher on that particular shot (7 mJ is required for a divergence of 20◦).

Yet, the similar rise and leveling of the temperature evolution is notable and suggests that the

input for the proton beam temperature was correct.

Additional LSP simulations were performed to predict the temperature of proton-heated

aluminum, where the protons are accelerated via TNSA by a high-intensity short pulse laser

of energy 10 J, as opposed to the 0.5 J in MEC. A proton energy spectrum with temperature

2.57 MeV and maximum proton energy 30 MeV results from roughly the same laser parameters

as MEC except the above total laser pulse energy (137). Fig. 5.6 shows the resulting temperature

distribution from the high energy LSP simulations for a focused (50 µm) and unfocused (300 µm)

proton beam. Ideally, protons would focus onto the target foil and would be expected to heat Al

to ∼ 25 eV . Assuming we are able to properly focus the proton beams onto the target and heat

the material to several 10s of eV , we would then be able to probe the material and contribute to

improved modeling of the elusive state of matter.
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Chapter 6

Intense proton beam transport from a

cone-structured target through plastic foam

with unique proton source modelling

6.1 Introduction

It is well known that the irradiation of thin foil targets by high intensity (> 1018 W/cm2),

short-pulse (0.01−10 ps) lasers generates laminar proton beams with MeV energies and extreme

current densities (82). Typical beam parameters at present include proton energies up to 100 MeV

and current densities up to ∼ 109 A/cm2 from structured targets that improve proton focusing.

The advantage of these laser-accelerated proton beams lies in their short bunch duration, typically

on the order of the laser pulse duration (∼ ps) at their source, and 100 ps or less as they

disperse over mm distances. Combined with their favorable deposition characteristics, this

makes them particularly effectual in isochoric heating of thin foils to warm dense regimes

(14; 138; 123; 125; 139; 17), proton radiography of rapidly evolving high energy density plasmas

(140; 141; 142), and the proton Fast Ignition (FI) scheme of inertial confinement fusion (ICF)
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(38; 77).

Although the various mechanisms of laser-driven proton acceleration have been and

continue to be well-studied, the transport and heating capabilities of these intense proton beams

through low-density plasma is not. Ultra-low density plastic foams which, when heated to high

temperatures, can reasonably stand in for low-density plasma have become available, opening up

this field of research to the lab setting. Proton heating has recently been used to create warm dense

carbon from plastic foams (143), offering equation-of-state studies of these complex regimes.

Proton heating could also facilitate the study of low-rate nuclear reactions in astrophysical objects

with near-solid density and keV temperatures (144), as well as thermal conductivity measurements

in the WDM regime (125). Following the simulation work on the dynamics of intense beam

transport in solids (47), investigating how proton heating and transport change in low-density

foams are of great interest in their own right.

When short-pulse laser-accelerated laminar proton beams were discovered and attributed

to target normal sheath acceleration (TNSA (82; 75)), they were also immediately recognized as a

viable charged particle beam for FI. Protons’ large inertia (compared to electrons) makes them less

susceptible to electromagnetic fields present in the coronal plasma outside the compressed core,

thereby mitigating transport instabilities that plague electron FI (145; 146). Energetic protons

also exhibit a Bragg peak in energy deposition, which means the majority of a proton’s energy

is deposited near their stopping range. Crucially, since laser-accelerated proton beams have a

broadband energy spectrum, the high-energy protons arrive at and heat the DT capsule, which

(depending on material characteristics) may extend the stopping range of lower-energy protons

(147) arriving later.

Proton FI has been explored in-depth (38; 77), and the proton beam requirements to

reach ignition have been evaluated numerically (6; 5). However, strong assumptions on transport

through the coronal plasma near the cone tip to the compressed core are made in the rigid

beam models applied. A study of beam transport in FI with an accurate accounting of beam

107



divergence, which is known to depend on proton energy, has not been presented. Characterizing

the transport of proton beams with energy 10s of kJ in these conditions will be necessary for

proton FI. Resistive magnetic fields have already been shown to collimate hot electron beams with

high current densities (1011 A/cm2) within carbon samples (148). In ultra-low density gas jet

targets with ne ∼ 1019 cm, collective effects significantly alter the scattering of ion beams (149).

Simulations have shown that simultaneous heating and self-generated fields have a significant

effect on the transport of proton beams with current density ≫ 109 A/cm2 (47).

Here, we present an experimental study on transport of intense laser-driven protons in

low-density plastic foams and show a modeling approach using 2D hybrid-PIC simulations.

The experiment evaluated the transport of laser-accelerated cone-focused proton beams through

low-density foam blocks by measuring the beam cross section at different depths. In Section

6.2, the experimental results are presented, including measurements of the proton spectra from

different target types. X-ray emission images are also presented which provide evidence that

the protons are still beam-like when they reach the back layer of the target. In Section 6.3, we

provide simulations of transport in the foam and post-processing to validate the experimental

x-ray images. We present a unique approach to modeling the proton beam source, taking into

account the energy-dependent divergence of typical TNSA proton beams. By post-processing the

simulated particle information, we produce synthetic x-ray emission profiles and compare them

to the experimental measurements.

6.2 Experimental Setup and Results

The experiment was carried out on the OMEGA-EP laser, where a backlighter beam

of energy 700 J, pulse length 10 ps and intensity 1018 W/cm2 irradiated a hemispherical cap

(“hemi”) attached to a hollowed cone structure, accelerating and focusing protons through the

cone tip and into a carbonized resorcinol-formaldehyde (CRF) foam block of density 0.38 g/cm3.
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Figure 6.1: (a) Experimental setup, wherein proton beam (red) is characterized by the RCF
pack, while the transport interaction is captured by the SCI and ZVH. (b) Magnified target
structure, where copper-plated foam block had a depth of either 550 µm or 1000 µm.

The diamond-like carbon hemi and cone opening were glued together and flush (diameter 300 µm,

also the hemi’s radius of curvature). The cone length was 300 µm and had far-field tip diameter

200 µm. The far-field cone bulk surface was also glued to the foam. The foam block was

1.0 mm× 1.5 mm in the laser-facing dimensions, with depths of either 0.55 mm or 1.0 mm to

reveal the proton beam profile. CRF foam was chosen for its low density and therefore low proton

stopping and scattering to elucidate the transport of protons. Cu foils 10 µm thick were glued

onto the top and rear faces of the foam block to act as tracer layers that give Cu-Kα emission for

the planar visualization of energetic electrons and protons. The experimental setup is shown in

Fig. 6.1.

6.2.1 Radiochromic Film Diagnostic

Radiochromic film (RCF) packs were fielded on this experiment to diagnose the emerging

proton beams’ spatial profiles and spectra. RCF darkens as a result of energy deposition, and dose
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measurements can be extracted from the darkening of the films (150). A pack of 6.35 cm square

films was placed 16 cm behind the target opposite the hemi structures, i.e. directly facing the rear

Cu foil, if present, on every shot. Because of the long standoff distance, only a portion of the beam

was intercepted by the first several layers in each pack. Each successive layer of radiochromic

film in the pack marks an increasing penetration energy required by protons to reach that film.

A pack contained 13 aluminum filters interleaved with ten films of type HD-v2 and two of type

MD-55; the films’ penetration energies spanned 3.5− 60 MeV . Monte Carlo calculations of

proton energy deposition in the film pack were convolved with guesses of the energy distribution

(an exponential spectrum capped below 0.5 MeV ) for comparison to the measured doses using the

approach described in Ref. (151). The particle count and temperature of the proton distribution

were varied to determine the best-fit spectrum through a residual minimizing routine utilizing the

dose on films 2 through film 10 (or through the last film with measurable dose). The beam energy

incident on the film is found by integrating the best-fit spectrum.

The fit temperature and energy presented in Fig. 6.2(b) include only what intercepted

the packs and fit to data beyond the first layer. The whole proton beam, therefore should have a

representative temperature that is lower (we estimate only slightly lower) than the fit value, while

the total beam energy is considerably higher than the presented values. To estimate the full energy

of the beam, we employed a dataset taken in a different shot day with hemi targets and RCF with

standoff only ∼ 8 cm. In that dataset, at each of the layer energies, a ratio was found of the total

dose divided by the dose contained in the square cone corresponding to this experiment, and the

present dataset was weighted accordingly. The proton transport simulations (see Sec. 6.3) were

based on this full extrapolated energy and the fit temperature. The films were scanned before the

recent refined scanning techniques presented in Ref. (152) and are no longer viable.
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(a)

(b)

Figure 6.2: Proton beam information derived from the RCF data. (a) Dose received by films
vs. film breach energy from various structured targets. (b) Comparison of beam characteristic
temperature and total energy through the film solid angle from each target type.
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Figure 6.3: (a-b) SCI images of Cu-Kα emission from the top and rear side of foam blocks.
(c) Linear correlation between integrated signals from ZVH and SCI, indicating that Cu-Kα

photon energy did not shift significantly from the cold value. (d) ZVH spectra for various target
structures.

6.2.2 X-ray Diagnostics

The spherical crystal imager (SCI) (153) was the primary diagnostic to visualize the

Cu-Kα emission from energetic electron and proton collisions with Cu K-shell electrons. The

imaging system comprises a spherically bent concave quartz crystal above the foam block 27◦

from the zenith and 276 mm away, and an image plate detector ∼ 2.4 m from the foam block in

the opposite direction. The crystal refocuses incoming 8048±6 eV photons from the target onto

the image plate.

The Zinc von Hamos (ZVH) spectrometer was also used in this experiment to capture

the time-integrated X-ray emission spectrum from various targets. This spectrometer contains a
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Highly-Ordered Pyrolytic Graphite (HOPG) crystal cylindrically bent along the non-dispersive

axis, thereby focusing 7 − 10 keV x-ray emission in first order along one dimension. The

spectrometer was calibrated for the Cu-Kα emission by comparing the measured signal on image

plates with an absolutely calibrated single-photon counting camera (154). The ZVH viewed the

target from above the laser axis.

