
UC Irvine
UC Irvine Previously Published Works

Title
Inhibition of early upstream events in prodromal Alzheimer's disease by use of targeted 
antioxidants.

Permalink
https://escholarship.org/uc/item/4wz520zw

Journal
Current Aging Science, 7(2)

ISSN
1874-6098

Authors
Prasad, Kedar N
Bondy, Stephen C

Publication Date
2014

DOI
10.2174/1874609807666140804115633
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4wz520zw
https://escholarship.org
http://www.cdlib.org/


Send Orders for Reprints to reprints@benthamscience.net 

  Current Aging Science, 2014, 7, 77-90 77 

 

Inhibition of Early Upstream Events in Prodromal Alzheimer’s Disease by 
Use of Targeted Antioxidants 

Kedar N. Prasada and Stephen C. Bondy*,b 

aAntioxidant Research Institute, Premier Micronutrient Corporation, Novato CA 94949, USA; bCenter for Occupational 
and Environmental Health, Department of, Medicine, University of California, Irvine, CA 92697-1830, USA 

Abstract: A link between Alzheimer's disease (AD) and an excess presence of oxidant free radicals in the brain has fre-
quently been reported. It is generally assumed that such oxidative stress and related cellular damage is caused by inflam-
matory changes in the brain and is consequent to amyloid deposition. This review makes the argument that elevated oxi-
dative stress in AD is an early causal event in the initiation and advancement of this disease. Oxidative stress can be de-
creased by enhancing antioxidant enzymes through activation of the cytoplasmic transcriptional factor (Nrf2)/ARE (anti-
oxidant response element) pathway, and by dietary and endogenous antioxidant chemicals. Reduction in the binding abil-
ity of Nrf2 to ARE lowers antioxidant enzyme levels. Decreased levels of Nrf2 and augmentation of oxidative stress in 
AD suggest that the ROS-dependent mechanism of activating the Nrf2/ARE pathway has become unresponsive. A combi-
nation of agents that can either activate the Nrf2-ARE pathway by ROS-independent mechanisms, or by acting directly as 
antioxidant chemicals, may be necessary to reduce oxidative stress in AD. Earlier shortcomings of using individual anti-
oxidants may be due to consideration of antioxidants as pharmacological agents, ignoring the fact that individual antioxi-
dants can be transmuted in the highly oxidant milieu that is present in AD. Interactions between various cellular compart-
ments may require simultaneous examination of more than one agent. The clinical utility of such a more integrative 
method can reveal interactive effects such as those found in nutritional research and this can compensate for any mecha-
nistic shortcomings of simultaneous testing of more than a single agent. 

Keywords: Alzheimer’s disease, antioxidants, free radicals, inflammation, neurodegenerative disease, oxidative stress. 

1. INTRODUCTION 

 Alzheimer’s disease (AD) involves gradual loss of intel-
lectual function associated with degeneration and death of 
cerebral cortical neurons, and is the major cause of dementia. 
Individuals, who are 65 years or older, have risk of develop-
ing this neurodegenerative disease which sharply increases 
after that. Over 90 % of AD is idiopathic or sporadic and 
only about 5-10 % is clearly genetically derived. AD is the 
5th leading cause of death among people age 65 years or 
older. Despite extensive research, it has hitherto not been 
possible to significantly reduce the incidence or the rate of 
progression of AD. During last few decades, several bio-
chemical and genetic events that initiate and contribute to 
progressive degeneration and death of neurons have been 
identified in AD. These include: (a) increased oxidative 
stress [1-7], (b) mitochondrial dysfunction [8-12], (c) chronic 
inflammation [13-19], (d) Aß1-42 peptides produced from 
proteolysis of amyloid precursor protein (APP) [20, 21], (e) 
proteasome inhibition [22-24], (f) heritable mutations in 
APP, presenilin-1 and presenilin-2 genes [25-30] and (g) 
hyperphosphorylated tau protein [31-34]. Several of these 
biochemical and genetic events can lead to increased oxida-
tive stress which is likely to play a key role in the com-
mencement and development of AD. Therefore, 
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reducing oxidative stress may be one of the logical ap-
proaches for inhibition and improved management of this 
disease. This can be accomplished by increasing the levels of 
antioxidant enzymes by way of the nuclear transcription fac-
tor (Nrf2)-ARE (antioxidant response element) and by addi-
tion of appropriate antioxidants to the diet. Several studies 
on the consequences of administration of individual antioxi-
dants in isolation have been carried out using animal models 
of AD. A few human studies have utilized a single agent and 
these have yielded inconsistent results, varying from no ef-
fect to some beneficial effects on the symptoms of AD [35, 
36]. No studies have been conducted with a combination of 
antioxidant chemicals and polyphenolic compounds which 
can reduce oxidative stress optimally by directly scavenging 
free radicals as well as by inducing antioxidant enzymes 
through activation of the Nrf2-ARE pathway. This could be 
due to the fact that the mechanistic investigations do not 
benefit from the simultaneous use of several intervening 
agents, which can cloud understanding of the effects of indi-
vidual agents. 
 This review presents evidence in support of a hypothesis 
that (a) increased oxidative stress is one of the earliest bio-
chemical defects which initiate neurodegeneration in AD, 
and that (b) increased oxidative stress together with other 
biochemical and genetic defects participate both in the pro-
gression of neurodegeneration and the final stage of neuronal 
death. In addition, a rationale is given for the administration 
in combination of several dietary antioxidants and specific 
polyphenolic compounds, in the reduction of oxidative 
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stress. Together with standard therapy, this may result in a 
reduction in the incidence of AD. Such a tactic could also 
enhance the management of this disease. 

2. EVIDENCE FOR INCREASED OXIDATIVE 
STRESS AS AN EARLY OCCURRENCE IN THE ON-
SET OF AD 

 It has been repeatedly reported that increased values of 
indices reflecting oxidative stress occur in the autopsied 
brain samples and in the vascular system of AD patients 
[37]. However, it is difficult to conclude whether increased 
oxidative stress is the cause or the consequence of the dis-
ease. Strongest support for the hypothesis of the initiating 
nature of oxidant events comes from three sources, the cell 
culture model of AD, the asymptomatic transgenic animal 
model of AD, and from asymptomatic individuals carrying 
AD specific mutated genes.  

