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Abstract

Objective: Despite the overall success of responsive neurostimulation (RNS) therapy for drug-

resistant focal epilepsy, clinical outcomes in individuals vary significantly and are hard to predict. 

Biomarkers that indicate the clinical efficacy of RNS—ideally before device implantation—are 

critically needed, but challenges include the intrinsic heterogeneity of the RNS patient population 

and variability in clinical management across epilepsy centers. The aim of this study is to use a 

multicenter dataset to evaluate a candidate biomarker from intracranial electroencephalographic 

(iEEG) recordings that predicts clinical outcome with subsequent RNS therapy.

Methods: We assembled a federated dataset of iEEG recordings, collected prior to RNS 

implantation, from a retrospective cohort of 30 patients across three major epilepsy centers. Using 

ictal iEEG recordings, each center independently calculated network synchronizability, a candidate 

biomarker indicating the susceptibility of epileptic brain networks to RNS therapy.

Results: Ictal measures of synchronizability in the high-γ band (95–105 Hz) significantly 

distinguish between good and poor RNS responders after at least 3 years of therapy under 

the current RNS therapy guidelines (area under the curve = .83). Additionally, ictal high-γ 
synchronizability is inversely associated with the degree of therapeutic response.

Significance: This study provides a proof-of-concept roadmap for collaborative biomarker 

evaluation in federated data, where practical considerations impede full data sharing across 

centers. Our results suggest that network synchronizability can help predict therapeutic response 

to RNS therapy. With further validation, this biomarker could facilitate patient selection and help 

avert a costly, invasive intervention in patients who are unlikely to benefit.

Keywords

functional connectivity; multicenter; network neuroscience; neuromodulation; synchronizability

1 | INTRODUCTION

Approximately one in 26 people worldwide will develop epilepsy at some point in their 

lifetime, and nearly one third of people with epilepsy are drug-resistant and experience 

recurrent seizures. Although surgically removing the seizure onset zone (SOZ) holds the 

highest promise for medication-resistant patients to become seizure-free, resective surgery is 

often not a viable option for those patients with multiple SOZs, seizures that originate from 

eloquent cortex, or a spatially extensive seizure onset.1 Responsive neurostimulation (RNS) 

therapy offers a promising alternative to traditional resective surgery for these patients.2 

The current US Food and Drug Administration (FDA)-approved RNS device for epilepsy 
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consists of an implantable pulse generator affixed to the skull and connected to two subdural 

electrodes that facilitate continuous intracranial electroencephalographic (iEEG) sensing 

and direct electrical stimulation when abnormal activity is detected.3 A recent study of real-

world RNS outcomes showed that >50% of patients are RNS responders (≥50% reduction in 

seizures) after 1 year, and >70% of patients respond at 3 years.4

Although RNS is effective for many patients, approximately 10% of those who receive the 

device demonstrate no change or an increase in seizure frequency after 9 years of RNS 

therapy.5 RNS implantation is invasive and costly, and the risk of serious adverse events, 

including tissue infection, osteomyelitis, and hemorrhage, although small, is especially 

burdensome for patients whose condition is not improved by the device.6–8 Additionally, 

candidates for RNS typically have a multiyear history of failed medications, many have 

failed surgical interventions,2,9 and the psychological toll of prolonged treatment failure 

can exacerbate comorbid anxiety and depression, which are prevalent in the drug-resistant 

epilepsy population.10,11 An expanding body of work is uncovering clues to the mechanisms 

underlying RNS action,2,12–17 but there is an ongoing need for validated biomarkers to 

improve RNS therapy. In particular, a biomarker that predicts whether RNS therapy will lead 

to a successful outcome, given that the current therapeutic guidelines for RNS therapy are 

followed,4 and that can be measured before device implantation, would provide a critical 

tool for guiding therapeutic options for patients.

