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ABSTRACT

Expressions are presented for the electric and magnetic fields
due to a pulse of charge, which may be oscillating transversely while
moving down an infinitely long highly conducting pipe of circular cross
section. The expresslons are evaluated at large distances from the
pulse and the fields are shown to decrease al
distance behind the pulse. In the absence of transverse oscilllations
the longitudinal electricvfield varies as the inverse three-halves
power of the distance; in the presence of oscillations the dominant
field component is the transverse magnetic field, which decreases as
the inverse one-half power. In the long-range limit the amplitude of
the fields is proportional to the square root of the wall resistivity.
The phase of the field associated with the oscillating pulse is shown
to be the phase of the pulse at the time when it ;aséed the point of

observation.
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INTRODUCTION

It has been shown that the finite conductivity of the walls of
an accelerator vacuum chamber can lead to unstable coherent oscillations
of azimuthally uniform beams.l’2 The question of stability arises
for a longitudinally bunched beam in which the distance between bunches
is large compared with the radius of the vacuum pipe. If the electric
and magnetic fields fall off fast enough with distance from the bunch,
the motion of separate bunches would be independent of one another.

It has been shown that the local self fields of a bunch do not lead

3

to unstable motion. Therefore one might expect to stabilize coherent
beam oscillations by bunching the beam longitudinelly.

zﬁ_the vacuum chamber walls are infinitely conducting, the
fields fall off exponentially in a distance of the order of the pipe
radius (which is typlcally small compared with the distance between
bunches), and therefore a longitudinal bunching of a uniform beam
would stabilize the coherent motion.

It 1s the purpose of this paper to obtain expressions for the
fields at large distances from a moving bunch of charge surrounded
by walls with finite conductivity. These fields are the basic
ingredients in an analysis of the cohérent motion of a bunched
beam.u We limit our analysis to obtaining the fields at distances
large compared with the pipe radius and the bunch length. The

conductivity of the wall 1s such that the displacement current in

the wall can be neglected compared with the conduction current.



A discussion 1s given of the dependence of the flelds upon
distance from the pulse, with particular attention to the different
functional dependences which occur at various distances. Over a

very large range the fields are shown to fall off algebraically, and

5,6
in agreement with the independent results of a number of workers;)’

the most important aspect of the work reported here is a careful
delineation of the range of validity of these previously obtained
formulas.

The important results for the analysis of the coherent
motion of azimuthally bunched beams are that: (1), the dominant
term in the longitudinal force of one bunch on a subseguent bunch
decreases algebraically with the distance 2z between bunches as
lzl'5/2 (Eq. 1.16a); and (11), the dominant term in the transverse
force has a phase that depends only upon position (as measured in
the laboratory), and an amplitude that decreases algebraically with
distances between bunches as [z["l/2 [Eq. (2.20)]. Suffice it to
say, here, that bunched beams are not generally stable and the
stability criteria are different from that for uniform beams.
Discussion of 2ll of this may be found in Ref. L4 and forthcoming
papers based on the abstracts of Ref. L.

In the first section, the fields created by rectilinear
longitudinal motion of a pulse of charge are obtained; in the zsecond
section the fields created by transverse oscillation of the pulse
are derived.i

The éeneral mathematical method which we employ, namely the
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use of Fourier transforms, was suggested by S. Weir;berg's zamzatlysis7
of a related problem. In Appendix A we discuss some mathematical
questions associated with approximating Fourier integrals, and
summarize the transforms employed in this paper. Appendix B
summarizes properties of Bessel functions which are required in the

analysis.



IS

I. PURELY LONGITUDINAT, MOTION

1. Derivation of the Fields

In this section we obtain the expressions for the electric and
magnetic filelds arising from a bunch of charge in purely longitudinal
motion. The pulse of charge moves in the 2z direction with velocity
v inside an infinitely long straight pipe of circular cross section
and wall conductivity o . The inner and outer radil of the pipe
are. b and d , respectively. The pulse of charge has constant radial
density inside a radius a.. The charge and current density are

taken as

po(r,z,t) = g f(z-v t) Hla - T) , (1.12)
JOZ(I‘,Z,t) = Vv QO(I‘,Z,t) s (1.1v)
JOy = Jo = 05 (1.1¢)

where cylindrical coordinates are used, and H(x) 1is the Heaviside
unit step function that is unity for posltive argument and zero for

negative argument. The function f(x) 1s normalized such that

k‘““\
H
—
~
S
&
i
-
—
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e
-

2
Consequently nwan, =elN , with N the number of particles in the

0
pulse.