6.2.3 Experimental Results

Fig. 6.2 shows the proton beam characteristics derived from the RCF data from targets

with varying additional components, from a simple hemi to a hemi-cone target to a hemi-cone-

foam package. The cone affects beam generation in two ways. On the one hand, hot electrons

are able to escape from the hemi and into the cone structure, establishing a sheath field along the

cone’s inner surface, which has been shown to focus the protons (17). On the other hand, this

migration leaves fewer electrons reverting back into the hemi and sustaining the electrostatic field

to accelerate protons from the rear hemi surface. This results in better proton focusing at the cost

of total proton beam energy. The latter affect can be seen in Fig. 6.2(b), where there is a factor

of two decrease in both beam temperature and energy in going from a hemi-only to hemi-cone

structure. Similarly, there is a decrease in the maximum proton energy from hemi-only (42 MeV

detected) to hemi-cone (28 MeV detected) structure, shown in Fig. 6.2(a). When adding 0.55 mm-

and 1 mm-thick foams, the total beam energy continues to decrease due to proton stopping,

while the beam temperature does not change significantly from 6 MeV . The dynamics of ion

acceleration with these structures are studied experimentally, theoretically, and computationally

in Refs. (16; 18).

Fig. 6.3(a-b) depicts the experimental cross sectional view of the proton- and electron-

induced Cu-Kα emission from two foam length cases, with a laser depiction (red) to clarify

perspective. A raw SCI image is shown inset in Fig. 6.1(a), but here we have separated the top

and rear portions and stretch them to account for the viewing angle 63◦ above the equatorial plane.
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The top foils exhibit a relatively uniform emission, while the rear foils exhibit a brighter emission

in a centralized spot, indicative of a forward-propagating particle beam, likely energetic protons.

The size of the central bright spot corresponds to < 20◦ cone angle from the hemi apex, much

narrower than would be expected from a beam of hot electrons (145), which typically exhibits

substantial scattering and divergence within materials. This suggests that protons retain their

beam-like qualities within the foam, and the spatial continuity of their intensities suggests little or

no break-up of a proton beam. The experimental x-ray beam profiles were analyzed by radially

binning and summing the signal to yield an experimental profile of dYKα/dAdΩ. Simulations

of protons and hot electrons are explored in Sec. 6.3, and their results will be compared with

experimental results in Sec. 6.4.

Looking at the full set of data, the SCI signal integrated over the target region and the

ZVH spectra integrated Cu-Kα peak were linearly correlated, as shown in Fig. 6.3(c). This

suggests that the Cu did not get hot enough to alter the Cu-Kα emission energy outside of the

response window of the crystal imager (155). Fig. 6.3(d) shows the spectra obtained when protons

and hot electrons impinge on the Cu foils for the various targets. The base continuum shown for

the hemi-cone target is brought on by hot electrons refluxing in the hemi and cone structures,

which still occurs when foam is added. The added continuum from foam targets (green, purple)

represents the particles propagating through the Cu end foils, shown in gold in the pictograms.

Interestingly, the brightest continuum emission (by a factor of 1.5) occurred in the sample with

less Cu (2 mm2 in half-foam vs 2.5 mm2 in full-foam), indicating that the number of particles

finding their way to Cu was significantly higher in the half-foam target such that it overcame the

reduced number of Cu atoms. Because the rear foil emission from the half-foam target has a

steep decline at the left and right edges, some particles were likely able to escape through the

sides of the foam. The line emission, above continuum, was also greater by a factor of 1.5 for the

half-foam case than for the full-foam shot. The reduced emission in the full-foam case is roughly

in line with the reduced proton beam energy leaving the target shown in Fig. 6.2(b).

114



6.3 Simulations

Simulations of proton transport were carried out to validate the experimental results and

investigate the dynamics of intense proton beam transport within the foam. The hybrid fluid-PIC

code LSP (106) was used to simulate both energetic protons and electrons moving through the

foam, with resulting Cu-Kα emission calculated through manual post-processing. LSP uses an

implicit algorithm wherein background plasma electrons and ions are simulated as fluid particles,

relaxing the space and time resolution requirements to avoid artificial grid heating. This is

particularly advantageous for simulating the dense plasmas present in the experiment without

resolving plasma oscillations over the long time scale of 10s of ps. Grid-based collisional effects

in the background species are estimated using the Jones algorithm (112). The simulation strategy

is depicted in Fig. 6.4. In one set of simulations, kinetic protons and/or hot electrons were injected

into a 1 mm foam block. Extraction planes at depths of 0.55 mm (half-foam, red) and 1.0 mm

(foam rear, black) were set up to collect the position and momentum of all passing particles –

see Fig. 6.4(a). In a second set of simulations, the extracted particles from either depth were

re-injected into 10 µm Cu, with extraction planes set up every 1 µm in depth – see Fig. 6.4(b).

Post-processing of these extraction planes yielded the Cu-Kα emission according to the particle

energies and positions – see Fig. 6.4(c). We point out that with this strategy, we do not simulate

the interface effects between different materials.

In all simulations, the background materials were initialized as ion and electron plasma

fluid species with starting temperature T0 = 1 eV . Based on chemical analysis, the CRF foam

had composition like C12H4O; it was simulated as a single fluid ion species with density 1.4×

1021 cm−3, with complementing electron fluid species. Calculations of the electron collision

frequencies within the foam target with this initialization were dubious, so electromagnetic field

advancement was switched off. We note that previous simulations with similar current densities

showed insignificant differences in proton transport when fields were switched on or off, which
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Figure 6.4: (a) Protons and electrons are injected into CRF foam with extraction planes at
550 µm and 1000 µm depths. (b) Extracted particles are re-injected into 10 µm of Cu, with
extraction planes set every µm in depth. (c) Post-processing the Cu-extracted particles reveals
the x-ray emission profile reaching the diagnostic.

may justify this omission of fields. Cu ions were also initialized as a fluid plasma with density

8.5×1022 cm−3. The charge state of Cu ions was determined by Prism’s PrOpacEOS (24) based

on the local density and temperature. The energy deposition and scattering of kinetic proton and

hot electron species into the foam are governed by a Monte-Carlo approach within the “dEdx”

module using present values of the local target thermodynamic state as in (25). Energy deposition

into Cu is governed by an advanced dynamic proton stopping power module (47), wherein the

bound and free electron contribution to stopping power are added together based on the charge

state.

6.3.1 Protons’ Source Treatment

In order to reconstruct the proton beam incident on the foam, we use the proton energy

spectrum measured from RCF data corresponding to the hemi-cone structure. This is modelled

as a Maxwellian dN/dεp ∝ exp(−εp/Tp) with characteristic beam temperature (average proton

energy) Tp = 6.1 MeV . The beam energy incident on the RCF was 4.16 J, but given the small

solid angle subtended by RCF 16 cm behind the target, this is less than the actual total beam
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energy. When compared with previous experiments using similar target structures and short-

pulse laser parameters (17), the total beam energy is scaled up to 14 J. We also assume an

approximately Gaussian current density profile J(x) = J0 exp
(
−x2/σ2) (156) with on-foam beam

radius σ= 45 µm. The current density is cut off to zero for x> 100 µm corresponding to the cone’s

opening radius through which protons enter the foam. Combining the Maxwellian spectrum,

total beam energy, Gaussian profile, and beam pulse 10 ps to mimic the OMEGA-EP laser pulse

duration, the peak current density is calculated as J0 = 3.6×109 A/cm2. Using these fundamental

inputs for the beam, we can implement beam divergence in two ways, described in the following

paragraphs, using transverse thermal distributions.

From previous simulations used in Ref. (17), we gather a single transverse thermal

distribution with T⊥ = 105 keV , corresponding to the divergence of the outgoing beam from

the cone structure. Note that this transverse temperature is independent of the aforementioned

longitudinal temperature Tp used in the Maxwellian energy spectrum dN/dεp. We will call the

above proton beam implementation the single-injection (SI) source, since all the parameters

described above are encompassed in a single proton source injection.

It has been shown, however, that TNSA protons exhibit a non-trivial energy-dependent

maximum divergence (82; 157). The half-opening angle of the lowest energy protons is typically

around 25◦−30◦, and that of the highest energy protons is 6◦ or lower. In between, a parabolic fit

can be used to match experimental data (157; 158), represented here as θmax(εp). We implement

this energy dependence by splitting the beam into multiple injections, each covering a different

bin of proton energies. A transverse temperature T⊥
i can then be individually assigned to each ith

injection that determines the approximate opening angle for that injection. This implementation

can be used for any θmax(εp) empirically found from experiments. We will call this beam

implementation the multi-injection (MI) source. Note that the fundamental beam parameters

described in the first paragraph of this section are still utilized in the MI source. The details of the

MI source algorithm are explained as follows.
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Assigning a transverse temperature amounts to implementing a Gaussian transverse

velocity distribution

dN/dv⊥ ∝ exp
(
−v2

⊥/v⊥th
2
)

(6.1)

where v⊥th
2
= 2T⊥/mp. With this setup, a transverse temperature T⊥

i corresponding to the maxi-

mum opening angle for the ith injection (representing the longitudinal energy bin Ei ≤ εp < Ei+1)

can be determined in the following way. The maximum half-opening angle of an injection is

determined by the maximum transverse velocity and the minimum longitudinal velocity in that in-

jection. Since the transverse velocity distribution (Eq. 6.1) is Gaussian, v⊥ substantially (by 98%)

decays by v⊥ = 2v⊥th,i – this can be used as an approximate maximum transverse velocity. The

minimum longitudinal velocity is determined by the lower limit of the energy bin vi =
√

2Ei/mp.