To date, many of the biomarkers associated with RNS patient outcomes such as interictal 

spike frequency, spontaneous seizure interruption, and functional network connectivity have 

been extracted from long-term RNS device recordings after device implantation.13,17,18 

However, data collected in the epilepsy monitoring unit (EMU) during presurgical 

monitoring remains an unexplored resource for guiding RNS placement beyond localizing 

the SOZ, and holds promise for discovering RNS biomarkers that can predict patient 

outcome. iEEG recordings in particular have been used to predict outcomes from resective 

surgery,19,20 indicate effective locations and time points for seizure control,21 predict 

dynamics of seizure spread,22 and functionally map brain networks through corticocortical 

evoked potentials.23,24 It is likely that multiple factors, such as medication schedule, RNS 

implant location, and stimulation parameters, contribute to a patient’s therapeutic response. 

Nonetheless, evidence that RNS therapy has a gradual effect leads to the hypothesis that 

the organization of brain network connectivity may help predict response to targeted RNS 

therapy.

In this study, we present a candidate biomarker—network synchronizability—calculated 

from iEEG recorded during presurgical evaluation, for predicting whether a patient will 

respond to RNS therapy. Network synchronizability is a metric borrowed from the field 

of graph theory and is a theoretical measure of the diffusion of information throughout 

a network under certain assumptions of system dynamics.25,26 Preliminary studies show 

that network synchronizability at seizure onset is a promising candidate biomarker for 

identifying patients most likely to benefit from resective surgery.19,27 Here, we test the 

hypothesis that global ictal brain network dynamics recorded before RNS implant can 

indicate whether a patient will respond to RNS therapy. We also establish a set of shared 

inclusion criteria, computational pipelines, and data repositories to analyze intracranial 
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electrophysiology and clinical metadata in a federated manner across our three epilepsy 

centers.

2 | MATERIALS AND METHODS

2.1 | Patient selection and data collection

We aggregated a retrospective cohort of 30 patients by randomly selecting 10 patients 

who were implanted with the NeuroPace RNS System between June 2014 and September 

2018 at each of three major epilepsy centers. We included patients that met the following 

criteria: patients who were >18 years of age, underwent at least 2 years of RNS treatment, 

experienced at least one seizure per month before RNS treatment, and underwent iEEG 

monitoring during presurgical evaluation in the EMU of their epilepsy center as part of 

standard clinical care before RNS device implantation. Ten of 19 consenting patients from 

the Hospital of the University of Pennsylvania (HUP) met the inclusion and exclusion 

criteria at the time of data assembly and were selected for this study. Ten patients 

meeting the inclusion and exclusion criteria at both New York University (NYU) Langone 

Comprehensive Epilepsy Center and the University of California, San Francisco (UCSF) 

Comprehensive Epilepsy Center were additionally selected as a convenience sample to 

ensure equal representation from each center (Table S1). iEEG data were recorded from 

cortical grids and strips, depth electrodes, stereo EEG electrodes, or a mixture of electrode 

types across centers, sampled at either 500 Hz, 512 Hz, or 1024 Hz (with one exception; 

recordings of Patient NP47 were downsampled from an 8192-Hz sampling rate to a 1024-

Hz sampling rate before further processing). At each center, iEEG signals were recorded 

referentially, with the reference electrode placed distant to the site of seizure onset. Patients 

were determined to be good candidates for the RNS System based on consensus of each 

center’s multidisciplinary epilepsy care team during epilepsy surgical conference. Data from 

these evaluations were collected solely for clinical use and incorporated into this study 

retrospectively. Data collection for research purposes at HUP was approved by the HUP 

institutional review board under the collaborative and iEEG protocols; all HUP subjects 

provided consent to have their full-length iEEG recordings and anonymized imaging and 

metadata publicly released on the ieeg.org portal, an open-source online repository for 

electrophysiologic studies. The NYU Langone institutional review board granted approval 

for data collection and allowed that informed consent could be waived for studies involving 

sharing of deidentified EEG and imaging data. Finally, data collection at UCSF was 

approved by the UCSF Committee on Human Research, which ruled that informed consent 

could be waived for studies involving sharing of deidentified EEG and imaging data.

We quantified a patient’s response to RNS treatment as the percent change in seizure 

frequency after stimulation therapy was turned on compared to their preimplant baseline 

frequency, as reported in the patient’s seizure diary and clinical notes. For our main 

analysis, we used the reported outcome nearest to the second year of implantation after 

stimulation therapy commenced (median = 2.0 years, interquartile range [IQR] = 1.9–2 .1). 