Due to the symmetry of p. and JO , only E, E, and Be
are nonzero. It will be useful to use Fourier transformations
in solving for the fields, and the convention will be adopted that a

tilde above a quantity designates the transform as defined by

e8]
£z - vt) = f F(x) * K(z - v t) g i (1.%a)
E (z-vt) = f iiz(k) L x(z - vty (1.3v)
ool

analogous expressions hold for Er and Be .

We define the following regions:

Region 1 O<r<a,
Regilon 2 a <r <b,
Region 3 b<r<dad,
Region 4 d <r

From Maxwell's equations and Ohm's law we obtain the relationships
between the field components in the various regions. In regions

1,2, and 4 we have

3
o ik Z .
A T (1.ka)
q
. JF
5 - 1B 2 (1.4)
e 2 ~N
q or
2 2,1
with o = - (%y) and »° = [1 - (v/c)7] .
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In region 3 (inside the metal) we have

OF
E = & —Z s (1053>
r 2
o dr

(1kB - bno/c) B%;

By = 5 , (1.5p)
o) or
2 2 /
where o = q +Rik and R = bnxBo/c .

In region 1, the equation for EZ takes the form

dF hon T (x)
.1.'. a— r—._.z +q2/}\4:j = 1 -———O——-—- k . (l.68.)
r 3 Br// Z 72
In regions 2 and 4 we have
dF N
18 [, 22) 2% - o, (1.6v)
T dr or z
and in region 3
dE N
1 9 r —2) 4+ % = o0 . (1.6c)
T dr or z

Equations (1.6) are zero-order Bessel equations, or simply related
to Bessel's equation. Various properties of the solution to Bessel's
equation, that are used in this work, are given in Appendix 3 .

At this point 1t is necessery to clarify our definitlon of g
and o . So far, only q? and or2 have been defined and we are left

with a choite of sign for q ard ¢ . The sign convention is arbitrary,



7=

however, 1t 1s convenient to choose the sign in such a way that the
imaginary part of q and o 1s always positive.

The expressions for Ez that are finite everywhere are

o hnno;
Region 1: E c, J.(aqr) + , (1.72)
z 170
ik
~ 2n2noqa%/
Region 2: E_ = k - — N(@ﬂ] J (ar)
Z 1 1 0
: ik
2n2noqa§
+ [ J,(ea)| w,(ar), (1.70)
1 0
ik .
Region 3: E, = C5 Jo(ar) + C), No(or) 5 (1.7c)
Region 4:+ £ = C. H (1) (qr) (1.7d)
: 2 5 Hy .
,,,,,, . . LN oz £ (1), .
In these expressions J X)), Nn\x) and Hh‘ ‘(x) are defined, in

Appendix B , by Eqs. (B.2), (B.3), and (B.4k). The constants Cy s
i = 1,3,4,5 are to be determined from the continuity conditions of
the fields at the boundaries between the various regions. The

boundary conditions at r = a are already satisfied by the expressions

for Ez , while the continuity of Ez and ie at r =Db gives

, ﬂ{[ Ennoqa§ ( )}( ()1 () ikagbB
C = - =(¢|C, - -—— N (qa ab J . (gb )M, (b)) -
5 2 * 1k 1 - 0 1 q(1x8 - bno/c)
Engnoq af r
x 3 (@) Ny(m)] + | - 5,(e)] [owm (ap) N, (eb)
1xad" bp

) ‘ I .8a
q(ixp - lhxo/c) Nl(qb)“o@b)J} (1.8a)
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and

1X &b B

« o T ) [on 3 (@) 3, (o)
C = =<(¢IC, - —=—————r0 N_(qa ab J . \gb) J,(ab) -
b e 1 ik 1 ] 0 1 q(ixp - bhxo/c)

2 A
2n n.q af -
X Jl(qb) Jo(ab)] + [-—-—Q——- Jl(qa)} ILab No(qb) Jl(ozb)

ik

ik &b B

- Nl(qb) Jo(ozb)]} s (1.8b)
q(ikg - bxo/c)

where we have employed Eq. (B.8). The boundary conditions at

r = d are used to obtain

- ¢, [oad 7, (0a) By 1)(qa) - 7, (o) Hl(l)(qd)]

ikB agd
qQ(1kB - bxo/c)

