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Potential distribution problems in electrolytic cells 

can be separated into two parts s the bulk medium where .Laplace 1 s 

equation holds and the diffusion layer where convection', mi.gration, 

and diffusion are all important modes of mass transfero The prob= 

lems in these two domai.ns must still be solved simultaneously 

since ~the concentrations and the current density at the electrode 

surface must adjust themselves to the available overpotential 

calculated from the solution of Laplace 1 s equationo 

Specific results are obtained for the limiting current 

for arbitrary J ' two -dimensional and axisymmet;ric diffusion layers 0 

The correction factor .. f..or the effect of migration within the 

diffusion layer is shown to be exactly the same as that calculated 

earlier for a rotating disk electrodeo 
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1. Introductlon 

An earlier paper1 treats the effect of ionic migration on 
' limiting currents for four cases~ the rotating disk~ the growing 

mercury drop., penetration into a semi=infini.te medium~ and the 

stagnant Nernst diffusion layer. These earlier results would be 

more useful if they could be applied. to a broader class of problems. 

Here it is shown that this is possible.9 in particular"' the results 

already calculated for the rotating disk also apply to steady mass 

transfer in arbitrary two~dimensional and axisymmetric diffusion 

layers. The current density is distributed along the electrode in 

the same manner as when migration is neglected~ but the magnitude 

of the current density at all polnts is increased or diminished by 

a constant factor which depends upon the bulk composition of the 

solution. The magnitude of this effect was calculated earl1er1 for 

redox,reactions in a ferro=ferricyanlde system~ discharge of hydro= 

gen ions from KCl solutions~ deposition of copper from HaS04 and 

MgS0 4 solutions 9 and deposition of silver from HNOs solutions. 

Examples of other hydrodynamic systems for which the rotating= 

disk.results would thus be applicable include flow :in tubes~ annular 

conduits., and planar channels, boundary=layer flow past flat=plate 

electrodes or other submerged objects suspended in a free stre~!fl, 

and stagnation point flowso 

The justification of the above results ls so involved that it 

is not much more work to formulate a procedure for treating the 

problem of current and potential distribution in. electrolytic cells 

for currents below, but at an appreciable fraction of~ the limiting 

currento Here it is not possible to neglect concentration varia= 

tions near electrodes, the surface overpotent1al associated with 
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the electrode reactionjl or the ohmic potential drop in the bulk 

of the solutiono Most previous work neglects either the ohmic 

potential drop in the bulk of the solution or the concentration 

variationsjl and many works also neglect the surface overpotentialo 

In many electrolytic cells the concentration variations.are 

still restricted to thin diffusion layers near the electrodes, 

This·allows an important simplification since it allows a separate 

treatment of the two regions -- the diffusion layer q.ndi the bulk 

~olution where the potential satisfies Laplace 0 s equationo 

However, the two regions are still coupled through the· boundary 

conditions, A completely analytic treatment of such a complex 

probiem is usually not possible, but even for a numerical treatment 

the separation into two regions i.s important because of the com= 

pletely different length scales and mesh sizes appropri~ate to the 

regi6ns, It is sometimes p6Ssible2 to solve each ~egion in terms 

of series solutions jl the coefficients of which must be idetermi.ned 

by a numerical procedureo 

Earlier work 

Early tr,eatments of current distribution in electrolytic 

cells involved the solution of Laplace 0 s equation for the potential 

iri the bulk of the electrolytic solution, For boundary conditions 

the electrodes were taken to be· equipotential surfaces 3 thus 

neglecting pola.rizationjl and the normal component of the current 

density is zero on insulating surfaceso This. def~nes a classical 

problem in mathematical physics$ and for electrolytic cells the 

solution yields the so=called "primary current distribution," The 

primary current density is always infinite or zero at the edge of 

an electrode unless the electrode i~ perp~ndicular to an insulating 



surface at its edge. Generally» the primary current distribution 

shows that the more inaccessible parts of an electrode receive a 

lower current density. 

When slow electrode reaction kinetics is taken into account» 

the electrolytic solution near the electrode is no longer an 

equipotential surface. A wide variety of expressions for the 

elec~rode polarization have been used, .which reflects the variety 

of electrode kinetics as well as a variety of approximations. The 

result of such a calculation is the so-called ~secondary current 

distribution." The general effect of electrode polariz'ation is to 
' make the secondary current distribution more nearly uniform than 

the primary current distribut:ton 8 and an infinite current density 

at the edge of electrodes is eliminated. The mathematical problem 

now involves the solution of Laplace 0 s equation subject to a more 

complicated» perhaps even nonlinear» boundary con91tion. However, 

the electrode polarization is still a local phenomenon 'in the sense 

that the potential difference between a point on the electrode and 

the adjacent solution depends on the current density orily at ~hat 

po~:-n~ but not at other points on the boundary. 

11here are a considerable number of analytic solutions avail= 

able for primary~current-distribution problems and a fair number 

for secondary-current-distribution problemso For problems of more 

complicated geometry and boundary conditions~ numerical methods and 

solutions have been developed, which in some cases may also be 

easier to use than an available analytic solution. For treatments 

of primary and secondary current distribution» see references 2 to 10. 

On the other extremeJ at very high currents the current dis-= 

tribution may be determined entirely by limited rates of mass trans­

fer of a reactant from the bulk solution to the electrode surface. 



'Ill. ..... 

-~ .. 

5 

Since 1942 a considerable theoretical and experimental effort has 

·been. devoted to problems of the so~called ulimiting :current" dis­

tribution (see references 11 through 18). The concentration of 

the limiting reactant is zero at the electrode surface» and the 

principles governing the current distribution are not essentially 
' 

different from those governing mass transfer in nonelectrolytic 

solutions.· Electrochemical systems are» in fact, occasionally 

used for mass=transfer studies9 where they offer the experimental 

convenience of accurate measurement of the rate of mass transfer. 

