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Defining the contributions of permanent electrostatics, Pauli repulsion, and dispersion

in density functional theory calculations of intermolecular interaction energies

Paul R. Horn,1, a) Yuezhi Mao,1 and Martin Head-Gordon1, b)

Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry,

University of California, Berkeley, CA 94720 and Chemical Sciences

Division Lawrence Berkeley National Laboratory Berkeley, CA,

94720 Phone: 510-642-5957 Fax: 510-643-1255

In energy decomposition analysis (EDA) of Kohn-Sham density functional theory cal-

culations, the so-called frozen (or pre-polarization) interaction energy contains contri-

butions from permanent electrostatics, dispersion, and Pauli repulsion. The standard

classical approach to separating them suffers from several well-known limitations. We

introduce an alternative scheme that employs valid antisymmetric electronic wave-

functions throughout and is based on the identification of individual fragment con-

tributions to the initial supersystem wavefunction as determined by an energetic

optimality criterion. The density deformations identified with individual fragments

upon formation of the initial supersystem wavefunction are analyzed along with the

distance dependence of the new and classical terms for test cases that include the

neon dimer, ammonia borane, water-Na+, water-Cl−, and the naphthalene dimer.

a)Electronic mail: prhorn@berkeley.edu
b)Electronic mail: mhg@cchem.berkeley.edu
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I. INTRODUCTION

A long-standing problem in electronic structure theory is the decomposition of the inter-

action energy of a system of fragments into several other scalars corresponding to physical

concepts, such as charge transfer, permanent electrostatics, induced electrostatics, disper-

sion, and Pauli repulsion. Unfortunately, these quantities have no unique definition in the

interesting part of the supersystem potential, corresponding to strongly to moderately in-

teracting fragments. By contrast, in the very weakly interacting, non-overlapping regime,

these physical concepts either have well-known definitions1,2, or they are zero.

Accordingly, many schemes exist for performing an energy decomposition analysis (EDA)

of the interaction energy3–6. As reviewed in detail below, many existing definitions neglect

antisymmetry in the electronic wavefunction when computing the expectation values that

define terms such as the Pauli repulsion and permanent electrostatic contributions. The

purpose of this work is to introduce new and improved definitions for the permanent elec-

trostatic, Pauli repulsion, and dispersion contributions for density functional theory (DFT)

calculations. This problem is ripe for re-examination because of the recent flowering of DFT

methods that are capable of good accuracy for the treatment of intermolecular interactions

that include dispersion effects7–10. Examples include use of damped C6 potentials11,12, non-

local correlation (NLC) functionals13,14, and functionals that are optimized to include such

components.15–17

We now consider the physical content of the contributions of interest. Pauli repulsion

typically refers to steric or volume-exclusion effects, the marked increase in energy when two

non-bonded atoms are forced to occupy the same space. Atoms have effective volumes due

to the “kinetic energy pressure”18 exerted by electrons. The smaller the available volume,

the higher the total kinetic energy of the electrons contained within. Each electron can

also be seen as occupying a finite volume because same spin electrons cannot have the same

position, due to fermion statistics (the Pauli principle). Thus, when atoms are brought

into close contact, the average volume available to each electron decreases, increasing the

kinetic energy of the system. Pauli repulsion is sometimes referred to as exchange repulsion

which seems to us a misnomer since exchange accounts for a degree of same-spin electron
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correlation, an effect that is hardly repulsive in nature. Regardless of one’s perspective, the

term should always be repulsive (i.e. positive semidefinite).

The permanent electrostatic contribution describes the mean-field coulomb interaction

between the electrons and nuclei of each fragment with the electrons and nuclei of all others

where the electronic structure of each species has not been allowed to relax in response to the

presence of the other fragments. Differences in definitions arise from the important qualifica-

tion about relaxation. All reduce to the easily understood classical electrostatic interaction

between fragment charge distributions in the well-separated portion of the potential.

The permanent electrostatics term does not describe the interfragment electron-electron

interaction in full, as it neglects their correlated motions. Separating correlation from mean-

field behavior has proven to be both numerically and conceptually advantageous. Indeed,

the asymptotic distance dependence of the interfragment electron correlation energy (the

dispersion energy) is R−6, which is usually distinct from permanent electrostatics. Disper-

sion, while relatively small in magnitude when the monomers involved are small, is mani-

festly attractive. It can thus be a key component of weak intermolecular interactions and

a quite large component in interactions involving large monomers2,10. While dispersion has

no unique definition in the overlapping regime, we can be sure that not all the correlation

contributions to intermolecular interactions should be called dispersion, because the total

can be net repulsive.19 We will seek a “dispersion-like” term that is negative semi-definite

and contains interfragment correlation contributions to binding that manifest R−6 behavior

in the long range.

