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ABSTRACT

Expressions are presented for the electric and magnetic fields

due to a pulse of charge, which may be oscillating transversely while

moving down an infinitely long highly conducting pipe of circular cross

section. The expressions are evaluated at large distances from the

pluse and the fields are shown to decrease algebraically in the

distance behind the pulse. In the absence of transverse oscillations

the longitudinal electric field varies as the inverse three-halves

power of the distancej in the presence of oscillations the dominant

field component is the transverse magnetic field, which decreases as

the inverse one-half power. In the long-range limit the amplitude of

the fields is proportional to the square root of the wall resistivity.

The phase of the field associated with the oscillati~~ pulse is sho~~

to be the phase of the pulse at the time when it passed the point of

observation.

* Research supported by the United States Atomic Energy Commission.

t Present ~ddress: Stanford Linear Accelerator Center, Stanford

University, Stanford, California.
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lllTRODUCTION

It has been shown that the finite conductivity of the walls of

an accelerator vacuum chamber can lead to unstable coherent oscillations

1 2of azimuthally uniform beams.' The question of stability arises

for a longitudinally bunched beam in which the distance between blillches

is large compared ~dth the radius of the vacuum pipe. If the electric

and magnetic fields falloff fast enough ~th distance from the bunch,

the motion of separate bunches would be independent of one another.

It has been shown that the local self fields of a bunch do not lead

to unstable motion. 3 Therefore one might expect to stabilize coherent

beam oscillations by bunching the beam longitudinally.

If the \~cuum chamber walls are infinitely conducting, the

fields falloff exponentially in a distance of the order of the pipe

radius (which is typically small compared with the distance between

bunches), and therefore a longitudinal bunching of a uniform beam

would stabilize the coherent motion.

It is the purpose of this paper to obtain expressions for the

fields at large distances from a movip~ bunch of charge slrrrounded

by walls with finite conductivity. These fields are the basic

ingredients in an analysis of the coherent motion of a bunched

4
beam. We limit our analysis to obtaining the fields at distances

large compared with the pipe radius and the bunch length. The

conductivity of the wall is such t0Bt the displacement current i~

the wall can be neglected compared with the conduction current.
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A discussion is given of the dependence of the fields upon

distance from the pulse, with particular attention to the different

functional dependences which occur at various distances. Over a

very large range the fields are shown to falloff algebraically, and

5 6in agreement with the independent results of a number of workersj ,

the most important aspect of the work reported here is a careful

delineation of the range of validity of these previously obtained

formulas.

The important results for the analysis of the coherent

motion of azimuthally bunched beams are that: (i), the dominant

term in the longitudinal force of o~e blLDch on a subsequent b~nch

decreases algebraically with the distance z between b~nches as

/z/ -3/2 ( 6a.) ()Eq. 1.1 ; and ii, the dominant term in the transverse

force has a phase that depends only upon position (as measured in

the laboratory), and an amplitude that decreases algebraically with

I ,-1/2distances between bunches as 21 [Eq. (2.20)]. Suffice it to

say, here, that bunched beams are not generally stable and the

stability criteria are different from that for uniform beams.

Discussion of all of this may be found in Ref. 4 and forthcoming

papers based on the abstracts of Ref. 4.

In the first section, the fields created by rectilinear

longitudinal motion of a pluse of charge are obtained; in the second

section the fields created by transverse oscillation of the pulse

are derived.

The general mathematical method which vre employ, namely the
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use of Fourier transforms, was suggested by S. Weinberg's analysis7

of a related problem. In Appendix A we discuss some ~Bthematical

questions associated with approximating Fourier integrals, and

summarize the transforms employed in this paper. Appendix B

summarizes properties of Bessel functions which are required in the

analysis.
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I. RJRELY LONGITUDINAL MOTION

1. Derivation of the Fields

In this section we obtain the expressions for the electric and

magnetic fields arising from a bunch of charge in purely longitudinal

motion. The pulse of charge moves in the z direction with velocity

v inside an infinitely long straight pipe of circular cross section

and wall conductl,~ty a. The inner and outer radii of the pipe

are band d, respectively. The pulse of charge h.as constant radial

density inside a radius a.. The charge and current density are

taken as

po(r,z,t) == nO f(z-v t) H(a - r) , (l.la)