Broblems tre'ated include free and forced convection with lamiina.r 
r:·-~ 

or turbulent flow and the usual variety of geometries (;conduits 

and submerged objects). The potential distribution outside the 

diffusion layer is of no importance as long as ·the local over= 

potential is high enough to reduce the concentration of the 

limiting reactant to zero at the electrode surface. (Howeverf) the 

potential distribution may occasionally be so non=uniform that a 

high' local overpotential causes evolution of hydrogen o;n one part 

of the electrode before another part attains a zero concentration 

bf the limiting reactant.) 

For problems of an intermediate nature 3 where concentration 

variations near the electrode, slow electrode reaction kinetics» 

and the ohmic potential drop in the solution are all i.mportant f) 

Asad<L Hine.~~ Yoshizawa, and Okaaa19 use a calculation procedure 

similar to that proposed here to treat free convection in a 

rectangular cell with a vertical electrode at each end. No 

detailed justification is giveno The present author has applied 

the methods outlined here to the rotating disk electrode. 2' 

The author is preparing a more extensive review o\f thes~e 

various aspects of current distribution and mass transfer in 

electrochemical systemso~O-
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Scope of the present work 

The next section of this paper shows how one should calculate 

current distributions taking into account both concentration polar= 

ization and surface polarization at currents below the limiting 

currento The hydrodynamic velocity distribution is assumed to be 

known; consequentlyj the treatment applies to systems with forced 

convectiono Free convection is excluded since the velocity must 

then be calculated at the same time as the concentrationo 

The Peclet number Pe = UL/DRj where U is a characteristic 

velocity, L is a cha~acteristic lengthj and DR is a characteristic 

diffusion coefficientj is assumed to be largeo Then the concen­

tration variations are confined to a thin diffusion layer near the 

electrode surface 3 and the development hinges about this :fact, As 

a consequence$ the general problem can be partially separated into 
' 

two parts involving the concentration distribution within the 

diffusion layer near the electrode and the potential distribution 

within the bulk mediumo The concentratlon polarizationi is ndt a 

local phenomenon since the concentration at the electrode surface 

depends on events upstream in the diffusion layer, 

The analysis thus applies to laminar boundary layers at high 

Reynolds numbers Re = UL/v, where v is the kinematic v:fscosity, 

The di.scussion is restricted to two=dimensional and axisymmetric 

flow past the electrodes although the concept of a thin diffusion 

layer of course applies to other geometries as wello The usual 

bouridary~layer coordinates are employed~ where x denotes the dis= 

tance along the electrode from the beginning of the dlffusion layer 

' and y denotes the normal distance from the electrode surface: 

Examples of such hydrodynamic boundary layers would include flat~ 

plate electrodes or other submerged objects suspended in a free 
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stream, rotating disk electrodesj and stagnation-point flows, 

In this analysis the Schmidt number Sc ~ v/DR is also taken 

to be large since this allows a simplificatio~ in the expression 

for the ~elocity profiles (only the derivative at the surface is 

needed) and since actual Schmidt numbers are on the order of 1000 

for the electrolytic solutions of interest, For certain plasma 

systems this assumption would not be applfcable, For large 

Schmidt numb'ers., the Peclet number may be large even when the 

7 

Reynolds number is not so large, The analysis thus applies not 

only to boundary-layer flows but also to low Reynolds number flows 

' such as the mass-transfer entry section in circular conduits and 

between two plates, Such geometries$ as well as boundary=layer 
r 

flows» have been treated in the problems of the limi.ting=current 

distribution mentioned earlier, 

The present analysiss with migration effectsj is intended 

to be applicable to the same class of hydrodynamic flows that can 

be-and have been treated for mass transfer without migration in 

laminar diffusion layers in forced convection, 

Outside the diffusion layer one must solve Laplace~s equation 

for- the·potential with a current density at the boundary that 

agrees with the rate of the electrode reaction,' The diffusion 

layer and the bulk medium must be calculated s.imultaneously since 

t~e cur~ent density and the concentration at the electrode surface 

must adjust themselves to balance the overpotential available 

after the o~ic potential drop in the bulk medium is subtracted . 

from the potential applied to the cell, 

Results can be obtained immediately for the limiting current 

case (section 3), By means of a similarity transformation one can 

calculate the current d~stribution on the electrode including the 



effect of flligration in.the diffusion 1ayer. These results are 

given in the section on 1im+ting currents$ both for arbitrary 

two-dimensional and axisymmetric diffusion layers, and apply 

for large values of the Schmidt number. 
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The following section (section 4) contains a justification 

of the diffusion-layer approach based on a dimensionless formula~ 

tion of the problem. The limiting-current results are used to 

obtain the order of magnitude of the curr~nt densiti~s. An 

appendix includes miscellaneous comments inserted in order to 

point out related ideas from the theory of transport in electro­

lytic solutions which might be applied in specific problems. 

2. Potential distribution problems 

With a .known veloc:i.ty profile 3 the concentration and 

potential distributi.ons are to be determined from four equattons. 

The first describes the flux of a species due to migration in an 

electric field 3 dif.fusion because of a concentration gradient.s 

and convection with the velocity of the fluid. 