The majority of EDA methods employ a classical approach in which the permanent elec-

trostatic term (Ecls
elec) is defined as the classical electrostatic interaction of the 3-space charge

distributions (including nuclei) of fragments computed in isolation, {ρtotA (r)}, and then trans-

lated to their respective positions in the complex.

Ecls
elec =

∑
A<B

∫
r1

∫
r2

ρtotA (r1)
1

r12
ρtotB (r2) (I.1)

ρtotA (r) = ρA(r) + ρnucA (r) (I.2)

ρA is the total spinless 3-space density for the electrons of fragment A only.
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The initial wavefunction is one in which electronic relaxation relative to the isolated

fragment wavefunctions due to the presence of new species has not yet occurred. The anti-

symmetric product of monomer wavefunctions is a common choice. As in Ref. 20, we term

the interaction of unrelaxed complexes the frozen energy (Efrz):

Efrz = Einit −
∑
A

EA (I.3)

The classical approach defines Pauli repulsion, Ecls
Pauli, as the non-electrostatic part of Efrz,

decomposing the frozen energy as:

Efrz = Ecls
elec + Ecls

Pauli (I.4)

Dispersion, on the other hand, is not treated in such a uniform way across EDA methods

though it is sometimes taken as the DFT dispersion term itself especially in the case of

Grimme’s density independent corrections11,12.

We now turn to the methods themselves. Bickelhaupt-Baerends EDA4,21,22, KM EDA23–25,

and the CI-singles based scheme of Reinhardt et al.26 all use the classical approach. Mandado

and Hermida-Ramón27, SRW-EDA28, and ETS-NOCV29–32 all similarly use the classical

electrostatic term and the Heitler-London wavefunction with slight twists. Mandado and

Hermida-Ramón27 further decompose the Pauli term from the classical approach into an

exchange term and a repulsion term. Likewise, SRW-EDA28 and ETS-NOCV29–32 can both

optionally separate the classical Pauli term into a Pauli term and an electron-exchange or

exchange-correlation term, respectively.

An important and widely used method for analyzing intermolecular interactions is Sym-

metry Adapted Perturbation Theory (SAPT)1,33–39. While it does use the classical approach

for permanent electrostatics and Pauli repulsions, SAPT also defines a separate dispersion in-

teraction. SAPT methods do not decompose the interaction energy from a DFT calculation.

Instead the SAPT approach is itself a theory of intermolecular interactions.

Other EDA methods that use the classical approach include BLW-EDA5,40–42 and

PIEDA43,44, but these methods also include separate dispersion terms. PIEDA assigns

the entire correlation binding energy for each dimer as computed by a post-HF wavefunc-

tion method to dispersion. BLW-EDA exploits the structure of specific density functionals
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that include a non-local correlation functional such as dDXDM42,45,46. The GKS-EDA47–49

scheme likewise uses the classical electrostatic term; however, the Pauli term in this method

is computed differently, using full exact exchange. It can also be further subdivided into

exchange and repulsion. The GKS-EDA also computes a correlation term, from which a

functional-specific dispersion contribution (e.g. Grimme’s -D11,12) can be separated.

In the density-based EDA (DEDA)50–52, the electrostatic interaction is computed classi-

cally; however, the initial wavefunction used to compute the Pauli repulsion term by dif-

ference is a Slater determinant minimized with the constraint that the density equals the

sum of non-interacting fragment densities. This means that the total interacting complex

density can be exactly expressed as the sum of undistorted fragment densities, and it stands

in contrast to the antisymmetric product of monomer wave functions, for which the com-

plex density is distorted relative to the simple sum. The classical electrostatic expression

is therefore more appropriate in DEDA than in methods that use the frozen orbital model.

We have recently studied the origin of the energy lowering in DEDA in detail53 and showed

that most is associated with interfragment electron delocalization, which is constant density

charge transfer (CT). An additional constraint is necessary to avoid introducing this CT con-

tribution to the frozen interaction53, similar to the one used to prevent the contamination of

polarization by CT54.

Natural EDA (NEDA)55–57, which is based on Natural Bond Orbitals (NBOs)3,58, uses

the classical approach to compute the electrostatic interaction but then defines its Pauli-

repulsion-like term, core, rather differently in terms of polarized monomer Lewis structures.

To this is usually added an exchange-correlation term, which is the exchange-correlation

functional’s contribution to the interaction of these polarized monomer Lewis structures.

Natural Steric Analysis59–61 is likewise based on NBO analysis and draws heavily from the

orbital orthogonality interpretation of antisymmetry to define the steric energy. This scheme

also allows for an approximate decomposition into pairwise local orbital contributions which

can be intramolecular.

