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A genome-wide association study identifies
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Birdshot chorioretinopathy (BSCR) is a rare form of autoimmune uveitis that can lead to severe visual impair-
ment. Intriguingly, >95% of cases carry the HLA-A29 allele, which defines the strongest documented HLA asso-
ciation for a human disease. We have conducted a genome-wide association study in 96 Dutch and 27 Spanish
cases, and 398 unrelated Dutch and 380 Spanish controls. Fine-mapping the primary MHC association through
high-resolution imputation at classical HLA loci, identified HLA-A∗29:02 as the principal MHC association (odds
ratio (OR) 5 157.5, 95% CI 91.6–272.6, P 5 6.6 3 10274). We also identified two novel susceptibility loci at 5q15
near ERAP2 (rs7705093; OR 5 2.3, 95% CI 1.7–3.1, for the T allele, P 5 8.6 3 1028) and at 14q32.31 in the TECPR2
gene (rs150571175; OR 5 6.1, 95% CI 3.2–11.7, for the A allele, P 5 3.2 3 1028). The association near ERAP2 was
confirmed in an independent British case–control samples (combined meta-analysis P 5 1.7 3 1029).
Functional analyses revealed that the risk allele of the polymorphism near ERAP2 is strongly associated with
high mRNA and protein expression of ERAP2 in B cells. This study further defined an extremely strong MHC
risk component in BSCR, and detected evidence for a novel disease mechanism that affects peptide processing
in the endoplasmic reticulum.
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INTRODUCTION

Birdshot chorioretinopathy (BSCR; MIM605808) is a rare
ocular disorder that has a very strong HLA association, with
.95% of cases carrying the HLA-A29 allele (1–3). BSCR man-
ifests as a severe progressive intraocular inflammation of the
posterior eye segment, typically leading to extensive retinal
atrophy and blindness (4,5). The disease is most often observed
in middle-aged and elderly individuals of European descent and
has a slight female predominance (3,6). Current treatment
strategies include various immunosuppressive medications but
fail to prevent or cease the retinal atrophy. HLA-A29 is relatively
common in European populations, but only a tiny subset of
HLA-A29-positive individuals develops BSCR (6). It is therefore
assumed that other genes than HLA-A and additional exogenous
factors are involved in the development of the disease.

RESULTS

To identify BSCR susceptibility genes and to fine-map the asso-
ciation within the MHC region, we conducted a genome-wide
association study in 96 Dutch and 27 Spanish BSCR cases and
398 unaffected Dutch and 380 Spanish controls from European
ancestry. After quality control and genome-wide SNP imput-
ation, we analyzed a total of 9,932,851 SNPs in 117 cases and
693 controls (Materials and Methods; Supplementary Material,
Fig. S1). We did not see evidence for population stratification
(lGC ¼ 0.96; Supplementary Material, Fig. S2).

The strongest association signal was located within the HLA
class I region for rs142115394 (P ¼ 6.3 × 10217). We next
imputed and tested classical alleles and amino acid polymorph-
isms in HLA-A, HLA-B, HLA-C, HLA-DPA1, HLA-DPB1,
HLA-DQA1, HLA-DQB1 and HLA-DRB1 following a recently
described procedure (7). The strongest association of all variants
tested mapped to the classical HLA-A∗29:02 allele (P ¼ 6.6 ×
10274) (Fig. 1 and Table 1; Supplementary Material, Table S1).
We found HLA-A∗29:01 to be nominally associated (P ¼ 0.02)
but not significant once the A∗29:02 effect was accounted for

(P ¼ 0.093), indicating that the classical A29 effect can be pri-
marily attributed to the A∗29:02 allele. No polymorphic amino
acid position could explain the data better than A∗29:02 (Supple-
mentary Material, Table S2). Controlling for the HLA-A∗29:02
effect, no other classical HLA-A allele was significantly asso-
ciated (best adjusted P ¼ 3.0 × 1024 for HLA-A∗30:01).