(l.lb)

== == o , (l.lc)

where cylindrical coordinates are used, and H(x) is the Heaviside

unit step function that is unity for positive argument and zero for

negative argument. The function f(x) is normalized such that

CDf f(x) dx

-CD

1 (1.2 )

Consequently

pulse.

eN , with N the number of particles in the
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and J O ' only E , E , and Bez r

are nonzero. It will be useful to use Fourier transformations

in solving for the fields, and the convention will be adopted that a

tilde above a quantity designates the transform as defined by

f(z-vt)

E (z - v t)
z

CD

J f(k) i k(z - v t) dke . ,

-CD

00

J E (k)
i k(z - v t) dk .e

z
-co

(1.3a)

(1.3b)

analogous expressions hold for E and Be .r

vle define the following regions:

Region 1 0 <r < a ,

Region 2 a < r < b ,

Region 3 b <r < d ,

Region 4 d <r

From Maxwell's equations and OPJll'S law we obtain the relationships

between the field co~ponents in the \~rious regions. In regions

1,2, and 4 we have

ik dE
E

z
r 2" dr ,

q

"'" i1$ dE
Be

z
2 drq

2 (k/y)2 2 (v/c)2 J
-1

with q - and y == [1 - .

(1. 4a)



-6-

In region 3 (inside the metal) we have

A./ ik dE
E z

2
,r cra

(ikl3 - 4rra/c) ""'dE
Be

z
2

,
a dr

(1. 50.)

(1.5b)

where
2 2a == q + Rik and R

In region 1, the equation for Ez

4nl3a/ c •

takes the form

1 d

r dr

2 rV

+ q Ez i k (1. 6a)

In regions 2 and 4 we have

~
--v

1 C dE z ) 2"-J
0+ q E ,

r cr cr z

and in region 3

1 c

~
dEz) 2 "V

- +a E 0
r cr cr z

Equations (1.6) are zero-order Bessel equations, or simply related

(1. 6b)

(1. 6c)

to Bessel's equation. Various properties of the solution to Bessel's

equation, that are used in this work, are given in Appendix 3.

and

At this point it is necessary to clarify our definition of q

2 2a. So far, only q and a have been defined and we are left

with a choite of sign for q and a. The sign convention is arbitrary,
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however, it is convenient to choose the sign in such a way that the

imaginary part of q and a is always positive.

The expressions for Ez
that are finite everywhere are

'V

Cl J O(qr) +
41Ln

o
f

Region 1: E ,
z ik

2 rV

rv

[Cl -
2rr noqaf

Nl (qa)] J o(qr)Region 2: E =z
ik

2 rV

J l (qa)]
[ 2~ noqaf

NOC qr) ,+
ik

"" C3 J O(ar) + C4 No(ar)Region 3: E = ,
z

Region 4-:
.-v C H (1) (qr) •E =z 5 0

(1. 7a)

(1. 7c)

(1. 7d)

In these expressions

Appendix B , by Eqs.

_ I \ __ I \ h ), .
J ,X), ~ 'X) and H '~'\x) are defined, in

n n n

(B.2), (B.3), and (B.4). The constants Ci ,

i = 1,3,4,5 are to be determined from the continuity conditions of

the fields at the boundaries between the various regions. The

boundary conditions at r = a are already satisfied by the expressions

'"for Ez ' while the continuity of Ez and Be at r = b gives

=
ik q(D:p - 41!a/c)

2 ~

+ [
21! noq af ]

Jl(qa)
ik

q(il$ - 41!a/c)
(1. Sa )
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and

q (ik~ - 4Jlo/c)

2
ik ex b ~

(1. 8b)

where we have employed Eq. (B.8). The boundary conditions at

r = d are used to obtain

Equations (1.8) and (1.9) are solved for Cl } C
3

} and C4 }

and these constants are then substituted into Eqs. (1.7) to obtain the

expression for Ez
When this general expression is inserted into

Eq. (1.3b) the resulting Fourier integral is much too complicated to

be performed analytically. Nl@erical integration would yield the

complete expression for E (z - vt) valid for all values of
z

z and t .