We classified patients who achieved ≥50% seizure reduction as “responders” (n = 16), a 

standard threshold for treatment evaluation, whereas those who had a lesser reduction or 

increase in seizures were classified as “nonresponders” (n = 14).7 In an additional analysis 

Scheid et al. Page 4

Epilepsia. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



step, we separated patients into three bins associated with their degree of RNS response. 

Because outcomes are documented differently across centers—some report percent decrease 

in seizure frequency as a single value, whereas others report a range of seizure reduction 

values—we arrived at our bin boundaries of 15% and 83% by assigning each patient a value 

in the middle of their reported outcome range (e.g., a patient with a 50%–74% outcome 

range would be assigned 62%), then we calculated the two tertile values of all assigned 

outcomes.

2.2 | iEEG processing and functional network generation

Seizures were identified in the iEEG recordings at each center during clinical presurgical 

evaluation, and the seizure onset and seizure termination time points were annotated by 

board-certified epileptologists (B.L., V.R.R., D.F.).28 In total, 151 seizures across 30 patients 

were identified for analysis (median = 2.5 seizures/subject, IQR = 2–5). Artifactual channels 

were identified by visual inspection and removed. Next, data clips containing each seizure 

were formatted to enter the preprocessing and network generation pipeline described in 

previous publications (median seizure length = 1.4 min, IQR = 45 s to 2.6 min).19,27 

Briefly, the raw iEEG recordings were denoised using a common average referencing (CAR) 

technique, wherein the mean across recording channels at a given time point is subtracted 

from all channels at the same time point.27,29 Importantly, CAR is robust to the placement of 

the reference electrode used for signal recording, thus mitigating one potential difference in 

recording technique between centers.

Metrics from network theory can be applied to electrographic neural data by constructing 

functional connectivity networks in consecutive time windows, using iEEG electrodes as 

nodes and assigning the strength of coherence between pairs of electrode recordings as 

weighted edges. Accordingly, each event clip was split into a total of T nonoverlapping 

1-s time windows and functional networks were generated for each time window such that 

the N recording electrodes represented N network nodes, and an estimate of coherence 

between each pair of 1-s channel recordings represented the edge weight between respective 

electrode pairs. We used multitaper coherence, a measure of similarity in spectral power 

between two signals at a given frequency, to calculate network edge weight as the 

average coherence value across frequencies in a given frequency band. Studies of neural 

communication in a variety of behavioral contexts find that neuronal coherence may 

increase within distinct frequency bands to achieve specific neurophysiological aims, with 

feedforward communication signals mediated by higher frequencies and feedback signals 

mediated by lower frequencies.30 Thus, coherence networks built using specific frequency 

bands can tease apart band-specific dynamics of neural communication. Therefore, a 

multitaper coherence network was generated over the β band (15–25 Hz) and high-γ 
band (95–105 Hz) respectively, as well as a cross-correlation network calculated over a 

broad band range (5–115 Hz) for each time window.19 We were left with three functional 

connectivity networks with N nodes for each of the T time windows across each seizure 

(Figure 1A).
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2.3 | Network synchronizability

The metric of network synchronizability is a global network metric that can be interpreted 

as the ease by which neural activity propagates throughout a functional connectivity brain 

network.27,31 Although related to synchrony, synchronizability is not a measure of how 

well brain signals are synchronized throughout the network, but rather is a measure of the 

potential for activity in all regions to fully synchronize with one another. Synchronizability 

for a given time window is calculated by first representing a network as an N × N adjacency 

matrix, A, where the ijth element holds the value of the edge weight between nodes i 
and j. The Laplacian matrix is then calculated as L = D – A, where D is a diagonal 

matrix of node strength.25 Importantly, the edges li,j of the Laplacian matrix quantify how 

easily information can diffuse between nodes i and j, and the spread of the Laplacian 

eigenspectrum reflects the stability of the fully synchronized state.32 Synchronizability is 

given as the ratio of the second smallest to the largest eigenvalue of the Laplacian matrix; 

thus, a larger synchronizability value indicates a system with a greater eigenvalue spread 

and a greater potential to synchronize.32 Additional information on the synchronizability 

measure can be found in the Supporting Information.