= ¢, [ad Nl(ad)Ho(l)(qd) - No(ad)}tl(l)(qd)] . (1.9)

Equations (1.8) and (1.9) are solved for C C5 , and C) ,

1
and these constants are then substituted into Eqs. (1.7) to obtain the
expression for Eé . When this general expression i1s inserted into
Eq. (1.3b) the resulting Fourier integral is much too complicated to
be performed analytically. Numerical integration would yield the
complete expression for E;(z - vt) valid for all values of =z and t .
In the following subsection we shall restrict ourselves to large

values of (z - vt), and present results of the integration for three

simplified gedmetries.



no

Field Expressions for Certain Geometries

(1) Wall removed (b - co or o — 0)

In this example the fields are those of a pulse of charge in

free space so that C, = 1 C On the cylinder axis (r = 0),
L

3
Eq. (1Ja) yields

~S

ba n f
E;(k) = —22;9— [1 -1 g Qe Hi(l)(qa)} , (1.10)

where use has been made of Egs. (B.9) and (B.10) to simplify the
coefficient C, . Equation (1.10) is to be substituted into the
Fourier integral Eq. (1.3b) in order to determine E;(z - vt) . TFor
the region [z - th >>a we may invoke Appendix A - Case 2 to
conclude that ka << 1 ; consequently we may employ the approximation

of Eq. (B.5) and obtain

E,(k) ~ 1 noa2 k fn |xa| . (1.11)
In obtaining thls expression we have made use of the fact that, for

|z - vt| large compared with the length of the bunch, the field is
independent of the form of f(z -~ vt) and we may replace f(k) by
£(0) = 1/2xn .

We now use the results of Table I (Appendix A) to obtain

Sign(z - vt)

eN
EZ(Z -Vt) = '—2—

¥ (2 - vt)?
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where N 1is the number of particles in the bunch. This is the
result one would obtain from a more elementary treatment; the

factor 7'2 originates in the Lorentz contract. [The same result
could be obtained, directly from Eq. (1.10), by invoking Appendix A -

Case 1.]

(11) Wall of infinite thickness (d - o)

In this example an infinitely thick conducting wall surrounds
the pulse. Because of the relativistic velocity of the beam and the
high conductivity of the wall, conduction-current terms dominate inside

1

the metal. Consequently, for example, o? ~ R 1k, so that

ikg a2

a(ik8 - bxo/c)

~ -8 aq . (1.13)

With this approximation and taking d — ® we obtain in the region

r<b

ny o2 6% Ho(l)(ab)

Bx) = i (1.14)

ab Hl(l)(ab)

where we have again restricted ourselves to a distance [z - vt]
much greater than both the vacuum chamber's inner radius and the pulse

length, so that (by Appendix A - Case 2) k b << 1 and f x//é%(/ .

In obtaining Eq. (1.1k) we have employed Egs. (B.2), (B.3), and (B.L).

Even with this restriction there are two regions of interest.
' 2 Re -1

+ (n b . P
ion in which ’Z - ‘v”‘C,|l << Rb R%~1I0 cm. rox

' D
copper) and the second is the region in which lz -vt] >R b
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For z - vi| <R b'2 we employ Appendix A - Case 3, noting that

most of the contribution to the Fourier integral {Egq. (1.3b)] oceurs
for values of o b > 1 ; for !z - vt! >> R b2 we have the situa-
tion of Appendix A - Case 1 , and may take a b << 1 . We use these
facts, along with the proper approximations from Appendix B , to obtain

the followlng approximate expressions for Ez(k)

~ Nt 2 L 2

E (x) = 1 —e—@—-l- k|2 [1 + sign(x)], |z - vt] <<RY" , (1.15a)
2 b (2R )2

o B> TP x | | o w2

Ez(k) =-1 —— k [n|kp| -1 3 Sign(x)], |z - vt| >>Rb" , (1.15b)

where a term proportional to k has been omitted in Eq. (1.15b)
since 1t contributes to Ez(z,t) only in the region of the pulse.

We now use the results of Table T (Appendix A) to obtain

2 S(s,t)

E (z,t) el , z - vt| << RO, (1.16a)
Z 1 /
(R)2b [s|?/%

Ez(z,t) = eNB2 i(ié-t—l , |z - v&| > Rb” . (1.16b)

S

where s = (z - vt) and S(z,t) 1s defined as zero for 2z > vt and
unity for z < vt . Thus we see that the fiéld at large distance from
the pulse is zero in front of the pulse but falls off algebraically
behind the bunch. Equation (1.16) presents only the term with the
slowest falléff and completely ignores the fields with a falloff

distance of the order of the pipe's inner radius or the pulse length.