The maximum half-opening angle is then θmax ≈ tan−1(2v⊥th,i/vi) = tan−1
(

2
√

T⊥
i /Ei

)
. Here

we assume nonrelativistic protons. The transverse temperature is then determined by matching

this with the parabolic fit θmax(Ei):

T⊥
i =

Ei

4
tan2 (θmax(Ei)) (6.2)

It must also be ensured that an injection’s minimum half-opening angle does not stray

far from θmax(εp). The minimum half-opening angle is governed by an injection’s upper en-

ergy limit Ei+1 (also the lower limit of the subsequent energy bin). Given the lower energy

limit Ei and transverse temperature T⊥
i of an injection, the upper energy limit Ei+1 can be

determined by comparing the half-opening angle of the ith injection’s highest energy protons

θ = tan−1(2v⊥th,i/vi+1) = tan−1
(

2
√

T⊥
i /Ei+1

)
with the maximum half-opening angle predicted

by θmax(Ei+1):

δθ = θmax(Ei+1)− tan−1

2

√
T⊥

i
Ei+1

 (6.3)

In this way, the energy bins can be deduced recursively, starting from the minimum proton
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beam energy E1 = εp,min and ending when the maximum proton energy is reached. For these

simulations, 5◦ is used as a threshold of δθ i.e. the maximum half-opening angle is approximately

within 5◦ of θmax(εp), empirically taken from Ref. (158).

A comparison of the SI and MI source implementations is shown in Fig. 6.5. Figs. 6.5(a)

and (c) depict the dispersion of the SI and MI sources, respectively, by distinguishing the particle

energy map 10 ps after injection. The lines approximate the opening angle trajectory of the lowest

(purple) and highest (red) energy protons. For the SI source, albeit there is a difference in opening

angle, it is seen more blatantly with lower energy protons. The red lines are almost parallel,

indicating that the opening angle is negligible for high energy protons, which is not necessarily

seen experimentally. The highest energy protons’ opening angle in the MI source, however, is

non-negligible, conforming with past experiments. Figs. 6.5(b) and (d) are the corresponding

scatter plots of the opening angle vs. particle energy for the SI and MI sources. Even though

the plot is saturated at low energies and low angles, the upper bound of half-opening angle as a

function of particle energy defines the correspondence to θmax(εp). Whereas the SI source has

a concave, almost hyperbolic θmax(εp), the MI source more accurately follows the empirically

found parabolic profile of θmax(εp). Thus, we can more accurately simulate the proton beam

energy spread (and therefore the energy deposition) with the MI source.

Note that θmax(εp) from a hemi-cone structure likely differs with that from a flat foil;

Simulations have shown that even when the cone structure successfully reduces the proton beam

radius, the laser intensity and cone tip material have a significant effect on the beam divergence

after the tip, altering θmax(εp) substantially (156; 159). In extreme cases, proton beam hollowing

can occur due to the strong magnetic fields generated at the cone tip.

6.3.2 Electrons’ Source Treatment

Hot electrons resulting from the laser interaction with the hemi were also implemented

to evaluate their contribution to Cu-Kα generation. The hot electron source was taken from
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Figure 6.5: To compare SI (top) and MI (bottom) source injections into vacuum: (a) and (c) show
the proton energy maps 10 ps after injections. (b) and (d) depict the particle energy dependence
of maximum half-opening angle. In (d), the empirically measured half-angle opening curve is
overlaid for comparison.
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simulations similar to those in Ref. (17) (hemi-cone), with the primary exception being laser

energy (target structure and other laser parameters were identical). Kinetic electrons were

extracted at the end of the cone and, in a separate simulation, re-injected into the foam. These

simulated hot electrons had source radius 100 µm, total particle count 1.3×1015, and duration

40 ps. They exhibited a Maxwellian distribution with temperature Th ≈ 2 MeV and a large initial

divergence (half-opening angle ∼50◦) that will be important for the resulting Cu-Kα profiles.

6.3.3 Simulation Results - Transport & Heating

The results of the proton and electron transport simulations are shown in Fig. 6.6, at

various times of transport. The simulations were run for 75 ps to allow ample time for most

protons (with enough energy to significantly induce Cu-Kα emission) to reach the extraction

planes at 0.55 mm and 1.0 mm. Fig. 6.6(a) shows the proton beam density and induced electron

temperature within the foam. The protons’ trajectories are mostly ballistic, suggesting that the

incident angles at which protons are injected are mostly conserved in their transport through

the foam. Indeed, compared to solid density, the low density of the foam reduces the collision

frequency significantly, in turn reducing the scattering of the protons.

Interestingly, Fig. 6.6(b) shows the foam electron population reaching temperatures up

to several keV , corresponding to the energetic protons’ energy deposition. At higher divergence

angles and/or greater depths in the foam, the temperature peaks at several hundreds of eV . This is

likely due to the energy-dependent beam divergence implementation, as explained in Sec. 6.3.1.

Because the transverse velocity distribution is Gaussian for all particles, the majority of particles

will still be propagating longitudinally, so most of the deposited energy will still be longitudinal,

with a smooth fall-off in the transverse direction. Protons with energy below 5 MeV will deposit

all of their energy within 1 mm and stop within the foam. Because the overall temperature of the

proton beam is 6 MeV , there will be a substantial amount of protons depositing their energy at

half-angles of 20−30◦.
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Figure 6.6: Simulation results of proton (a) and electron (b) transport through plastic foam
target at t = 8, 16, and 24 ps relative to laser irradiation of the hemi. Particle densities are
shown in sub-top maps and resulting foam electron temperatures are shown in sub-bottom maps.

The results of the hot electron transport simulation are shown in Fig. 6.6(c-d), also

at three different times of transport. Recall that these hot electrons originate from the laser-

hemi interaction in a previous simulation, and the effects of that simulation are imprinted in

the foam simulations here. For example, the line of electron heating visible in Fig. 6.6(d) at

z = 0, |x| ≈ 110 µm is due to a significant population of hot electrons that traveled through the

cone bulk along its surfaces before entering the foam. These hot electrons mostly retain their high

energies and are able to induce Cu-Kα emission at both depths of Cu. The increased electron

density for |x| < 100 µm represents both hot electrons directed forward into the cone vacuum

early as well as electrons co-propagating with the protons.
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6.3.4 Post-Processing for Cu-Kα Profiles

The extraction planes set in δz spacing within the Cu recorded the position and momentum

(and therefore energy) of all proton/electron particles traversing Cu foils. To calculate the Cu-Kα

emission profile due to these particle collisions, we compute the total ionization cross section

by summing the individual cross section per particle according to their energies (160; 161) and

binning them in x to obtain the transverse profile ∆σ(x). Assuming the particle energy remains

approximately constant over the spacing between extraction planes δz, the total Cu-Kα yield is

n∆σ(x)δz. In addition, the total yield must be reduced according to (1) the solid angle collected

by the SCI, and (2) the opacity of Cu. Since the spherical crystal is sufficiently far from the foam

block covering a small solid angle, the angle of emission (27◦) can be treated as constant. The

amount of Cu through which photons pass, however, depends on which extraction plane they

originate, i.e. the extraction planes closer to the Cu rear travel through less Cu. Taken together,

the total emission density can be expressed as:

dYKα

dx
=

9

∑
i=0

[
dσ

dx

]
i
nδze−κνρL(i) (6.4)

where κν is the mass attenuation coefficient of Cu at photon energy hν = 8.048 keV , and

n and ρ are the number- and mass-density of Cu, respectively. L(i) = (10 µm− iδz)/sin(27◦) is

the length of Cu that photons from the ith extraction plane pass through, and δz = 1 µm spacing.

Energy conservation among the particles and fluids is held during the simulations, with

the primary transfer of energy being proton energy deposition given to the background electrons

and ions. However, as the Cu-Kα calculations were performed in post-processing, the radiated

energy loss was not represented during the simulation. From the particle data collected in the

simulations of transport in copper and calculated emission based on cross-sections, we find that

the total energy conversion efficiency from “beam” protons to Cu-Kα x-rays is 0.5%, and that

from “beam” electrons is 1.0%. This means that the Cu-Kα radiation was not a significant loss,
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and energy was therefore approximately conserved.

6.4 Discussion

Since the target cone structure is in direct contact with the cone bulk, hot electrons have

yet another means of escape. These electrons not only have a wide divergence beyond the cone

due to enhanced magnetic fields at the cone tip (156), but also scatter relatively quickly throughout

the low-density foam. Both of these attributes contribute to the approximate uniformity of the

electron population at the top Cu foil. This is confirmed in our 2D simulations of hot electron

transport through foam in Fig. 6.6(b). While the electron population is nonuniform near the foam

front, they diverge and scatter quickly enough to uniformly populate the top (and bottom) of

the foam. It should be noted that the foam height was larger in the experiment than what was

simulated, which would only make the electrons reaching the top foil more uniform.

Crucially, hot electron simulations through foam also show that the population is relatively

uniform at foam depth 1 mm. The central bright spots on the foam rear, therefore, must at least

partially be due to the proton beam. This is confirmed in our 2D simulations of proton beam

transport through the foam in Fig. 6.6(a). There are orders of magnitude fewer (if any) protons

reaching the top of the foam compared to the rear, leaving the uniform population of electrons

noted above. On the foam rear, there is a densely populated central region of protons that decays

radially, matching the experimental x-ray emission profile.

The post-processed Cu-Kα radial emission profiles at both foam depths are displayed in

Fig. 6.7, calculated as described in Sec. 6.3.4. At both 0.55 mm and 1 mm depths, hot electron-

driven emission is significant at large radii and exhibits a gradual incline towards the center.