2.1. Studies on Cell Culture Models of AD 

 The concentrations of indicators of oxidative stress (4-
hydroxynonenal and 3-nitrotyrosine) were elevated in nerve 
cells obtained from the transgenic AD mice expressing mu-
tated APP or mutated presenlinin-1 compared to those found 
in nerve cells from the wild-type mice [38]. The relation 
between early oxidant status and later amyloidogenic 
change, is illustrated by the finding that application of hy-
drogen peroxide (H2O2) to isolated nerve cells of human ori-
gin significantly increased Aß production by enhancing the 
expression of β- and γ-secretases responsible for cleavage of 
APP to form Aß peptides [39]. Primary culture of neurons 
obtained from transgenic mice expressing both mutated APP 
and mutated preseninlin-1 exhibited increased levels of for-
mation of free radicals. In addition, these nerve cells showed 
increased sensitivity to exogenous Aß1-42 and H2O2 leading 
to neuronal death [26]. These results also suggest that muta-
tions in preseninlin-1 and APP may cause neurodegeneration 
in familial AD by further increasing oxidative events, which 
may progressively participate in the damage and ultimate 
loss of neurons in AD. 

2.2. Studies on Animal Models of AD 

 Using a transgenic mouse model of AD (APP23 mice), 
increased protein oxidation and reduced energy metabolism 
occurred in the cortex of asymptomatic mice, suggesting that 
these biochemical markers of oxidative stress occur prior to 
the development of other biochemical defects and the amyloi-
dogenic phenotype [40]. The early role of increased oxidative 
stress in neurodegeneration was further evidenced by pre-
treatment with an antioxidant (the SOD/catalase mimetic, 
EUK-207). This prevented cognitive dysfunction, reduced 
nucleic acid oxidation and lipid peroxidation, and also reduced 
levels of Aß1-42, tau and hyperphosphorylated tau, in the 
amygdala and hippocampus of transgenic AD mice (tau 3xTg) 
[1].  

2.3. Studies on Asymptomatic Individuals Carrying Mu-
tated AD Specific Genes  

 The presence of oxidatively damaged proteins was ele-
vated in the blood of both AD patients and their family 

members relative to non-AD controls [41]. In a study com-
paring asymptomatic individuals carrying mutated presenin-
lin-1 or mutated APP with their relatives carrying no mutated 
genes, the plasma levels of oxidative markers, such as me-
thionine sufoxide, a oxidation product of methionine, were 
found to be unusually high in persons carrying AD mutations 
in comparison to relatives with no mutated genes [42]. These 
studies indicate that increased oxidative stress occurs prior to 
other biochemical defects in the asymptomatic individuals 
carrying a mutated gene specific to AD. 

2.4. Increased Oxidative Stress in an Early Phase of AD  

 The presence of mild cognitive impairment (MCI) can be 
considered as an early phase of AD. Several studies showed 
that increased oxidant activity occurred in patients with MCI, 
implying that increased oxidative stress is an early event, 
which also participates in the progression of AD. A signifi-
cant increase in oxidized and nitrated biliverdin reductase -A 
(BVR-A) was found in the hippocampal region, but not in 
the cerebellum of patients with AD as well as in patients 
with MCI [43]. The analysis of serum concentrations of indi-
cators of oxidative stress in 101 patients with AD, and 134 
patients with MCI found that increased levels of serum hy-
droperoxides were linked with a heightened risk of develop-
ing MCI as well as AD, while low levels of total serum anti-
oxidant capacity were associated with the increased risk of 
developing MCI [44]. In a clinical study on 33 individuals 
with MCI, 29 patients with early signs of AD and 26 healthy 
age-matched subjects, it was reported that plasma values for 
malondialdehyde were higher in persons with MCI and early 
AD than values in control subjects, whereas glutathione re-
ductase activity in erythrocytes was lower in patients with 
MCI and AD than in control subjects [45]. The plasma levels 
of several antioxidants derived from the diet (vitamins A, C, 
E, several carotenoids, and of protective enzymes superoxide 
dismutase (SOD) and glutathione peroxidase were reduced in 
elderly subjects with early AD or with MCI relative to control 
subjects [46]. These results suggest that an elevation of oxida-
tive is already present in patients with an early stage of AD. 

2.5. Mitochondrial Dysfunction 

 Most free radicals are generated in the mitochondria, 
although some are also produced in the cytoplasm by oxi-
dases. Mitochondria may be a susceptible primary focus of 
neuronal oxidative stress [12]. Increased pro-oxidant status 
induces mitochondrial dysfunction by inhibiting the activi-
ties of respiratory complexes [47] and inducing mutations in 
mitochondrial DNA (mtDNA). Mitochondrial DNA is very 
sensitive to increased oxidative stress because it does not 
contain genes for any repair enzymes, and, it is not safe-
guarded by protective histones. Furthermore, mtDNA is very 
close to the region where free radicals are produced as a con-
sequence of oxidative phosphorylation [12]. An increased 
presence of mutations in mtDNA has been found in brain 
tissues derived from AD patients post mortem [11]. Other 
mitochondrial defects have also been found in such brains [9, 
10]. In addition to becoming less efficient in energy produc-
tion, damaged mitochondria release additional reactive oxy-
gen species (ROS) as well as caspases which contribute to 
neurodegeneration. Reduced energy production can increase 
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the susceptibility of neurons to glutamate excitotoxicity [48]. 
Thus, mitochondrial dysfunction may further increase the 
extent of oxidant events in the neurons.  

3. OXIDATIVE STRESS INCREASES PRODUCTION 
OF BETA AMYLOID (Aß1- 42 PEPTIDES) 

 Increased β-amyloid (Aß1-42) plays a key role in the 
pathogenesis of AD [21, 22]. Increased oxidant events are 
one of the elements that increase the production and accumu-
lation of β amyloids. Indeed, it has been reported that in-
creased oxidative events can accelerate the intracellular build 
up of β-amyloids in neurons [49]. Membranes containing 
oxidized phospholipids lead to accumulation of β-amyloids 
faster than those containing unoxidized saturated phosphol-
ipids [50]. The rate of cleavage of APP to Aß1-42 was in-
creased in a transgenic AD mouse model lacking cytoplas-
mic superoxide dismutase-1 (SOD-1) relative to control 
mice, implying that increased oxidative events can promote 
the production of Aß1-42 peptides [51]. Furthermore, 4-
hydroxynonenal (HNE), a product of lipid peroxidation in-
creased γ-secretase and Aß1-42 assembly in neurons [52]. 
HNE modified the γ-secretase substrate receptor, nicastrin, in 
neurons from patients with AD. Such modification of nicas-
trin heightened its binding to the γ-secretase substrate APP. 
The levels of HNE-nicastrin were associated with in-
creased γ-secretase activity and Aß plaque deposition [52]. 