(1) 

If there are no reactions except at electrodes$ a material b~lance 

for ~ach species is described by the equation 

oci 
~-·-\JoN -ot - -9 

(2) 

The current density i is due to the movement of charged species~ 

(3) 

An electrolytic solutlon is electrically neutral, 

(4) 
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to a very good approximation except in a very thin region (say 10 

to 100 angstroms thick) near surfaces and really a part of the 

interface.. The validity of equation (1) is restricted io dilute 

solutions since.jl for example.jl it describes properly diffusion 

with respect to the solvent but not multicomponent diffusion. 

These equations.jl their validity and simple consequences~ and the 

extension to concentrated solutions have been discussed at length 

(see, for example 3 reference 21). 

These four equations can be combined to yield oth~r useful 

equa~ions. The concentration of each species f'ollows the equation 

oci 2 . 2 
.~+ y:,·\lci = Di 'V ci + ziuiFci \) <%> + ziu_1F(\lc1 ) · \/<%>. (5) 

The current density can be expressed as 

(6) 

where 

(7) 

is the solution conductivity. Multiplication or· ~quation (5) by 

z1F and addition over i gives anequation for conservation of 

charge~ 

(8) 

~onic diffusion coefficients and mobilities are related, at 

leas·t approximately, by the Nernst-Einstein relation 

( 9) 

We take all the dif.,fusion coefficients to be of roughly the same 

magnitude, but' all of them to be small in the sense that 
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Pe = UL/PR >> 1 , (10) 

where DR is one of the diffusion coefficients (taken at a later 

stage in this work to be that of the limiting reactant). 

The 'bulk medium 

It is widely known that when the Peclet number Pe·i~ large, 

mass transfer by conv.ection predominates over diffusion exce:{)t in 

a thin region, known as the diffusion.layer, near the reaction 

surf~ce (the electrode in this case). This has the consequence 

that outside the diffusion layer equation (5) reduces to 

oci 
- + _v • \/c1 = 0 , -at (11) 

that isJI th~ concentration of a fluid element is constant as ·-it 

moves through the solution. In most cases the appropriate solution 

to equation (11) is 

.(12) 

and all concentrations have their bulk values. 

- For the region outside the diffusion layer, equation (12) 

expresses the solution for the concentrations. It is still 

necessary to solve for the potential by means of equation (8} 3 

which in the bulk solution reduces to Laplace 0 s equation 

\J2 q; = 0 0 -(13) 

The diffusion laye,r 

On the other hand, diffusion cannot be n~glected :in the 

dif.fusion 1ct,y~r, but other simplifications ar~ still possible. 

Ol:l ac.count of the thinness of the diffusion region, effects of 

cu:rvatur~ can be neglected, and we adopt the usual boundary=layer 
I. • • I 

coor9inatesg x measured along the surface from its upstream end 
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and ':y, the normal distance from the surface 0 In th@! dif'fu-sion 

layer9 equation (5) simplifies to 

2 
oc:i oci . oci 0 ci ( o2<l> oci o<l> \ 

-ot + VX· ox + Vy oy = Di oy2 + Zi uiF ci· oy2 + oy . oy) • 

11 

(14) 

On the right side derivatives with respect to x have been ignored 

compared to the derivatives with respect to y. 

One more simplification is possible. We assume that 

Sc = v/DR >> 1 , (15) 

where v is the kinematic viscosity of the fluid. The Schmidt 

number Sc is on the order of 1000 for the electrolytic systems of 

interest here. . With the assumption ( 1.5) that the Schmfdt number 

is large; the diffusion layer is thin even when compared with any 

hydrodynamic boundary layer which may be present 3 and within a 

two-dimensional diffusion layer the velocity components can be 

represented as 

and 

where ~(x) is the velocity derivative at the solid wall 3 

~ = ovx/oy at y = 0, and the prime denotes the derivative with 

resp~ct to x. These are the first terms in expansions of the 

velocity in y and satisfy the continuity equation 

ovx ovy -
·ox + oy - 0 . 

(16) 

( 17) 

With this approximation, the diffusion-layer equation for 

tke concentrations is 

oc!. o<l>l 
ay ayj · 

(18) 
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These equations (one for each species) are to be solved along 

with the equation of electroneutrality (4) and certain boundary 

conditions which are yet to be discussed. 

Boundary conditions and matching 

Boundary condition~ involve the reaction rate at the 

electrode 3 which we may characterize by the current density 

i (y = 0), as well as the concentrations at the electrode surface y 

and the electrode overpotential. Equation (8) can be written as 

oi oi 
__1f., + --L - 0 -ox oy - or 

(19) 

Since the diffusion layer is thin, iy is approximately constant 

thro~ghout the diffusion layer, and this value can be used as a 

boundary condit.ion on the solution of Laplace 1 s equation in the 

form 

oi iy (y = 0) 
-oy_ = - " 

co 
at y = 0 , (20) 

where "co is the conduct-ivity of the bulk solution and t·he tilda 

denotes quantities pertaining to the problem outside the diffu= 

sion'layer. The current density iy(y=O) is, of course, zero 

on insulators. 

Let the el'ectrode reaction be expressed as 

' 

. z 

. [ f3i~ i __....., ne 
- i 

(21) 

where si is the stoichiometric coefficient of species i arid Mi 

is a symbol for the chemical formula of species i .. Then the 

boundary conditions for the concentrations in the dl,ffusion 

layer are 
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as (22) 

sii si 
= - ~ =- N ·at y = o 

·· nF ··sR Ry J (23) 

where R denotes a reactant for which sR I 0. (Later it will be 

useful to relate the flux of species i to the flux of the limiting 

reactant, instead of relating it to the current density.) 