Proton-driven emission, on the other hand, is primarily on-axis and drives up the centralized

total emission profile (solid curve). This sheds light on the qualitative features within the SCI

images in Fig. 6.3. The half-foam target (Fig. 6.3(a)) exhibits a more pronounced central peak –
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Figure 6.7: Cu-Kα radial emission profiles from simulation post-processing of 0.55 mm (a) and
1.0 mm (b) foam depths, where arbitrary units refer to the same scale. The total emission profile
(solid curve) is subdivided into its component electron-driven (dotted curve) and proton-driven
(dashed curve) emissions.

visually by a sharp change in gradient around r = 250 µm – compared to the full-foam target in

Fig. 6.3(b). Simulations show that this may be attributed to protons whose emission is confined

to r = 250 µm, whereas electron emission is gradual up to r = 500 µm. This indicates that the

protons retained their beam-like qualities experimentally.

The qualitative agreement between simulations and experiment suggests that the proton

beam propagates without filamenting through the low-density foam. An additional simulation was

run with electromagnetic field calculations switched on, and only small magnetic fields (∼ 10 T )

were observed with no noticeable effects on proton beam transport. This is because space-charge
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effects do not play an important role since the beam is neutralized by the relatively high density

of background electrons compared to protons. The resulting low resistive magnetic field is

reasonable if we consider the current density gradient. With peak current density J0 ∼ 109 A/cm2

and beam transverse scale length ≳ 100 µm, the current density gradient is not significant enough

to generate a focusing magnetic field (47). Simulations have shown, however, that decreasing the

cone tip diameter can further focus proton beams (17), presumably up to a limit. Proton beam

requirements for FI include total beam energy 10s of kJ (with Maxwellian temperature several

MeV ) fit into a spot size of ∼ 20± 10 µm on the compressed core. To achieve this, the peak

proton current density must be orders of magnitude larger than was attained in this experiment,

which begets much steeper current density gradients. At these levels, self-generated magnetic

fields will almost certainly affect the transport of the beam through a coronal plasma. Whether

the fields act to self-consistently focus or defocus the beam depends on a number of properties

of the transport medium as well as beam stopping power. Efforts to mitigate unstable transport

effects or use them to our advantage (i.e. focus the beam) must be investigated experimentally,

analytically, and computationally in order to best determine the prospects of proton FI.

Honrubia and Murakami (162) explored the effects of proton beam divergence (beyond

the cone) on proton FI requirements, yet the beam model assumes that a proton’s deflection angle

after the cone was chosen at random, while within a fixed beam divergence. The randomized

deflection angle does not take into account the energy-dependence of beam divergence, i.e. higher

energy protons are more likely to have a lower deflection angle. Nevertheless, they determined

that proton beams with diameter 20−30 µm and divergence half-angle below 10◦ have minimum

ignition energy below 20 kJ (assuming the beam is injected ∼ 90 µm away from the compressed

core). Temporal et al. (6) determined that the proton bandwidth 7− 19 MeV was crucial to

ignition from a proton beam with temperature Tp = 3 MeV and diameter 20 µm at the compressed

core. Our analysis shows that the divergence of a particular bandwidth of protons may actually

be less than the total divergence of the beam. Given a fixed overall beam divergence, confining
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the crucial bandwidth of the proton beam to the necessary divergence may further relax the

proton beam intensity requirements. In our analysis, the 7−19 MeV proton bandwidth still has a

divergence half-angle between 25◦ and 30◦, but further experimental and/or computational work

is necessary to explore the energy-dependence of proton beam divergence beyond cone structures.

More recent work (19) has shown interesting effects of self-generated fields in hemi-cone

targets. In hemi-cone structures with open cone tips, high-energy protons (> 30 MeV ) exhibit an

annular profile, while lower energy protons appear focused in the region that would otherwise be

within the annulus. This was not observed with a hemi-cone structure with closed tip. A possible

explanation was that transverse electric fields generated near the open cone tip over-focused

the highest energy protons which arrived early in time. At later times, some combination of a

decaying electric field and lower energy protons arriving did not produce an annular effect. In the

case of this work, because the foam block was in direct contact with the cone, one may argue

that it was analogous to an enlarged cone tip, in which case an annular effect would not have

been observed. Nevertheless, proton FI studies (6) have shown that, given the necessary beam

energy, the proton spectral window primarily responsible for ignition is between 7 and 19 MeV

for a compressed core with density 625 g/cm3. Since the highest energy protons are outside of

this range, the annular effect may not be detrimental to ignition success. That being said, it would

be interesting to find the foam (plasma) density below which this annular profile effect starts

to appear, and which parameters increase or decrease the proton energy threshold at which the

annular effect occurs.

The foam temperature evolution observed in simulations due to proton energy deposition

is also unexpectedly high. Analogous simulations were performed with the exact same proton

source model, but using solid aluminum (ρ= 2.7 g/cm3) and vitreous carbon foam (with identical

ρ f oam = 0.38 g/cm3) instead of the foam. In these alternate material cases, the temperature map

had the same characteristic contours as in Fig. 6.6(a), which was expected given the energy depo-

sition and beam divergence. In the case of vitreous carbon foam, the fluid electron temperature
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still reached several keV , while that in Al reached a maximum of 150 eV , which is consistent

with previously run simulations with roughly similar beam parameters.

One possible explanation for the exorbitant temperatures in the low-density foam is as

follows. At least in metals at high temperatures Te ≳ EF ∼ eV , the electron heat capacity is

modeled as an ideal gas of free electrons, i.e. du/dT ∝ n f . Because the density of the foam is

about ten times lower than that of Al, the heat capacity of the foam could also be proportionately

lower. This means it takes far less energy to change the temperature of the foam by an arbitrary

degree than it does to change the temperature of Al by the same degree. Even when SRIM

calculations (90) show that peak stopping power i.e. energy deposited in Al is quadruple that

in CRF foam, the order of magnitude difference in density (and heat capacity) outweighs the

stopping power calculations. We should note that these simulations can be made more accurate

with better equation-of-state modeling of plastics. Since the material spends very little time in the

cold solid regime, we can neglect those heat capacity models.
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Chapter 7

Theoretical Model for Resistive Field

Generation

7.1 Introduction

Understanding the dynamics of intense particle beam propagation through plasma has

numerous scientific applications, including for accelerators and colliders (163; 164), neutron

source generation (165), and inertial confinement fusion (38; 77). In conventional linear ac-

celerators, strong quadrupole magnets are used to steer and focus particle beams along their

trajectory. Space-charge and current neutralization degree play key roles in ion beam transport

through low-density plasma, which has been well investigated through experiments, theory and

simulations (166; 167). In warm and hot dense plasma, however, the background electron density

generally outnumbers the beam density, and beam transport largely depends on macroscopic

characteristics such as self-generated fields, stopping power and conductivity. In this regard, the

transport of intense ion beams through warm and hot dense plasma is wide open for scientific

exploration.

The continuous advancement of short pulse lasers has opened this area of research, as
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laser-driven energetic proton beams with high current densities (> 109 A/cm2) and short bunch

duration (∼ ps) are now routinely generated in experiments (17; 168). Already, these laser-driven

proton beams are used to produce warm dense matter samples for pump-probe experiments

(125; 169). As the laser to proton energy conversion efficiency, and subsequently proton beam

current density, continue to increase, it will be necessary to account for collective effects as

they propagate through dense plasma. For sufficiently intense proton beams incident on solids,

self-generated resistive magnetic fields within materials may be capable of focusing or defocusing

the proton beam itself. Simulations have shown that current densities ∼ 1010 A/cm2 can induce

magnetic fields ≳ 100 T , enough to affect the trajectory of the protons within the material

(47; 170).

Here, we investigate and introduce a simple analytic model to estimate the magnetic field

generation produced by intense proton beams. In Sec. 7.2, we review the analytic model used to

find the induced resistive magnetic fields, noting the mechanism differences between energetic

protons and hot electrons. In Sec. 7.3, the model is solved numerically and compared with hybrid

particle-in-cell (PIC) simulations for both monoenergetic and Maxwellian beam sources. Various

beam parameters are modified to observe their effects on magnetic field generation. In Sec. 7.4,

these effects are discussed and explained in relation to the analytic model. This will ultimately aid

in our understanding and estimation of field generation without the need to run computationally

expensive simulations for several different cases.

7.2 Theory & Semi-analytic Model

In order to study the propagation and collective effects of intense proton beams, it helps

to consider that of hot electrons. When high-intensity lasers irradiate matter, the atoms are

ionized and the freed electrons are accelerated (becoming “hot” electrons) through the material. If

unimpeded, the energy stored within the magnetic field induced by their current is unreasonably
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large and unsustainable (171); therefore the electron beam must inductively draw a return current

composed of background electrons (172; 173). This allows propagation of the hot electrons by

neutralizing the total current within the material Jc +Jb = 0, where Jc and Jb are background

electron current density and beam current density, respectively. Since the density of background

electrons is far greater than that of the beam electrons, the background electrons’ speed need not

be very high to neutralize the beam current density.

However, the resistance encountered by the background electrons in the return current

generates an electric field, which can be simply calculated by Ohm’s Law E = ηJc with material

resistivity η. Furthermore, a spatial gradient in this resistive electric field drives a resistive

magnetic field according to Faraday’s Law:

E =−ηJb

∂B
∂t

= ∇×ηJb

(7.1)

This resistive magnetic field is generated by two processes: (i) the neutralization of the beam

current, and (ii) any spatial gradients in either the current density or the material resistivity.

This phenomenon has been investigated both computationally (174; 175) and experimentally

(176; 177). Importantly, this includes resistivity gradients due to temperature gradients, since

resistivity η(Te) depends strongly on material temperature. In many practical cases where current

density is strongly centralized and decays radially, e.g. Gaussian radial distribution, azimuthal

resistive magnetic fields are generated.

