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Abstract 

Problem presentation can influence students’ understanding, 
choice of strategy, and accuracy. For example, the presence 
and type of external representation can alter performance. In 
this study, we examined the effect of diagrams on students’ 
performance in a symbolic problem domain. Sixty-one 
seventh-grade students solved algebraic equations with or 
without an accompanying diagram. The presence of diagrams 
increased accuracy and use of informal strategies. Overall, the 
benefits of diagrams found for word problems generalized to 
symbolic problems. 

Keywords: External Representation; Problem Solving; 
Algebra Equations 

Problem Representation  
If you had to teach children basic addition, what would be 
more helpful – a set of blocks they could touch and count, 
or a list of common arithmetic equations such as “2+3=5”? 

External representations such as blocks and equations 
impact learning and performance (Belenky & Schalk, 2014). 
They exist as physical symbols or objects and impact how 
people internally represent problems, which in turn 
influences how they solve the problems (Koedinger, Alibali, 
& Nathan, 2008).  

External representations vary in their concreteness. 
Concrete representations such as pictures, diagrams, and 
physical models are grounded in familiar experiences, 
connect with learners’ prior knowledge, and have an 
identifiable perceptual correspondence with their referents 
(Fyfe, McNeil, Son, & Goldstone, 2014). However, they 
may contain extraneous perceptual details that distract 
learners from relevant information or inhibit transfer of 
knowledge to novel situations (Harp & Mayer, 1997; 
Kaminsky, Sloutsky, & Heckler, 2008).  In contrast, 
symbolic representations such as formal equations and line 
graphs eliminate extraneous surface details, are more 
arbitrarily related to their referents, and represent the 
underlying structure of the referent more efficiently. Thus, 
they allow greater flexibility and generalizability to multiple 
contexts, but may appear as meaningless symbols to 
learners who lack conceptual understanding (Nathan, 2012). 

Diagrams are one type of concrete, external representation 
thought to aid problem solving. In this study we focus on 
the effect of combining diagrams with a more symbolic 
representation, namely, algebraic equations.  

Potential Benefits of Diagrams 
Diagrams are schematic visual representations that express 
information via spatial relationships. Concrete details of the 

referent can be disregarded so that only the relevant  
problem features and quantitative relations are depicted. 
There are at least three reasons why diagrams might be 
helpful for solving symbolic problems such as algebraic 
equations.  

First, diagrams may help highlight relevant information. 
For example, visual scanning is easier when information is 
presented spatially than when it is presented in a list of 
numbers or verbal statements (Larkin & Simon, 1987). 
Thus, including diagrams with equations may facilitate the 
cognitive process of searching the problem space and may 
help students extract relevant information. 

Second, diagrams may decrease working memory load 
and support quantitative reasoning (Munez, Orrantia, & 
Rosales, 2013; Murata, 2008). For example, in a study with 
adults, functional magnetic resonance imaging results 
revealed that solving a word problem by constructing a 
mental diagram required fewer resources for controlling 
attention or retrieving procedural knowledge than solving 
the problem by constructing a mental equation (Lee et al., 
2007). Thus, presenting diagrams may free up cognitive 
resources that are important for accurate problem solving, 
such as correctly selecting and implementing strategies.  

Third, diagrams may scaffold algebraic reasoning by 
facilitating connections between concrete and symbolic 
representations (Koedinger & Terao, 2002; Lee et al., 2013). 
Specifically, diagrams may elicit students’ intuitive, 
informal knowledge and strategies. Presenting diagrams 
with equations may allow students to connect this 
knowledge to formal, symbolic problem formats. Thus, a 
diagram benefit may be particularly apparent for students 
who are still developing familiarity with manipulating 
abstract symbols.  

Evidence for a Diagram Benefit 
In addition to theoretical reasons for a diagram benefit, there 
are several lines of work suggesting that diagrams can 
improve mathematical problem solving. Past research has 
focused on the benefits of diagrams for solving word 
problems. 