The potential variation within the diffusion layer is 

described by equation (6). Let us denote by i(x) the potential 

at the electrode calculated from Laplace 9 s equation with boundary 

condition (20). This can be regarded as representing the effect 
,, 

of ~he ohmic drop in the bulk solution, extrapolated to the 

elec·trode surface using the bulk conductivity. If Vmet is the 

potential of the electrode metal and ~ in the bulk solution is 

that: measured by' a reference electrode of the same kind as the 

·work;ing electrode, then the· overpotential is 

(24) 

This is the sum of the.concentration overpotential ~c' associated 

with concentration changes in the diffusion layer, and .the surface 

overpotential.~s' associated with the~heterogeneous electrode 

reac;tion 
(25) 

but ~ does not include any other ohmic overpotential since i(x) 

is extrapolated to the electrode surface. 

The· concentration and surface overpotentials can be defined 

with the aid of two reference electrodes, one outside the diffu~ 

sion layer and one very near the electrode surface. These refer-

ence electrodes, which may be imaginary, follow the same electrode 

reaction (21) as the working electrode. The surface overpotential 
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is qefiried to be the potential of the working electrode minus the 

potential of the reference electrode very near the electrode. For 

the concentration overpotential, first let 6V1 be the potential 

of the reference electrode near the surface minus the potential of 

thereference electrode outside the diffusion layer, and let 6V
0

hm 

~e the potential difference between these electrodes when there is 

the ·same current distribution but no concentration variations near 

the ~lectrode. Then 

(26) 

The manner in which the potential Vr of•a movable reference 

electrode (relative to a fixed reference electrode) varies with 

position can be expressed as 

= - nF'V V r ' (27) 

where ~i is the electrochemical potential of species i. In the 

dilute-solution approximation .used here, these can be written 

'\/ ~;i = RT \J .(,n c i + z iF \7 <I> • . (28) 

Since [ sizi = -n, equation ( 27) becomes 
i 

(29) 

where 'V<t> is given by equation (6). If we subtract th~ ohmiq 

drop which would exist in the absence of concentration variations 

and integrate across the diffusion layer, we obtain the concen­

tration overpotential as defined above 

CD 

= i ( y = 0) r ( l - l)dy + L snFi RT .(,n 
11c Y - 'J " "oo i 

. 0 
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where cio (x) is the conc·entratioh of species i at the electrode 

surface. According to ·equation (30), the concentration over­

potential is the potential difi'ei';ence of a concentration cell 

plus an ohmic contribution due to the variation of conductivity 

in the diffusion layer. 

The surface overpotential as defined above should depend 

15 

only on the reaction rate and the concentrations at the electrode 

surface a 

· but not on events at a distance from the surface. Equation (31) 

impli¢s a steady state since the capacity of the double layer is 

not included. For unsteady processes one might write 

(32) 

where C is the capacity of the interface and f is the inverse of 

·gin equation (31). The discussion of the particular form off 

and g lies in the realm of electrode kinetics and outside the 

scope of this paper. 

One more point remains to be brought out here. In the 

·equations (18) for mass transfer in the diffusion layer only 

derivatives of potential· :w-ith respect to y appear and not c;l> 

itself. I~ fact 9 these derivatives could be eliminated in favor 

of the current density by appropriate use of equations (6) and 

(8). Consequently 9 let us introduce a new potential cp in the 

diffusion layer defined as 

' = c;t>(x~y) - i(x) 

Then i(x) is important only in the determination of the total 

overpotential. 

(33) 
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Summary of the calculation procedure 

Let us now summarize the calculation procedure for the 

two parts of the problem~ the bulk medium and the diffusion layero . 

If we know the re~~tion rate iy(Y= 0) on all boundaries~ then we 

can solve Laplaceus equation (13) for the potential in the bulk 

mediumo On the other hand~ if we know the reaction rate iy(Y~ 0) 

on all boundariesa we can solve for the concentrations and the 

potential variation in the diffusion layer from equations (4) 

and (ia) subject to boundary conditions (22) and (23). 

From the solution of the problem for the diffusion layer 

one can calculate fAs and tAc according to equations (30) and (31) 

and hence can calculate i(x) from equation· (24) o. Thus it is clear 
I 

that both parts of the problem can be calculated from a kln.owledge 

of iy(Y= 0) ~ but these may yield different values for i(x) o In 

general!) it is not possible to calculate the two parts separately$ 

they remain coupled through the boundary conditions.'! and it is 

necessary to determine iy(Y = 0) by some method of successive 

appro*imation. It may be helpful to modify the order of calcula= 

tion so that.the diffusion·la.Yer'is calculated from'a.h assumed 

iy(y=;O)$ which gives i(x) as a boundary condition for Laplaceus 

equation. The solution of Laplacevs equation then gives values 

of ~y(Y = 0) which can be compared with the assumed values. (See 

also reference 2.) 

3. Limiting Currents 

Two "'dimensional diffusj.on layers 

When the reaction rate is limited ,because the concentration 

of one of the reactant.s falls to zero at the electrode surface» 

the current distribution is determined by mass transfer in the 



diffusion layei'J) and it is possible to obtain a ~olution. Here 

it is not necessary to specify iy(Y = 0) in advance» instead the 

boundary condition 

17 

at y = 0 (34) 

applieso 

Acrivos22 realized that the Lighthill transformation23 is 

applicable to a wide range of problems involving nonelectrolytic 

mass transfer at high Schmidt numbers and heat transfer at large 

Prandtl numbers o By means of the Lighthill similar:i ty transforma:~ 

tion 

(35) 

the mass=transfer,!) diffusion=layer equations (18) can be reduced 

to ordinary differential equations for a steady=state problem 

(36) 

where primes denote differentiation with respect to ~ and where ~ 

of equation (33) replaces ~o Equations (36) are supposed to be 

solved with equation (4) subject to the'boundary conditions 

at (37) 

as (39) 

In addition the value of <p must be specified at some point,!) but 

this is not really relevant for the soluti.o:n of the problem. 