In the follow~ng subsection we sr~ll restrict olli'selves to large

values of (z - vt)} and present results of the integration for three

simplh~ed geometries.
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2. Field Expressions for Certain Geometries

( i ) I-lall removed (b -+ 00 or a -+ 0)

In this example the fields are those of a pulse of charge in

free space so that C4 = i C
3

. On the cylinder axis (r = 0),

Eq. (lJa) yields

i ~
2

, (1.10)

where use has been made of Eqs. (B.9) and (B.IO) to simplify the

coefficient C
l

. Equation (1.10) is to be substituted into the

Fourier integral Eq. (1.3b) in order to determine E (z - vt). Forz

the region Iz - vtl »a we may invoke Appendix A - Case 2 to

conclude that ka« 1 j consequently we may employ the approximation

of Eq. (B.5) and obtain

rv
E (k)

z
(1.11 )

In obtaining this expression we have made use of the fact that, for

Iz - vtl large compared with the length of the bunch, the field is

independent of the form of f(z - vt) and we may replace f(k) by

f(O) 1/211 .

We now use the results of Table I (Appendix A) to obtain

E (z - vt)z
eN
"2y

Sign(z - vt)
2

(z - vt)
, (1.12 )
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where N is the number of particles in the bunch. This is the

result one would obtain from a more elementary treatment; the

factor -2
I originates in the Lorentz contract. (The same result

could be obtained, directly from Eq. (1.10), by invoking Appendix A -

Case 1.]

(ii) Wall of infinite thickness (d'-" CD )

In this example an infinitely thick conducting wall surrounds

the pulse. Because of the relativistic velocity of the beam and the

high conductivity of the wall, conduction-current UTmS dominate inside

the metal. Consequently, for example,
2a ~ R i k , so that

q(ikP - 4rra/c)
(1.13 )

With this approximation and taking d.-.. ro we obtain in the region

r < b

>"V

E(k) = i

2 2
nO a !3 k

ab
, (1.14 )

where we have again restricted ourselves to a distance !z - vtl

much greater than both the vacuum chamber's ip~er radius and the pulse

length, so that (by Appendix A - Case 2) k b «1 and

In obtaining Eq. (1.14) we have employed Eqs. (B.2), (B.3), and (B.4).

Even with this restriction there are two regions of interest.

The first is the region in which Iz - v~1 «R b
2

(R ~ 10
8

cD.-
l for

copper) and the second is the region in which
?Iz-vt!»Rb-.
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For Iz - vtl «R b
2

we employ Appendix A - Case 3J noting that

most of the contribution to the Fourier integral [Eq. (1.3b)] occurs

for values of 0: b » 1; for Iz - vt I »R b
2

we have the situa-

tion of Appendix A - Case 1 J and may take 0: b « 1 Ide use these

fact~along with the proper approximations fixm Appendix B J to obtain

the following approximate expressions for E (k) :
z

rV

E (k)
z = i

1 2
Ik/ 2 [i + 8ign(k)L Iz - vtl «Rb J (1.15a)

E (k)
z -i

eNS
2

2
2n k [tnlkb! - i ~ 8ign(k)L Iz - vtl »Rb J (1.l5b)

where a term proportional to k has been omitted in Eq. (1.15b)

since it contributes to E (z,.t) only in the region of the pulse.
z

We now use the results of Table I (Appendix A) to obtain

eNS
2 8(s,t)
1

Is13/2
J

(nR)2 b

eNS
2 8(z, t)

2
,

s

lz - vtl «Rb
2

J

I . I -b2
IZ - ~ »t{

(1.160. )

(1.16b)

where s = (z - vt) and 8 (zJ t) is defined as zero for z > vt and

unity for z < vt. Thus we see that the field at large distance from

the pulse is zero in front of the pulse but falls off algebraically

behind the bunch. Equation (1.16) presents only the term ",ith the

slowest falloff and completely ignores the fields with a falloff

distance of the order of the pipe's inner radius or the pulse le~~th.
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(iii) Thin wall [(d - b) < '0] •