(111) Thin wall [(d - b) <b] .

In order to simplify the algebra we will restrict ourselves,
in this example, to a bunch that fills the pipe, and to an observation
point at the pipe radius. Thus we take r =a =b . [Actually, as is
suggested by Egs. (1.16), we expect our results to be valid even
without these restrictions, but we have not studied the more general

case.] As with examples (ii) we ignore the displacement current and

obtain
2
~ NB k&
Ez(k) = 1 eﬁb
(1.17)
) ad £n lkdl[NO(ab) J,(0d) - Jo(ab) Nl(cmd)]

where again we have restricted ourselves to large distances, so that
z - vt’ >> d , and have consequently (Appendix A - Case 2) used the
expansions of Eq. (B.2) and (B.3) that are valid for kd << 1 .

The electric field Ez(z,t) can be obtained by evaluating the
Fourier inversion [Eq. (1.3b)] with Eq. (1.17) for Ez(k) .

We will restrict our attention, here, to two regions in which
the Integral can be readily approximated. The first regilon,
|z - vt] < R(@ - b)2 , has the major contribution to the Fourier
integral occurring for values of «af{d - b) > 1, so E;(k) can be

approximated by (Again, Appendix A - Case 3)

od 20 [ka|(n, (@b)3, (0d)- 7, (o), (0d)]- 087" [, (ob)7,(0d)- 7, ()i, (0a)]

i

7
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A
E (k) = 1 ——54513-575 iki1/2 (1 + Sign(x)] (1.18)
7 b (2R)

where use has been made of Eq. (B.6) and the fact that

cos[ (1 + 1)x]
sin{ (1 + 1)x|

for large x . The second region considered is lz - vtl >> Rd2 :

by Appendix A -~ Case 1 we may take ad2 <1, and Ez(k) is

approximated by

~ 1 eNl '
E, (k) = < g fn |xa] (1.19)

Ty

where use has been made of Eqs. (B.2) and (B.3). We now use Table I,

to obtain

2
. _ e N8B s(z,t)
E( ;t) (KR):L/2 b ]SIB/E )

lz = vt] «<R(d - b)°, (1.20)

E(z,t) = & Sig“(; = Vt) |z - ove] >>ra? . (1.21)
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IT. TRANSVERSE OSCILIATIONS WITH UNIFCRM LONGITUDINAL MOTION

1, IExact Formulas for the Fields

In this section we solve for the electric and magentic field
due to a pulse of charge oscillating transversely, in the x direction
with amplitude £ and frequency w, while traveling longitudinally,
in the 2z direction with constant velocity v . As 1in the preceding
section, the charge 1is surrounded by an infinitely long straight
pipe with circular cross section, conductivity o , and inner radius
b . The outer wall radius 1s taken to be infinite,

The amplitude £ 1is assumed small commared to the beam

radius a so that we may take the charge and current distribution

to bhe

0 = po + pl (2'18‘)
and

d = J35+d; > (2.1v)
where p, and J, are defined by Eq. (1.1), and
pl(r,z,t) = n, § cos 6 5(r - a) £z - vt) o 1et s (2.20)

_ ~1lwt f e - - A }

J, = n4 E £z - vt) e {iw H(e - r) |- cos 8 e, + sin © eq

b
+ v &(r - a) cos 8 gz } , (2.2v)
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with H(x) the Heaviside step function, and 8(x) the Dirac delta
function.

has been presented

The fileld due to the sources and g

Po 0
in Section I ; we will consider only the fields due to the sources
Py and(\{'l in this section. The total field will, of course, be the
superposition of the flelds due to each set of sources.

Again it will be useful to use Fourler transformations in
solving for the fields. The definition, Eq. (1.3a), is still valid

for f(k), but we shall replace Eq. (1.3b) by
o)

E (t,z - vt) = cos © g -let f Ez(k,w) Jtk(z - vt) 4 , (2.3)
-0

where we have explicitly introduced both the theta-dependent and

the. frequency-dependent terms in the definitions to simplify the

subsequent expressions for the transformed field components, all of

which occur in this problem. We have Er ’ Ez , and B8 rroportional

to cos 8, while Ee s Br , and Bz are proportional to sin © .
From Maxwell's equation and Ohm's law we obtaln relationships

between the various camponents, Inside the pipe (r <b) we have

5 3%, B,) . N

Vi E = ik 75: + ik ——;—-—- B, - by X BW(B+BW) 3 nof H(a - 1), (2.4a)
2% = 1x ( )BE/Z LI T u( ) (2.4v)
v g = B+Bw g—— +-;- g, T Bw 3 Ny a -r), .

