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Potential distribution problems in electrolytic cells
can be separated into two parts,; the bulk medium where Laplace's

equation holds and the diffusion layer where convection; migration,

" and diffusion are all important modes of mass transfer. The prob-

- lems in these two domains must still be solved simultaneously

since the concentrations and the current density at the electrode
sufface must adjust themselves ﬁo the available overpotential
calculated from the solutiom of Laplace's equation.

Specific results are obtained for the limiting current

for arbitrary, two-dimensional and axisymmetric diffusion layers.

‘The correction factor for the effect of migratidn within the

diffusion layer is shown to be exactly the same as tThat calculated

earlier for a rotating disk electrode.



1. Introduction

An earlier paperl treats the effect of ionic migration on

limiting currehts for four cases: the rotébimg disk, the growing

~mércury drop; penetration into a semi-infinite medium, and the

stagnant Nernst diffusion layer. These earlier results would bé

" more useful 1f they could be applied to a broader class of problems.

Here“it is snown that this is possible; in pa.r"t:'L,cl.,zf.La,r‘9 the results

already calculated for the rotating disk also apply to steady.mass

vtranSfér in arbitrary twbmdimensional and axisymmetric diffusion

layers. The current density 1ls distributed along the electrode in
the same manner as when migration is neglected but the magnitude
of the current density at all pecints is increased or diminished by
a constant factor which depends upon tne bulk composition of the
solution. The magnitude of this effect was calculated earlierl for
fedox reacﬁions in a ferro»ferricyamide'syétemg discharge of hydro-
gen ions from KC1l solutions, deposition of copper from H2804 and
MgS04 solutionsg and deposition of silver from HNOga solutions
Examples of other hydrodynamic systems for which the rotating-

disk results would thus be applicable include flow in ﬁubesg annular
conduits, and planar channels, boundarymlayer flow past flatéplate
electrpdes or other submerged obJjects suspended im a free strégm,
and stagnation pdint flows. |

| The Justification of the above results is so involved that 1t
is not much more work to formulate a procedure for treating the
problem of current and potential distribution in electrolytic cells
for currents below, but at an appreciable fraction of, the limiting

current. Here it is not possible to neglect concentration varia-

.tions near electrodesy the surface overpotential assoclated with
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the electrode reaction, or the ohmic potential drop in the bulk
of the solution. Most previous work neglects either the ohmic
potential drop in the bulk of the solution or the concentration
variations,; and many works also neglect the surface overpotential.
In many electrolytio cells the concentration variations are
still restricted to thin diffusion layers near the electrodes.

This allows an important simplification since it allows: a separate

treatment of the two regions =-- the diffusion layer andi the bulk

solution where the potential satisfies Laplace“s equation.

However, the two regions are still coupled througd the bournidary

conditions A completely analytic treatment of such a complex
problem is ueéélly not possible, but even for a numerical treatment
the éeparation into two regions is important because of the com-
pletély different length scales and mesh sizes appropriate to the
regiéons. It is sometimes pdSsiblez to solve each region in terms
of séries'eolutions; the coefficients of which mist be determined

by a numerical procedure.

Earlier work '

Early treatments of current distribution in electrolytic
cells involved the solution of Laplace“s equation for the potential
in the bulk of the electrolytic solution. For boundary conditions
the electrodes were taken to be equipotential surfaces; tndsi
neglecting polarization, and the normal component of the current
density is zero on insulating surfaces. This defines a classical
problem in mathematical physics, and forrelectrolytic cells the
solution yields the so=called "primary current distribution.” The
primary current density is always infinite or zero at the edge of

an electrode unless the electrode 1§ perpendicular to an insulating



surface at its edge. Generally, the primary current distribution
shows that the more iﬁaccessible parts of an electrode receive a
lower current density.

When slow electrode reaction kinetics is taken into account;
the eiéétrolytic.solutién near the electrode is no longer an
equipotential'surfaceo A wide vafiety of expressions fbr the
electrode polarization ﬁéve been uSe69 whicn reflects the variety
of electrode kinetics as well as a varie@y of approximations. The.

result of such a calculation is the so-called "secondary current

distribution.” The general effect of electrode polarization is to

make the secéndary current distribution more nearly uniform than

" the primary current distribution, and an infinite current density

at the edge of electrodes is eliminated. The mathematical problem

" now involves the solution of Laplace's equation subject to a more

complicated, perhaps even nohlinear; boundary condition. However,
the electrode polarization is still a local phenomenom'in“the sense
that.the potential differendée between a point on the elecbrdde and
the adjacent solution depends on the current density oniy at that
po;nﬁ but not at other points on the boundary.

There are a considerable number of analytic solutions availé
ablejfor primary-current-distribution problems and a fair number
for secondary-current-distribution problems. For problems of more
complicated geometry and boundary conditionsgwnumérical methods and
solutions have been developed, which in some cases may aiso be
easiér to use than an avallable analytic solution. For treatments
of pfimary and secondary current distribution, see fefefeneesiz to 10.