4. Aß1-42 PEPTIDES CAUSE NEURONAL DEGEN-
ERATION BY INDUCING FREE RADICALS 

 Since vitamin E is protective against β-amyloid-induced 
injury of neuronal cells in culture [53], it may be that β -
amyloid-induced neurotoxicity is facilitated by free radicals 
[50, 51, 53, 54]. Methionine in the 35 position of the beta-
amyloid peptide may be a key site relating to the generation 
of free radicals [55, 56]. Binding of erythrocytes with Aß 
peptides triggers increased formation of oxidant free radicals 
that could impair delivery of oxygen to the brain tissue [57]. 
These data suggest that Aß-induced neuronal death may be 
partially mediated by way of free radicals. These studies 
together imply that elevated pro-oxidant events are likely to 
participate in the progression of AD. 

5. MUTATIONS IN AD SPECIFIC GENES IN-
CREASES THE PRODUCTION OF BETA-AMYLOIDS 

 Mutations in specific genes are associated with familial 
AD. Mutations in APP, presenilin-1, presenilin-2 and γ-
secretase that increase production of beta-amyloids, lead to 
neuronal death associated with generation of excess free radi-
cals. Mutation of the presenilin-1 gene increased the activity 
of γ-secretase leading to increased production of β-amyloids 
[29]. Mutation of the γ-secretase gene also increases the for-
mation of β-amyloids [27]. Such mutations may cause neu-
ronal damage at least in part by generating excessive amounts 
of free radicals via elevation of levels of β-amyloid. 

6. INCREASED OXIDATIVE DAMAGE ELEVATES 
INDICES OF CHRONIC INFLAMMATION IN AD 

 Increased oxidative damage caused by free radicals initi-
ates prolonged inflammation in AD. The role of extended 

inflammation in AD pathogenesis is suggested by epidemi-
ological studies reporting that rheumatoid arthritis patients, 
who were using high doses of NSAIDs, had a decreased in-
cidence of AD [58, 59]. The products of chronic inflamma-
tion, including cytokines ([60], complement proteins [61, 
62], reactive oxidant species [63-65], adhesion molecules 
[66, 67], and prostaglandins [68] are damaging to neurons in 
isolated systems. High levels of pro-inflammatory cytokines 
including IL-1 β and TNF-α are present in post-mortem 
brains of victims of AD [18]. Beta- amyloid-induced toxicity 
is exacerbated by pro-inflammatory cytokines IL-1β and 
TNF-α [15]. Interferon-γ, IL-1β and TNF-α enhance produc-
tion of beta-amyloid by increasing γ-secretase activity via 
JNK-dependent mitogen-activated protein kinase [69]. Beta-
amyloids and the NMDA receptor agonist, glutamate tested 
separately, led to neuronal damage by way of enhancing free 
radical production and the application of β-amyloid and glu-
tamate together was more effective than either agent alone in 
producing neuronal damage. IL-6, a pro-inflammatory cyto-
kine alone could not directly cause neuronal damage but 
potentiated the effects of the paired β-amyloid and NMDA 
[70]. Thus increased oxidative stress together with pro-
inflammatory cytokines may participate synergistically in 
promoting neuronal death in AD. The processes underlying 
this are gradually becoming better understood. The patho-
genesis of AD has recently been reported to involve the oli-
gomerization of NLRP3 in microglial inflammasomes which 
leads to breakdown of interleukin-1β and caspase-1 precur-
sors and thence to formation of the active cytokine and apop-
tic protease [71]. 

7. OXIDATIVE STRESS INCREASES HYPERPHOS-
PHORYLATED TAU (P-TAU) PROTEIN IN AD  

 Tau is a microtubule-binding protein found within neu-
rofibrillary tangles (NFT). Increased levels of β-amyloid in 
AD precedes the development tau pathology, namely the 
hyperphosphorylation of tau and formation of neurofibrillary 
tangles (NFTs) in the frontal cortex [33]. Since hyperphos-
phorylation of tau was prevented by high doses of antioxi-
dants, increased oxidative stress appears to be a factor that 
contributes to hyperphosphorylation of tau in transgenic AD 
mice (Tg2576), [32]. Proteasome inhibition can diminish the 
rate of breakdown of hyperphosphorylated tau proteins lead-
ing to their gradual accumulation, and thus the appearance of 
NFTs within cells. It has been reported that intraneuronal tau 
inclusions appear decades before the deposition of Aß 
plaques. However, in cerebrospinal fluid, altered levels of 
Aß peptides occur before the elevation of phosphorylated 
tau, which only becomes apparent in the later progression of 
AD [31]. In addition to hyperphosphorylation of tau, acetyla-
tion of tau is also markedly elevated at the advanced stage of 
the disease and may also participate in the progression of AD 
[72]. 

8. PROTEASOME INHIBITION-INDUCED NEU-
RODEGENERATION IN AD 

  A role of proteasome inhibition has been proposed for 
the neuronal degeneration found in AD brains [22, 23]. Inhi-
bition of proteasome activity by lactacystin causes rapid 
death of isolated neuronal cells [24]. An increased oxidant 
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milieu and defects in ubiquitin conjugation enzymes [73], are 
factors which can inhibit proteasome activity. Proteasomal 
inhibition is considered a late event participating in the pro-
gression of neurodegeneration and death of neurons in AD 
brain. 

9. THE CONTROL OF OXIDATIVE PROCESSES BY 
Nrf2 

 Oxidative stress in the body occurs when the antioxidant 
system fails to provide adequate protection against damage 
produced by free radicals (reactive oxygen species, ROS and 
reactive nitrogen species, RNS). Increased oxidative stress 
can be moderated by up-regulating antioxidant enzymes as 
well as use of dietary and endogenous antioxidant chemicals. 
Antioxidant enzymes reduce free radicals catalytically 
whereas dietary and endogenous antioxidant chemicals re-
duce free radicals by directly scavenging them. In response 
to reactive oxygen species, a nuclear transcriptional factor, 
Nrf2 is translocated from the cytoplasm to the nucleus where 
it binds with the antioxidant response element (ARE) which 
increases the content of antioxidant enzymes (glutathione 
peroxidase, glutathione reductase, and heme oxygenase-1), 
and phase 2 detoxifying enzymes; NADPH quinone oxi-
doreductase 1 and glutathione-S-transferase) [74-76]. How-
ever, existing levels of endogenous antioxidant chemicals 
cannot be elevated in response to oxidative stress without 
supplementation. Antioxidant enzymes are elevated by acti-
vation of Nrf2. In addition, elevated levels of antioxidant 
enzymes are also dependent upon the binding ability of Nrf2 
with ARE in the nucleus.  