and
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2~ 1k o~ 6%; 2 ~
v Eg = - T E - 1k(5+aw) S * b X BW(B+{3W) & gt H(a - x), (2.52)
3B,
2~ 1% ~ z 2 i~ -
vIB, = () E, ik o -k kBt n, * Ha - 1), (2.5%)
where ﬁw = /i%/’and v2 = - kg[l - (B + Bw)g] . Inside the metal
(r >b) we have
~ ik OF, 1k ~
NE, = T 57+t T B+B)3B, (2.62)
a/‘\/
2 v Z, ik ~ PPN
N By = [x(B +p ) - Yo /e == +* 7 3, - (2.6b)
~S
2~ 1k 9B,
NEy = - B, -1k +B) —= . (2.6¢)
. 5 5
AN B, = [ik(B +8.) - bxofe] = + ik —= (2.6d)
r W or
2 2
with A" = v + (bx iko/e) (B + Bw) .

By means of Egs. (2.4), (2.5), and (2.6) we see that we can

~ o~ v ~—

determine the expressions for the components E_ , B, , E and B
r e e T

from expressions for the components EZ and BZ . The transverse

~

[a¥2
fields found from Ez , and the transvergse fields found from 3B

are two independent solutions to Maxwell's equations.

Inside of the pipe (r < V), the equation for E_and 5, 1s
L
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~
102 d 2 1 z \ ,
[; a—r- r B?‘.> + G - ;.3)] ’15}’ / = 0 ; (27)
Z
inside the metal (r >Db) we have
1 9 5] 2 1 %JZ
= = —_ A - = = 0 . 2.8
[ T dr 6 or ’ < , r2>] gz (2.5)

Equations (2.7) and (2.8) are Bessel's equations. In addition to
satisfying Equations (2.4) through (2.8), the transformed expressions
must satisfy the proper boundary condition at r =a and r =Db .

At r = a we have %z , E , E. and gr all continuous, and

zZ v/
4
a
~ + ~r - ~ o
—_ - = = ] 1 = O\':l
Be(r =a ) Be(r a”) = bx/e [a_ J,ar he B NS (2.%)
ot
" ~ - , r — L ~
=a ) - = = 4 = g . 2.
Er(r a ) Er(r a ) x J- p dr ot T (2.90)
a

g’ ge and ’ér all continuous.

The solutions to Equation (2.7) that are valid inside the

At T =b we have %Z,F:,E

pipe are

32
I

N J_l(vr) + ¢l(vr) H(r - a) , (2.102)

and

¢

. DlJl(vr) + \lfl(VI‘) Hr -2a) |, (2.100)
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with ¢l and Wl given by

¢l(vr) M [Nl(vr) Jl(va) - Jl(vr) Nl(va)] s (2.11a)
and

Wl(vr) = P[Nl(vr) Jl(Va) - Jl(vr) Nl(va)] , (2.11b)

and the phases of Vv and A chosen in such a way that the imaginary
rarts are always positive, The constants M and P are determined by
the boundary conditions at r = a . The continuity of EZ and BZ is

already included in the definition of ¢l and ¥, ; of the remaining

1
boundary conditions two are redundant, and we cobtain the feollowing
equations:
2 ~, 2
M = (25" a ok fix) (1 - "~ - B BW) s (2.12a)
and
2 Vasd
P = (217 a nyb f ik) B, - (2.12v)

The expressions for EZ and Bz in the metal are obtained

from Eq. (2.8) and are given by

Hl(l)(hr) A
. [ClJl(Vb) + ¢1(Vb)] ——Tjjz~*§ s (2.1%a)

dl Ab

ey
tl

and

e
|

. [DlJl(Vb) + \,'fl(Vb)] m—\' . (2.15b)
/
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The continuity of EZ and ’ﬁz at r =Db are included in Eq. (2.13)