On the other extreme;, at very high cuyrents the curfentvqﬁsf;w
tribution may be determined entirely by limited rates'of mass trans-~

fer of a reactant from the bulk solution to the electrode surfaéeo



the methods outlined here to the Potating disk electrode

Since 1942 a considerable theoretical and experimental e?fort has

‘been devoted to problems of the so«called "1imiting Gurrent" dis-

tribution (see references 11 through 18) The concentration of

the limiting reactant is zero at the electrode surface, and the

'principles governing the current distributiom are not essentially -

different from those governing mass trahsfer in nonelectrolytic

-solutions.: Electrochemical systems are, in fact, occasionally

used for maSSmtransfer studiesg where they offer the experimental

convenience of accurate measurement of the rate of mass transfer°

_Broblems treated include free and forced convection with 1amimar

v‘or turbulent flow and the usual variety of geometries (comduits

and submerged objects)g The potential distribution outside the
diffusion layer is of ho.importamce as long as the local over-
potential is high enough to reduce the concentratiom of the
limiting reactant to zero at the electrode surface. (However, tha
pdteﬁtial distribution may occasionally be so nonmuniftrm that a
high ‘local overpotential causes evoiutiom of hydrogen on one part

of the electrode before another part attains a zero concentration

of the 1imiting reactant )

- For problems of an intermediate nature, where comcentration
variations near the electrode, slow electrode reaction kineticsg

and the ohmic potential drop in the solution are all importants

19

Asada, Hine, Yoshizawa, and Okada~~ use a calculation procedure

similar to that proposed here to treat free convection in a

rectangular cell with a vertical electrode at each end. No
detailed Jjustification is giveno The present autnor has applied
2 .
The author is preparing a more extensive review of these
various aspects of current distribution and mass transfer in -

electrochemical systemso?oh



‘Scope of the present work

The next section of this paper shows how one should calculate
current distributions taking into account both concentration polar-

ization and surface polarization at currents below the limiting ,

current. The hydrodynamic veloclty distribution is assumed to be

knowng consequentlys the treatment applies to systems with forced
convection Free convection is excluded since the velocity must
then be calcdleted at the same time as the concentration.

The Péclet number Pe = UL/DRQ where U is a characteristic
velocity, L is a chamacteristic length, and DR is a characteristic

diffusion coefficientg is assumed to be large. Then the comcen-

‘tration variations are confined to a thim diffusion layer near the

éledtrode surfaceg and the development hinges about this fact. As .
a consequence, the general problem can be partially separated into

two parts involving the concentration distribution within the

diffusion layer near the electrode and the potential distribution

within the bulk medium. The concentration polarization is not a

local phenomemon since the concentration at the electrode surface

‘depends on events upstream in the diffusion layer.

The analysis thus applies to laminar boundary layers at high

Reynolds numbers Re = UL/V, where v is the kinematic viscosity

The discussion is restricted to two=dimen@ional and axisymmetric

flow past the electrode, although the concept of a thin diffusion

layer of course applies to other geometries as well. The usual
boundary-layer codrdinates are employed, where X denotes the dis-
tance along the electrode from the beginning of the diffusion layer
and y denotes the normal distance from the electrode surface.

Examples of such hydrodynamic boundary layers would include flat-

plate electrodes or other submerged objects suspended in a free



stream, rotating disk electrodes, and stagnation-point flows. )
In this analysis the Schmidt number Sb = V/DR is élso taken

to be large since this allows é Simplification ih the expressidn.

for‘thé;§elocity profiles (ohly the derivative at the surface is

needed) and since actual Schmidt numbers are on the order of 1000

for the electrolytic solutions of inteﬁest? For certain plasma

systems'this assumption would not be applicable. For large

_Schmidt'numbers, the Péclet number may be large even when the

~ Reynolds number 1is not so large. Thg analysis thus applies not

only to boundary-layer flows but also to low Reynolds number flows
such as the massetﬁansfer entry section in circular conduits and
between two platesu Such geometries, as well‘as.boundarymlayer
flowsg have been treated in the problems 6£ the limlting-current
distribution mentioned earlier. |
The present analysis, with migraﬁiom effects, is(intended
to be applicable to the same clésé of hydﬁodynamic flows that can
be and have been treated for mass transfer without migration in
laminar diffusion layers in fdrced convectionob |
Outsiéethevdiffusion layer one must solve Laplace's equation
for the potential with a current density at the boundary that
agrees with the rate of the electrode reaction.’ The diffusion

layer and the bulk medium must be calculated simultaneously since

the current density and the concentration at the electrode surface
must adjust themselves to balance the overpotential available
after the ohmic potential drop in the bulk medium is subtracted 
from the potential applied to the cell. ‘
Results can be obtained immediately for the limiting current
case (section 3). By means of a similarity transformati&n one can

calculate the current distribution on the electrode including the



effect of migration in the diffusion layer. These results are

giveﬁ in the section on limiting currents, both for arbitrary

 two-dimensional and axisymmetrie diffusion layers, and apply

for 1arge values of the Schmidt number. |

The following secéion (section 4) contains a justification
of_the diffusionwlayer approach based en a dimensionless formulaw
tioh‘of the problem. The limiting=-current results are used to |
obtain the order of magn:tude of the current densitles.: An
appendix includes miscellaneous comments inserted in orderrto
point out related ideas from the theory of transport in electro-

lytic solutions which might be applied in specific problems.

b

2. Potential distribution problems
With a known veloeity‘profileg the eoncentration and
potential distributiene are to be determined from four equations.