9.1. ROS-dependent Regulation of Nrf2 

 Normally, Nrf2 is associated with Kelch-like ECH asso-
ciated protein 1 (Keap1) protein which acts as an inhibitor of 
Nrf2 (INrf2) [77]. INrf2 protein serves as an adaptor to link 
Nrf2 to the ubiquitin ligase CuI-Rbx1 complex for degrada-
tion by proteasomes and maintains the steady levels of Nrf2 
in the cytoplasm. INrf2 acts as a sensor for 
ROS/electrophilic stress. In response to increased ROS, Nrf2 
dissociates itself from the iNrf2- CuI-Rbx1 complex and 
moves into the nucleus and combines with ARE leading to 
increased expression of antioxidant genes. Nrf2 regulates the 
transcription of INrf2, whereas INrf2 controls Nrf2 content 
by modulating its degradation by proteasomes [78]. 

9.2. ROS-independent Regulation of Nrf2 

 Antioxidants such as vitamin E, genistein (a flavon-
oid)[79], allicin, a major organosulfur compound found in 
garlic [80], sulforane, a organosulfur compound, found in 
cruciferous vegetables [81], kavalactones (methysticin, 
kavain and yangonin) [82] and dietary restriction [83] can 
activate Nrf2 by mechanisms not involving elevation of 
ROS. 

9.3. Reduced Binding of Nrf2 with ARE 

 The age-related decline in antioxidant enzymes in the 
liver of older rats compared to that in younger rats has been 
attributed to reduction in the binding ability of Nrf2 with 
ARE. Treatment with alpha-lipoic acid reversed this defect, 

increased the levels of antioxidant enzymes and restored the 
loss of glutathione from the liver of old rats [84]. 

9.4. Differential Response of Nrf2 to ROS Generated 
During Acute and Chronic Oxidative Stress 

 Nrf2 seems to respond to ROS generated during acute 
and chronic oxidative stress differently. For example, acute 
oxidative stress during strenuous exercise translocates Nrf2 
from the cytoplasm to the nucleus where it binds with ARE 
to up-regulate antioxidant genes. However, during chronic 
oxidative stress commonly observed in older individuals and 
in Parkinson’s and Alzheimer’s diseases, the Nrf2/ARE 
pathway becomes unresponsive to ROS.  
 Pretreatment of rats with N-acetyl cysteine (NAC) 
blocked thyroxin (a ROS donor)–induced activation of Nrf2 
in the liver [85, 86]. This was interpreted to mean that sup-
plementation with individual antioxidants may impair the 
normal Nrf2 response to ROS in reducing oxidative stress. 
We interpret these results differently. In response to ROS, 
such as observed after treatment with thyroxin or during 
strenuous exercise, NAC administration may directly scav-
enge directly all ROS, thereby blocking ROS-induced activa-
tion of Nrf2. In this manner NAC treatment may have pre-
vented the normal Nrf2 response to ROS.  

9.5. Nrf2 Regulation of ROS-inducing Effects  

 Exercise-induces acute transient oxidative stress by gen-
erating excessive amounts of ROS. Indeed, in wild-type 
mice, exercise activated Nrf2 and thus enhanced antioxidant 
enzymes through ARE, and reduced oxidative stress. How-
ever, in Nrf2 knockout mice (Nrf2-/- mice), exercise failed to 
increase antioxidant enzymes and reduce oxidative stress 
[87]. This suggests that the Nrf2/ARE pathway is responsive 
to ROS.  

9.6. Nrf2 in Alzheimer’s Disease (AD)  

 The levels of nuclear Nrf2 decreased in hippocampal 
neurons in AD despite increased oxidative stress [88]. This 
may account for the Nrf2/ARE pathway becoming unrespon-
sive to ROS in AD. It is not known whether the defect in 
Nrf2 pathway occurs at the cytoplasm where Nrf2 forms 
complex with INrf2 or at the level of nucleus where it binds 
with ARE to up-regulate antioxidant genes.  

9.7. Herbal Products and Antioxidants Promoting Acti-
vation of the Nrf System 

 Treatment of primary culture of hippocampal neurons 
with puerarin, a major flavonoid from the root of Pueraria 
lobata, significantly reduced β-amyloid-induced oxidative 
stress by activating Nrf2-ARE pathway [89]. Genistein, a 
flavonoid, and vitamin E reduced oxidative damage pro-
duced by β- amyloids (Aß25-35) in transformed cerebrovas-
cular mouse endothelial cells in culture by activating Nrf2-
regulated antioxidant genes [79].  
 A study on the aged mouse hippocampus revealed that 
supplementation with allicin, a major organosulfur com-
pound found in garlic, which has an electrophilic center 
(electron deficient) prevented age-related decline in cogni-
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tive function. This effect of allicin was due to enhancement 
of antioxidant enzymes via Nrf2-ARE pathway [80]. This 
study suggests that INrf2/Nrf2 complex and binding of Nrf2 
with ARE, remain responsive to allicin.  
 Some agents can reduce oxidative stress by activating 
Nrf2-regulated antioxidant genes without ROS stimulation. 
Examples include organosulfur compound sulforaphane 
found in cruciferous vegetables, kavalactones, found in Kava 
shrubs, and puerarin, a major flavonoid from the root of Pu-
eraria lobata [89], genistein and vitamin E [80]. Repeated 
administration of another organosulfur compound sulforap-
hane, found in cruciferous vegetables, simulated Nrf2-
dependent increase of Nqo1 gene which codes for 
NAD(P)H:quinone oxidoreductase, and Hmox1 gene which 
codes for HO-1 enzyme in astrocytes in culture, and reduced 
oxidative damage [81]. It is also possible that sulforaphane-
induced activation of Nrf2 does not require ROS stimulation. 
Indeed, kavalactone (methysticin, kavain and yangonin)-
induced activation of Nrf2 is not dependent upon ROS 
stimulation in neuronal or astroglial cells in culture [82]. 
 In a study on murine alveolar cells in culture, NAC, 
which directly scavenges free radicals via increasing intra-
cellular glutathione levels, requires the presence of Nrf2 for 
an optimal reduction in oxidative stress [90]. For example, 
cigarette smoking produces greater damage in alveolar cells 
obtained Nrf2-deleted mice (Nrf2-/-) than in cells obtained 
from wild-type mice [91]. Pre-treatment of alveolar cells 
with NAC, reduced cigarette smoke-induced damage more 
the wild-type cells more than in those from Nrf2 deleted 
mice. In another study on rat liver, pretreatment with NAC 
prevented ROS-induced activation of Nrf2 [86]. Thus NAC 
appeared to scavenge sufficient ROS so as to prevent activa-
tion of the Nrf2/ARE pathway. 
 Some agents can reduce oxidative stress directly by scav-
enging free radicals, and can also act indirectly by activating 
Nrf2/ARE pathway. These include vitamin E [78], alpha-
lipoic acid [84], curcumin [92], resveratrol [93], omega-3-
fatty acids [94-96], and NAC [97]. 