We calculated the synchronizability value for consecutive functional connectivity networks 

to create a synchronizability curve as a function of time, s(t). Once we obtained a 

synchronizability curve for each seizure event, the curve was normalized such that the 

ictal period had unit length. For each patient with multiple seizures, all normalized 

synchronizability curves were averaged at each time point, resulting in a single 

representative curve per patient, used for group level analysis (Figure 1C).

2.4 | Aggregating data in a federated framework

We created a framework that allowed for distributed processing of clinical neuromonitoring 

data across epilepsy centers in a standardized manner. Ten patients were selected using 

the same exclusion and inclusion criteria at each center, respectively, and gave their 

written informed consent to share their deidentified neuromonitoring data. Mutual data-use 

agreements were prepared between each institution to allow the investigators to share 

limited datasets and postprocessed results on the International Epilepsy Electrophysiology 

Portal (www.ieeg.org)33, a centralized Health Insurance Portability and Accountability 

Act (HIPAA)-compliant cloud repository. The same pipeline for electrophysiological data 

preprocessing and network generation was distributed across centers,27 ensuring that the 

data processing steps were identical across sites.

2.5 | Statistical analysis

We used the Mann–Whitney U-test to compare the mean value of each patient’s 

synchronizability curve in responders versus nonresponders. In our sensitivity analysis, we 

generated a receiver operating characteristic (ROC) curve to measure how well the mean 

synchronizability value during the ictal period could identify a patient as a responder or 

a nonresponder for a sweep of classification thresholds. The area under the ROC curve 

(AUC) was measured, with a value of 1 representing perfect classification, and a value of .5 

representing chance assignment of a patient to one of the two groups.
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2.6 | Data availability

We share all functional connectivity networks and synchronizability curves derived from 

iEEG recordings obtained during a patient’s stay in the EMU on the free and HIPAA-secure 

web portal ieeg.org.33 The code used for generating functional networks and calculating 

synchronizability is freely available at https://github.com/akhambhati/Echobase.

3 | RESULTS

We began our analysis by examining whether quantifiable clinical factors alone were 

associated with patients’ RNS response. We found no significant difference between 

responder and nonresponder groups based on years of RNS therapy at the time of outcome 

measurement (responder IQR = 2.0−2.0, nonresponder IQR = 1.9−2.0, Mann–Whitney 

U = 275, p = .3), years with epilepsy (responder IQR = 12.5−20, nonresponder IQR = 

13−24, U = 232, p = .5), or the location of RNS lead implants (mesial temporal implant 

vs. neocortical, U = 186, p = .3; unilateral vs. bilateral, U = 239, p = .99). Additionally, 

there was no significant difference in number of implanted iEEG electrodes between groups 

(responder IQR = 86−124, nonresponder IQR = 110−121.5, U = 249, p = .98). Given that 

clinical features did not distinguish responders from nonresponders, we next turned to our 

hypothesis that synchronizability, a measure based on the connectivity of functional brain 

networks, might have value for predicting treatment response.

The synchronizability value measured from functional brain coherence networks estimates 

the capacity for neural information to diffuse throughout a network.27,34,35 Thus, 

synchronizability after seizure onset is a measure of how much the neural channels 

for communication are impeded or facilitated during the seizure. We quantified how 

synchronizability during seizure onset differed between the 16 RNS responders (patients 

showing at least a 50% reduction in seizure frequency compared with baseline) and the 14 

nonresponders, where outcomes were measured after 2 years of RNS titration. We computed 

synchronizability curves using networks in two frequency bands, β (15– 25 Hz) and high-γ 
(95–105 Hz), and broad band (5–115 Hz), and found that RNS responders demonstrated 

a significantly smaller value of network synchronizability in the high-γ band compared 

with patients who were nonresponders (U = 173, p = .002). Even after using a Bonferroni 

correction for multiple comparisons across the three distinct network types, the high-γ 
band maintained significance (p < .0167). In contrast, synchronizability values were similar 

between groups in the β band and broad band (p > .05), suggesting that these bands do not 

generate network characteristics pertinent to predicting patient response (Figure 2B). In a 

sensitivity analysis, synchronizability change for high-γ band networks was able to predict 

responder status with an AUC value of .83 (95% confidence interval = .63–.94; Figure 2C).