and the remaining boundary conditions yield explicit expressions

for the constants Cl and Dl . These expressions are
c, = {Num}cl/{Den} s (2.1ka)
and
D, = fNum]Dl/[Den} s (2.1lp)
where
_ 171 11° ¢(w) lhxa E'(WB)E(vb) r3'(vb)  H'(Ab)
{Num}cl - {;27 [v_e - }\—2] JWb) = Tkc MNE(Nb)J(vD) (8+8,) Lvi(voy Mmb)]
213" (vb H'(Mb)] rg'(vb H'(Mb)@(vb)
- (B +8,) {vJEvﬂ) - m%\ib)} ,LVJEV‘D; N ICE J
B8, r1 1 9r30m) vrww)  JT(vb) w(vb)1
* bJZv’gS Lv_e'}\—e}‘ :/,J(vg) b) v;(vbgv J‘} ’ (2.1he)
2
) _ 171 1 y(vb) Lxo H'(AD) ryt(vb)  H'(Ab)y(vb) ]
U\um]Dl = {;5 [:2' B ;5] J(vb) ~ Tkc ANI(Ab) (B*aw)LvJ vb) ~ MNI(Mo)J (vb J
2 7J'(vb)  H'OO)IT v (vb)  H' (D)W (vb) ]
- (B+8,) [vJ(:ﬂ - mghb%} L\YJ(VW - Mz(}\b}}f(tb) J o
BB,) r 1 11 am)d () T (vb)F(vb) ,
T BT) [:2"\_2'][ (:J(gb)vo - S;@%v ] ’ (2.1%)

s

and



o J1 r1 _}_} Lbro  H'(Ab) rJt(vb) H'(W))
el =45 [5- 3] -5 atey @ A [5F0eT - mseT

2 rJ'(vb H'(\b)
- +8) ILVJ(ZI% - ?\.H(,\.b)]

In Egs. (2.1L4) the subscripts and superscripts on the Bessel, Neumann,and IHankel
functions have been omitted for brevity. The prime denotes differentia-

tion with respect to argument.

2. Approximations

The expressions for Cl and Dl are exact; we now restrict
ourselves to values of ® +that are considerably below the cut-off
frequency for the pipe (i.e., frequencies such that yab << c). We
will also assume that the conductivity is high, so that the displace-
ment current in the mefal can be neglected.

With these restrictions, which are easily fulfilled in an

. 2
actual accelerator or storage ring, the expression for A reduces to

(e +p,)
2 .
" = R —~ 1k , (2.15)
B
with R = UmBo/c . Next we expand the expression for o and D,

to first order in the quantity 0—1/2 with the result

B ANH(Ab) 2ik8 M P
4 T T HOw) 2OR (& +e,) Jgvb) = voJa'(vo) [’

and
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b - - 2P 14 vI(vb)H'(Ab) { . AI(AD) 21ikp J(vb)
1 wbJI T (vb) N {(vo )H{(M\Db H'(\b) (B +p ) v5beqj,(vb)
W

M P .
x {(B +B,) Tvo) -~ vbI'(vb) } y (2.1c0)

When Egs. (2.16) are substituted into Egs. (2.10) one obtains
expressions for ﬁz and %; inside the pipe. Equations (2.4) and
(2.5) may then be used to obtain the expressions for the other
components. These expressions for the transformed field components
may be inverted by means of Eq. (2.3).

If the value of (z - vt) is much larger than either the
radius of the pipe or the bunch length, the major contribution to
the integral arises (Appendix A - Case 2) for such values of X that
kb <<l ., As in the preceding section, we again replace %(k) by
%(O) = l/éﬁ . The region of most physical interest is that in which
the observation distance, (z - vt), is large compared with the pipe
radius and small compared to the quantity Rb2 (which 1s of the order
of 109cm for a copper pipe of 3-cm radius). Restricting ocwrselves

to the range

b << |z - vt| << RbS , (2.17)

we may, by Appendix A - Case 2 and Case 3 , take k >> R-l b-2
Thus we have Vv b << 1 (we have already assumed 7ab/c << 1) ard