The first describes the flux of a species due to migration in an

electric field, diffusion because of a concentration gradient,

and convection with the velocity of the fluild.

,_‘ﬁ;.:} ii in) _Div‘ci twey o (1)

If there are no reactions except at electrodes, a material ‘balance

for each species is deserlbed by the eguation

ac

'bb =-Ven - - (2)

The current density i is due to the movement of charged specless

L=F)] 2N )

An electrolytic solution is electrically neutral,

.’ZzicfL =0 , (4)



to a very good approximation except in a very thin regidh (éaj 10
to 100 angstroms thick) near surfaces and really a part of fhe .
interféce The validity of equation (1) is restricted to dilute
solutions sinceg for example, it describes properly diffusion
with respect to the solvent but not multicomponent diffusion.

These equations, their validity and simple consequences; and the

eXtension to concentrated solutions have been discussed‘at length

(see, for example, reference 21)

- These four equations can be combined to yield other ugeful

equapionso The concentration of each specles follows the equation

dc | .
i . _ 2 2 ] ,
st t o Vey =Dy Ve, + ziutiiV o+ ziuiF(Vci) Ve . (5)

The purrent density can'be expressed as

L= -xVo - F__;zini Ve, » | (6)
where ; ,
o2 S - | '
kK =F ; z:L uici | (7)

is the solution conductivity. Multiplication of equation (5) by
ziF and addition over 1 gives an equation for conservation of

charge°

_,Vog?j;=o=fcvzcb+(Vk)°V¢+FZziDiv2-Cio | (8)

Ionic diffuslon coefficients and mobllities are related, at
least approximately, by the Nernst-Einstein relation

D; = RTu, . . - (9)
We take all the diffusion coefficients to be of roughly the same

magnitude, but all of them to be small in the sense that
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~Pe = UL/Dp >> 1, | . {10)
:where DR is one of the diffusion coefficients (taken at a later
stage in this work to be that of the 1imiting reactant)

_The bulk medium

w It is Widely known that when the. Peclet number Pe is large,
mass transfer by convectlon predominates over diffusion except in
a thin region; known as the diffusion layer, near the reaction
”surface (the electrode 1in this case). This. has the consequence

that outside the diffusion layer equation (5) reduces to
L,y Ve, =0, | |
- v - Ci = 0 , ‘ (11)

that is, the concentration of a fluld element is constant as it
moves through the solution. 'In most cases the appropriate solution
to equation (11) is |
‘and all concentrations have their bulk values.

. For the region outside the diffusion layer, equation (12)
expresses the solution for the concentrations It is still

necessary to solve for the potential by means of equation (8)9v

which in the bulk" solution reduces to Laplace"s equation

VZg = 0 . | (13)

The diffusion lgxgg

N On the other hand diffusion cannot be neglected 'in the
diffusion layer, but other simplifications are still possibleo

On account of the thinness of the diffusion region, effects of
>cnrvature ecan be neglected, and we}adopt the usual boundary-layer

codrdinates: x measured along the surface from its upstream end
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and 'y, the normal distance from the surface. In thé diffusion
-leyerg equation (5) simplifies to

: . 2 .
aci . Bci bci o cy < 82® dc i 6@)
ci.-m=+ .

+ v, £ v = — :
-3t X 6 ¥y oy 'i'ayz i1 ay By oy

(14)

On the right slde derivatives with respect to x have been lgnored
'compared to the derivatives with respect to y. v
) One more simplification is possible. We assume that

c=v/Dp>>1, (15)

where v is the kinematic viscosity of the fluid. The Schmidt v

i number Sc is on the order of 1000 for the electrolytic systems of
interest here . With the assumption (15) that the Schmidt number
is large, the diffusion 1ayer is thin even when compared with any
- hydrodynamic boundary layer which may be present, and Within a
‘tvo~dimensional diffusion'layer the veiocity compenents can be
represented as

=Ay6(x) and vy = = %fyzﬁ”(x) 5 - (16)

where B(x) is the velocity derivative at the solid wall,
B = av /ay at y = 0, and the prime denotes the derivative with
respect to x. These are the first terms in expansions of the

velocity in y and satisfy the continuity equation

ov ov
—_— el =
3% +_ay o . | | _ (17)

With this approximation, the diffusion-layer equation for

the cdncentrations is

de: Bc | dc a?c N2 dc
oey 1 1 2., %1 i %0 . °°1 30

(18)
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These equations (one for each species) are to be solved along
with'the equation of electroneutrality (4) and certaln boundary

conditions which are yet to be discussed.