In order to simplify the algebra we will restrict ourselves,

in this example, to a bunch that fills the pipe, and to an observation

point at the pipe radius. Thus we take r = a = b. [Actually.• as is

suggested by Eqs. (1.16), we expect our results to be valid even

without these restrictions, but we have not studied the more general

case.] As ';[ith examples (ii) ,,,e ignore the displacement current and

obtain

E (k)
z i

2
eN(3 k

nb

(1.17 )

ad in Ikdl[No(ab) Jl(ad) - Jo(ab) N
l

(ad)] 1
Ikd I[Nl (ab)J1 (ad)- J1 (ab )Nl (ad)] - C43

2l [Nl (ab)J0 (ad)- J1 (ab )N
O

(ad)] J
/

where again we have restricted ourselves to large distances, so that

Iz - vtl »d , and have consequently (Appendix A - Case 2) used the

expansions of Eq. (B.2) and (B.3) that are valid for l<:d« 1 .

can be obtained by evaluating theThe electric field E (z,t)
z

Fourier inversion [Eq. (1.3'0)] with Eq. (1.17 ) for E (k) .
z

We will restrict our attention, here, to two regions in which

the integral can be readily approxiw~ted. The first region,

Iz - vtl «R(d - '0)2, ~BS the major contribution to the Fourier

integral occurring for values of a(d - b) » 1 , so

approxiwBted by (Again, Appendix A - Case 3)

rv

E (k)
z

can be
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z
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(1.18)

where use has been made of Eq. (B.6) and the fact that

cos [ (i ± l)x ]
sinl(i ± l)xJ ~ - i

for large x. The second region considered is Iz - vtl »Rd
2

by Appendix A - Case 1

approximated by

2we may take ad. «1, and E (k)
z

is

--.J

E (k)
z

i eNlr.:
2

11: )'

, (1.19 )

where use has been made of Eqs. (B.2) and (B.3). We now use Table I,

to obtain

E(z,t) =

and

~
Is-(372 '

(1.20 )

E(z, t) eN
2"
)'

Sign(z - vt)
2

s
, Iz - vt I »Rd

2
• (1.21)
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II. TRPJISVERSE OSCILLATIONS luTE UNIFOR}1 LONGI~JDINAL MOTION

1. Exact Formulas for the Fields

In this section we solve for the electric end magentic field

due to a pulse of charge oscillating transversely, in the x direction

with amplitude s and :frequency (l), while traveling longitudinally,

in the z direction with constant velocity v. As in the preceding

section, the charge is surrounded by an infinitely long straight

pipe with circular cross section, conductivity cr, and inner radius

b. The outer wall radius is taken to be infinite.

The amplitude ~ is assumed small co.npared to the beem

radius a so that we may take the charge and current distribution

to be

P (2.10.)

and

:l =: :2:0 +:2:1 '

where Po and do are defined by Eq. (1.1), and

(2 .lb)

PI (r,z,t) nO seas e 5(r - a) f(z - vt)
-iwt

e (2.20.)

no ' f (z - vt) e - irnt {1m Il (a - r) [-

+ v o(r - a) cos e ~z }

cos e ~ + sin e ~e ]
"r

(2 .2b)
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with H(x) the Heaviside step fQ~ction; and 6(x) the Dirac deltQ

function.

The field due to the sources Po and i,o has been presented

in Section I j we will consider only the fields due to the SOl~ces

PI and ~l in this section. The total field will, of co~se, be the

superposition of the fields due to each set of sources.

Again it will be useful to use Fourier transformations in

solving for the fields. The definition, E~. (1.3a), is still valid

for f(k), but we shall replace E~. (1.3b) by

E (t,z - vt)z = cos e e-iOJt
co

J
-co

E (k, ill) eik(z - vt) dk ,
z (2.3)

where we have explicitly introduced both the theta-dependent and

the fre~uency-dependent terms in the definitions to simplify the

subse~uent expressions for the transformed field components, all of

which occur in this problem. We have E , E , and Be proportionalr z

to cos e , while Ee , Br ' and B
z

are proportional to sin e .