Outside the MHC region, a novel association was found at
5q15 for rs7705093 (P ¼ 8.6 × 1028) within the LNPEP gene
encoding leucyl/cystinyl aminopeptidase (Table 1). This associ-
ation was further strengthened in 30 British cases and 2793
control samples (combined meta-analysis P ¼ 1.7 × 1029).
Due to linkage disequilibrium (LD), several other SNPs across
the locus also showed strong association (Supplementary Mater-
ial, Fig. S3). This locus includes the three members of the M1
family of aminopeptidases; ERAP1, ERAP2 and the LNPEP
gene (8). ERAP1 and ERAP2 encode endoplasmic reticulum
aminopeptidase 1 and 2, respectively, and are both involved in
antigen processing and presentation by HLA class I molecules
to T cells (8–10). The LNPEP gene encodes leucyl/cystinyl ami-
nopeptidase that specifically functions in peptide trimming for
cross-presentation in dendritic cells (11).

To explore the biological relevance of the associated variation
in the 5q15 locus, we first investigated whether the associated
SNPs also influence expression levels of these three genes
using the expression quantitative trait loci (eQTL) database
GeneVar (12). The strongest QTL for ERAP2 expression in
LCL cells (P ¼ 2.0 × 10– 114 from Genevar) is observed for
rs10044354 (P ¼ 1.2 × 1027 for association with BSCR),
which is almost in perfect LD with the lead SNP rs7705093
(r2 ¼ 0.98 in the controls; Supplementary Material, Fig. S4).
These SNPs are statistically indistinguishable with respect to
BSCR risk (P . 0.2). The rs10044354 (and SNPs in LD with
rs10044354) appeared to have no significant impact on LNPEP
or ERAP1 expression (P . 0.2 from GeneVar).

Subsequently, we tested if this variant is also correlated to
protein levels of ERAP2 in B-cell lines from individuals from
the Centre d’Etude du Polymorphisme Humain (CEPH) panel
(13) and five BSCR patients. Indeed, homozygous carriers for

Figure 1. Association tests within the MHC region to birdshot chorioretinopathy. The strongest MHC signal mapped to HLA-A∗29:02 allele. The shading depicts the
strength of the correlation (r2) between HLA-A∗29:02 (red diamond) and the SNPs tested in the region. Gene positions are obtained from the human genome build 37
(GRCh37/hg19).
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the rs10044354 C allele showed little or no ERAP2 protein ex-
pression in a quantitative western blot analysis, whereas
hetero- or homozygous carriers of the rs10044354T risk allele
showed higher protein levels of ERAP2 (P ¼ 0.009) in cases
and controls (Fig. 2). In contrast, we did not observe an effect
of this SNP on LNPEP expression, consistent with the mRNA
findings from GeneVar (Fig. 2, bottom).

Another novel association was detected at 14q32.31 in the
TECPR2 gene (rs150571175, P ¼ 3.2 × 1028) (Table 1; Sup-
plementary Material, Fig. S3). However, this association could
not be confirmed in the British cohort (P ¼ 1.0; combined
meta-analysis P ¼ 1.6 × 1027). The protein encoded by
TECPR2 (tectonin beta-propeller repeat-containing 2) interacts
with Atg8 orthologs and functions in autophagosome accumula-
tion for autophagy (14).

Because BSCR is considered an autoimmune disease and
shares signatures of T helper 17-cell responses with other auto-
immune disorders (15–19), we hypothesized that known risk
loci for other autoimmune diseases may also be associated
with BSCR. Therefore, we tested 289 bona fide non-HLA SNP
associations in autoimmune disorders (Supplementary Material,
Table S3). For all BSCR Dutch and Spanish cases and controls,
we computed a weighted genetic risk score based on the
observed number of risk alleles and the known effect sizes for
each autoimmune disease separately. We performed a similar
test for SNPs associated to either height or LDL levels as two
control traits. After correction for multiple testing, we obtained
no significant association between increased risk scores and
BSCR risk for any of the autoimmune diseases tested, except
for wGRS Psoriasis (higher for BSCR) and LDL (lower in
BSCR) (Supplementary Material, Table S4). However, these
associations were only nominally significant in the Dutch
cohort but not in the Spanish cohort. Although this would
suggest that BSCR shares no additional susceptibility loci with
other autoimmune diseases, it is possible that the sample size
and power was simply too low to detect such an overlap.