Boundary conditions and matching

'Boundary conditions involve the reaction rate at the
electrode, which we may characterize by the current density

iy (y = 0), as well as the concentrations at the electrode surface

and the electrode overpotential. Equation (8) can be written as

Y 31

=1 = - — .
or ! v (y=0) y/i-ax dy

oi

X

% T

o/f o/

<<LH
-
O

(19)
Since the diffusion layer is thin, iy 1s approximately constant
throughout the diffusion layer, and this value can be used as a

‘boundary condition on the solution of Laplace's equation in the

form :
~ i, (y=0) - o
o2 awy-0, (20
™ '

where Ko is the conductivity of the bulk solution and the tilda
denotes gquantities pertaining to the problem outside the diffu-
sion layer. The current density iy(y==0) 1s, of course, zero
on insulators. - |

Let the electrode reaction be expressed as

i

, . L
Z s,imii —+=ne  , - v .(21),

where s, is the stoichiometric coefficient of species i and Mi
is a symbol for the chemical formula of species 1.. Then the
boundary conditions for the concentrations in the diffusion

- layer are
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ci_ff> 40 as | y —=$»mv . : (22)
: g.1 S ,
- = - _i_l = ._:.L_ . = Q
My =T oF T YRy 20V SRR (28)

where R denotes a reactant for which SR # 0. (Later it will be
useful to relate the flux of specles 1 to the flux of the limiting
reaétant, instead of relating it to the current density.)

The potential variation wiﬁhin the diffusion layef is
described by equation (6). Let us denote by ®(x) the potential
at the electrode calculated from Laplace's equation with boundary
condition (20). This can be regérded as representing the effect
of the ohmie drop in the bulk solution, extrapolated to the
»eledtrode surface using the bulk conductivity. If Vmet is the
potential of the electfode meﬁal and ® in the bulk solution is
thaﬁ measured by a reference electrode of the same kind as the
working electrode, then thefovefpotential‘is |

M=V . (x) - 3x) ..  (24)

met

This is the sum of the concentration overpotential N> assoclated
with concentration changes ih the diffusion layer, and the surface
overpotential q,, associated with the heterogeneous eléctrode

réaction _ -
‘ N =n, + g s (25)

but 7, does not include any other ohmicvoverpotential Since B(x)
is extrapolated to the electrode surface.

The concentration and surface overpotentials can be defined
with the aid of two reference eleqtrodesg one cutside ﬁhe diffu-
sion layer and one very near the electrode surface. These refer-
ence eleétrodes, which may be :Lm.a.gixﬁa.’r;y(9 follow the same electrode

reaction (21) as the working electrode. The surface overpotential



14

1s defined to be the potential of the wquing electrode minus the
potential.of the reference electrode very near the electrode. For
the concentration overpotential, first iet AVi_be the potential
of the reference electrode near the surface minus the potential of
the'referénce electrode outside the diffusion:layer, and let Avohm
be the potehtial'difference bétween these electrodes when thére is
the ‘same current distribution but no concentrétion variations near
the &lectrode. Then | |
e = AV

- AV (26)

1 ohm °

- The manner in which the potential‘Vf of ‘a movable:reference
electrode (relative to a fixed reference electrode) varies with
pqsition can be expressed as

| _Z;siv”i - - nFVvV, | | (27)

where ui is the electrochemical potential of species i. In the

dilute=-solution approximation used here;, these can be wri ten

Vp,i = RTV 4n c, + z‘iFch . (28)

i

Since’z::sizi = -n, equation (27) becomes
) , i ,

s.RT.
N i :
VVP=V¢—; = Vincy (29)
where Vo is given by equatlon (6). If we subtract the ohmic

drop which would exist in the absence of concentration variatlons

and }ntegrate‘across the diffusion layer, we obtain the concen-

tration overpotential as deflned above

s RT c z
L 1.1 A n 1% 94
'C‘f i(y= O{/‘ >dy + in S1o + FS/~ [j_ = ,3§%de’




)
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where cio(x) is the concentration of species)i at the electrode
surface.~ According to equation (30), the concentration over-
poten£1a1 1s the potential difference of a concéntration cell
plus an ohmic contfibution‘due to the variationlofVcomductivity
in the diffusion layer. . |

- 'The surface overpotential as defined above should depend
only on the reaction rate and the concentrations at the electrode
surface;, : :
Ng = & [ ogor 1y(y=0)] . (51)

but not on events at a distance from the surface. Equation (31)

impliés a steady state since the capacity of the double layer is

not included° For unsteady processes one might write

ﬁdn

N N Mg - .
4,(r=0) = £leys ) + ¢ R (32)

wheré_Giis the capacity of the interface and f is the inverse of

'g in equation (31). The discussion of the particular form of f

and g lies in the realm of electrode kinetics and outside the

scope of this paper.

One more point remains to be brought out here. In the

"equations (18) for mass transfer in the diffusion layer only

derivatiﬁeé of potential with respect to y appear and not ¢
itse;f;’Aiﬁ factg,these'derivatives could be éliminated in favor
of the current density by appropriate use of equations (6) and
-(8)°; Consequently, let us introduce a new'potential @ in the

Qiffusion'layer defined as
P = ¢(x?y) - E(x)' . ' (33)

Then ¥(x) is important only in the determination of the total

overpotential.
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Summary of the calculation proeedure

Let us now summarize the calculation procedure for the

two parts of the problem, the bulk medium and the diffusion layer. .
If we know the reaction rate iy(y=:o) on all boundariésg then we
Acah*solve Lapléce“s equation (13) for the potential in the bulk
medium° on the'bther hand, if we know the reaction_ﬁateviy(yé 0)
0n'ali boundaries, we can solve for the concentrations and the
potential variation in the diffusion layer from equations (4)
and (I8) subject to boundary condiﬁions (22) and (23).