Previously, assuming Ohmic heating via intense hot electron beam propagation, Davies

found analytic solutions for temperature evolution, and subsequently resistivity and field evolution

from Eq. 7.1 (178). These solutions assumed a simplified temperature dependence of resistivity

and a constant heat capacity, yet proved remarkably useful in understanding the effects of different

heating regimes. Two regimes were independently considered — cold (η ∝ Te for Te ≪ TF) and

Spitzer (η ∝ T−3/2
e for Te ≫ TF). The Fermi temperature TF is typically within 10s of eV for
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Figure 7.1: (a) Illustrative model of resistive fields (green, blue) generated from intense proton
beam (red) transport. (b) Primary heating mechanisms are Ohmic (yellow) and drag heating
(red), which beget temperature and resistivity gradients.

metals (TF = 12 eV for aluminum and 7 eV for copper) and is a marker for the warm dense

regime, since electrons are partially degenerate at these temperatures. Nardi et al. (60) used a

more sophisticated model for resistivity and heat capacity to compare theoretical target heating

with experimental results in femtosecond laser-matter interactions. This model takes into account

collisional saturation in the warm dense regime, or η ∼ ηmax for Te ∼ TF . Variations of this

resistivity model were used also by Passoni et al. (59).

In this work, we apply a variation of the above model to intense proton beams, which are

capable of heating cold foils to temperatures over 1eV , generating warm and hot dense plasmas on
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a time scale shorter than thermal expansion. Fig. 7.1(a) is an apt illustration of the field generation

from proton beams, wherein the beam current density induces a neutralizing current and resistive

electric fields (green). Gradients in this field subsequently induce azimuthal magnetic fields (blue).

Fig. 7.1(b) illustrates the two primary heating mechanisms: Ohmic heating (yellow) brought on

by the resistance encountered by the background electron return current; and drag heating (red)

as protons gradually deposit their energies during transport.

We neglect thermal conduction in this model since particle beam heating occurs on much

shorter time scales. Ohmic heating is given by

POhm =Cv
dTe

dt

∣∣∣∣
Ohm

= ηJ2 (7.2)

where Cv is the temperature-dependent volumetric heat capacity. This is analogous to the

macroscale power dissipation by resistors P = I2R. In this formulation, it is important to note

that J is technically the current density of the background electrons, which was shown earlier to

be equal and opposite to the beam current density. As the beam particles themselves propagate

through the material, they impart their energy to the bulk electrons via collisions. This collisional

(drag) heating is expressed as (173)

Pdrag =Cv
dTe

dt

∣∣∣∣
drag

=
J
e

dε

dz
(7.3)

where e is the elementary charge and dε/dz is the temperature-dependent particle stopping

power. Combining both heat sources, we obtain a first-order ordinary differential equation for

temperature,

Cv
dTe

dt
= ηJ2 +

J
e

dε

dz
(7.4)

which may be solved numerically. Te(t) may then be used to calculate the resistivity and in turn

the resistive fields from Eq. 7.1.
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Before following this path, it is important to take a closer look at Eq. 7.4. In particular, let

the ratio of the two source terms be given by

S0 =
Pdrag

POhm
=

dε/dz
eηJ

(7.5)

which can be interpreted as the ratio of averaged collisional (drag) force to the resistive electric

force, both experienced by the beam particles. Since current densities and stopping power of hot

electrons typically differ from those of protons, S0 will also differ. Considering resistivity of the

form η = η0(T/T0)
α, α = 1 approximates the cold regime and α =−1.5 approximates the hot

(Spitzer) regime. Between these extremes lies warm dense matter, which will be discussed later.

7.2.1 Heating by Hot Electrons vs. Protons

Short-pulse laser-driven electron beams typically exhibit current densities Je ∼ 1013 A/cm2

and stopping power dεe/dz ∼ 5 MeV/cm (for 5 MeV electrons at room temperature Al), yielding

S0 ∼ 0.06 (resistivity is material-dependent). This indicates that Ohmic heating is dominant,

accordant with Davies’ neglect of drag heating (178). This is clearly seen in Fig. 7.2, which

plots the numerical solutions to Eq. 7.4 for the cold (α = 1) and hot (α =−1.5) regimes indepen-

dently, assuming constant resistivity and heat capacity. In both regimes, S0 = 0 (blue) discounts

drag heating completely. These curves match previous results (178). For hot electron beams

which typically have S0 ≪ 1 (red), it is clear that drag heating does not significantly increase

the temperature and resistivity. Because resistive fields arise from spatial gradients in resistivity,

insignificant differences in resistivity beget insignificant differences in resistive fields.

Laser-driven proton beams, on the other hand, typically exhibit Jp ∼ 109 A/cm2 and

dεp/dz ∼ 400 MeV/cm (17; 168), yielding S0 > 1000. Contrary to hot electron beams, drag

heating is now the dominant heating mechanism, shown clearly in Fig. 7.3. In the same vein as

Fig. 7.2, S0 = 0 disregards drag heating, yielding the same blue curves. For S0 ≫ 1 (typical for
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Caption:

Resistivity and temperature evolution of proton-heated targets in the cold (𝛼 = 1) and hot (𝛼 = −1.5) plasma 
regimes of resistivity. For electron beams, including drag heating (red) does not significantly alter the 
temperature and resistivity from ohmic heating (blue). For proton beams, drag heating plays a far more 
significant role in temperature and resistivity evolution by several orders of magnitude.

Relevant Equations:

𝒕/𝒕𝟎
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Figure 7.2: Resistivity and temperature evolution of hot electron beam-heated targets in the
cold (α = 1) and hot (α = −3/2) plasma regimes. Hot electron beams exhibit S0 ≪ 1 (red),
showing that drag heating is negligible when compared with Ohmic heating only (S0 = 0, blue).
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intense proton beams), the numerical solutions to Eq. 7.4 are shown in red and yellow for both

cold and hot regimes. When S0 > 1000, we clearly see orders of magnitude difference in heating.

For α = 1, this can even be seen analytically by solving Eqs. 7.1 and 7.4 assuming constant

stopping power (valid for particle energies ∼ MeV and/or thin foils):

T
T0

=
η

η0
= (1+S0)et/t0 −S0

where t0 =CvT0/η0J2 is the characteristic Ohmic heating time scale. For S0 = 0, this reverts back

to the single exponential solution shown in blue in Figs. 7.2-7.3 and in (178). For S0 ≫ 1, the

temperature and resistivity increase by approximately a factor of S0, which underlies the several

orders of magnitude increase in temperature and resistivity for protons. Even though S0 has a

spatial dependence through J, this factor of S0 will propagate through to augment the magnetic

field as well.

7.2.2 Resistivity & Heat Capacity Model

So far, we have analyzed the cold and hot regimes independently, whereas in reality,

resistivity follows a continous function of temperature. In light of this, resistivity will be

calculated from the Drude model:

η =
meνe

e2n f
(7.6)

where e and me are respectively the electron charge and mass, n f is the free electron density, and

νe the total electron collision frequency. Note that the free electron density implicitly depends

on temperature via the mean ionization state of the material. Thus, calculating resistivity boils

down to calculating the electron collision frequency. The Eidmann-Chimier model (54) smoothly

interpolates the electron collision frequency among the cold, hot, and warm dense regimes.

In the cold condensed matter regime Te ≪ TF (Fermi temperature), electron-phonon collision

frequency νe-ph and electron-electron collision frequency νe-e are dominant (51; 53). These
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Resistivity and temperature evolution of proton-heated targets in the cold (𝛼 = 1) and hot (𝛼 = −1.5) plasma 
regimes of resistivity. For electron beams, including drag heating (red) does not significantly alter the 
temperature and resistivity from ohmic heating (blue). For proton beams, drag heating plays a far more 
significant role in temperature and resistivity evolution by several orders of magnitude.
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Figure 7.3: Resistivity and temperature evolution of proton beam-heated targets in the cold
(α = 1) and hot (α =−3/2) plasma regimes. Intense proton beams exhibit S0 ≫ 1 (red, yellow),
making drag heating dominant in temperature and resistivity evolution by several orders of
magnitude.
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collision frequencies describe the classical interaction of background electrons with lattice ions

(νe-ph) and with themselves (νe-e). For the hot plasma regime Te ≫ TF , wherein atoms are

approximately fully ionized, we use the classic Spitzer collision frequency νsp describing the

Coulomb interaction among free electrons (55). For the intermediate regime Te ∼ TF , electron

degeneracy and ion correlation effects come into play, invalidating the Spitzer formulation. An

upper limit on the electron collision frequency is obtained by noting that the electron mean free

path must exceed the inter-atomic distance r0, or νe < νmax = ve/r0 with electron thermal speed

ve. This is equivalent to collisional or resistive saturation, and has been shown both experimentally

(56; 22) and computationally (57; 58).

Thus, a harmonic average of the corresponding relaxation times is used to calculate the

total electron collision frequency, and therefore resistivity, across a broad temperature range:

ν
−2
e = (νe-ph +νe-e)

−2 +ν
−2
max +ν

−2
sp (7.7)

Further details on this model can be seen in Sec. 2.6. Fig. 7.4(a) displays the resultant η(T ) of

solid-density aluminum from room temperature to 10 keV , along with experimental measurements

(22; 23; 21; 20). It should be noted that at low temperatures, the electron-phonon collision

frequency naturally depends on the ion temperature. While electron-ion thermal equilibrium is

assumed in the model above, this is invalid for ultra-short pulse laser-matter interactions, which

formed the basis of resistivity measurements by Milchberg et al. and possibly the reason for

their discrepancy. Nonetheless, resistive saturation is still apparent with a similar ηmax as in the

Eidmann-Chimier model.