The first line of evidence comes from research on 
individual differences in the spontaneous use of diagrams 
during word problem solving. 4th to 6th grade students who 
tend to use diagrams, whether by drawing diagrams on 
paper or by mental visualization, are more accurate solvers 
(e.g. Edens & Potter, 2008; Hegarty & Kozhevnikov, 1999). 
Similar results are reported for students with learning 
disabilities (Van Garderen & Montague, 2003).  
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A second line of evidence for a diagram benefit comes 
from instructional practice. Countries such as Japan and 
Singapore have long incorporated diagrams into math 
instruction on a national level, and these countries typically 
perform at the top in international tests of mathematics 
achievement (Murata, 2008; Ng & Lee, 2009). For instance, 
1st and 2nd graders in Singapore are introduced to a heuristic 
using horizontal bar diagram drawings to solve word 
problems (Ng & Lee, 2009). Students who construct a 
diagram representation are able to use informal arithmetic 
strategies to solve algebraic problems, thus making 
algebraic problems accessible earlier – beginning in 3rd 
grade, as opposed to the 7th grade in most US classrooms 
(Lee et al, 2013). In fact, 6th grade pre-algebra students in 
the US were able to learn and apply this diagram heuristic to 
solve algebra word problems (Koedinger & Terao, 2002). 
Extensive interventions that include practice generating 
diagrams have helped U.S. 3rd grade students improve their 
word problem solving success (Jitendra et al., 2007). 
However, it is unclear if benefits of the intervention are due 
to the use of diagrams or to receiving more general 
problem-solving strategy instruction. 

A third, more direct line of research clarified this issue by 
experimentally manipulating whether students are given 
diagrams in conjunction with word problems. Munez, 
Orrantia, and Rosales (2013) found that presenting novel 
diagrams could enhance 9th graders’ accuracy and response 
times on arithmetic word problems. Further, the 
improvement was greatest on more difficult problems. 
These findings are consistent with similar research on 
undergraduates (Lewis, 1989). However, the benefits of 
provided diagrams may be less robust in middle school 
students. Booth and Koedinger (2012) assessed 6th to 8th 
grade students on three algebraic problems differing in 
complexity. Each problem was presented in one of three 
formats: equation only, word, or word-with-diagram. The 
diagrams used were novel to students and tailored to each 
problem. While high-ability students of all grades 
performed equally with or without diagrams, low-ability 
students in the 7th and 8th grades were more accurate and 
made fewer conceptual errors on word problems with 
diagrams. However, these students benefited from diagrams 
only on the more complex double-reference problem where 
the unknown variable appeared twice. No diagram benefit 
was found on the simpler single-reference problem where 
the variable appeared only once. This suggests that grade, 
ability level and problem complexity may be key 
moderators of the potential diagram benefit. Although 
informative, this study did not include an equation-with-
diagram condition, which would have revealed whether the 
diagram benefit was consistent across problem types or only 
for word problems.  

In summary, diagrams generally aid in problem 
comprehension and solution of word problems. Little is 
known about the use of diagrams with more symbolic tasks 
such as equation solving. Extending the diagram research to 
a symbolic domain will test the generalizability of the 

diagram effect and also provide insight into how children 
interpret and solve symbolic problems. 

Current Study 
The present study investigated the effectiveness of 
presenting diagrams alongside algebraic equations. Previous 
research suggests that diagrams can help students make 
sense of word problems. However, algebra equations are 
more abstract than word problems. Algebra equations not 
only require students to understand complex mathematical 
structure, but also require students to decode the symbolic 
language of algebra (Payne & Squibb, 1990).  