9.8. Activation of Nrf2 by Dietary Restriction  

 Dietary restriction also reduces oxidative stress by acti-
vating Nrf2-ARE pathways [82]. It appears that Nrf2 activa-
tion induced by dietary restriction does not require ROS 
stimulation. However, prolonged activation of Nrf2 by die-
tary restriction can produce unacceptable serious side effects 
[98] and thus extended dietary restriction-induced reduction 
in oxidative stress may be impracticable is a treatment for 
AD.  

10. THE USE OF INDIVIDUAL ANTIOXIDANTS IN 
AD TREATMENT  

 Research on animal and cells culture models of AD using 
single endogenous antioxidants and herbal products, has 
consistently shown protection of neurons against damage 
produced by oxidative stress. Individual antioxidants include 
alpha-lipoic acid which produced a beneficial effect [99] in 
improving cognitive function in animal models of AD.  
 Treatment with coenzyme Q10 reduced markers of oxi-
dative stress in animal AD models [100, 101]. Vitamin A, 

vitamin E, β-carotene and pycnogenol when used individu-
ally inhibit biochemical aggregations in vitro, such as the 
creation of β-amyloid fibrils, and also promote degradation 
of existing β-amyloid fibrils [102]. In addition, these agents 
were able to decrease triggering of immune responses in of 
microglial and astrocytic cells, and to reduce onset of neu-
ronal degeneration. In a mouse mutant modeling AD, such 
agents were able to improve spatial learning and memory 
[103]. Vitamin E treatment shielded synaptosomal mem-
branes and hippocampal neurons against β-amyloid-induced 
toxicity [56]. Supplementation with vitamin E in the diet 
prevented Aß25-35 oligomer-induced memory deficits and 
reduced evidence of oxidative damage in the brain [104].  
 Human studies using individual dietary or endogenous 
antioxidants or herbal products have produced inconsistent 
results varying from no effect to some transient beneficial 
effects. Recent reports suggests that vitamin E in isolation 
might not be of utility in the prevention or improved man-
agement of AD [35, 105]. In contrast a clinical trial with dl-
α- tocopherol (synthetic form; 2,000 IU/day) patients at an 
early stage of AD showing only moderate cognitive impair-
ment, revealed a slowing of the rate of intellectual deteriora-
tion [36]. In a study of 43 patients with mild to moderate 
AD, the addition of alpha-lipoic acid to the treatment proto-
col reduced the rate of progression of the disease during a 2 
year follow up period [105]. The maximum benefit was 
found in those patients where alpha-lipoic acid was intro-
duced at a relatively early stage of AD. However, in another 
study, supplementation with vitamin C or vitamin E had no 
effect on the incidence of AD or dementia [106]. In a pro-
spective cohort study conducted over 5.5 years supplementa-
tion with vitamin E and vitamin C individually or together 
did not reduce the incidence of AD or general dementia 
[107]. A further study involving elderly patients with demen-
tia, treatment with vitamins C and E together was associated 
with reduced prevalence and incidence of AD [108]. Overall, 
such reports suggest that treatment with one or two dietary 
antioxidants alone is not efficacious in reliably reducing the 
risk of AD in humans. 
 Several antioxidant vitamins, when in the oxidized form, 
can act as pro-oxidants [109,110]. The fact that many 
chronic diseases including AD are associated with excess 
levels of damage due to oxidant free radicals suggests that 
individual antioxidants may be subject to such damage and 
can then further contribute to a pro-oxidant milieu. Thus they 
may not produce beneficial clinical outcomes but rather may 
actually increase the risk of chronic diseases after long-term 
consumption. Supplementation with single antioxidants dur-
ing training sprint training exercise reduced some of the 
beneficial effects of sprint training [111]. This could also be 
due to the oxidized forms of these agents acting as pro-
oxidants that are toxic. Β-carotene has been found to actually 
promote the onset of lung cancer in heavy smokers [112]. 
Thus high levels of antioxidant vitamins can potentially act 
in a pro-oxidant and thus a pro-inflammatory manner [113]. 

11. THE USE OF MULTIPLE MICRONUTRIENTS 
FOR TREATMENT OF AD 

 Most testing of the value of a therapeutic agent involves 
the use of that agent compared to an appropriate inert con-
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trol. In a mechanistic study, whether clinical or animal-
based, it is important to limit the number of variables in or-
der to make precise inferences. This is critical in the devel-
opment of new pharmaceutical agents. However, obviously 
nutritional as opposed to pharmacological studies may re-
quire the simultaneous testing of more than one substance, as 
the whole diet has to be considered as part of the study. The 
interaction of vitamins C and E in maintaining an effective 
redox balance in both lipid and aqueous cellular compart-
ments illustrates this. The apparent harmfulness for heavy 
smokers, of β-carotene in the absence of vitamin C or other 
water-soluble antioxidant described above may be due to an 
imbalance between lipid and aqueous compartments. The 
alleviation of AD may be considered as a multi-factorial 
problem relating to overall cellular nutritional status rather 
than as a challenge to be solved by single point pharmacol-
ogical intervention. The length of duration of this disease 
makes it resemble normal aging more closely, than it resem-
bles an acute neurological event such as stroke. Thus, the 
simultaneous application of several agents designed to pro-
tect to redox wellbeing of the cell constitutes a valid ap-
proach. Obviously this is not the best means of dissecting out 
the molecular mechanisms underlying the progression of 
AD, but sometimes the design of optimal treatment must 
diverge from attempting to identify single key events con-
tributing to the manner in which late stage AD presents. This 
article is based on understanding the need for such a diver-
gence in creating a strategy for the prevention of, and inter-
vention in the progression of AD. 