- From the solution of the problem for the diffusion layer
one can calculate 1 and 7, according to equations (30) and (31)
and hence can calculate ¥(x) from equation (24)° Thus it is clear
| that both pafts of the problem can be qalculated from a knowledge
of i&(ym 0), but these may yield diffefént'values for ®(x). In
géﬁefélg it is not ﬁossible to calculate the two parts separately;
they. remain coupled through the boundary conditions, and it is
necessary to determine iy(y=:0) by some methqd'of guccessive |
appro:%imatibn° It,may bé helpfui to modify the ofder of calcula~
tion so that the diffusibn'léyeﬁiis calculated froim an assumed
iy(y=io)$ which gives'g(x) as a boundarj condition for Laplace's
eQﬁationo The solution of Laplace's equation then gives values

of 1y(y;=o) which can be compared with the assumed values. (See

also reference 2.)

3. Limiting Currents

TWOwdimensional diffusion layers
When the reaction rate is limited because the comcemtration
of one of the reactants falls to zero at the electrode surface,

the current distribution is determined by mass transfer in the
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diffusion layer, and it 1s possible to obtain a solution. Here
it is not necessary to specifyriy(y==0)'in advance; instead the

boundary condition

I
o

| cg =0  at y (34)

applies.

22 23

Acrivos realized that the Lighthill transformation is
applicable to a wide range of problems ihvblving nonelectrolytic
mass @ransfer at high Schmidt numbers and heat transfer at large

Prandtl nunibers° By means of the Lighthill similarity transforma-

§=y~/B(x§/[9DRf§/§ dx] s | (35)

the mass-transfer, diffusion-=layer equatiohs (18) can be reduced

tion

to ordinary’differentiél equations for a steady-=state problem

‘ ” 20 l ”n 7

‘Di/DR)ci + 3¢ cy + (ziuiF/DR)(ci@ ey ) =0 (36)
where primes denote differentiation with respect to £ and where @

of equation (33) replaces . Equations (36) are supposed to be

:solved with equation (4) subject to theiboundary conditions

eg=0 at £ =0, (37)
v .'l.w ¢ 7, .
z,u Fe, @ +‘Dici = (si/sR)(zRuRFcRQ +'DRCR) at £ =0, (38)
¢y —>Cyy a8 £ ~> 00 . - (39)

In addition the value of ¢ must be specified at some point, but

"this is not reélly relevant for the solution of the problem.
The problem outlined in equations (36) through (39) plus

(4) is exactly the same as that treated eérlierl for the effect

of ionic migration on the limiting current to a rotating disk.
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Hence we can immediately draw upon those results. Let us define

a dimensionless current density at the electrode as

I=[cg<o>+<RRR/D>q><o]/m« (40)
Then the actual current density is
b : x v,
1 (y 0) = InFep, vB(x) D%/R[af\/‘a‘d;{\, (41)
0

This shows how the reaction rate is distributed along the
electrode;, since I is independentvof_x.

- When there is an excess of supporting electrolyte,
migration is not important in the diffusion 1ajer9 and the

'corresponding limiting "diffusion current” can be expressed by

1//P(4/3) 1.1198 . (42)

When there is not an excess of‘suppo;tihg eléotrolyteg the limit-
ing current is augmented or diminished by the effect of migration,
and this effect can conveniently be expressed:as IL/IDQ the ratio

of the limlting current to the‘limiting.diffusionkcurﬂr"ent° Specific
.cg;oglations of the effect of migration on limiting currents,

L for redox reactions

oxpheéSeéyééflt/IDQ nave already been given
-in'a ferro~féfrioyanide}system, disoharge of hydrogen ions from
.K01 solutions,. deposition of copper from H2804 and Mg804 solutions,
and deposition of silver from HNOs solutions.

’ The stagnant diffusion 1ayer and unsteady mass transfer to
growihg.meroufy drops and from a semi-infinite stagnant medium to
a plane electrode have been treatedl in addition to the rotating
disk. It is interesting that the correction factor for the effect
of migrétion is exactly the same for the two unsteady procegsesgl

while the correction factor for two-=dimensional diffusion layers
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discussed in this work is exactly the same as that for steady
transfer to the fotating disk. The corréé@ion»facﬁor for these
steady processes is, in principle, diffeﬁent from that for the
'unsteédy procéssesg but'in}the earlieﬁ wérkl the difference was
striki%g only for the discharge of hydroéen ions Where the
.diffuéion'coefficient of H' 1s greatly differept.from the diffu-
sion céefficients of the other ions in the system.

The results for the limitingwcurrent case show, incidentally,
that the concentration distribution of the nonwlimiting species in
the diffusion layer is exactly similgr to that for é rotating disk.
This gives quantitative support to the supposition that integral
diffusion céefficients appropriate for maSSwtﬁansfer experiments
can be obtained from limiting=-current measurements at a robaﬁing
disk even though they have no obvious significance invterms of the
fundamental properties of the electrolytic solutibno On the other
hand, integral diffusion coefficients obtained from‘unsteady mass
transfer to an electrode at the end of a stagmant capiilary may

be slightly different.