The problem outlined in equations (36) through (39) plus 

(4) is exactly the same as that treated earlier1 for the effect 

of i.onic migration on the limiting current to a rotating disko 
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Hence we can immediately draw upon those results. Let us define 

a dimensionless current density at the electrode as 

Then the actual current density is 

This shows how the reaction rate is distributed aiong the 

electrode~ since I is independent of x. 

When there is an excess of supporting electrolyte» 

migration is not important in the diffus~on layer» an.d the 

corresponding limiting "diffusion current 11 can be expressed by 

(40) 

(41) 

(42) 

When there .is not an excess of supporting electrolyte» the limit= 

ing current is augmented or.diminished by the effect of migration» 

and this effect can conveniently be expressed as IL/In» the ratio 

of the l~miting current to the·limiting diffusion current. Specific 

.ca~culations of the effect of migration on limiting cu.rrentsJ) 

ef:J?~~~sed as·It/ID 9 have already been given1 forredox reactions 

in a ferro~ferricyanide system.~~ discharge of hydrogen ions from 
·, 

KCl solution~.~~.deposition of copper from H2S04 and MgSO" solutions.~~ 

and deposition of silver from HNOs solutions. 

- Th$ stagnant diffusion layer and unsteady mass transfer to 

growing mercury drops and from a semi-infinite stagnant medium to 

a plane electrode have been treated1 in addition to the rotating 

disk. It is interesting that the correction factor for the effect 

of migration is exactly the same for the two unsteady processes»1 

while the correction factor for two=dimensional diffusion layers 



.. 
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discussed in this work is exactly tne same as that for steady 

transfer to the rotating disk. The correction factor for these . 
steady processes iss in principle» different from that for the 

unsteB:dY processes,!) but in the earlier work1 the difference was 
J 
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striking only for the discharge of hydrogen ions where the 

diffu~ioncoefficient of H+ is greatly differe~t from the diffu= 

sion coefficients of the other ions in the sys~em. 

The results for the limiting-current case showJl incidentallY» 

that the concentration distribution of the non=limiting species in 

the diffusion layer is exactly similar to.that for a rotating disk. 

This gives quantitative support to the supposition that integral 

diffusion coefficients appropriate for mass=transfer experiments 

can be obtained from limiting-current measurements at a rotating 

disk even though they have no obvious significance in terms of the 

fundamental properties of the electrolytic solution. On the other 

hand3'integral diffusion coefficients obtained from unsteady mass 

transfer to a.n·electrode at the end of astagnant capillary may 

be slightly different. 

Axisymmetric. diffusion layers 

Axisymmetric flow systems are also popular. We have seen 

already that the results for limiting currents in two=dimensional 

diffusion layers are similar to those for the rotating disk» an 

axisymmet~ic system,. It is also obvious that these· results apply 

to th~ diffusion layers on electrodes in the walls of tubes and 

annular conduits, where ~ is a constant. 

In general.s an axisymmetric body must be characterized by 

the normal distance; r(x) of the surface from the axis of symmetry. 

In the diffusion layer n~ar such an·axisymmetric surface, the 
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continuity equation reads (se~for example9 Schlichting, 24 p. 185) 

o(rvx) ovy -
ox +roy~- 0 0 

(4~) 

Hence· the appropriate expansions of the velocity components near 

the solid wall are 

and 
1 2 , 

v y = - 2 y ( rt3 ) / r ( 44) 

where·the primes denote differentiation with respect to x. 

Mass transfer in the diffusion layer still follows equation 

(14), but for large Schmidt numbers one should use the expansions 

(44) instead of (16), Equation (14) becomes 

For the limiting~current case, 

at y = 0 J (46) 

and for steady problems the similarity transformation 

I 
X YJ 

~ = ,~7 ~DRl ~ dx J (47) 

reduces equation (45) to equation (36), and the results for steady 

mass transfer to the rotating disk can be applied to axisymmetric 

diffusion layers as· well. In particular 9 the current distribution 

is given by 

X ·% 

~Jr~ dx] 
0 

J (48) 

the limiting diffusion current is given by equation (42), and the 

correction factors for the effect of migration IL/ID are exactly 
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the same as those calculated; earliet.l for the rotating disk . 

. For tubE;!S and annular condu,its 9 r is independent of x and 

cancels out of equation ( 4 7), For a ro·tating disk r = x and f3 = 

atlx Vn/v' where a = 0. 51023 and n is the rotation speed of the 

disk.; Equation (47) then yields 

~ = y(av/3DR)YJJn/v' . (49) 

4. Dimensionless formulation 

The justification for separating the diffusi.on layer from 

the bulk medium is that the Pec1et number is large. However 3 it 

is difficult to see just what simplifications are justified unless 

the problem is stated in a ·dimensionless· form, For this purpose~ 

and as a check on the preceding analysisJ> let us go back and make 

a careful estimate of the order of magn:l.tude of the 'various terms. 

Due to the singular nature of the problem it f'S necessary to make 

these estimates both in the diffusion layer and in the bulk medium. 

Channel flows 

We have taken both Pe and Sc to be large, but we simplify 

the discussion by regarding the Peclet number, which is the 

product of the Reynolds number Re = UL/v and the Schmidt number~ 

to be large because the Schmidt number is, large. Thus we regard 

the Reynolds number to be of order unity (that is, constant in the 

limit process Pe ~ro; the numerical value of Re may be as large 

as 2000), and consequently 
f3 = Q ( U/L) •. (50) 

This is particularly appropriate for flow in tubes and channels. 