Noting that synchronizability values in the high-γ band were lower for responders, we next 

asked whether the degree of response to RNS therapy at 2 years was inversely related to ictal 

synchronizability. We separated patients into three outcome bins based on percent seizure 

reduction (≥83%, 15%–83% exclusive, and ≤15%) with 10 patients per bin. We found that 

the mean synchronizability value for each bin increased with decreasing seizure reduction, 

providing further evidence that measures of brain connectivity obtained prior to device 
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implantation may indicate the extent of therapeutic response within the first few years of 

therapy (Figure 2D).

We next performed two subanalyses to determine whether the main effect of a smaller 

synchronizability value in responders held after patients were grouped by iEEG electrode 

type and by location of implanted RNS leads. The trend of lower synchronizability in 

responders was maintained in each category for the high-γ band, whereas directionality 

of the difference between responder groups was variable in the β band and broad band. 

Specifically, there was a significant difference in the high-γ band for patients with majority 

depth electrodes (responders n = 10, nonresponders n = 5, U = 62, p = .028) and 

patients with unilateral RNS lead implantation (responders n = 9, nonresponders n = 9, 

U = 61, p = .017; Figure 3). An additional analysis on patients within each center also 

demonstrated trends consistent with the main findings in the high-γ band, although the 

individual center results were statistically underpowered, with only one center reaching 

a significant result (UCSF, responders n = 4, nonresponders n = 6, U = 12, p = .038; 

Figure S1). Furthermore, we repeated the main analysis at two additional time points and 

found that synchronizability in the high-γ band remained significantly different between 

responder groups after 1 and 3 years of stimulation therapy (p < .015; Figure S2, Figure 

S3). Finally, we determined that an electrode-specific effect due to our choice of reference 

method was not biasing our conclusions (Figure S4), and found no evidence for biases due 

to circadian rhythm (Figure S5). Taken together, our results illustrate that neither laterality 

of implant, type of intracranial electrodes, nor treatment center bias the main finding that 

high-γ synchronizability is predictive of RNS outcome.

4 | DISCUSSION

To our knowledge, our results are the first to demonstrate the prognostic value of iEEG 

data collected before RNS implantation to determine whether patients are likely to respond 

to RNS therapy. In our analysis, we find that ictal synchronizability has the ability to 

distinguish RNS responders from nonresponders over the first 3 years of therapy, with 

trends maintained even after segmenting patients by onset location, iEEG electrode type, 

and treatment center. Additionally, our study serves as a proof-of-concept for multicenter 

collaborative RNS biomarker discovery on federated datasets.

Much evidence suggests that epilepsy is a disorder of brain networks,36 and incorporating 

measures of complex macroscale neural dynamics is promising for guiding surgical 

resection in cases of drug-resistant epilepsy.37,38 In prior work, the network measure of 

broad band synchronizability at seizure onset predicted a good outcome after surgical 

resection, reflecting the network’s ability to isolate seizure propagation after onset.19 Our 

finding that RNS responders exhibit a smaller synchronizability magnitude during seizures 

is consistent with the previous study, although our results are significant in the high-γ band, 

suggesting that biomarkers for neurostimulation outcomes may be more frequency-specific. 

Prior work found that RNS stimulation acutely suppresses γ-band phase-locking, a measure 

of synchrony, between signals in adjacent electrode channels, although phase-locking in 

lower frequencies was not significantly affected.15 Paired with our results, it is possible 

that RNS stimulation is more effective at suppressing phase-locking in patients with low 
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synchronizability networks that take longer to naturally synchronize. In another study of 

brain synchronizability in epilepsy patients, a smaller preictal synchronizability magnitude 

in the high-γ band was shown to be a hallmark of network focality.27 Recent longitudinal 

analysis of RNS recordings supports the theory that stimulation also actuates gradual, 

frequency-specific plasticity changes that differ for responders versus nonresponders.17 A 

purely speculative possibility is that networks of RNS responders are more focal and thus 

exhibit a greater resistance to spreading epileptic activity throughout the network, making it 

easier for stimulation to further decouple epileptic brain regions from the broader network.