Ag;syﬁmetpic»diffusion'1axers.s

; AXisymmetric flow systems are aléo pop‘a.ilaro We have seen
already that the results forvlimiting cdrrents in two=dimensional
diffugion layers are similar to those fér the‘rotating disk, an
axisymmetric system. It is also obvious that these results apply
to thé diffusion layers on»electrodes in the walls of tubes and
annular conduits, where B is a constant.

. In general, an axisymmetric body must be characterized by
the normal distanceﬁr(x) of the surface from the axis of symmetry.

In the diffusion layer near such an-axisymmetric surface, the
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contihuity equation reads (see, for example, Schlichting,”” p. 185)
d(rv.) ov o

et p L =0 . A 43

%t TS (43)

‘Hence' the appropriate expansions of the velocity components near
the solid wall are

= yB(x) and v =-3y(m8) /r  (44)

whéreithe primes denote differentiation with respect to x.
Mass transfer in the diffusion layer still follows equation
(14), but for large Schmidt numbers"one;should'gse the expansions

(44) instead of (16). Equation (14) becomes

4

. : ) . 2
5¢i,+:ya %y 12 () ey b 07cy P -az¢ . % 30
ot ox e r oy 142 ﬁ dy oy |
oy B
(45)
For the limiting=-current case,
cp =0 at y=0, - (486)

and for steady problems the similarity transformation

x A ,
m/ [QDR f ~TE dx] | | (47)

reduces equation'(45) to equation (36), and the results for steady

mass transfer to the rotating disk can be applied to axisymmetric
diffusion layers-as well. In particular; the current distribution

is given by

i

soi (yw=d) x ‘,éé '
I-= i Efrm dx-J s (48)
nFc. v rf Dé% | ' | _

R

the limiting diffusion current is given by equation (42), and the

correction factors for the effect of migration IL/ID}are exactly
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the same as those calculated"earlier""1

for the rotating disk.

.For tubes and annular conduits, r is independent of x and
cancels out of.eqpation (47). For a rotating disk r = x and B =
| afx Q/v where a = 0.51023 ahd Q isfthelrotation speed of the

disk.: Equation (47) then yields

£ = y(av/SDR)%\/Q/v . : (49)

4, Dimensionless formulation

The Jjustlfication for separating the diffusion layer from
the bulk medium 1s that the Péclet number is large. However, it
is'diffiéult to see just what simplifications are Jjustified unless
the problem is stated in a~dimensionless”form; For this purpose,
‘and as a check on the preceding analysils, let us go back and make
a careful estimate of the order of magnitude of the various terms.
Due to the singular nature of the problem it is necessary to make

these estimates both in the diffusion layer and in the bulk medium.

Channél flows

" We have taken both Pe and Sc to 5e large, but we simplify
the discussion by regarding the Péclet number, which is the
'product of the Reynolds number Re = UL/& and the Schmidt number,
to‘be‘large'because the Schmidt number 1s’larg;e° Thus we regard
the Reynolds number to be of order unity (thaﬁ is, constant in the
1imit process Pe ——= ©; the numerical vélue of Re may be as large
aé 2000), and consequently ' o _
| - 8=0(m) . (50)
This is particularly appropriate'for flow in tubes and channels.
| We sﬁall take the current to be an appreciable fraction of

the limiting current. Fﬁom equation (41);&11 current densities,’
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inside and outside the diffusion layer; ﬁéve the order
1= O(Pe%‘ FD_c /L) . ‘ (51)
, | R oo .
From équations (7) and (9)
o 2 | .
£ = OF DRcRm/RT) . (52)
Consequently, in the bulk, : | | |
Vo = Q(1/k) = O(pe” R/ LF) . (53)
In the diffusion—layer X = ()(L), and from equation (35)
L _
y = ()(L/’Peﬁ) . | (54)

Generally, in the diffusion layer,

: _ g
Bci/bx = ()(CRD/L) and boi/by = ()(cRnEeAVL) (55)
. 5 %2 '
6_201/5X2'= O(éRm/Lz) and azci/ayz = O(cﬁmlﬁeﬁ/le ,)
From equation (6) | _
| 0(22)- 0(22) - % o
0(s2)- Q(ax = O (peRr /1F) . (56)
By differentiating equation (6) with respect to-x, we find
v L > 8
32¢/3x% = O (pe’RT / 12F) ", (57)
but from differentiation of equation (6) with respect to y,
3%a/ay2 = O(pe” RT /1%7) . (58)
On the basis of these estimates, 1t isﬁappropriaté to
define dimensionless concentrations, current'densitys and .
electric field: )
o - . 1,
8, = cy/cp.s i* = iL /Pe’FDpep 4
' v, (59)
E* = - LF Vo/Pe RT . :

Further let
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2 :
v* = v/U, B* = BL/U, k* = kRT/F“Dpep - (60)

In the bulk medium, the appropriate,dimépsionless codrdinates are

t=tu/L, xX==x/L, and y=7y/L, (61)

whefé-x and .y are cartesian codrdinates. In Qhe diffusion layer

the appropriate dimensionless codrdinates are
— 1/3_[‘ * ) *x . % |
t* = tU/Pe’L, x* = x/L, and y* = yPe/L, (62)

where x and y are bbundary~1ayer coSrginates'(refer to the text
above equation (14)). o .
o The straightforward procedure for finding what approxima-
tions are justifiéd for large Pe is to substiéute the  appropriate
dimensionless variables into the original Stét?ment of the problem
and then'lét}éhe Péclet number approach,infini%ya This procedure -
aﬁblied”to equation (5) Justifies equation (11) for the bulk
medium and equation (18) for the diffusion layer.