The resistivity calculated from the model by Lee and More (114) with Desjarlais ionization

pressure correction (28) (LMD model) is also plotted in Fig. 7.4(a) for comparison with the

Eidmann-Chimier model. The hybrid-PIC code LSP (106) was used here to calculate the electron

collision frequency (LSP LMD module) for solid-density aluminum at the marked electron and
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ion temperatures. This was then plugged into Eq. 7.6 to calculate the corresponding resistivities,

which show good agreement with the Eidmann-Chimier model for resistivity. Further details on

this model and its benchmarking can be seen in Sec. 4.3.

As in Eq. 7.2-7.4, we must also consider the dependence of material heat capacity on

bulk temperature. In the hot plasma regime, free electrons behave approximately as an ideal

gas, yielding volumetric heat capacity Cv =
3
2n f . For temperatures below this regime, the heat

capacity calculation is deferred to tabulations made by Lin Zhigilei and Celli (29) for various

metals, since the complexity of the calculation is outside the scope of this work. The two regimes

are then smoothly interpolated to yield a piecewise formulation of Cv(Te). Fig. 7.4(b) displays

the total heat capacity of Al at solid density from room temperature to 10 keV . Beyond 5 eV ,

the heat capacity is still temperature-dependent because the free electron density depends on the

mean ionization state, which in turn is temperature dependent.

7.2.3 Proton Stopping Power Model

The final component to model before solving Eq. 7.4 is the particle stopping power. In this

work, the proton stopping power is calculated by summing free- and bound-electron contributions

independently to cover partially and fully ionized plasmas (25):

dεp

dz
= κ0

[
(Z −Z∗)niLb +Z∗niL f

]
(7.8)

with common stopping factor κ0 = 4πe4/mev2
p, bulk temperature-dependent mean ionization

state Z∗, and bound and free electron density (Z −Z∗)ni and Z∗ni, respectively. Estimation of

the ionization degree Z∗ of aluminum was interpolated from tabulated equation of state (EOS)

properties generated by the software Prism PrOpacEOS (24). The bound electron stopping

number Lb is calculated from the high-energy limit of the Bethe-Bloche expression (179; 89; 90)

taking into account the excitation and ionization of target electrons. The free electron stopping
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Figure 7.4: (a) Comparison of experimental Al resistivity measurements with Eidmann-Chimier
model (22; 23; 21; 20) and LMD model (28). (b) Semi-analytic model for volumetric heat
capacity of Al, using tabulated values (29) up to 5 eV and free electron gas model thereafter.
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number L f is calculated accounting for simple binary collisions and plasma oscillation excitations

(96). Ultimately, the total stopping power depends on the proton energy, the target material and

its temperature, assuming constant density for time scales ∼10s of picoseconds.

7.3 Magnetic Field Generation

Having modeled the temperature dependence of resistivity, heat capacity, and proton

stopping power, and assuming a radially varying beam current density, we are finally in a position

to solve Eq. 7.4 and Eq. 7.1 numerically. After testing, the sufficient time resolution for the

calculation was determined to be 1 f s to start converging to the real solution. Aluminum resistivity

and heat capacity has been well investigated and modeled as in Fig. 7.4 so will be used as the

surrogate bulk material in this work with initial temperature T0. In all cases, we consider a

rigid beam model where the beam current density is unidirectional and axisymmetric with a

Gaussian radial profile J ∝ exp
(
−r2/r2

0
)
ẑ with characteristic radius r0. Note that the full width at

half-maximum is FWHM ≈ 1.67r0.

7.3.1 Monoenergetic Proton Beams

Let us first consider a monoenergetic beam with on-axis current density J0. Because

thermal conductivity is ignored, the spatial dependence ultimately derives from time-independent

J(r). Eq. 7.1 then simplifies to

E =−η(r, t)J(r)ẑ (7.9)

∂B
∂t

=− ∂

∂r
[η(r, t)J(r)]φ̂ (7.10)

Te(r, t) can be solved numerically from Eq. 7.4 and used to find η(r, t) and subsequently the

resistive fields as above. Note that since there is yet no longitudinal (z) dependence, this model

141



applies to a thin sliver δz of bulk material, across which stopping power does not vary significantly

(valid for ∼MeV protons). The free parameters in this model are therefore initial Al temperature

T0 at solid density 2.7 g/cm3, beam parameters J0, r0, and proton energy εp.

To start, we investigate the impact of initial temperature T0 on magnetic field generation.

Fig. 7.5 displays η(r, t) and Bφ(r, t) due to a monoenergetic 2.25 MeV proton beam with J0 =

1010 A/cm2 and r0 = 17 µm, for initial temperatures (a-b) 0.03 eV , (c-d) 10 eV (warm dense

Al, middle), and (e-f) 200 eV (hot dense Al). The first peculiar feature is – even though the

initial temperatures 0.03 eV and 10 eV differ by three orders of magnitude, both conditions yield

the same magnetic field evolution capping at 25 T . This can be explained by the characteristic

rate of proton heating. The inset of Fig. 7.5(a) displays the temperature of Al along the beam

axis in the first 500 f s. The protons instantly heat the Al to about 5 eV , reaching 10 eV after

only 100 f s. One can imagine that this temperature evolution scales locally with the smoothly

varying Gaussian current density. Since 10 eV is reached so quickly on the time scale of the field

generation and since the resistivity explicitly depends on temperature, both scenarios follow an

almost identical evolution.

However, the maximum magnetic field reached with initial temperature 200 eV is less

than half that of the above, as shown in Fig. 7.5(f). This is because the initial resistivity is much

lower at 200 eV than at 10 eV . Eq. 7.10 shows that the field generation is proportional to the

resistivity, so the sharp decrease in Spitzer resistivity from resistive saturation largely inhibits

magnetic field generation. The significance of the initial heating period on field generation will

be explained further in Sec. 7.4.

Before proceeding, it is important to benchmark these calculations with simulations.

The hybrid-PIC code LSP (106) is used here to benchmark the fields calculated numerically by

Eq. 7.10. As a PIC code, LSP advances electromagnetic fields via Maxwell’s equations (Faraday’s

and Ampere’s Laws). To model the collisions of background particles in the cold and warm dense

regimes, the LMD and Spitzer modules within LSP were used. Prism PrOpacEOS (24) tables
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Figure 7.5: Comparison of resistivity η(r, t) (left plots) and corresponding magnetic field
profiles Bφ(r) (right plots) from proton beam propagation when varying the initial temperature
of Al - 0.03 eV room temperature (top plots), 10 eV (middle plots), and 200 eV (bottom plots).

143



(a) (b) (c)

(d) (f)(e)

z [µm]

x 
[µ

m
]

np [cm
-3]0 2E19

Te [eV]10 40

P
R

O
TO

N
IN

JEC
TIO

N
P

R
O

TO
N

 IN
JEC

TIO
N

Figure 7.6: Comparison of 2-D hybrid-PIC simulations (a,b,d,e) and theoretical calculations
(c,f) of magnetic field generation for characteristic beam radii r0 = 8.4 µm (a-c) and r0 = 17 µm
(d-f). All images are taken at t = 3 ps after beam front enters at z = 0.

were also imposed to calculate the average ionization degree of aluminum as a function of density

and temperature. The comparison of total electron collision frequency between the Eidmann-

Chimier model and LSP LMD module was shown in Fig. 7.4(a). Proton energy deposition in LSP

was calculated the same way as outlined in Sec. 7.2.3, where at each time step stopping power

was calculated dynamically based on temperature and density (25).

Comparisons of simulated to theoretical calculations of magnetic field are shown in

Fig. 7.6. Figs. 7.6(a-b, d-e) display the simulation results of monoenergetic (5 MeV ) proton

beam propagation (J0 = 1010 A/cm2) through Al with initial temperature 10 eV , where the beam

was injected at z = 0 in the +z direction. Although a smaller viewing window is displayed,

the simulation box spanned −50 µm to 400 µm longitudinally and 70 µm radially to avoid

boundary effects. Note that the appropriate magnetic field profile is within the dotted regions in

Figs. 7.6(b,e). Figs. 7.6(c,f) show good agreement between the simulated (dotted curves) and

calculated (solid curves) magnetic field profiles. In both cases, the simulated and theoretical fields
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converge with time in both shape and magnitude, with only a minor discrepancy in radial spread.

The radial discrepancy is possibly due to the rigid nature of the theoretical model, which assumes

perfect beam neutralization and electron-ion thermal equilibrium at all radii. In simulations,

beam neutralization takes time and background electrons may even be pulled in from the beam

periphery. Despite this discrepancy, it is important to note that simulations respond almost

identically to theoretical calculations when beam radius is doubled, i.e. field magnitude halves

and radial spread doubles.

Looking closer at the simulated fields in Fig. 7.6(b,e), it is interesting to note that there are

actually two significant sets of azimuthal magnetic field — one as described above and another

which aligns closely with the temperature contours near the beam front. The current model does

not take into account the magnetic field development longitudinally, but one may speculate that

these fields affect beam focusing or defocusing. This will be further discussed in Sec. 7.4.

7.3.2 Proton Beams with Maxwellian Energy Distribution

Laser-driven proton beams have proven a useful means of generating warm and hot

dense plasmas isochorically and uniformly (14). In a typical proton-heating configuration, a

high-intensity short-pulse laser irradiates a primary (source) target and couples primarily to bulk

electrons. A cloud of hot electrons forms outside the source target, which generate an electric

field capable of accelerating protons to ∼ MeV energies from the rear surface (75). Protons

and electrons co-propagate as a quasi-neutral beam across a vacuum gap before encountering a

secondary (sample) target. There, co-propagating electrons generally have ∼keV energies and

stop within a thin (∼µm) front layer, leaving protons to propagate deeper into the sample. Still,

protons would dominate over electrons in heating the front surface. Our theoretical model for

proton beam-driven magnetic field development may also be applied to the front δz depth of the

sample, simply by incorporating a time dependence in the current density and stopping power.