From Maxwell's equation and Ohm's law we obtain relationships

between the various ccmponents. Inside the pipe (r < b) we r~ve

2 '"v E
.r = ik

'V'

dE
z

r
(2. 4a)

and

=

rV

dE
ik (f3+j3 ) 2 + ik

w dr r

/v

Bz
2 "v

4n k f3w S nO f H(a - r), (2. 4b)
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2/\/ ik /V
cB

4Jl k
2 13 (13-+,'3 ) ~

~

ik (13 -+,'3 ) z
v E

e - E - dr + nOf H(a - r),r z w w w

,~'

2"-' ik A,./ cB 2 rV

V B (i3+Pw) E +ik 2); - 4Jl k i3w ~ nO l' H(a - r),r r z

(2. 5a)

where 13 =ktu(l) / and
w .n:c

2
v 2 2

- k [1 - (13 + 13 ) ] •w
Inside the metal

(r > b) we have

;V

I\? ik cE
ik rVrv Z

E dr + - (13 + 13 ) B ,
r r r w z

;v

'\2 ,A,./
cE ik ~

r .. " (0 4Jw Ie] z
D = + 0 \ - + B'" .De L.l.l\.\1-' I-'w 1 Or ,

r z

rV

1.
2 E ik ry/

cB
E ik(i3 + 13 )

z
= - csre r z w

r'''' ()B
1.

2 13
E

[ik(i3 + 13 ) 4Jla Ic] z
ik

z
= - +r w r dr

(2.6a )

(2. bb )

(2. bC )

(2. 6d)

with 1.
2

= v
2

+ (4Jl LlzaIc) (13 + 13 ) •w

By means of Eqs. (2.4), (2.5), and (2.6) we see that ',:e can

determine the expressions for the components

from expressions for the components
C. '

Ez
and

"v rV ,-v

E , Be , Ee
and Br r

,'~

n The transverse"-' z

fields f01.md from E , and the transverse fields fou,,'1d from B
z z

are two independent solutions to Va~Hellrs eq~~tions.

Inside of the pipe (r < b), the equation for
... ....~ ',-

E ar~cl:3z z is
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[~
0
~~) e- :2)] (~) 0- +

or

inside the metal (r > b) we have

,....,

[ ~ 0 Eo~) ~2. r~)](;:) 0+ ==
or

(2.7)

(2.8 )

Equations (2.7) and (2.8) are Bessel's equations. In addition to

satisfying Equations (2.4) through (2.8), the transformed expressions

must satisfy the proper boundary condition at r = a and r = b
~ 'V

At r == a we have B , E , Ee
and B all continuous, and

z z r

+a

Be(r a+) - J\(r a-) 4n/c Ja-
r--

4Jt f3 (2.SB-)== jzdr nO~f ,

-_.>
a..llU.

a+

E (r a+) E (r
( rv- a-) 4n J_ pdr == 4n n ~ f (2. go)

r r 0
a

"V ~ ~.'
,~.

At r = b we have B , E , Ee ' Be and B all continuous.
z z r

The solutions to Equation (2.7) that are valid inside the

pipe are

and

/'J

E
z

Bz

(2.100. )

(2.10'0 )
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with ¢l and t l given by

and

, (2.11a)

, (2.11b)

and the phases of v and A chosen in such a way that the imaginary

rart s are ahlays positive. Tne constant s Jv1 and P are determined by

the bou..Y1dary conditions at r:= a . The continuity of E and Bz z is

already included in the definition of ¢l and ~l ; of the remaining

boundary conditions two are redundant,

equations:

and 'ore

M (2.12a)

and

P (2 .12b)

The expressions for E and B
z z

in the metal are obtained

from Eq. (2.8) and are given by

IV

[CIJl (Vb) -I- ¢l (Vb)]
I-S- (1) (;-'r)

E
H

l
(1) (I-..b)

,
z

and

/V

[DIJ1 (Vb) -I- t 1 (Vb)]
~ (l)(Ar)

B
u (1)(-..-.,.\z
.L~ \/,,"u J

(2 .13a)

(2 .13b)



The continuity of E and-:8
z z

at r = b are included in E~. (2.13)

and the remaining boundary conditions yield explicit expressions

for the co~~tants C
1

and D
1

. These expressions are

and

D
1

= (Num}D /(Den) ,
1

where

(2.148.)