Ab > 1, so that the expressions for the transformed flelds becone:
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2 2
~o Ng(b - a ) 2
E. = -1 2 5 //2 - %?{) r - égﬁééz_g r [l -1 Slqn(K lel/C
T b \ TY(ER)Zb
(2.18&)
2 2
eNt (b= a%) 2
~ NEB w 2 2 (1/2
E = = —— 4+ =P <} — ) (3°-r") |1 - 1 sign(X)] [x]
r X 8t be 25 (2R)2 b { pe [ }
s+ 1) Ll + 1 Sign (K); IKIB/é } (2.18v)
eNE(b™~ a7) 2 .
~ eN & B < w) 2 2, 1 1/2
E. = ——— - ——=5—= (1 =) (3 + ") |1 -1 sign(x)| ||
® xa” B 27 (2R)2 v { Pe t :
+ (bo- ) [1 + 1 Sign (K)} IKIB/E‘} (2.18¢)
J
2 2
eNE(b™+ a“) ® el
x e s ) 112
B, = = 4 ——e——0n— Zr 4+ =228y 1 + 1 Sign(K) x|~
2 < a° bo ¢ 7 (2R)2D° {\~6 [
+ {1 -4 Sign(K)] ]Kll/é.} (2.183)
2 2
N eNEg (b™- &7) -
B, o= - — - _Eéﬁ_%iig [1 + 1 31gn(K)] K] 1/2 (2.18¢)
na" b x(2R)2 b
By = B. (2.187)
where K = é k(B + Bw) . We make the change of variables from

k to K ; as indicated in Appendix A , this gives all of the field
components a phase factor expl-i(z - vt)(w/Bc)]. Taking into account
the additional phase factor exp (-~ i wt) that occurs in Eq. (2.3),

q i 3 ~ 7 .
we find the total phase of the field components to be - wz/v . Thus

the phase of the field 1s a function only of position, and does not
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vary with time. By means of Table I (Appendix A) Egs. (2.18) may bve

inverted, and the resulting expressions for the field components are”
2ewet gl s(z,t) -iwz/pe
EZ = —-——-—'1——.5———— r . (6] cos B » (?
(xR )20 lz - vt ]2/°
o)
eN £ 62 W (3b° - r2) B(bg + r2) -iwz/ﬁc
E. = - ——— S(z,t) ¢ (1 e + ~ e
2 (xR )2Y lz - we[3/2 2]z - vt{)/g
(2.
eN ¢ 62 w (5b2+ r2) 3 gbg- r2) -iwz/Be
Ee=—-—-—l-—S(z,t) ié—; + 5 ~ A 5
2 (xR )20 |z - ve]3/2 |z - vi]5/2
(2.
Pa s l -.
B, = - géﬂéﬁsr S(z,t){-——~—-———7§ -2 %%) ___—L———IZE e Lwz/be sin
(=R )b lz - vt ]2 lz - vt
(2.
Bo- - hengfs s(z,t) o1 wz/Be sin @ (2
(RZb |z - vt |1/2
NE -
B ) heﬂ;B S(z,t)172 o1 wz /8¢ cos 6 ) (2.
(REv |z - vt]
where N is the totel number of particles and S(z,t) is defined
(as before) as unity for =z < vt and zero for =z > vt . Obviously,
Eq. (2.19) contains only dominant terms for each field; the fields
are not zero when S(z,t) is zero. If we ignore the field components.

-1/2
that fall off faster than ]z - th l/ , we see that a particle
moving In the 2z direction with velocity v and arriving at pocition

z at time t would experience a force In the x direction given

by



2h.

2 2 .
Y oe NEp S(ZJ:)T o-iwz/Be (2.20)
(ﬂR)§'b) lz - vt|2

X

It will be recalled [from Eq. (2.2)] that the pulse source passed

the position =z at time z/v and had--at that moment--vhase - (wz/v).
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APPENDIX A. ESTIMATTION OF FOURIER TRANSFORMS

This appendix is devoted to mathematical questions related
to the approximate evaluation of Fourier transforms, that is, to the

properties of the integral:

0 0]

£(s) = J( ) T o . (A.1)
-®

The general procedure that we employ 1s to approximate %(k)
by a suitable %é(k) for which the integral in Eq. (A.1) can be
evaluated exactly. In the situations encountered in this paper, the
?é(k) are generally plece-wise analytic functions for which the
Fourier transforms, although well-known, are nevertheless uncommon.
In Table I we 1list all of the transforms which we require; the
results quoted are established in the literature.9

A particularly simple transformation can be employed when the
nonanalyticity of %(k) (which for the %(k) of Table I 1is always
at k = 0] occurs at k = ko .‘ Letting k = ko + K we find that
Eq. (A.1) %becomes

so that the nonanalyticity is transformed to X = 0 , and the results
of Table I are readily applicable.
We turn now to the problem of bounding the error in £(s)

generated by replacing (k) with f (k) . To state the problem

1A



TABLE I.

Various Fourier transforms.