12. INDIVIDUAL AGENTS CONSIDERED FOR IN-
CLUSION IN A MULTIPLE MICRONUTRIENT 
SCHEDULE 

12.1 Vitamin A and β-carotene  

 Beta-carotene is more potent in the quenching of oxygen 
radicals than are most other antioxidants [114]. It has spe-
cific biological functions that cannot be sustained by its me-
tabolite vitamin A, and vice versa [115, 116]. For example, 
β-carotene augments the expression of the connexin gene 
coding for a gap junction protein in mammalian fibroblasts, 
but vitamin A cannot act as a substitute in producing this 
effect. On the other hand, vitamin A can induce differentia-
tion in some types of normal cells and cancer cells, while β-
carotene is not able to induce such differentiation [117, 118]. 
Thus β-carotene and vitamin A have different biological 
functions in the body.  

12.2. Vitamins E and C 

 The gradient of oxygen pressure varies within cells. 
Some antioxidants, such as vitamin E, are more effective as 
quenchers of free radicals in conditions of reduced oxygen 
pressure, whereas β-carotene and vitamin A are more effec-
tive at higher oxygen levels pressures [119]. Vitamin C is 
necessary to protect cellular components in aqueous envi-
ronments, whereas carotenoids and vitamins A and E protect 
cellular components in lipid environments. Vitamin C also 
plays an important role in maintaining cellular levels of vi-
tamin E by recycling vitamin E radical (oxidized) to the re-
duced (antioxidant) form [120].  

 The chemical type of vitamin E administered is also im-
portant. d-α-tocopheryl succinate (vitamin E succinate) ap-
pears to be the most effective derivative both in intact ani-
mals and in isolated systems [121]. This salt is more soluble 
and thus more amphiphilic than α-tocopherol and can cross 
the blood brain barrier and enter cells more readily.  

12.3. N-acetyl Cysteine and Alpha-lipoic Acid 

 An endogenous antioxidant, glutathione, is effective in 
neutralizing the oxidant potential of H2O2. However, dietary 
glutathione does not significantly increase plasma levels of 
glutathione in human subjects, because this tripeptide is al-
most completely hydrolyzed in the G.I. tract. N-acetyl cys-
teine and alpha-lipoic acid can be absorbed across the intes-
tinal wall and increase the cellular levels of glutathione [37]. 

12.4. Coenzyme Q 

 Since mitochondrial dysfunction is associated with AD 
and since coenzyme Q10 is needed for the generation of ATP 
by mitochondria, it may be helpful to add this agent to any 
multiple micronutrient preparation designed for AD treat-
ment. Coenzyme Q10 scavenges peroxy radicals faster than 
α-tocopherol, and like vitamin C, can regenerate vitamin E 
in a redox cycle [120] Coenzyme Q10 can improve symptoms 
in patients with mitochondrial encephalomyopathies [122]. 

12.5. B- vitamins 

 Supplementation with vitamin B-12, folic acid and vita-
min B6 when used individually or in combination produced 
no beneficial effect on cognitive function in individuals at 
relatively early stages of AD [123, 124]. However, supple-
mentation with folate improved the effectiveness of a cholin-
esterase inhibitor in the treatment of AD [123]. Nicotinamide 
(vitamin B3) reduced oxidative stress-induced mitochondrial 
dysfunction and restored defective autophagy function in 
neurons in culture. Treatment of transgenic AD model mice 
(3xTg) with nicotinamide improved cognitive function and 
reduced the content of Aß and hyperphosphorylated tau and 
their associated neurodegeneration [124]. Nicotinamide a 
component of NAD, also attenuated glutamate-induced tox-
icity and sustained levels of NAD+ to maintain the activity 
of SIRT-1 [125] a regulator of mitochondrial biogenesis 
[126]. These studies suggest nicotinamide supplementation, 
is worthy of considering in a multi-agent approach to AD 
treatment. The addition of the remaining B-vitamins may 
also be useful because of their requirements for normal brain 
metabolism. 

12.6. Selenium 

 Selenium is a component of glutathione peroxidase, 
which acts as an antioxidant by increasing the intracellular 
levels of glutathione. Selenium deficiency has been associ-
ated with elevated amyloid-β plaque deposition in Tg2576 
transgenic mice [127]. Selenium may thus also be used in a 
multi-ingredient nutrient complex.  

12.7. Curcumin  

 Curcumin is a natural yellow pigment of turmeric, 
which is widely used as a spice throughout Indian sub-
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continent. It has antioxidant and anti-inflammatory activi-
ties. Curcumin inhibits aggregation of Aß peptides in vitro. 
In animal models of AD, it reduced aggregation of Aß pep-
tides and tau phosphorylation. Curcumin prevented alumi-
num-induced aggregation of Aß peptides and its toxicity on 
isolated rat neuronal cells [128]. Preparation of curcumin-
liposome was very effective in reducing the aggregation of 
Aß peptides and oligomeric Aß [129]. Curcumin treatment 
also inhibited deposition of β-amyloid fibrils and solubi-
lized β-amyloid aggregates in vitro [100]. However, two 
clinical studies with curcumin performed in the USA and 
China revealed no beneficial effects on cognitive function 
in AD patients compared to those AD patients who re-
ceived placebo [130].  

12.8. Resveratrol 

 Treatment with resveratrol, a major polyphenolic con-
stituent of red wine, diminished neuronal degeneration in an 
animal model of AD [131, 132] by reducing oxidative stress 
[133] and chronic inflammation [134], and increasing the 
proteasome degradation of β -amyloid [135]. Resveratrol can 
cross blood brain barrier in mice rats and gerbils [136-138]. 
Several epidemiological studies imply that the judicious con-
sumption of red wine is associated with a reduced incidence 
of AD and dementia [139, 140]. In elderly individuals lack-
ing the APOE epsilon-4-allele, consumption of three daily 
glasses of wine was accompanied by a lower risk of AD 
[141].  

12.9. Carnitine  

 This chemical may reduce damage due to excess pro-
oxidant activity by modulation of gene expression [142]. 

12.10. Omega-3- Fatty Acids 

 Supplementation with omega-3 fatty acids (1.7 g of 
docosahexaenoic acid and 0.6 g of eicosapentaenoic 
acid/day) in patients with relatively early AD did not de-
lay the rate of cognitive decline but minimally beneficial 
changes were apparent in a small sub-group of patients 
with very early signs of AD [143]. While omega-3 fatty 
acids may slow down the rate cognitive decline in the 
elderly without dementia, it may be ineffective in reduc-
ing the incidence of AD or dementia [144]. In a Canadian 
study there was no association between omega-3 fatty 
acid intake and the risk of dementia [145]. In a random-
ized, double-blind, placebo-controlled trial of individuals 
with mild cognitive impairment, supplementation with 
omega-3 fatty acids showed significant improvement in 
Alzheimer’s Disease Assessment scale compared to pla-
cebo control. However, there was no improvement noted 
in patients with fully developed AD [146]. The use of 
omega-3-fatty acids should be considered due to the find-
ing that this class of compound reduces the appearance of 
AD-like pathology in the brains of AD animal models 
[147], and some clinical studies show benefits in patients 
in the elderly and those with very early signs of AD [146]. 
Such upstream intervention as that proposed here is likely 
to prove most fruitful in early prevention or delay of the 
onset of AD. 