Laser-driven proton beams are accelerated from a source foil into vacuum and often
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exhibit Maxwellian energy spectra:

dN
dεp

=
εtot

T 2
p

e−εp/Tp (7.11)

with beam temperature Tp and total beam energy εtot . This distribution of protons would then

disperse across a vacuum gap before encountering a sample foil. Due to this dispersion, incident

proton energy and current density are time-varying at the sample front. Assuming the proton

beam originates from an instantaneous “burst” source (valid for laser pulses ≪ ps) and exhibits

characteristic radius r0, the current density is expressed as:

J(r, t) =
(

2e
πr2

0τ

εtot

Tp

)
τ3

t3 exp
(
−τ2

t2 − r2

r2
0

)
(7.12)

where τ =
√

mpd2/2Tp is the characteristic transit time, e and mp are the proton charge and mass,

respectively, and d is the vacuum gap distance. Similar expressions were given in Ref. (6) for the

time-varying beam power.

This configuration is depicted in Fig. 7.7(a). Note that because the energy spectrum

exponentially decays, beam density also decreases with distance from the source foil. Fig. 7.7(b)

shows the characteristic current density and beam power felt by the sample foil from a Maxwellian

beam. Current density is near zero as very few high-energy protons reach the sample first, followed

by protons with energy ∼Tp forming the peak around t ∼ τ, and ending with a t−3 decay (t−5 for

beam power) of low-energy protons. Here, t = 0 represents the “burst” source time. Previously,

current density incident on a sample target was held constant. To compare to these cases, it helps

to define the maximum current density incident on a sample:

Jmax =
εtot (J)√
Tp (MeV )

(
10 µm

r0

)2(100 µm
d

)
×
(
2.4×1010 A/cm2) (7.13)
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Figure 7.7: (a) Laser irradiation (purple) of thin-foil target (blue) drives Maxwellian proton
beam (red) across a vacuum gap before hitting a sample foil (grey). (b) On-axis current density
(in units of εtote/πr2

0τTp) and beam power (units of 2εtot/τ) felt by the sample as a function of
time (units of τ).

Importantly, εp(t) = mpd2/2t2 must be used in calculating the time-varying stopping power in

Eq. 7.4. Beyond this, the same strategy for calculating the resistive magnetic fields holds — solve

for Te(r, t), obtain η(r, t) and calculate Bφ(r, t).

The magnetic fields resulting from varying Maxwellian beams (Tp = 5 MeV ) are shown in

Fig. 7.8. For all cases, the field develops steadily at early times before converging to a maximum

profile. Convergence to this maximum field profile occurs when the current density decays,

approximately at the inflection point past its peak, t ∼ τ. This is reasonable since current density

decays rapidly after this time, and total magnetic flux along with it. This point will be further

discussed in Sec. 7.4.

As an example, Fig. 7.8(a) displays the magnetic field evolution from a Maxwellian

proton beam with εtot = 0.33 J, d = 50 µm (τ ≈ 1.6 ps), and r0 = 8.4 µm. The calculated fields

(solid curves) rapidly increase until τ = 2 ps, within which time the current density peaks and

slightly decays. For t > 2 ps, the field develops at a slower pace before converging to a profile

with Bmax ≈ 30 T . The parameters of this beam were chosen to approximately match the overall

conditions of the monoenergetic beam shown in Fig. 7.6(a), i.e. the average proton energy
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(a) (c)(b) (d)

Figure 7.8: Evolution of magnetic field profiles driven by Maxwellian proton beams of varying
parameters. The beam parameters of (a-d) are listed in Table 7.1. In all cases, sample Al is
initially at 10 eV and Maxwellian beam temperature is 5 MeV .

Table 7.1: Maximum magnetic field Bmax generated form intense proton beams with varying
parameters outlined in body text. For Maxwellian beams, ⟨J⟩ ≈ 0.15Jmax is calculated over a
pulse duration ∆t = 3τ. The first four entries correspond to the results shown in Fig. 7.8.

Distribution εtot [J] ⟨J⟩ [×1010 A/cm2] r0 [µm] d [µm] ∆t [ps] Bmax [T ]
Maxwellian (a) 0.33 0.56 8.4 50 4.8 30
Maxwellian (b) 10 17 8.4 50 4.8 135
Maxwellian (c) 10 4.3 8.4 200 19.4 145
Maxwellian (d) 10 0.12 50 200 19.4 5
Monoenergetic 10 19 8.4 - 4.8 100

Maxwellian 100 0.5 50 200 19.4 16

Tp matches that of the monoenergetic beam, and the vacuum gap d was chosen such that the

time-averaged current density of the Maxwellian beam over 3 ps is 8×109 A/cm, close to that of

the monoenergetic beam. Interestingly, the magnetic field profile after 3 ps of the both beams

approximately match, even though the field development at earlier times does not. Simulations

were also conducted for the beam conditions in Fig. 7.8(a), with results shown as dashed curves.

The magnetic field evolution from simulations agrees quite well in magnitude to theoretical

results, but again, varies slightly with radial spread.

Fig. 7.8(b) shows the field evolution from the same proton beam configuration as in (a),

except that the beam energy is increased to 10 J. This energy increase results in a total Bmax

increase by a factor of ∼4.5. All else the same, amplifying the beam total energy amounts to

multiplying the overall particle count and therefore current density. Conservation of energy may

be employed to estimate the magnetic field amplification — since the field energy density is
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proportional to B2, one may roughly estimate Bmax ∝
√

εtot . Amplifying εtot by a factor of 30 in

the above case, this would place Bmax ∼ 160 T , slightly higher than the calculated 135 T shown

in Fig. 7.8(b). Obviously, conservation of energy here is more intricate than these relations, but

this provides a rough estimate of the field amplification.

Fig. 7.8(c) shows the field profile evolution for the same beam parameters as in (b), except

the vacuum distance has now been increased to d = 200 µm. To compare the field evolutions,

both (b) and (c) contain profiles at intervals with respect to τ. To this end, the plots are remarkably

similar in magnitude, suggesting self-similarity with the corresponding time scales. Compared to

(b), the maximum current density in (c) decreases by a factor of 4 (Eq. 7.13), yet the magnetic

field achieved is slightly greater. This is because the decrease in current density J ∝ 1/d is

compensated by the increase in time scale τ ∝ d. The link between current density and time for

magnetic field generation will be further discussed in Sec. 7.4.

Finally, the profiles shown in Fig. 7.8(d) are a result of beam parameters identical to (c),

except that beam radius is increased to 50 µm. This change has by far the greatest impact on field

generation, since it alters not only the current density, but also its radial gradient. Because both

J(r, t) and Jmax ∝ r−2
0 , widening the beam by a factor of 6 would presumably decrease the field

generation by a factor of 36. This is exactly what is observed, with Bmax ∼ 4.5 T down from

150 T .

7.4 Discussion

In all of the scenarios introduced here, it is important to point out that the field generation

is most significant at early times. In other words, the gain in magnetic flux during equal time

intervals generally decreases with time. This can be seen in Fig. 7.5(d-f) and in Fig. 7.8, and can
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be shown by integrating Eq. 7.10 with radius:

∂ϕ

∂t
= ηJ

∣∣
r=0 (7.14)

assuming J → 0 at large radii and where ϕ represents a quasi-2D azimuthal magnetic flux i.e.

ϕ = ∂Φ

∂z with true azimuthal magnetic flux Φ =
∫∫

Bφdrdz. This is equivalent to invoking Stokes’

Theorem on Eq. 7.1, or Faraday’s Law in integral form. The magnetic fields apply up to a certain

depth below which stopping power remains approximately constant, on the order of several µm

(see Fig. 7.6(b,e)). In this case, the true magnetic flux may be approximated by ϕ ∼ Φ∆z.

Eq. 7.14 shows that the rate of change of the azimuthal magnetic flux is principally

dependent on the axial field, made of both the axial resistivity and current density. At first this

may sound counterintuitive because the resistive magnetic field predominantly depends on the

gradients of resistive electric field, i.e. resistivity and current density. But while the magnetic flux

density (Bφ) may take on large values at steep gradients, the total magnetic flux (ϕ) looks only at

the “area under the curve” e.g. in Fig. 7.8.

Assuming a constant current density (as in Figs. 7.5-7.6), the change in magnetic flux

with time is primarily determined by the resistivity, which depends on material temperature.

Resistivity is maximized at the early times while temperature increases toward resistive saturation,

and only decreases with temperature (Spitzer η ∝ T−3/2
e ) beyond ∼100 eV , decreasing the gain

in magnetic flux along with it.

Current density is likewise a contributor to magnetic flux gain. This is more clearly

observed with Maxwellian proton beams, where the current density exhibits a rapid rise followed

by a steady decay. Near the current density peak, the magnetic flux gain is maximized, as shown

by the first two plots in Fig. 7.8(b-c), corresponding to t = τ/2 and t = τ. In this phase, the

increase in magnetic flux may be approximated by

∆ϕ = [ηJ]r=0 ∆t ∼ ηJmaxτ.
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The combination of Jmax ∝ 1/d and τ ∝ d cancels the dependence on d entirely, equalizing the

total magnetic flux gain. For the same spatial scale (r0), and self-similar spatial profile with time,

Bmax is bound to match as well. This explains the stark resemblance between the field evolution

in Figs. 7.8(b) and (c). The minor increase when d = 200 µm is likely due to the nonlinear heating

and slightly prolonged phase in the warm dense regime, where magnetic flux gain is maximized.

For t > τ, the current density decays as t−3, and the magnetic flux gain significantly slows down.

The field profile quickly converges accordingly.

It is important to note that within this framework, electron-ion thermalization is not

taken into account, which may result in inaccurate electron temperature evolution. Eq. 7.4

implies that all the energy deposited by protons goes into heating the background electrons.