Sign (k)

1 lkl3/2 sign (k)
ik tn |k

k Sign (k)

1
T\2 Sign g's)
- 2(2._)

BE

1

-3/2 &) ﬁT/E

SN S 1
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more positively: f(k) 1is generally rather complicated; we want to
know how roughly we can approximate it without significant loss of

accuracy in f(s) . There are a number of cases which we must consider.

1. Asymptotic evaluation

The problem of approximately evaluating f(s) in the limit
of very large s , 1s treated exhaustively In Ref. 9. The situation
is that the asymptotic behavior of f(s) is determined by the points
of nonanalyticity of f(k) . Assuming, as is always the case in this
report, that f(k) is analytic for % # O, we conclude that £(k)
may be approximated by %;(k) , with no error in f(s) as s - o,
provided %;(k) is analytic for k # O and the singularity in

[l

/E;(k) (at % = 0) is the same as that in f(k) .

2. Evaluation for large argument

We often have the situation that f(k) 1is well approximated

by 'Fa(k) for k <k and both f and ?é are analytic except

01’
at k =0 . It then is true--as an extension of Case l--that f(s)

is well approximated by the transform of E;(k) provided s >> kOl-l .

In this paper, where we are concerned with distances large
compared to the pipe's transverse dimensions and the bunch length, we

will invoke the present theorem to always limit attention to

k << k) P L’l, a‘l, b'l, a~t , and thus are permitted many simplifying

approximations in f(k) .



3. Small region of inaccuracy

Suppose g(k) is closely approximated by fa(k) , except
for lk] < ko2 and

2 . . . ,
[ 50 - [, (0]] ax<s . (a.3)

..k02

It is then the case that the transform of %é(k) differs from f(s)
by less than & .

Consequently, f(s) is well approximated except when it is
smaller in value than & . (This 1is the reason Case 1 isn't
contradicted by the present result, since f(s) generally approaches
zero asymptotically.) In our applications, the range will be

o2
e -1 -2 .
exceedingly small [of the order of R ~ b or R (4 -b) "~ , with

8 -
R~ 10 cm l] It follows that even a rather large departure of
£ (x) from £(x) can be tolerated within K, » with f(s) wvell
approximated except where it 1s exceedingly small, namely, at very

large distances.
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APPENDTX B. BESSEL FUNCTION FROPERTIES

In this Appendix we summarize--without derivation--various
properties of Bessel functions which are necessary to the analysis
employed in the paper. More complete discussions can be found in
any standard text.lo

The Bessel function Jv(x), where Q 1s any integer, is the

solution of Bessel's equation:

1 4a dzv v2 ‘
o~ = — - = B.1
LA R G5 - o (5.1)

defined by the power series

X x 2k + v
® (-1) (5)
J(x) = ) (B.2)
v —N 1y o 1Y Lo
SHE 1\ T L/ L\ T ¥V T L)
The Neumann function Nv(x) also satisfies Eq. (B.1), but with
different boundary conditions, and has the property
2 2
NO(X) o - 'T? Zn -7—;{- P
r(v) 2y
Nv(x) x - (;) , for x <<l and v £ 0, (B.3)

where the (Buler) constant 7 = 1.7811 . The Hankel functions

Hv(l)(x) and H$(2)(x) are defined by

1
) .
H, (x) = Jv(x) i mv(x) 5 (5.4)
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>)
and clearly also satisfy Eq. (B.l). For small argument, Hv2 (x)

may be obtained from Eqs. (B.2) and (B.3). The special case of
- Hl<l>(x = 1 -= x [Jl(x) + i Nl(x)]

5
¥ 1l+3x Nl(x) , for x << 1,

~

2
5 Inx, for x <1 (8.5)

requires the next term in the expansion of Eq. (B.3).

Asymptotically, namely for large argument,

Vv

1
J (x)  ~~ (f%)z cos (% - H - EK ,

2 \2 ( T v
NV(X) ~ (;;) sin X =13=3 ) (B.6)
( )
from which it is evident that H§ ix) approaches asymptotically
1 1 + T v
= T i(x - - =)
2 2 42 L -2
(x) ~ (;;) e . (.7)

The Wronskian relation (the prime indicates derivations with respect

to argument )

P
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N
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g
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or the equivalent relationship

-
e

N, 6D T -0 )N (k) = 2

=

is often useful, as are the analogous relations for Hv

Jy - l<x) Hv(l)(x) - Jv(x) H, . l(l)(x) = ﬂix
R, Pl -8, e - 20 (o)

1%
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