Our primary research question was whether the presence 
of diagrams would influence algebraic equation-solving 
performance, including accuracy, type of errors made, and 
strategy use. We predicted that problem-solving accuracy 
would be higher if a diagram was provided than if it was 
not. We also hypothesized that diagrams could elicit 
students’ intuitive knowledge of quantitative relations in the 
problem. Similar to findings in word problems (e.g. 
Koedinger & Nathan, 2004), this should reduce the 
frequency of conceptual errors, and increase both the usage 
of non-algebraic strategies and the accuracy of algebraic 
strategies.  

Our secondary research question was whether the effect 
of diagrams would depend on student or problem 
characteristics. We explored problem complexity and 
students’ general math ability as two factors that could 
influence the benefits of diagrams. We varied problem 
complexity by including both single-reference and more 
difficult double-reference problems, which differed in 
whether the variable appeared once or twice in the equation 
(Table 1).  We explored the importance of general math 
ability by working with students drawn from advanced and 
regular mathematics classes.  

 
Table 1: Examples of equations and diagrams 

 

Method 
Middle-school students participated in an experimenter-led 
classroom session. Using a within-subjects design, we 
manipulated the presence of diagrams during the equation 
solving assessment.  

 Equation Diagram 

Single-
Reference (x-45) / 3 = 20.5 

 

Double-
Reference N + 1/5N = 30 

 
Note: These two equations were taken from Booth & 
Koedinger (2012). Other equations were adapted from these. 
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Participants  
Participants were 62 seventh-grade students from four 
classes attending an independent private school. Students 
were tested 2 months into their first pre-algebra course. Two 
classes (34 students) were in an advanced math class, which 
covered the same breadth of content but in greater depth. 
Students were placed into the advanced class by their math 
teachers based on multiple components of their 6th grade 
performance, including standardized test scores and in-class 
grades. Students had experience with reading algebraic 
expressions and solving simple one step equations, but had 
not studied the equation forms used in the experiment. They 
did not have prior experience with the type of diagrams used 
in this study. We dropped the data of one student who did 
not attempt any of the assessment items. The final sample 
contained 61 students (33 male, mean age = 12.7 years). 

Design and Procedure 
Students completed the experiment in their classrooms 
during their regular 50-minute math period. The experiment 
included four parts: introduction, diagram practice, 
representation translation, and equation solving. The within-
subjects manipulation occurred only during equation 
solving. There were no time limits for any of the tasks. 
Calculators were not permitted on any task.  
 
Diagram Introduction. The experimenter spent about 8 
minutes with the entire class to describe diagrams as a 
special kind of picture that represents information about 
numbers and quantities. She explained four guidelines used 
to construct diagrams, highlighting important features (e.g. 
arrows, labels, dotted lines). She described how diagrams 
could represent each of the basic operations: addition, 
subtraction, multiplication, and division. For each operation, 
she presented and described an example diagram and asked 
students to copy her drawings on a worksheet. These 
example diagrams were much simpler than the diagrams 
students would encounter in the rest of the experiment. The 
intent was to develop basic knowledge of interpreting the 
diagrams as they were unfamiliar to the students. No 
references to equations were made.  

Based on the diagram approach used in Singapore, 
diagrams were constructed according to these guidelines: (1) 
Quantities were represented by rectangular bars using solid 
borders; (2) Dotted vertical lines divided bars into equal 
portions; (3) Rectangular bars were labeled internally with 
variables; and (4) Horizontal arrows over the length of a bar 
indicated the quantity’s magnitude and were labeled with 
known values or ‘?’. Diagrams were drawn to approximate 
the relative quantities in each problem, but were not of the 
same scale across problems. 
Diagram practice. To provide brief exposure to problem-
solving using diagrams in isolation, we asked students to 
work individually on four problems. Students had to solve 
for an unknown variable from a given diagram. The 
corresponding equation was not included. The first three 
problems were single-reference problems and the fourth was 

a double-reference problem. After 10 minutes of individual 
work, the experimenter announced the correct answer for 
each problem. Students checked their own work. The intent 
was to increase familiarity with the diagrams.  