The mechanism of RNS remains poorly understood, and undoubtedly a number of 

external factors may influence responder status over time, including programmed detection 

and stimulation parameters and interactions between RNS therapy and pharmaceutical 

treatments.14,39 Our results suggest that the intrinsic connectivity of epileptic networks may 

be a significant predictive factor of their susceptibility to RNS therapy within the first 3 

years. It is unknown whether synchronizability predicts outcome at later time points, as 

many patients ultimately improve over time.4,5 We propose that there is still clinical utility 

in a biomarker that can indicate whether a patient will respond within the initial years of 

therapy, as they may benefit from a different approach to device programming or medication 

management that departs from the typical treatment strategy, in an effort to decrease time to 

response.

Using iEEG during presurgical evaluation to determine whether a patient should be 

implanted with an RNS device is not a novel concept. Patients are typically referred for 

RNS therapy after iEEG implant when seizures are found to emanate from an eloquent 

region that cannot be resected, when there are multiple, spatially distinct generators for 

seizures (e.g., independent bitemporal seizure onsets), or when seizures are poorly localized 

and focal resection or ablation is not an option.2 It is typically presumed that RNS is more 

likely to be effective in the first two situations, although we know that rapidly synchronized 

networks can exist in well-localized focal or multifocal epilepsies, likely related to their 

underlying cause. It is our long-term vision that our biomarker may identify these poor 

responders early, and that it may also identify potential good responders whose seizures 

spread rapidly or are poorly localized. In our study, there were no features in the iEEG 

seizure onset pattern that distinguished likely responders from nonresponders, even on 

review by expert epileptologists. We do not yet know whether the utility of ictal network 

synchronizability as a biomarker of treatment response is unique to RNS or is a general 

marker of the susceptibility of the epileptic network to neuromodulation, including deep 

brain stimulation and vagus nerve stimulation. Rigorous quantitative analysis of many more 

patients over more time points will be required to more precisely understand the physiologic 

underpinnings of our predictions.

4.1 | Building a multicenter collaborative pipeline

Procedures for preimplant evaluation and RNS treatment, including patient selection, lead 

placement, and device programming, are not standardized across epilepsy centers and differ 

from protocols used in RNS clinical trials.4 Thus, results from clinical trials will need to be 

augmented by quantitative biomarkers, not just to select patients for RNS therapy, but also 
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to select regions for stimulation and to titrate stimulation parameters. Although candidate 

biomarkers to predict RNS response exist, discovering robust biomarkers and validating 

them is challenging due to the heterogeneity of the patient population, nonstandardized 

clinical methods, and limited access to centralized clinical data, including outcome measures 

and medication regimens.

For these reasons, we elected to unify data formats, annotation protocols, electrode 

coregistration, and analysis code so that our experiments could be federated, or performed 

separately and in parallel across our sites, and then the results aggregated centrally. Despite 

some initial up-front effort to make this protocol run smoothly, we found this approach to 

be very feasible and efficient. In this way, our study lays the groundwork for streamlined 

collaboration on RNS biomarker discovery. We only discovered the broadly significant 

differences in synchronizability change based on RNS outcome after combining data across 

multiple centers, a result that is a powerful demonstration of how biomarker evaluation 

using any one institution’s dataset is statistically underpowered. We believe that this same 

paradigm could be extremely useful in other difficult “medical informatics” problems 

that require analyzing large amounts of data across institutional and industry boundaries. 

By utilizing centralized tools that can be ported into center-specific data environments, 

investigators can uphold privacy and firewall restrictions on original data while sharing their 

processed derivatives.