On the basis of the estimates of magniﬁude given above,
equation (30) shows that _
n, = O(RIF) (63)

" and that all the terms in equation (30) are of the same order.

On the other hand, the ohmlc drop across the'cell is,

from equation (53),

AD, = O(pe” RT/F) . (64)

Thus, if one increases the stirring while operating at roughly
the same fraction of the limiting current, the ohmic drop should
béCome more important relative to the céhcentration polarization
in'determining‘the current distribution. At'the same time the

surface overpotential in equation (31) should increase (see
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equation (51)), but not as fast as the ohmic drop if the surface
overpotential is of a Tafel (logarithmic) typec Then
| OERT/F) in Pe] o v (65)

fg
These relations (63), (64), and (65) may have important engineer=

ing consequences in the design of electrochemical cells.

Boundary— yer flows

If;, on the other hand, one is dealing with boundary=-layer
flows at high Reynolds-numbers on bodies-submerged in a free

stream or on a rotating disk, the order of magnitude of P becomes

= O \/Re/L o (66)

and all the other magnitude estimates must be cnanged accordingiy -

1= O(Re?ﬁc/3 FDpCpy /L). Vo = O(Rel"-‘sc/3 RT / LF) . (67)
~ Within the diffusion layer
| ' i 1 ' :
()(L//RGESCA), etc. (68)

There is really no difference in the”JuStification off the separa-
tion of the current-distribution problem into two parts;, but the

dependence on the Reynolds number is shown explicitly.

5. Discussion and Conclusionsa
| Cﬁrrent and potential distribution problems in electrolytic
cells where nelther ohmic potential drop in the bulk solution nor
mass=%ransfer limitations neer the electrodes'can be neglected are
tfeated most conveniehtly by separate calculations for the two _
regions, the bulk medium and the diffusion la&ero The two regioﬁs
remain coupled through the boundary conditionso. For example, in

purely numerical calculations it would be unwise to try to use the
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same grid mesh in the two regions. It would either be too coarse

for the diffusion layer or require too many mesh points for the
bulk medium.
The analysis here has been restricted to lamlnar forced

cbnve’_étion° A similar separation into two regions would also be

’possible for other situations where the coméep@ of:a thin diffu-

sion 1ayer’appliesalfor eiémple, turbulent flowf free convection,
and growing mercury drops as used in polarographic analysis. For
turbulent flow it would be necessary to include turbulent transport
terms o Zz;;V/By'in equation (14). For free convection, the‘
principlé 6f a thin diffusion layer and of the separation of the
problem into two parts still applies; but'two'differepces should
be noted. The fluid velocity in free cénvéCtion dependé upon
variations of density within the diffusion layer. Consequently,
one cannot assume that the velocity is known in advance. Instead
he‘must calculate the veiocity at the same time as the mass»
transfér rate. Furthermorés the hydrodynamié?boundary layer is
of roughly the same thickness as the_diffusion layer, qhd it is
not péssible to use only the velocity dérivative at tpg wall as
in equation (18), even for very lérge Schmidt numbers.

"~ For current distribution problems at the limitimg currentg

where .the ohmic potential drop in the bulk solution can be .

neglectedg the current is distributed along the electnode in a

mahnef exactly similar to that which would be“prediétgq by diffu-

sion theory .in the absence of ionic‘migrationo The correction

factor for the effect of migration in the diffusion layer depends
on the composition of the bulk solution, but it is independent of

the geometryvof'the-electrodeo Thése copclusions are shown to
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apply.for large Schmidt numbers and for arbltrary two-dimensional

and axisymmetric diffusion layers.

6. Appendix
Even though no specific problems are treated in this paper
at currents belowsthe limiting current, the additional simplifica-

tions possible in certaln speclal casesfshould be pointed out.