 
Representation-translation task. We constructed four 
items to measure how well students could translate between 
diagrams and equations. The first two problems required 
students to choose between two diagrams that described a 
given equation. Students received one point for circling the 
correct diagram. The next two problems required students to 
generate and write an equation describing a given diagram. 
Students received one point for writing a valid equation; 
expressions (e.g. 2x + 1) were not valid. For both pairs of 
problems, a single-reference problem was presented first, 
followed by a double-reference problem. Students first read 
directions and a completed example before attempting each 
pair of problems. No feedback was provided. We included 
this task as a check of how well students were able to make 
the connection between diagrams and equations. 
 
Equation-solving Assessment. To evaluate our primary 
research question, we designed eight algebra problems 
contrasting two factors, presentation format and problem 
complexity. Students saw four problems as equations and an 
isomorphic set of four problems as equations with 
accompanying diagrams, using different variable letters and 
constant values. For each presentation format, the first two  
problems were single-reference and the other two problems 
were double-reference. On the four equation-with-diagram 
problems, students also indicated if they had used the 
diagram to solve each problem by circling “yes” or “no” 
inside a small box below the diagram. This provided a 
measure of diagram use frequency. 

We designed four counterbalanced forms of the equation-
solving assessment to control for order of presentation 
(equation-first or equation-with-diagrams first), and version 
(which problems had diagrams). Problems were blocked by 
presentation format. 

Coding  
Students received one point for each correct answer. We 
coded students’ errors and strategy use based on their 
written work, using the scheme outlined in Tables 2 and 3. 
These schemes were adapted from previous research on 
students’ solution of algebraic equations and word problems 
(Koedinger et al., 2008). To establish inter-rater reliability, a 
second rater coded the written responses of 25% of the 
children. Inter-rater agreement was high (Cohen’s�= .92 
for errors,�= .85 for strategies). 

Results 
To evaluate the effect of counterbalanced forms, a 2 (order) 
x 2 (version) ANOVA on equation-solving assessment 
scores was done. This analysis revealed no significant 
effects of either factor or their interaction, F’s < 1. Thus the 
subsequent analyses treated the four forms as equivalent. 
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We evaluated students’ performance on the equation-
solving assessment using a repeated-measures ANOVA 
with presentation format (equation or equation-with-
diagram) and problem complexity (single- or double-
reference) as within-subjects variables and math proficiency 
(regular or advanced class) as the between-subjects variable. 

As shown in Figure 1, students provided more correct 
answers when solving equations with provided diagrams 
(48%) than without (36%), F(1,59) = 11.6, p=.001, ηp

2 =.16. 
Students also solved fewer double-reference equations 
correctly (32%) than single-reference equations (50%), 
F(1,59) = 17.6, p < .001, ηp

2 = .23. Students in advanced 
classes solved more problems correctly (56%) than students 
in regular classes (22%), F(1,60) = 24.28, p < .001, ηp

2 = 
.29. None of the two-way or three-way interactions between 
presentation format, problem complexity and math ability 
were significant (F’s < 1). Thus, the positive effect of 
diagrams was consistent across simple and complex 
problems and across students with low and high ability.  

Eleven students failed to indicate whether they used a 
diagram for a specific problem at least once. The remaining 
50 students reported using the diagram on a majority of 
problems (60% of equation-with-diagram problems). 
Students reported using diagrams more often on double-
reference problems (72%) than on single-reference 
problems (49%), t(49) = 3.34, p < .01. However, reported 
diagram use was not correlated with accuracy on equation-
with-diagram problems (r = -.045, p > .75).  

Table 2 presents the frequencies of each type of error, as a 
percentage of all problems on the equation-solving 
assessment. Overall, conceptual errors were the most 
common. Students made fewer conceptual errors on 
equation-with-diagram problems, compared to equation-
only problems, t(33) = 3.51, p < .001.  