DISCUSSION

To date, the association of HLA-A29 with BSCR is the strongest
association described between an HLA class I allele and human
disease (2,6). Although this association has been known for over
three decades (1), lack of understanding of the contribution of
HLA-A29 to the pathogenesis of BSCR, impeded it to become
an absolute criterion for diagnosis (22). HLA-A29 can be subdi-
vided in at least 17 subtypes (23), but most common in Cauca-
sians are the subtypes HLA-A∗29:01 and HLA-A∗29:02 that
have both been most associated with BSCR (24). However,
the imputation analyses of the HLA region revealed that the
nominal association of HLA-A∗29:01 disappeared once the
A∗29:02 effect was accounted for, indicating that the classical
A29 effect in BSCR can be primarily attributed to the A∗29:02
allele and comes with unusually large effect size in terms of
explained variance (Nagelkerke’s index ¼ r2[controlled for
top 4 PCs and cohorts] ¼ 0.595). However, since HLA-A29 is
relatively common in European populations (7%) and very
few HLA-A29-positive individuals develop BSCR (6), other
additional genetic or exogenous factors are required for the de-
velopment of the disease. Here, we provide evidence for anT
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association with ERAP2 and speculate about a possible associ-
ation of TECPR2.

The ERAP2 gene is located on chromosome 5 and is posi-
tioned between the closely related ERAP1 and LNPEP genes
(8,9). The ERAP2 gene encodes for an aminopeptidase located
in the endoplasmic reticulum (ER) that is involved in the final
processing and presentation of antigenic precursors, together
with the closely related and better characterized ERAP1 (10).
In fact, ERAP2 and ERAP1 were shown to form a heterodimer
to combine their restricted sequence specificities for peptide
trimming (10). Notably, some antigenic peptides, including the
immunodominant epitope derived from HIV gag protein, have
been shown to be solely dependent upon ERAP2 trimming (25).

Recent genome-wide association studies have implicated a
role for ERAP1 and ERAP2 in several HLA-associated auto-
immune diseases such as psoriasis (26), ankylosing spondylitis
(20,21) and Crohn’s disease (27), or juvenile idiopathic arthritis
(28), suggesting an important functional role for these genes
in the immunopathology of autoimmune diseases. Of note, all
these ERAP1- or ERAP2-associated diseases share a major
HLA class I association that contrasts the major HLA class II
association found in many other autoimmune diseases not asso-
ciated to ERAP1 or ERAP2. In this respect, our study substanti-
ates an emerging concept as we also found a strong link between
ERAP2 and BSCR, an autoimmune disease affecting the eye that
manifests almost exclusively in HLA-A29-positive Caucasians.

Similar to HLA genes, ERAP2 has been shown to undergo bal-
ancing selection, which maintains two main haplotypes A and B,
with highly differential protein expression due to alternative
mRNA splicing (29). We discovered that the SNPs associated

with BSCR at 5q15 also serve as tags for these haplotypes,
with high expression levels of ERAP2 in BSCR patients and
no or low expression in homozygous negative healthy indivi-
duals. Based on our results, and given the fact that ERAP2 has
nonoverlapping trimming capacities (10) with ERAP1, it is
likely that ERAP2 has a specific contribution to the immuno-
pathology of BSCR, by differential generation or destruction
of immunodominant epitopes capable of binding to HLA-A29.
Modulation of the antigen processing and presentation
pathway by targeting ERAP2 in BSCR is particularly of interest
since, in contrast to ERAP1, a rather high frequency of ERAP2-
deficient individuals is maintained in the population without any
clear adverse effects on their immunity and healthy (29).
However, the efficacy of selective inhibition of ERAP2 in
BSCR, while remaining ERAP1 function, remains to be clarified
and involves the use of novel inhibitors that targets this family of
pleiotropic aminopeptidases (30).

We found a significant association for TECPR2 in the Dutch
and Spanish cohorts, but these findings could not be replicated
in British patients. TECPR2 encodes for TECPR2 (tectonin beta-
propeller repeat-containing 2) that interacts with Atg8 orthologs
and is a positive regulator of autophagy and functions in autopha-
gosome accumulation (14). A mutation in the TECPR2 gene was
recently implicated in hereditary spastic paraparesis (31). The eye
maintains an unconventional form of autophagy that is crucial for
the function and health of the photoreceptors in the retina (32,33).
Interestingly, interfering with autophagy by rapamycin, a potent
inducer of autophagy, can paradoxically reduce of exacerbate
uveitis (34,35). Moreover, autophagy-related genes have also
been associated with other autoimmune diseases, including SLE
and Crohn’s disease (36,37). Further investigation of the associ-
ation of the TECPR2 gene in other BSCR populations is necessary
to clarify its possible contribution to the pathogenesis of BSCR.