4.2 | Methodological considerations

One clinical challenge presented in the study of RNS patients involves assessing clinical 

outcome. For this pilot study, we chose to use each patient’s self-reported seizure diary, 

which is the currently accepted gold standard for calibrating RNS therapy, as our measure of 

therapy response. The limits of relying on seizure diaries is well documented; however, we 

chose this outcome measure because it was used in the clinical trials leading to RNS device 

approval and is the gold standard for judging response for other treatments by the FDA.40

There are a number of additional limitations to our study. As a proof-of-principle study, our 

sample size of 30 patients is small, and gives us limited ability to fully account for center-

specific factors and patient variability or to perform a more detailed breakdown analysis. We 

mitigated variability in data processing by implementing a shared, well-documented pipeline 

that will easily scale to a larger number of epilepsy centers as we expand patient numbers in 

future work.27 Another limitation is in the retrospective nature of this work. A prospective, 

randomized clinical trial will ultimately be required to fully assess the benefit of any clinical 

biomarker or computational model for surgical planning.

In this study, we take the first step toward translating our work into clinical practice by 

preparing a framework to support large-scale validation of our biomarker collaboratively 

across centers. We hope that our approach and the infrastructure we employ will accelerate 

the progress of the epilepsy community toward answering the urgent questions about how to 

optimize RNS therapy.
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Key Points

• Validated clinical biomarkers that can predict the success of RNS therapy do 

not currently exist

• Intracranial EEG data are an unexplored resource that may hold biomarkers of 

RNS outcome, measurable before the RNS device is implanted

• We find that differences in synchronizability, a measure of dynamic brain 

connectivity, can separate RNS responders from nonresponders

• A federated framework for data analysis allows for scalable biomarker 

discovery, while keeping private health information secure
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FIGURE 1. 
Construction of functional networks and synchronizability curves. (A) Functional 

connectivity networks, represented by square adjacency matrices, are generated from 

consecutive 1-s windows throughout the duration of each seizure event. The same processing 

pipeline, represented by purple arrows, is used within the data environment of each 

institution to estimate multitaper coherence networks in the β and high-γ bands, as well 

as broad band cross-correlation networks. (B) All processed networks are shared in a 

centralized cloud repository. (C) Synchronizability curves are calculated for each seizure and 

normalized to a unit length. Patient curves are grouped by outcome status and averaged to 

yield representative responder and nonresponder curves. EEC, earliest electrographic onset; 

FC, functional connectivity
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FIGURE 2. 
Synchronizability magnitude during ictal period separates responsive neurostimulation 

responders from nonresponders. (A) Synchronizability curves over the ictal period for 

the high-γ band (95–105 Hz) normalized to unit length. Solid lines show the averaged 

synchronizability curves of subjects sharing the same outcome status (NR, nonresponder; 

R, responder) at 2 years since stimulation began. The envelope indicates the standard 

error of the mean. (B) Mean synchronizability value during a patient’s seizures, calculated 

using networks in multiple frequency bands for responders versus nonresponders at 2 years 

(significant for high-γ band, Mann–Whitney U = 173, p = .002). Dots represent patients, 

horizontal (vertical) lines represent mean (SD) of outcome group. (C) Receiver operating 

characteristic (ROC) curves show the true positive rate (sensitivity) versus the false positive 

rate (1 − specificity) at each classification threshold. Data were generated for the two 

frequency bands and broad band. The area under the ROC curve (AUC) was greatest for 

high-γ networks, with an AUC of .83. (D) Patients were divided into three outcome groups 

bounded by 15% seizure reduction and 83% seizure reduction, with 10 patients per group. 

Box plots show the distribution of mean synchronizability values for 10 patients in a given 

outcome group with 75% confidence interval (box), median (solid line), 95% confidence 

interval (whiskers), and mean trend (connecting line)
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FIGURE 3. 
Synchronizability values among patient subgroups. Separation of responders (R) and 

nonresponders (NR) in each synchronizability band for patients with >50% grid/strip 

electrodes versus patients with majority depth electrodes (A), and in patients with unilateral 

versus bilateral onset foci (B). Horizontal lines represent the mean ictal synchronizability 

value within a response group; vertical lines represent the SD within a group
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