We shall take the current to be an appreciable fraction of 

the limiting current. F;om equation (41) all current densities,· 



inside and outside the diffusion layer 3 have the ·order 

(51) 

From equations (7) and (9) 

·l'. = 0 (F~DRcRoo / RT) (52) 

Consequently 3 in the bulk, 

'J¢ = Q(i/x:) = Q(Pe;6 RT/LF) (53) 

In the diffusion layer x ~ Q(L)" and from equation (35) 

Y = 0 (L / Pe;6) . 

Generallyj in·the diffusion l~yerj 

oci/ox - Otc.Roo/L) and oci/oy ~ 0 (cRale;6/L) 

o2c1/ox2 = 0 ( C!Rro/L 2) and o2c1/oy2 
= 0 ( cRrof'e%/L 2) 

From equation (6) 

0 (~;J = 0 (~:) = 0 (P~y~T /LF) 

\ 

By differ.entiating ·equation (6) with respect to x, we find 

(54) 

} (55) 

(56) 

but from differentiation of equation ( 6) wi.th respect to y 1 

(58) 

On tpe basis of these estimates j it is;! appropriate to 

define difuenG~ionless concentrationsj current density.!! and 

electric field~ 

ei = ci/cRro" !,* = iL I Pey'FDRcRro .!! 

E* = = LF \l¢) Pe;6 RT . 

Further let 

} (59) 
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v* = yju, f3* = f3L/U, (60) 

In th~ bulk medium, the appropriate dimensionless coordinates are 

t = tU/L9 ;{' = x/L, and y = y/L 3 (61) 

where x andy are cartesian coordinates. In the diffusion layer 
'I 

the appropriate dimensionless coordinates are 

t* = tU/PeYt, x* = x/L, and y* = yPey~L, (62) 

where x and y are boundary-layer coordinates (refer to the text 

above equation (14)). 

The straightforward procedure for finding what approxima-
,_ 

tions are justified for large Pe is to substitute the appropriate 

dimensionless variables into the original stat~ment of the proplem 
. ., ' .: ·"·. t' . •(, 

and then ·ret the Peclet number approach .infinity. This pr·ocedure 

applied to equation (5) justifies equation (li) for the bulk 

medium and equation (18) for the diffusion layer. 

On the basis of the estimates of magni.tude given above$ 

equation (30) shows that 

'llc = 0 (RT/F) 

and that all the terms.in equation (30) are of the same order. 

On the other hand, the ohmic orop across the cell ia,l) 

from equation (53), 

b.<f> = Q ( Pel'J RT/F) . ·ohm 

(63) 

(64) 

Thus, if one increases the stirring while operating at roughly 

the.same fraction of the limiting current, the ohmic drop should 

become more important relative to the concentration polarization 

in determining the current distribution. At the same time the 

surface overpotential in equation (31) should increase (see 



, ...... 

equation (51)), but not as fast as the ohmic drop if the surface 

.overpotential is of a Tafel (logarithmic) type, Then 

'rls = Q ~RT/F) tn Pe] . (65) 

These relations (63), (64), and (65) may have important engineer­

ing consequences in the design of electrochemi~al cells, 

:Boundary-later flows 

If, on the other hand, one 1~ dealing with boundary-layer 

' flows at high Reynolds numbers on bodies submerged in a free 

stream or on a rotating disk, the order of magnitude of· t3 becomes 
;, ., 

t3 = Q(u yie I L) (66) 

and q.ll the other magnitude .est~mates must be changed accorping1y, · 

V<P = 0 (Re~S~~ RT / LF) , (67) 
·' 

Within the diffusion layer 

(68) 

There is reallY no difference in th~'Ju~tification of the separa­

tion of the current-distribution problem into two partsj but the 

dependence on the Reynolds number is shown explicitly, 

5. Discussion and Conclusions 

Current and potential distribut~on problems in electrolytic .. 
cells where neither ohmic potential drop in the bulk solution nor 

mass~'transfer limitation's near the electrodes can be neglected are 
' 

treated most conveniently by s.eparate calculations for the two 

regions, the bulk medium and the diffusion layer, The two regions 

remain. coupled through the boundary conditionso. For examplej in 

purely numerical calculations it would be unwise to try to use the 
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same grid mesh in the two regionso It would either be too coarse 

for the diffusion layer or require too many mesh points for the 

bulk medium. 

The analysis here has been restricted to laminar forced 

convection. A similar separation into two regions would also be 

possible for other situations where the concept of a thin diffu-
,..-i 

sion layer applies,. for example, turbulent flow;jl free convection, 

and· growing mercury drops as used in polarogr·aphic analysis o For 

turbulent flow it would be necessary to include turbulent transport 

terms 0 c{v; I oy in equation ( 14). For free convection.!! the 

principle of a thin diffusion layer and of the separation of the 

problem into two parts still applies, but two differences should 
"i ' 

be noted. The fluid. velocity :i;.n free convection depends upon 

variations of density within the diffusion layer. Consequentlyjl 

one cannot assume that the velocity is known in advance. Instead 

he must calculate the velocity at the same· time as the mass= 

transfer rate. Furthermore~ the hydrodynamic'boundary layer is 

of roughly the same thickness as the diffusion layer, ~d it is 

not pbssible to use only the velocity derivative at th~ wall as 

in.eqtl.ation (18), even for very large Schmidt.numbers. 

For current distribution problems at the limit;ing current!) 

where'the ohmic potential drop in the bulk solution can be 
·' 

neglected.!! the current is distributed along the electrode in a 

manner exactly similar to that which would be.predict~g by diffu= 

sion theory in the absence of ionic migration. The correction 

factor for the effect of migration in the diffusion layer depends 

on the composition of the bulk solution.!! but it is independent of 
,'r·;· 

the geometry of the electrodeo These copclusions are shown to 
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apply.for large Schmidt numbers and for ~rbitr~ry two-dimensional 

and axisymmetric diffusion layers. 