12.11. Non-steroidal Anti-inflammatory Drugs (NSAIDS)  

 Since increased chronic inflammatory processes have 
been proposed as a significant factor in the initiation and 
promotion of neurodegeneration, the use of NSAIDs in the 
treatment of AD may be beneficial. Many products of in-
flammatory reactions are neurotoxic. These include prosta-
glandins and cytokines [60, 68, 148], complement proteins 
[61, 62], adhesion molecules [67, 149] and free radicals 
[65, 150]. Rheumatoid arthritis patients, who habitually use 
high doses of non-steroidal anti-inflammatory drugs 
(NSAIDs), have been found to have a reduced incidence of 
AD [59]. Use of NSAIDs was associated with lower risk of 
AD and other types of dementia [151]. NSAIDs also reduce 
the rate of deterioration of cognitive functions in AD pa-
tients [14, 17]. However, use of prednisone, a potent anti-
inflammatory agent, was not found beneficial in patients 
with AD [152].  
 Treatment with a Cox-1/Cox-2 inhibitor together with a 
PGE2 analog did not produce any benefit on cognitive func-
tion [153], neither was a specific inhibitor of Cox-2 of utility 
[154]. Thus Cox-2 enzyme may not be the appropriate target 
for AD treatment [155]. However, treatment with a selective 
Cox-1 inhibitor, SC-560, improved spatial learning and 
memory, and decreased Aß deposition and the extent of tau 
hyperphosphorylation in aged triple transgenic AD mice 
(3xTg). In addition, such treatment reduced glial activation 
and markers of chronic inflammation [89]. Administration of 
indomethacin-loaded lipid-core nanocapsules blocked Aß1-
42- induced inflammation and suppressed glia and microglia 
activation [156]. Exposure of human neuronal cells to both 
vitamin C and aspirin inhibited inflammatory responses more 
than achieved by aspirin alone [157].  
 Several studies with non-steroidal anti-inflammatory 
drugs (NSAID), such as aspirin and ibuprofen reported bene-
ficial effects in patients with idiopathic AD [14, 16, 59]. A 
more recent study with NSAID on patients with familial AD 
found no beneficial effects [158]. In familial AD, neurode-
generation may be due to excessive production of free radi-
cals consequent to deposition of β -amyloid, rather than due 
to pro-inflammatory cytokines. Thus, the effects of pro-
longed inflammation may not be a major factor in patients 
with the familial form of AD. 
 The potential value of non-steroidal anti-inflammatory 
agents is also buttressed by the additional evidence: (a) the 
brains of non-demented elderly people taking NSAIDs have 
less activated microglia than in their peers taking no 
NSAIDS, implying lessened reduced anti-inflammatory ac-
tivity [159]; (b) In a transgenic mouse model of AD, ex-
tended administration of ibuprofen reduced dystrophic neu-
rite formation and β -amyloid deposition [160]. Thus, the use 
of NSAIDs in combination with anti-oxidants is a potential 
strategy for reducing the progression of AD.  

12.12. Statins 

 Statins are commonly used in the prevention and treat-
ment of heart disease. Treatment with statins atorvastatin and 
pitavastatin reduced senile plaques and inflammation marker 
TNF-α in transgenic AD model (App-Tg) mice, the mecha-
nism apparently involving reduced oxidative stress and im-
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proved insulin signaling pathways [161]. Once again, while 
this class of compound can clearly reduce plaque deposition 
and inflammatory responses in a genetic murine model of 
AD, the efficacy of these statins in human AD clinical trials, 
has yielded equivocal results [36, 162]. Statins are currently 
not recommended for those who are not at risk of developing 
heart disease. 

12.14. Ginkgo Biloba 

 In an AD transgenic mouse model, long-term consump-
tion of Ginkgo biloba extract through diet lowered levels of 
human APP levels by 50% compared to controls in much of 
the cortex but not in the hippocampal region [163]. However, 
in a double-blind, placebo-controlled clinical trial in those 
aged 75 years or more with normal cognition, administration 
of Ginkgo biloba was not effective in decreasing the rate of 
appearance of AD or overall dementia [164]. 

13. CAN ONSET OF FAMILIAL AD BE DELAYED? 

 It is often believed that the familial form of AD cannot be 
prevented or delayed by any pharmacological and/or physio-
logical means. The gene HOP (TUM-1) is essential for the 
development of Drosophila melanogaster (fruit fly). A muta-
tion in this gene markedly increases the risk of developing a 
leukemia-like tumor in female flies. Whole-body irradiation 
of these flies with proton radiation dramatically increased the 
incidence of cancer compared to that in un-irradiated flies 
[37]. Treatment with a mixture of antioxidants prior to and 
following irradiation totally prevented the radiation-induced 
cancer in fruit flies. This finding is of particular interest, be-
cause it is a demonstration of how disease with a strong ge-
netic basis can be prevented by antioxidant treatment. It is 
unknown whether daily supplementation with antioxidants in 
children of parents who had heritable mutations that in-
creases the risk of AD can prevent or suspend the onset of 
this disease.  

14. EVALUATION OF MULTIPLE MICRONUTRI-
ENTS AND PHENOLIC COMPOUNDS IN PATIENTS 
WITH EARLY PHASE AD 

 A clinical study with the listed micronutrients and pheno-
lic compounds in combination with a low-dose aspirin may 
find use in patients with early phase AD in order to deter-
mine whether supplementation with micronutrients can re-
duce the progression of the disease. Low-dose aspirin may 
be of value because of its anti-inflammatory effect. In com-
bination with vitamin E, aspirin produces a synergistic effect 
in reducing cyclooxygenase activity [165]. The combination 
of two agents may be more effective in reducing the levels of 
chronic inflammation. Use of vitamin E and vitamin C to-
gether with NSAIDs led to a reduction in the rate of cogni-
tive decline in elderly individuals possessing an APOE-
epsilon-4-allele [144].  