(2 .14b)

(Num}C =
1

((3 + (3 )2 [J'tVb~ _ H' Ab)] r¢'(Vb) _ H'(Ab) (Vb)]
w vJ vb A.H Ab . L VJ"(Vbj tJI Ab J vb

((3+(3w) r 1 1 1rJ(vb) 1Jr'(vb J'(vb) 1Jr(vb) l}
+ bJ ( vb ) Lv2 - A2 J L vJ vb - vJ ( vb ) J (2.14c)

)2 rJ' (vb) H' Ab J r 1Jr' (vb) H' (Ab )v(vb) 1
((3+{3w LvJ(vb) - A.."I Ab l vJ(Vb) - tJI(Ab)J(vb) J '

and

, (2.14d)
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HI (f-..b)
/\..'{(i\b) (~ +

rJ ' (vb) H' (i\b ) 1

~,) LvJ(vb) - /JI(;\b) J

2 r J' tvb ~ H' (i\b) ] 2 }
- (~ + ~w) l vJ vb - /J[(i\b) . (2.l4e)

In Eqs. (2.14) the subscripts and superscripts on the Bessel.. Neumann,and JL3.nl::el

functions have been omitted for brevity. The prime denotes differentia-

tion with respect to argument.

2. Approximations

The expressions for C
l

and D
l

are exact; we now restrict

ourselves to values of ill that are considerably belm-r the cut-off

frequency for the pipe (i.e., frequencies such that lab« c). We

will also asscwe that the conductivity is high, so that the displace-

ment current in the metal can be neglected.

With these restrictions, which are easily fulfilled in an

actual accelerator or storage ring, the expression for i\2 reduces to

= R
(~ + f3 )

W
ik ,

with R 4n~a/c. Next we expand the expression for C
l

and Dl

to first order in the qLmntity -1/2
a with the result

and

/\H(;\b)
- HI (A.b)

2n"~f3

2
nV bR J(Vb )

p }-Vb-J~-:..."(.....v-b....) , (2.160.)
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D1
2P {l +

vJ (vb )H I (/>.b )
} +

/>.H(/>.b) 2 i k (3 J (vb)
:rcvbJ ' (vb) M I ( vb )n(i,-b) HI (/>.b)

((3 + (3 ):rc v3b
2

R.J I (vb)
\oJ

{(p + (3\oJ)
M P } (2.11~b)X J(vb ) vbJ I ( Vb)

When Eqs. (2.16) are substituted into Eqs. (2.10) one obtains

expressions for
~ /'V

E and Bz z
inside the pipe. Equations (2.4) and

(2.5) may then be used to obtain the expressions for the other

components. These expressions for the transformed field components

may be inverted by means of Eq. (2.3).

If the value of (z - vt) is much larger than either the

radius of the pipe or the b~~ch length, the rrajor contribution to

the integral arises (Appendix A - Case 2) for such values of k that

k b «1. As in the preceding section, we again replace f(k) by

The region of most physical interest is that in vhich

the obser\~tion distance, (z - vt), is large compared vith the pipe

radius and stJ1..all cOffipg.red to the quantity Rb
2

(which is of the order

of 109cm for a copper pipe of 3-cm radius). Restricting olxselves

to the range

b « Iz - vt I «Rb
2

we may, by Appendix A - Case 2 and Case 3 , take
-1 -2

k » R b •

Thus we ~3ve v b «1 (we have already assurr.ed yWb/c« 1) and

/>.b » 1 , so that the expressions for the transformed fields becosc:
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r - 2eNs13
2

r [1 - i

1L(2R)~3
. ()1 I 11 / 2

Slgn K J K

(2.182_ )

{G~~) (3b
2

_ r
2

) [1 - i Sign(K)] IKi
1

/
2

[K[3/2 } (2.18b)
/

- i

+

=

E
z

'"'""E
r

(b
2 _ r 2 ) [ ( )11 + i Sign K J+

2 2
eNs (b - a )

2 2
1L a b

eN S 13
2

21L (2R)~ b3 {~ ~~) (3b
2
+ r

2
) [1

IK1 3/
2 ~

)