6. Appendix 

Even though no specific problems are treated in this paper 

at currents below the limiting current, the additional simplifica­

tions possible in certain special cases .should be pointed out. 

Binary electrolyte 

For the solution of a single salt, the requirement of 

electroneutrality (4) restricts the concentrations of anions and 

cations so that the potential can be eliminated from the two 

mass-transfer" boundary-layer equations (18) to yield 

where: 

and 

D = 
z+u+D- - z~u_D+ 

z+~+ - z u 

(69) 

(70) 

(71) 

The number of cations and ,anions per molecule of stUt is v + and 

v;_, respectively. The bounda:cy conditions (22) and (23) become 

c --+- c 
CD 

as y ___.. (l) 

at y = 0 . 

With the u·se of equation (7) for the conductivity, 

equation (30) becomes 

(72) 

(7:3) 



·-

2J, 

i (y = 0) 
Tlc = 

[

l · .. D+ - D 
+ _ -~--- + RT (s. 

Fzu -zu n~ + 
+ + 

+s_) ]~ :: (74) 

It is tempting to try to simplify this expression for the concen­

tration overpotential ~even f.urther, For steady problems equation 

(69) shows that 

at y = 0 , (7q) 

and, .for the purpose of evaluating the integral in .equation ( 14) :> 

the concentration profile could be approximated 
I . , 

as 

c -= co + (c -c )y/5 tor y < 5 
CD 0 .... 

c = Soo for y > 5 _, 
} (76) 

where 5 is given by 

oc oy = _ at y;, = 0 (77) 

(78) 

For a metal deposition reaction (s_ = 0) and with the use 

of the Nernst-:-Einstein r~lation (9) and the approximation (78), 

the expression for the concentration overpotential reduces to 

'llc = RT [(z+- z_)jz+z-~ [.t.n (c00/c 0
) - t+(l = c

0
/c00)J , (79) 

where t+ = z+u+/(z+u+ - z_u~) is the cation transf'erenee-- number, 

~cept near the limiting current the second term is not neglig;lble 

,compa~ed to the logarithmic term. At the same time, the 
' •• f, 



approximation (76) is not justified by the thinness of the 
. . ' 

diffusion layer. 

Equation (79) is simplified and does not require a 

knowledge of the concentration profile in. the diffusion layer . 
. 

NeverthelessJ it should be emphasized that concentration 

28 

polarization is not a local phenomenon. The concentration c
0 

at.the surface depends on events upstream in the diffusion layer. 

If 9 however, one postulated a stagnant Nernst diffusion layer of 

th1ckness 5(x)» then concentration polar1zation could be treated 

as a iocal phenomenon. This could give only a qualitat1ve 

representation of the effect of concentration polari.zation. 

Solutions with supporting electro1yte 

For solutions wi1;;h an excess of' supporting electrolyte» 

one may wtsh to neglect the migration termS! in equation (18). 
) 

But even with less supporting electrolyte, .it should be possible 

to neglect conductivity variations in the diffusion layer so that 

the concentration overpotential (30) becomes 

(80) 

High rates of stirring 

For very vigorous stirring and currents considerably below 

the limiting currentJ the concentrations can be taken to be 

uniform even in the diffusion layer. Then the current distribu~ 

tion is found by solving Laplaceus equation s~bject to the 

bound~ry ·condition 

i(fC) = Vme~(x) ~ T!s = Vmet(x) - g ~iro' iy(Y= o)J ~ (81) 

where iy(y~O) is related to the normal derivative of the potential 
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by equation (20)o Laplaceus equation and this (frequently) 

nonlinear boundary condition define the problem of the so~called 

"secondary current distributiono 11 
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Nomenclature 

a = Oo5l023 

ci - concentration of species i (mole/cm3 ) 

C - c~pacity of the double layer (farad/cm2 ) 

. Di - diffusion coefficient of species i '(cm2/sec) 

" e - symbol for the electron 

E electric field (volt/em) 

f - expresses dependence of reaction rate on surface 
overpotential 

F - ~araday 1 s constant (96,500 ?OUlomb(equlvo) 

g - expresses dependence of surface overpotential on current 
:density 
. 2 

l - current density (amp/em ) 

dimensionless current den~ity 

L - iength characteristic of the cell (em) 

Mi- symbol for the chemical formula of;species i 

n - number of electrons transferred in electrode reaction 

N:i. - flux o;f species i (mole/cm2 -sec) 

Pe = UL/DR' the Peclet number 

r -defines position of surface for an.axisymmetric body (em) 

R - universal gas constant (joule/mole2deg K) 

Re = UL/v, the Reynolds number 

s1 ~ stoichiometric coefficient in electrode reaction 



Sc = v/DR' the Schmidt number 

t time (sec) 

t+ - cation transference number 

T - temperature (deg K) 

ui - mobility of species i (cm2-rnole/joule-sec) 

U - characteristic velocity (em/sec) 

y - fluid velocity (em/sec) 

v - potential of an electrode (volt) 

- distance measured along an electrode surface (also used as 
,a cartesian coordinate in the bulk medium) (ern) 

X 

y - normal distance from the surface (also used as a cartesian 
1 coordinate in the bulk medium) (c~) 

zi - charge number of species i 

f3 - ~elocity derivative at the solid electrode ( se6'';7l,~;' 

f(4/3) = Oo89298~ the gamma function of 4/3 

5 ~ diffusion layer thickness (ern) 

~ - qverpotential (volts) 

ai - dimensionless concentration 

" - conductivity (mhp/cm) 
' 

~i = electrochemical potential of species i (joule/mole) 

v = kinematic viscosity (cm2/sec) 

v+,v-- number of cations and anions per molecule of electrolyte 
,; 

~ -dimensionless independent variable.[see equations (35) and 
(47)] . . 