15. THE USE OF MICRONUTRIENTS IN COMBINA-
TION WITH STANDARD THERAPY IN PATIENTS 
WITH AD  

 Current treatments of AD are unsatisfactory, because 
they are based on the symptoms of the disease rather than on 

the underlying causes of the disease. These treatments have 
failed to stop the progression of the AD. Commonly pre-
scribed drugs are cholinesterase inhibitors such as donepezil, 
galantamine and rivastigmine, and an N-methyl-D-aspartate 
antagonist (memantine).  
 The gradual loss of cognitive functions in AD may be 
due to the progressive loss of cholinergic neurons and cho-
linesterase inhibitors have used in an attempt to improve 
cognitive function by increasing the acetylcholine levels in 
remaining cholinergic neurons. The efficacy of these drugs 
depends upon the viability of surviving cholinergic neuron 
and so the effectiveness of cholinesterase inhibitors in im-
proving the cognitive function lasts as long as cholinergic 
neurons are viable. In clinical trials, several acetylcho-
linesterase inhibitors were found to have greater effective-
ness than placebo in maintaining cognitive function in cases 
of mild to moderate AD [166, 167]. None of these therapeu-
tic approaches directly deal with underlying oxidative or 
nitrosylative stress or chronic inflammation. Neurons con-
tinue to die despite these treatments, which may have rather 
downstream targets. The use of a multi-component prepara-
tion and a low-dose aspirin in addition to standard therapy 
may enhance the valuable effects of current drugs in AD 
patients by protecting surviving neurons from damage 
caused by an elevated pro-oxidant and inflammatory setting. 

16. SAFETY OF POTENTIAL THERAPEUTIC 
AGENTS  

 All ingredients and their doses that would be included in 
the formulation are safe and come under category of “Food 
Supplement”, and therefore, do not require FDA approval for 
their use. Antioxidants at doses higher than those discussed 
here have been used by much of the US population for dec-
ades without significant toxicity. However, a few of them 
can produce harmful effects at higher doses in some indi-
viduals when consumed daily over an extended period. Vi-
tamin A consumed by pregnant women at doses of 10,000 IU 
or more daily, can result in birth defects, and β-carotene at 
doses 50 mg or more can led to a reversible discoloration of 
the skin. Vitamin C at doses of over 10 grams or more daily, 
can lead to diarrhea. Vitamin E at doses of 2,000 IU or more 
daily for an extended period can result in defects in blood 
clotting. Vitamin B6 at 50 mg or more per day, can produce 
peripheral neuropathy, and 400 mcg or more per day of sele-
nium can cause skin and liver toxicity after prolonged con-
sumption. Coenzyme Q10 has no reported toxicity, and daily 
doses suggested are 30-400 mg. N-acetylcysteine doses of 
250-1500 mg and alpha-lipoic acid doses of 600 mg are 
regularly used with no reported adverse effects. The potential 
interactions that may take place within a mixture of agents 
are not easily predicted but are more likely to be in a positive 
synergistic direction. This is illustrated by the multi-factorial 
“Mediterranean diet” which is rich in the antioxidants Vita-
mins C and E, polyunsaturated fatty acids and polyphenolic 
compounds, and is of value in reduction of rates of dementia 
[168]. 

CONCLUSION 

 The studies discussed in this review suggest that a pro-
longed period of excess pro-oxidant conditions may pre-
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cede the overt development and progression of AD. Other 
events such as increased levels of chronic inflammation, 
generation of Aß1-42 peptides from APP, aggregation of 
Aß peptides, hyperphosphorylation and acetylation of tau, 
inhibition of proteasome and formation of extracellular 
senile plaques and intracellular NFT may occur subsequent 
to increased free radical activity. Increased oxidative events 
are likely to play a significant role in the onset and progres-
sion of AD-related damage. Therefore, inhibition of oxida-
tive stress may reduce the risk of developing of AD, and 
together with conventional therapy, may improve the man-
agement of this disease. Because of the complexity of regu-
lation of oxidative events in humans, it is probably not pos-
sible to reduce oxidative stress optimally by the use of a 
single antioxidant. Simplified diagrammatic representation 
of the various potential pathways of oxidative stress in 
causing neuronal death in during the pathogenesis of AD is 
shown in (Fig. 1). 
 At present, there are no effective strategies to reduce the 
incidence of AD. It is suggested that a combination of 
agents that can activate Nrf2-ARE pathway by ROS-
independent mechanisms and dietary and endogenous anti-
oxidant chemicals that directly scavenge free radicals, may 
be necessary to modulate oxidative stress optimally in AD. 
Dietary and endogenous antioxidants, curcumin, together 
with resveratrol and omega-3-fatty acids may fulfill above 
requirements for reducing oxidative stress optimally. Thus, 
a preparation of the antioxidants described together with a 
low dose non-steroidal anti-inflammatory drugs (NSAIDs), 
may be of value in reducing the probability of dementia in 
high risk populations (those with a family history of AD or 
individuals 70 years or older). All the preventive agents 
described here are of low toxicity, which would allow their 

prolonged safe usage even among high-risk populations not 
expressing any symptoms of AD. Animal studies modeling 
AD often involve a defect at a single locus or a very limited 
number of loci. Since the human disease appears to involve 
layer upon layer of progressively broadening deficits, this 
is a serious limitation of animal and cell model of AD and 
probably accounts for the failure to make a successful 
therapeutic transition from the laboratory to humans. It is 
disappointing that while many trials on cellular or animal 
models of AD have yielded positive results, parallel human 
studies have been much less successful. It is thus necessary 
to consider a more poly-modal therapeutic approach. Since 
this gap cannot be currently bridged the need for more 
clinical trials is evident. While this review confines itself to 
describing some agents that may be of value in combinato-
rial trials, it does not attempt to precisely define the com-
position of an ideal combination. Those interested in the 
multiple micronutrient tactic in the prevention or improved 
control of AD may wish to implement these recommenda-
tions after appropriate consultation with physicians and 
other health professionals.  
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Fig. (1). Postulated relation between oxidative stress and neuronal death. 
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LIST OF ABBREVIATIONS 

AD  = Alzheimer’s disease 
APP = Amyloid precursor protein  
MCI = Mild cognitive impairment 
mtDNA = Mitochondrial DNA 
NFT = Neurofibrillary tangles 
NMDA = N-methyl-D-aspartate 
NSAID  = Non-steroidal anti-inflammatory drugs 
ROS = Reactive oxygen species 
SOD = Superoxide dismutase 
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