(2.18c)

"-'

Bz - i
eNs (b

2
+ a

2
)

2 2
1': a b

~ r + 2eN 113 r {~ ru) [1 + i Sign(K)l !K!-1/2
c 1L (2R )2b3 \.. ec J

(2 .18e)

(2.1Bd)

[1 + i Sign(K)]
2eN S 13

1L (2R )! b 32 b21L a

+ [1 - i Sign(K)] IKJ
1

/
2

}

eNW(b2 _ a 2 )
"-'

B =r

(2.18f)

where K
1
~ k(e + ew)' We make the change of variables from

k to K ~ as indicated in Appendix A, this gives all of the field

components a phase factor exp[-i(z - vt)(ru/13c)]. Taking into account

the additional phase factor exp (- i aX) that occurs in Eq. (2.3),

we find the total p11flse of the field components to be
I

- ru z/v . 'l'hus

the phase of the field is a function only of position, and does not
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vary with time. By means of Table I (Appendix A) Eqs. (2.18) may be

8
inverted, and the resulting expressions for the field components are

E
z

2 eNs ~2

(M)~b3
r

S(z,t) -i wz/~ce cos e

eN S ~2
S(z, t) { ~ ~c) (3b

2 2
3(b

2
+ r

2
) } e -i<oz/~cE - r )

+ cos e
r

2 (1lR)~ll 1z - vt )3/2 21z - vt 15/2
(2.19'0 )

eN s ~2
S(z, t) {~ ~~) (3b

2
+ r

2
) (b

2
2 } -iwz/~c i 9Ee +2- - r )

= e s n
2(1lR)~b3 Iz - vt 13/ 2 2 /z - vt /5/2

(2 .19c)

B
2eNW

S(Z,t){ 1 (iW) 1 } e -i<oz/~c sin 8= - r vt 13/2 - 2 ~cz
(1LR )!b3 lz Iz - vt 11 / 2

(2 .19i)

B
r

4eNs~ S(z,t) -i wz / (3c sin 8
(1lR )~b3 Iz - vt 11 / 2

e

4eNs~ S(z,t) -i wz/~c cos 9
(M)~b3 Iz - vtl l /2

e

(2 .1ge)

(2 .19f)

where N is the total n~~ber of particles and S(z,t) is defined

(as before) as ~~ity for z < v~ and zero for z > ,~ Obviously,

Eq. (2.19) contains only dominant terms for each field; the fields

are not zero ",hen S(z,t) is zero. If ve ignore the field. components

that falloff faster than !z - vt!-1/2 , we see that a y2rticle

moving in the z direction with velocity v 2nd arriving at position

z at time t would experience a force in the x direction given

by
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s(zzt)

/z - vtl~
-iwz/f3ce (2.20 )

It will be recalled [from Eq. (2.2)] that the pulse source passed

the position z at time z/v and had--at that moment--phase - (wz/v).
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APPENDIX A. ESTIMATION OF FOURIER 'I'RA1IJSFORMS

This appendix is devoted to ~3thematical questions related

to the approximate evaluation of Fourier transforms, that is, to the

properties of the integral:

f(s)

00J f(k) e
iks

dk

-m

(A.l)

The general procedure that we employ is to approximate f(k)

by a suitable f (k)
a

for which the integral in Eq. (A.l) can be

evaluated exactly. In the situations encountered in this paper, the
/v

f (k) are generally piece-wise analytic functions for which the
a

Fourier transforms, although well-known, are nevertheless uncommon.

In Table I we list all of the transforms which we require; the

results quoted are established in the literature. 9

A particularly simple transformation can be employed when the

nonanalyticity of 'r(k)
, \

[i.;rhich for the f(k) of Table I is ahrays

at k = 0] occurs at Letting k = k
O

+ K 'de find tllEtt

Eq. (A.l) becomes

f(s) =
ik s

e 0

00

f
-00

iKs
e dK (A.2 )

so that the nonanalyticity is transformed to K

of Table I are readily applicable.

o and the results

\ole turn nov to the problem of bOlmdi!1g the error in f (s)

generated by replacing f(k) with f (k) .
a

To state the problem
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TABLE I. Various Fourier transforms.