Binary electrolyte

For the solution of a single salt, the requirement of
electroneutrality (4) restricts the concentrations of anions and
cations so that the potential can be eliminated from the two

mass~transfer3 boundary-layer equations (18) %o yield

3¢ de 1 .27 3 - 3%
ot +. yP ox 2 y B ay - ‘D:.a 2 (69)
y
where ° = )
e =c /v = /v, o (70)
and |
zubD =-2zulb ‘ L
D = + + - =" e . ) (71)
zZ, Yy, -2zu_ L

The number of cations and:.anions per molecule of s&lt is v, and

v_, respectively. The boundary conditions (22) and (23) become

c —=c, as y —o oi (72)

oD . ¥ -

( r - _3__=<_+_+__._ Y ay=o0. (73)
zou oz u_ /o u_ /nFz v '

. o

With the use of equation (7) for the conductivity,

equation (30) becomes



1 1 B % 65 _|,. % % "% dc
f(.»a”c>dy-c-o ‘na‘*'a"*[ma““, e 3y
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(y =0) r
i {y=0 ‘
Me = L f (%°5L>dy

z, V.F(zu -2z_u_) 0 oo

- D =D ' ] c_ '
1 + - RT (o3
+ | = A + = (8, + 8 in — . T4
_ [% zu -zu_ W (=, : '):} s ( )

If ié tempting to try to simplify this expression for the concen-
tration overpotential even fﬁpther;\ Fof_steady problems equation
(69) shows that . |

3% /3y =0 aty=o0, | (75)

and, for the purpose of evaluating the integral in equation (74),
the concentration profile could be approximated as

cf=:c + (¢_=c )y /B for y <90

c=c . . fory>b ,
where © is given by

¢ . 2.9 .at =0 . o (77)

0 w ® o o o9] o ® y=0
(78)
For a metal deposition reaction'(s‘ O) and with the use

of the Nernst»Einstein relation (9) and the approximation (78),

the expression for the concentration overpotentlal reduces to
1, = RT [(z+-z’_)/z+z_}-'] [&n (coo/cvo) - t+(1 - co/cm):’ s (79)

where t_ = z+u+/(z+ L -z _u._) is the cation transferenee-number.
Except near the limiting current the second term is not negligible

,compaped to the logarithmic term. - At the same time; the



oy

28

appfoximation'(YG) is not Justified by the thinness of the
diffusion layer.

Equation (79) is simplified and does not require a
knowledge of the.concentration,profile in the diffusion layer.
Ne?ertheleés, it should be emphasized that concentration

polarization is not a local phenomenon. The concentration e,

at thé surface depends on events upstream in the diffusion layer.

If, héWever, one postulated a stagnant Nernst diffusion layer of
thickness 6(x), then concentration polarization could be treated

as a local phenomenon. This could give only a qualitative

- representation of the effect of concentration polarization.

Solutions with supporting electrolyte

| For solutions with an excess of éupporting eléctrolyteg
one may wish to neglect the migration térms in‘equation (18).
But even with less supporting electrolyteglit”should be possible

to neglect conductivity variations in the diffusion layer so that

’thé concentration overpotential (30) becomes

s, RT c z .FD

: Ci im i~ 71

N, = z:_'[: - in + e, = c. )] . (80)
c T nF cio ﬁn i io

High Prates of stirring

For very vigorous stirring and currents considerably below
the limiting current, the concentrations can be taken to be
unifdfm even in the diffusion layer. Then the current distribu-
tion is fougd by solving Laplace”s equation squect to the
boundary condition |

) = V) =g = V() - ey 1,0y=0)] . (81)

where iy(y=0) is related to the normal derivative of the potential
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by equation (20). Laplace's equation and this (frequently)

nonlinear boundary condition define the problem of the so~called

"secondary current distribution."
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_ Nomenclature
0.51023 .
concentration of species 1 (mole/cms)
capacity of the double 1ayerv(farad/cm2)
diffusion coefficient of species 1 (cm®/sec)
éymbol for the electron
electric field (volt/cm)

expresses dependence of reaction rate on surface
overpotential .

Faraday“s constant (96,500 coulomb/equiv )

expresses dependence of surface overpotential on current
‘density

current density (amp/cmz)

dimensionless current density

length characteristic of the cell (cm)

éymbol for the chemical formula-ofjspecies i

number of electrons transferred infelectrode reaction
flux of species i_(mole/cmz-sec) |

UL/Dgs the Péclet number

defines position of surface for an axisymmetric body (cm)
universal gas constant_(Joule/molejdeng)v

UL/v, the Reynolds number |

stoichiometric coefficient in electrode. reaction



Fa-y

8¢ =

B
[]

30

V/DR, the Schmidt number

time (sec)

cation transference number

temperature (deg K) - |
mobility of specles 1 (cm2~mole/Jou1eésec)
characteristic velocity (cm/sec)

fluid velocity (cm/sec)

potential of an electrode (volt)

distance measured along an electrode surface (also used as
.a cartesian co8rdinate in the bulk medium) (em)

normal distance from the surface (also used as a cartesilan
‘coBrdinate in the bulk medium) (c )

charge number of species 1

velocity derivative at the solid electrode (seéﬁtﬁx*

r(4/3) 0.89298, the gamma function of 4/3

6 = diffusion layer thickness (cm)
e'overpotential (volts)
8, - dimensionless concentration ‘
K - conductivity (mho/cm)
ui - electrochemical potential of species i (Joule/mole)
v - kinematic viscosity (cmz/sec) |
v,,V_ - number of cations and anlons per molecule of electrolyte
£ - dize?sionless independent variable [see equations (35) and
P - potential appropriate to the diffusion layer (volt)
o - electrostatic potential (volt)
Q - ‘rotation speed of disk (radians/sec)
Subseripts S
® - in the bulk medium R - limiting reactant
o = at the electrode surface.  +,- - cetion and anion;

respectively
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