Next consider the strategies students used to solve the 
equations (see Table 3). Overall, students used an unwind 
strategy twice as often as an algebra strategy (35% vs. 15% 
of problems), t(60) = 4.03, p  < .001. Though not reliable, 
the presence of diagrams marginally increased use of the 
unwind strategy, t(60) = 1.69, p < .1. We also evaluated the 
effectiveness of each strategy by considering the percentage 
of problems where each strategy led to a correct answer. 
Overall, accuracy of the strategies was moderate. The 

presence of diagrams appeared to increase the success of 
these strategies, although overall frequencies are too small 
for meaningful statistical analyses. 

Finally, consider student success on the representation-
translation task.  Students were moderately successful, (M = 
2.44 out of 4, SD = 1.35), and their representation-
translation score was positively correlated with their overall 
equation-solving accuracy (r = .492, p < .001) To assess if 
representation translation ability moderated the diagram 
benefit, we calculated a diagram effect score for each 
student (equation-with-diagram score – equation score) and 
found a small but insignificant correlation between 
representation translation score and diagram effect score (r 
= .21, p > 0.1). 

0 

10 

20 

30 

40 

50 

60 

70 

Single Reference Double Reference 

Equation-Solving Accuracy (%) 

Equation 

Equation-with-
Diagram 

 
Figure 1: Percentage correct on Equation-solving 
Assessment by presentation format and problem 

complexity. Error bars are standard errors. 

Discussion  
External representations such as diagrams generally support 
learning and problem solving. However, incorporating 
diagrams with symbolic problems has largely gone 
unstudied. As predicted, we found a clear diagram benefit. 
Presenting diagrams alongside algebra equations enhanced 
students’ accuracy and reduced the frequency of conceptual 
errors. The diagram benefit was independent of problem 
complexity or students’ math proficiency. In contrast, a 
previous study on word problem-solving found that 

Table 2: Errors made on Equation-solving Assessment 
 

Error Definition 
Error frequency 

Equation 
only 

Equation-
with-diagram 

Conceptual Student employs invalid or incomplete strategies. 34 (4.0)    21 (3.0) * 

Arithmetic Student makes a computational error, but solution is otherwise correct.   4 (1.3)   5 (1.4) 
No Attempt Student  leaves problem blank or wrote some form of “I don’t know”. 13 (3.0) 12 (3.0) 
No Work Student write incorrect answer without any work shown. 12 (3.3) 15 (3.7) 

Copy Slip Student miscopies a value from the problem or from own work, but solution 
is otherwise correct.   2 (.01)     0 ( - )  

Note: Scores are percentages of all problems on the Equation-solving Assessment, presented as mean (with standard errors 
in parentheses). * denotes differences at p = .05 level of significance.  
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diagrams were most helpful for more difficult problems and 
for students with lower ability (Booth & Koedinger, 2012; 
Lewis, 1989). Other research has found that concrete 
representations might even reduce performance on complex 
problems. For instance, college students are more accurate 
solving double-reference problems in equation format than 
in word problem format, even though they benefit from the 
concreteness of word problems on simpler single-reference 
problems (Koedinger et al, 2008). Why did diagrams 
provide a clearer benefit in this study than in previous work 
with word problems? 

One possible explanation is that students in our sample 
had greater diagram familiarity and understanding than 
students in previous studies, due to the experimenter-led 
diagram introduction. We also used a consistent diagram 
type for all problems, unlike in Booth & Koedinger’s (2012) 
study. However, students had not seen these diagrams 
before the experiment, and we did not teach them how to 
relate diagrams to equations. The assessment problems used 
were also much harder than the examples we used in the 
introduction. It is unlikely that familiarity played a major 
role for helping students to benefit from diagrams.  