1

- i Ik!2 Sign (k)

1
, I-~

i Ikl C Sign (k)

1
(~)2 Sign(s)

2 Is1 3/ 2

1

2(~)2 1
2 Is I-~

\

-1

1
I
I
I
I
I
i
I

I

- - I

1t Sign (s)
2

s
i k tn Ikl

I
I

I
I

/kSign_(k_)- 1 -__s~ .__ . ._
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more positively: f(k) is generally rather complicatedj we ymnt to

know how roughly we can approxiwate it without significant loss of

accuracy in f(s). There are a m.1Jllber of cases which vc must consider.

1. Asymptotic evaluation

The problem of approxi~Ately evaluating f(s) in the limit

of very large s, is treated exhaustively in Ref. 9. The situation

is that the asymptotic behavior of f(s) is determined by the points

of nonanalyticity of f(k). Assl1Jlling, as is always the case in this

report, that f(k) is analytic for k +0, we conclude that f(k)

~AY be approximated by f (k) , with no error in
a

f(s) as

provided f (k) is analytic for k F 0 and the singularity in
a

f (k) (at k = 0) is the same as that in f(k) .
a

2. Evaluation for large argmuent

We often have the situation that f(k) is well approximated

by f (k)
a

for
/V

and both f and f a
are analytic except

at k = 0 It then is true--as an extension of Case l--that f(s)

is well approximated by the transform of f (k)
a

provided

In this paper, where we are concerned with distances large

compared to the pipe's transverse dimensions and the bunch length, we

will invoke the present theorem to alvays limit attention to

-1 -1 -1 -1
L J a ,b J d J and thus are permitted many simplifying

approximations in f(k) .
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3. Small region of inaccuracy

Suppose f(k)

for [k! < k02 and

is closely approximated by f (k) , except
a

It is then the case trat the transform of f (k) differs from res)
a

by less than o.

Consequently, f(s) is well approximated except when it is

smaller in \~lue than o. (This is the reason Case 1 isn't

contradicted by the present result, since f(s) generally approaches

It follows that even a rather large departure of

In our applications, the range k 02 will be

-1 -2 1 2R b or R- (d - b)- , with

zero asymptotically.)

exceedingly small [of the order of

8 -1
R -;::: 10 cm ] .

fa (k) from f'(k) can be tolerated within k
02

, with f(s) Hell

approximated except where it is exceedingly small, namely, at very

large distances.
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APPENDIX B. BESSEL FUNCTION FROPERTIES

In this Appendix we summarize--without derivation--various

properties of Bessel functions which are necessary to the analysis

employed in the paper. More complete discussions can be found in

10
any standard text.

The Bessel function Jy(x), where v is any integer, is the

solution of Bessel's equation:

1
x

d
d.x

o , (B.l )

defined by the power series

J (x)
v

CD

2::
k==O

2k + v
(_l)k (~)

2

r(k + 1) r(k + v + 1)
(B.2 )

The Neumann function N (x) also satisfies Eq. (B.l), but withv

different boundary conditions, and p~s the property

2
:rr .En ,

N (x)
v -~:rr

y

(~) , for
x x « 1 and v f 0 ,

where the (Euler) constant y == 1.7811. The Hankel functions

Hy (l)(x) and BY (2)(x) are defined by

(:s. 4)
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and clearly also satisfy Eq. (B.I). For small argument,

may be obtained from Eqs. (B.2) and (B.3). The special case of

~ I + ~ x N1 (x) , for x« I ,

2x
,~ 2 .en x , for x «I

requires the next term in the expansion of Eq. (B.3).

Asymptotically, namely for large argument,

J (x)
v

N (x)
v

1

2 2"

(x
:rr ~v )(;X) cos - 4" -

1

(:)
2"

(x
:rr ~)sin (B.6 )

"-
- 4" - 2 '

(1 )
from which it is evident that ~2

(ix) approaches asymptotically

(B. 7)

The Wronskian relation (the prime indicates derivations with respect

to argument)

2
T:X

, (B.8 )
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or the equivalent relationship

is often useful, as are the analogous relations for

2
rrix

2
rrix

(B.IO)
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