In reality, this energy would pass from the background electrons into background ions as they

thermally equilibrate. Over several tens of picoseconds, the lattice ions are heated enough to

hydrodynamically expand. Material properties including average ionization state, electron heat

capacities, and stopping power calculated herein assume time-independent solid-state density,

which breaks down upon material expansion.

In the extreme case where ions remain at room temperature, the resistivity curve would

resemble that in Fig. 7.4(a) only in the Spitzer regime (Te > 10 eV ). From room temperature

up to Te ≈ 1 eV , the resistivity would be constant (Ti-dependent), followed by a steep rise with

plateau at Te ≈ 10 eV . Comparing the two resistivity models, significant differences in resistive

magnetic fields are only seen for current densities at or below J ∼ 109 A/cm2. For these current

densities, the material spends a significant duration within the warm dense regime, where the

resistivity models differ. Higher current densities heat the material quickly to 10 eV , after which

the field generation does not differ between models.

In theory, if electron temperature is overestimated, resistivity in the Spitzer regime would

be underestimated, leading to underestimated magnetic fields. Simulations conducted for the

beam conditions shown in Fig. 7.8(b), for example, show maximum B-fields reach 450 T , over
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three times what theoretical calculations show. One possible reason that this is not seen where

simulations agree with calculations is that the magnetic field maximizes within the warm dense

matter regime, where resistivity varies less around saturation. The model’s exclusion of electron-

ion energy transfer is thus a major source of discrepancy when compared to self-consistent PIC

simulations.

Maxwellian proton beams typically emerge from high-intensity (> 1018 W/cm2) laser

interactions with solid targets. As previously mentioned, intense lasers primarily couple with and

accelerate electrons beyond the target rear. What results from this are two electron populations –

hot electrons (∼MeV ) which reach the sample foil before the protons, and co-propagating elec-

trons (∼keV ) which travel with and neutralize the protons (73). The low-energy co-propagating

electrons are stopped quickly in the sample foil, but the hot electrons may have an effect on the

generated fields. The analysis thus far has assumed only protons incident on the sample foil, in

which case background electrons have more than enough density to form a return current, but

including a forward-propagating hot electron beam may alter the physics.

By analysis of a three-species system, one may approximately find the electric field

necessary to reach a steady state balance of proton, hot electron, and background electron

currents, utilizing the appropriate collision frequencies. In a steady state, the equations of motion

for hot and background electrons are:

0 =−eE
me

−νhe(vh − ve)−νhivh

0 =−eE
me

−νeive −νep(ve − vp)

with collision frequencies ν and velocities v among hot electrons, background electrons, and

protons. Note that we neglect the hot electron collisions with protons in the first equation and

cold electron collisions with hot electrons in the second – both collision frequencies νhp and

νeh ≪ νhe and νep. Assuming all currents are neutralized Je + Jh + Jp = 0 and nh ∼ np ≪ ne, we
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obtain for the electric field:

eE
me

=−
np(νei +νep)(νhe +νhi)

ne(vhe +νhi)+nh(νhe +νei +νep)
vp

This may be simplified further by assuming νei ≫ νhe,νep:

E =
E0

1+α

where eE0
me

= −np
ne

νeivp is the electric field if hot electrons were not taken into account, that

is, if protons were neutralized solely by background electrons. Here, α = nh
ne

νei
νhe+νhi

is a factor

representing the hot electron contribution. Upon deeper analysis, we find that α ≪ 1, yielding

electric fields that are minimally affected by the co-propagating electrons.

The fields observed in this work are relatively mild in terms of proton beam focusing

ability. Simulations have shown that azimuthal magnetic fields of ∼30 T do not significantly

focus the protons, but those ≳ 80 T are sufficient to affect the beam radius (47). As previously

mentioned, the fields responsible for focusing may be those that contour around the beam front,

as seen in Fig. 7.6(b) and (e). Similarly stronger fields may be seen in Fig. 3 of Ref. (25) and

in Fig. 5 of Ref. (47). One explanation for this is the following. Expanding Eq. 7.10 yields two

terms:
∂Bφ

∂t
=−η

dJ
dr

− ∂η

∂r
J (7.15)

If the beam front always “sees” a cold solid ahead and around, the rapid proton-heating induces

an instantly steep resistivity gradient

∂η

∂r
=

dη

dTe

∂Te

∂r
< 0

since dη/dTe ≥ 0 up to the warm dense regime and ∂Te/∂r < 0 because dJ/dr < 0. Therefore,

both terms add constructively to generate the magnetic field most efficiently.
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As mentioned previously, the fields investigated in this work apply to the first several

microns within a material on which the proton beam is incident. Field generation deeper within

a dense plasma requires further development of the model, in which proton stopping power

(especially near the Bragg peak) will play a more significant role. In addition to collisional

stopping power, the model would have to account for beam collective effects in order to accurately

reproduce beam transport (170; 48). A more advanced model would include the J×B force at

depth to self-consistently predict the beam evolution. When the beam starts to focus, longitudinal

gradients come into play in magnetic field development. The model currently assumes Jr = 0, but

for nonzero Jr,
∂Bφ

∂t
=

∂

∂z
(ηJr)−

∂

∂r
(ηJz).

As the beam front begins to focus, a positive feedback loop emerges since ∂η/∂z < 0, Jr < 0, and

∂Jr/∂z > 0, further strengthening the magnetic field.
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Chapter 8

Conclusions and Future Work

8.1 Proton Heating of Warm Dense Matter

We have developed a platform upon which sample targets may be proton-heated to WDM

conditions at the MEC end-station at SLAC National Accelerator Laboratory. The high-intensity

short-pulse laser at MEC is capable of accelerating protons via the TNSA mechanism and

focusing them via hemispherical shells, provided that the different components in the alignment

system are well coordinated with the target. Additionally, the novel on-demand LCLS x-ray

backlighting technique (expanding beam through Beryllium lenses) will certainly be useful in

future experiments for target alignment. Background bremsstrahlung emission from irradiating

the Cu source foil with the high intensity laser proved to be an issue when collecting XRTS data,

as the noise from this emission confounded the scattered x-rays from the target foil. Additional

shielding over the diagnostic and use of source foils with lower atomic number have since been

attempted to mitigate the bremmstrahlung emission, with little success. Using mass limited

targets has helped, and utilizing gated x-ray detectors (180) to remedy the issue is currently being

investigated.
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8.2 Proton Transport through Low-Density Plasma

In summary, we conducted an experiment which directed the proton beam from a typical

TNSA hemi-cone configuration into CRF foam to study transport of the intense beam in a

low-density plasma which may exist in, for example, proton FI schemes. The addition of a

massive cone to the target hemi foil reduced the total beam energy by 50% and reduced the

Maxwellian temperature by over 50%. Images of x-ray emission show a bright spot on the rear Cu

film indicative of a forward-directed beam without major breakup. Simulations of the transport

were conducted using a multi-injection proton source with the experimentally obtained energy

spectrum but with energy-dependent angular spread. The modelling included contributions from

hot electrons which broadly filled the foam. Synthetic Cu-Kα maps were generated through an

additional simulation step and post-processing. While hot electrons produce an emission profile

gently declining with radius, protons produce a centralized emission profile which drives up the

emission on-axis, in qualitative agreement with experiment. This suggests that protons retain their

beam-like qualities well into the low-density plasma. Simulations also showed that the intense,

cone-focused proton beam was able to heat the low-density foam to temperatures above 1 keV ,

which could be important for future studies if verified experimentally.

The proton current densities generated in this experiment were not intense enough to

induce significant magnetic fields within the foam, but future work includes assessing the proton

transport dynamics of more intense beams through metal blocks. Proton beams can be made more

intense by increasing the cone half-angle and/or reducing the tip radius, among other methods.

Current calculations predict that several 10s of kJ in proton beam energy must be compacted into

several 10s of µm diameter to successfully ignite a typical DT capsule. At these scales, developing

analytic models to predict collective effects on proton beam transport will be crucial.
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8.3 Theoretical Model for Intense Proton Beam Heating and

Transport

We have investigated the development of resistive magnetic fields driven by intense proton

beam propagation through matter. Unlike electron beams, proton beams significantly heat the

target through direct collisional heating, as opposed to Ohmic heating brought about by the

background electron return current. This necessitates a dynamic treatment of resistivity and heat

capacity for the duration of the beam pulse since both depend strongly on temperature. Using

the Eidmann-Chimier resistivity model for aluminum and the spatial and temporal evolution

of temperature and resistivity, the resulting magnetic fields are solved for varying proton beam

conditions. It was found that proton beams with Gaussian radial profiles induced azimuthal,

annular magnetic fields.

For monoenergetic, constant current density proton beams, initial material temperature

plays a significant role in total field generation. For Maxwellian proton beams, the development

of resistive magnetic field is found to be self-similar with the characteristic transit time τ, as

evidenced by Figs. 7.8(b)-(c) and explained by Eq. 7.14. It was found that beam radius has the

most significant impact on the maximum field produced, assuming constant total beam energy.

For a Maxwellian beam with characteristics of a typical laser experiment with two foils, the

model calculated fields as strong as 145 T . The agreement of the calculated field profiles with

hybrid-PIC simulations (notably limited by electron-ion thermalization) shows that the model can

provide a good estimate of the magnetic field. The advantage of this analytic model is to provide

the essential physics involved in resistive field generation from proton beams. Since the model

results are benchmarked with hybrid-PIC, resistive fields can be well estimated without the need

for large processing power and time.

Aluminum was used as a sample metal in this work because the resistivity in several

temperature regimes is well known, but the model can similarly be applied to other materials with
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known resistivity and heat capacity. This would be particularly important for proton fast ignition

studies, since understanding the self-generation of fields and resulting proton beam transport

between the cone tip and the dense core is critical. Since aluminum’s electric resistivity is lower

than most, other transport media may produce stronger fields that are capable of self-focusing the

beam.
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