In conclusion, we identified HLA-A∗29:02 as the principal
MHC association and report variants near the ERAP2 gene at
5q15 that predispose to BSCR. Expression studies indicate that
the disease-associated variants at 5q15 correlate to mRNA and
protein expression levels of ERAP2, suggesting that differential
peptide processing and antigen presentation to T cells is an
essential disease mechanism for BSCR.

MATERIALS AND METHODS

Subject collection

A total of 96 unrelated Dutch BSCR cases, 27 Spanish BSCR
cases and 398 unrelated Dutch healthy controls and 380
Spanish controls, all from European ancestry, are enrolled in
this study. BSCR diagnosis was based on criteria established
by international consensus (22). Dutch cases were recruited at
the Department of Ophthalmology at the University Medical
Center Utrecht, the Eye Hospital Rotterdam and Radboud Uni-
versity Nijmegen Medical Center, the Netherlands. These
three institutes represent the largest registry of BSCR patients
in the Netherlands; we estimate that .90% of all BSCR cases
in the Netherlands are included in this cohort. Spanish cases
were recruited at the department of ophthalmology at the Hos-
pital Clinico San Carlos, Madrid, Hospital Clinico San Cecilio,
Granada, Hospital de Cruces, Bilbao, Hospital Clinic Barcelona,
Hospital Carlos Haya, Malaga and Hospital Universitario, Leon.

Figure 2. Expression of ERAP2 and LNPEP in CEPH control and BSCR accord-
ing to rs10044354 genotype. B-cell lines from individuals from the CEPH panel
(13) and five BSCR patients were lysed and ERAP2 and LNPEP expression was
assessed after SDS–PAGE and western blotting with antibodies to ERAP2 and
LNPEP. The endogenous levels of both a- and b-tubulin total protein were ana-
lyzed as a loading control. The horizontal lines indicate the means. Kruskal–
Wallis test with Dunn’s multiple-comparison post hoc test was used to assess dif-
ferences in the levels of ERAP2 between B-cell line groups according to
rs10044354 genotype.
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Dutch controls were collected at UMC Utrecht and Spanish con-
trols were recruited from the National bloodbank. For replica-
tion, we included an additional 30 UK BSCR cases recruited at
the department of ophthalmology at the Moorfields Eye Hospital
NHS Foundation Trust, London. As controls, we used genotype
data from the UKBS and 58BC controls, which are part of the
WTCCC study (38). The UKBS cohort contained 1397 control
individuals selected from a UK sample of blood donors, and
the 58BC contained 1396 control individuals from the 1958
British Birth Cohort (39). This study was performed in compli-
ance with the guidelines of the Declaration of Helsinki and has
the approval of the local Institutional Review Boards. Study
details were explained to all cases and controls, and the collec-
tion of blood was carried out after obtaining written informed
consent from each participant.