Another explanation is the fact that algebra equations are 
generally more difficult than equivalent word problems. 
Even high school students may make persistent errors in 
understanding and solving algebra equations, although they 
are more accurate on word problems (Koedinger & Nathan, 
2004). When all problems are difficult for most students, 
diagrams can aid performance across problem complexity 
and students’ math proficiency. Thus, even the simpler 
single-reference equation problems used in this study were 
likely challenging enough that students benefited from an 
alternate concrete representation. Students also indicated 
more frequent use of diagrams on more complex double-
reference problems, suggesting that they believed diagrams 
might be helpful on those problems. 

Our results also support some explanations suggested in 
the literature. First, diagrams may influence internal 
representation. Our finding of a diagram benefit is 
consistent with various cognitive models of problem 
solving. These models generally posit that constructing 
appropriate mental models of a problem is key to successful 

problem solving (Johnson-Laird, 1983; Koedinger & 
Nathan, 2004). Our results match their predictions of 
increased accuracy and a trend toward use of more informal 
strategies. By providing students with a pre-constructed 
diagram, we may have removed some of the difficulty of 
constructing an internal representation of the problem,. By 
providing an additional external representation on paper, we 
may also have reduced students’ working memory and 
attention demands by offloading some cognitive processing 
onto perceptual processing (e.g. Larkin & Simon, 1987). 

Second, diagrams may facilitate informal reasoning. 
Consistent with previous research, we found an indication 
that students in the current study used more non-algebraic 
strategies when concrete diagrams were present (Koedinger 
& Nathan, 2004). Similar to how adding a concrete story 
context can improve performance on arithmetic problems by 
activating real-world knowledge of common operations and 
quantitative relations (Carraher, Carraher, & Schliemann, 
1985), adding a concrete diagram might improve children’s 
performance on algebra equations by activating informal 
strategies that do not rely on newer algebraic strategies that 
students are in the process of learning.  

Despite the positive contributions of the current study, we 
are unable to provide detailed accounts of how students 
used the diagrams. In order to develop a mechanistic 
account of diagrammatic reasoning, future research should 
investigate specific processes that problem-solvers engage 
in when using a diagram. Do students iterate between 
representations or fixate on the more concrete one? 
Tracking participants’ eye movements may reveal diagram 
elements that are particularly helpful, distracting, or 
ignored. 

Future research could also investigate potential trait by 
treatment interactions, such as the influence of quantitative 
reasoning, visual-spatial ability, or representation translation 
skill on students’ use of diagrams.  For instance, students of 
different math ability may benefit from diagrams due to 
different reasons. Higher-ability students, who are more 
likely to spontaneously generate useful diagrams on their 
own, may benefit because diagrams more closely matched 
their own internal representation of the problem. However, 
low-ability students may benefit because diagrams highlight 

Table 3: Strategies used on Equation-solving Assessment 
 

Strategy Definition 
% Used (% Correct) 

Equation 
only 

Equation-
with-diagram 

Algebra Student uses algebraic manipulations to derive solution. A sub-
equation or simplified algebraic expression is written. 17 (51) 15 (62) 

Unwind Student works backward using arithmetic strategies to derive 
solution. 32 (51) 38 (69) 

Guess and Check Student substitutes different value(s) for the variable. 5 (46) 4 (67) 
Other Student uses other strategies, or strategy is ambiguous 15 (19) 8 (32) 
Answer Only Answer is provided without any working. 19 (24) 24 (27) 
Not Attempted Student leaves problem blank or wrote some form of “I don’t know” 13 ( - ) 12 ( - ) 
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important information they would have otherwise ignored or 
misinterpreted. Understanding how different students utilize 
multiple representations can help educators personalize 
instruction.  

In summary, the current study extends previous research 
of a diagram benefit in problem solving to a symbolic 
domain. Providing novel diagrams enhanced students’ 
accuracy on difficult algebra equation problems independent 
of the problem and student characteristics studied. Concrete 
external representations may be more powerful than 
previously leveraged, especially when combined with 
symbolic problems. 
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