~ - potential appropriate to the diffusion layer (volt), 

¢ - electrostatic potential (volt) 

n - rotation speed of disk (radians/sec) 

Subscripts 

oo - in the bulk medium 

o -at the electrode surface. 

R - limiting reactant 

+,- - cation and anion, 
respectively 



R~fer.ences 

1. John Newman. "Effect of Ionic Migration on Limiting 

Currents." Industrial ·and Engineering Chemistry_Fundamentals» 

5, 525-529 (1966) 0 

,. 

·· 2. John Newman. "Current Distribution on a Rotating Disk 

below the Limiting Current." Journal of' the Electrochemical 

Society, 113, 1235-1241 (1966). 

3. R. N. Fleck. Numerical Evaluation of Current Distribu­

tion in Electrochemical Systems. Masteru s thesis 9 University 

of Caiifornia 3 Berkeley, September, 1964 (UCRL-11612). 

~· Charles Kasper. "The Theory of· the Potential and the 

Te:chnical Practice of Electrodeposition." Transactions.of the 

Electrochemical Society, 77, 353-384 (1940)~ 78 9 131~160 (1940).9 

82, 153-184 (1942). 

5. J. A .. Klingert, s. Lynn, and c. W. Tobias. "Evaluation 

of Current Distribution in Electrode Systems by High~speed 

Digital ·computers." Electrochimica Acta, 9j) 297~311 (1964). 

~. B. Levich and A. Frumkin. "Ohmic Resistance of Local 

Cells·· in the Process of the Solution. of ·Metals in Acids. 11 ~ 

Physicoch!mica U.R.S.S., 18, 325-340 (1943) . 
.. 
7. H. Fletcher Moulton.·' "Current Flow ln Rectangular 

d6ndu6tors.~ Proceedings of the Lortdon~Mathematical Society 

(ser.~2), 3, 104-110 (1905). 

8. Robert H. Rousselot. Repartition du potentiel et du 

courant dans les .electrolytes. Paris g Dunod, 1959. 

9. Carl Wagner. "Theoretical Analysis of the Current 

Density Distribution in Electrolytic Cells. 11 Journal of the 

Electrochemical Society, 98, 116-128 (1951). 



.-•~.~ 

10. John Newman. "Resistance for Flow of Current to a 

Disk." Journal of the Electrochemical Societyj) 113 3 501~502 

( 1966) . 

32' 

11. B. Levich. "The Theory of-Concentration Polarization." 

Acta Physicochimica U.R·.s.s., 17, 257=307 (1942); 19, 117 ... 138 

(1944). 

12. Veniamin G. Levich. Physicochemical Hydrodynamics. 

Englewood Cliffsg Prentice-Hall, Inc., 1962. 

13. C~ W. Tobias, M. Eisenberg; and C. Ro Wilke. "Diffusion 

and Convection in Electrolysis -A Theoretical Review." Journal 

of the Electrochemical Society, 99 J) 359C -365G ( 1952) . 

14. Wolf Vielstich. "Der Zusammenhang zwischen Nerilstscher 

Diffusionsschicht und Prandtlscher Stroniungsgrenzschicht." 

Zeitschrift fUr Elektrochemie, 57, 646-655 (1953). 

is. N. Iblo "Probleme des Stofftransportes in der 

angewandten Elektrochemieo 11 Chemie-Ingenieur,;.Technik, 35, 

··. 353-361. (1963) 0 

16. Go Sc.hUtz. "Natural Convection Mass -Transfer Measure= 

merits·. on Spheres and Horizontal Cylinders by an Electrochemical 

Method o" International Journal of Heat .. and Mass· Transfer 9 §.,; 

873-87:9 (1963) 0 

17. C. W. Tobias and R. G. Hickman. "Ionic Mass Transport 

by Combined Free and Forced Convection.n Zeitschrift fUr 

physikalische Chemie, 229, 145-166 (1965). 

18. To K. Ross and A. A. Wragg. ;'Electrochemical Mass 

Transfer Studies in Annuli. 11 Ele.ctrochimica Actaj) 10.11 1093-1106 

(1965). 



19. Kameo As ada, Fumio Hine 3. Shiro Yoshizawa, and Shinzo 

·Okada. "Mass Transfer and Current Distribution under Free 

Convection Conditions." Journal of the Electf:.ochemical Soc1ety 9 

107, 242-246 (1960). -
20. John Newman. "current Distribuuion and Mass Transfer 

in Electrochemical ·systems." UCRL-17294. January, 1967. 

21. John Newman. "Transport Proce~ses in Electrolytic 

Solutions." Charles w. Tobiasa ed. Advances ;in Electrochemi.stry 

and Electrochemical Engineering, .§.., 87.:,1:35 ( 19.67). 

22. Andreas Acrivos. "Solution of the Laminar Boundary 

Layer Eriergy Equation at High Prandtl Numbers ~'ti The Physi.cs 

of Fluids, 3, 657-658 (1960). 

23. M. J. Lighthill. "Contributions to the theory of heat 

transfer through a laminar bound'ary layer." Proceedings of the 

Royal Society, A202 3 359-377 (1950). 

24. Hermann Schlichting. Boundary Layer Theory. New Yorkg 

McGraw-Hill BookCo111pany, Inc., 1960. 