Genotyping, quality control and association analysis

All Dutch and Spanish samples were genotyped using the
Ilumina Human OmniExpress BeadChip, which contains 730
525 SNPs. Data for the British 1958 Birth Cohort and UKBS
were obtained from the European Genome-Phenome Archive
at https://www.ebi.ac.uk/ega/. These individuals were geno-
typed using the Affymetrix GeneChip 500K platform and the
Illumina Immunochip platform. We used PLINK (40) to clean
the genotype data using standard quality control parameters:
we removed SNPs with low frequency (,0.02), out of Hardy–
Weinberg equilibrium (P , 1026), or with excess missingness
(.5%). We also checked for relatedness and inconsistent
gender. Principal components analysis was performed to
detect population stratification. Overall, we excluded two
Dutch and four Spanish cases, and four Dutch and 85 Spanish
controls, and kept a total of 393 831 SNPs for subsequent ana-
lyses. Imputation of untyped SNPs was performed using
Minimac (41). As reference panel, we used the 998 phased hap-
lotypes from the Genome of the Netherlands Project release 4
encompassing 19 763 454 SNPs (42). We included the top four
principal components as covariates in logistic regression
models using PLINK (version 1.08) and R (version 2.11.1).
SNPs with MAF ,1% or with imputation quality (info score)
,0.01 were excluded from analyses. Genome-wide distribution
of the test statistic indicated no evidence for population stratifi-
cation (QQ plots Supplementary Material, Fig. S2). As previous-
ly described (7), we imputed classical alleles and amino acid
polymorphisms in HLA-A, HLA-B, HLA-C, HLA-DPA1,
HLA-DPB1, HLA-DQA1, HLA-DQB1 and HLA-DRB1 at a four-
digit resolution, as well as an additional 3,117 SNPs across the
MHC, using a large reference panel of 2,767 individuals of Euro-
pean descent. We imputed cases and controls together. For the
association analyses in the MHC, we assessed the significance
of the improvement in fit by calculating the deviance (defined
as 22 × the log likelihood), which follows a x2 distribution.

Protein expression assays

WeassessedERAP2andLNPEPprotein levels inEBVtransformed
B cells (EBV-LCL), from 19 individuals from the CEPH panel and
EBV-LCLs generated from peripheral blood mononuclear cells of
five BSCR patients, by western blotting (13). From the CEPH
panel, we selected six homozygotes for the C allele, six

heterozygotes and seven homozygotes for the T allele (NA07022,
NA07029, NA07056, NA07345, NA07357, NA10838, NA10846,
NA10854, NA10863, NA11839, NA12003, NA12056, NA12144,
NA12145, NA12239, NA12249, NA12812, NA12815 and
NA12872). Protein extracts (20 mg/lane) from EBV-LCL cells
were separated on a 4–12% NuPageBis–Tris gel (Invitrogen) and
transferred to a PVDF membrane. Proteins were detected using a
1:2500 dilution of primary antibody [goat anti-ERAP2 polyclonal
antibody (AF3830, R&D Systems), mouse anti-ERAP2 polyclonal
(ab69037, Abcam), sheep anti-LNPEP polyclonal antibody
(AF6386, R&D Systems) and anti-a/b-tubulin monoclonal pre-
pared in Rabbit (#2148, Cell Signaling)]. Anti- and anti-rabbit sec-
ondary antibodies conjugated to Alexa Fluor 680 (Molecular
Probes; 1:2500) and anti-goat secondary antibody conjugated to
IRDye800 (Li-Cor; 1:2500) were used to probe primary antibodies.
Protein bands were detected and quantified by western blotting with
the Odyssey system (Li-Cor). The ratio of the intensity of the
ERAP2-a/b-tubulinbandofCC-homozygotes toCT-heterozygotes
and TT-homozygotes was calculated using ImageJ.

Transcriptional analysis

eQTL analysis was performed based on data available from the
Sanger Institute GENEVAR project for lymphoblastoid-cell
lines from 726 HapMap 3.0 CEU individuals and three tissue
types (LCL cell type was used in the analysis) collected from
856 healthy female twins of the MuTHER resource (12,43). Dif-
ferences in the levels of ERAP2 in B-cell line between groups
according to rs10044354 genotype were analyzed using non-
parametric one-way ANOVA; Kruskal–Wallis test with
Dunn’s multiple-comparison post hoc test in GraphPad Prism
5 software. Statistical significance was accepted at a significance
level of P , 0.05.

Genetic risk score

To test the cumulative effect of validated SNPs associated with
other autoimmune diseases (ankylosing spondylitis, rheumatoid
arthritis, Crohn’s disease, ulcerative colitis, psoriasis, vitiligo,
type 1 diabetes and multiple sclerosis) (20,26,44–49), we com-
puted a weighted genetic risk score in all cases and controls of
our study. We summed the estimated dosages of the known
risk alleles (for a given autoimmune disease) weighted by the
natural log of the published odds ratios (Supplementary Mater-
ial, Table S3). We tested the genetic risk scores for each
disease as a continuous variable for association to BSCR status
using logistic regression, including the top four principal compo-
nents as covariates. We corrected for multiple testing of 10 traits
in total (including height (50–52) and LDL (53,54) as a negative
control).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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