The method of de Silva and Korchowiec62 uses the standard classical electrostatic term but

computes the Pauli-repulsion-like term, called exchange, as the difference between the energy

of a determinant describing the polarized supersystem and the energy of the sum of polarized
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fragments’ densities matrix. In DFTs-EDA63,64, a separate steric term is computed as the

Weizsäcker kinetic energy contribution to total binding, and a Pauli term is computed as the

difference between this and the contribution to binding from the non-interacting Kohn-Sham

kinetic energy. The remaining binding energy is divided into exchange-correlation functional

contributions and electrostatics.

Other EDA methods do not attempt to further decompose the frozen (or steric) energy

into permanent electrostatic, Pauli repulsion, or dispersion interactions. Examples include

Reduced Variational Space (RVS)25,65, Constrained Space Orbital Variations (CSOV)66, and

Absolutely Localized Molecular Orbital (ALMO)-EDA20,67–69. In the ALMO-EDA, the clas-

sical approach is avoided due to its reliance on a classical charge distribution that does not

correspond to the charge distribution of the unrelaxed complex. However, the absence of

distinct terms describing permanent electrostatics and Pauli repulsion is a limitation6 be-

cause these concepts are important for understanding intermolecular interactions. It is thus

the goal of this work to construct a more satisfying decomposition of the frozen energy for

use in EDA schemes such as the ALMO approach.

II. THEORY

A. Decomposition of the Initial Supersystem Energy

A major disadvantage of the classical approach is that the fragment charge distributions

that it employs, densities translated from infinitely far away to the finite separation cluster

geometry, generally do not sum to the total frozen density (with the exception of DEDA50–52

already discussed in the Introduction). This is because the density corresponding to frozen

monomer orbitals (the common choice for the initial supersystem wavefunction) is distorted

relative to the simple sum when the fragments overlap. In the overlapping regime, the

classical electrostatic energy is thus the coulomb interaction between charge distributions

that not only aren’t there in the initial state but moreover could possibly never be. We must

therefore identify a distinct portion of the frozen electron density that can be justifiably

tagged to each monomer: its properly distorted density in the complex.
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One way to guarantee that a sum of newly identified fragment densities ({ρ̃A}) will yield a

given initial supersystem density (ρinit) is for the new fragment occupied subspace projectors

({P̃A}) to be orthogonal with a collective span equal to that of the initial supersystem

wavefunction (Pinit). The way that fragment subspaces are chosen initially is of course with

energetic optimality in isolation. We propose that the fragment subspaces within the initial

supersystem wavefunction be chosen similarly but with a collective energetic optimality

condition,

Eortho
frag = minimize

{P̃α,A},{P̃β,A}

∑
A

EA[P̃α,A, P̃β,A] (II.1)

and the constraint that they are orthogonal and sum to the initial supersystem density

matrix:

Tr
[
P̃σ,ASP̃σ,BS

]
=

0 B ̸= A

Tr
[
P̃σ,AS

]
B = A

(II.2)

Pσ,init =
∑
A

P̃σ,A (II.3)

Each P̃σ,A has the same rank as the corresponding Pσ,A computed for fragment A in isolation.

The new definition of the permanent electrostatic interaction based on this simple opti-

mization problem is then:

Eelec =
∑
A<B

∫
r1

∫
r2

ρ̃totA (r1)
1

r12
ρ̃totB (r2) (II.4)

This expression is very similar to the classical expression (I.1); however, unlike in the clas-

sical case, this expression can also be written in terms of matrix elements computed from

antisymmetric electronic wavefunctions:

Eelec = Tr [(J[Pinit] +Vtotal)Pinit] (II.5)

−
∑

ATr
[
(J[P̃A] +VA)P̃A

]
+∆ENN

where ∆ENN is the classical energy change derived from changes in nuclear-nuclear interac-

tions upon formation of the complex.

The orthogonality constraint, (II.2), can be interpreted as inclusion of volume exclusion

effects in fragment wavefunction determination. In the interest of lowering the potential
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energy of the system via (II.1), each fragment density will be closest to the only nuclei that

are known to it, those composing the fragment itself. This density will be partly expelled

from the regions of other fragments by the presence of the other fragments’ electrons, which

are in turn most energetically suited to be near their respective nuclei. The partitioning

of the valence space of different fragments is determined by overall energetic importance of

that portion of Hilbert space to each fragment. With this volume exclusion interpretation

in mind, we put forward the following definition for the “kinetic energy pressure”18 (KEP)

Pauli repulsion term:

EKEP
Pauli =

∑
A

EA[P̃A]− EA[PA] (II.6)

In the complete basis set limit, the KEP energy is a positive semidefinite quantity because

the only difference between the two terms in (II.6) is the set of constraints, (II.2), that apply

only to the first term.

There are many other possible orthogonal decompositions of the initial supersystem den-

sity matrix that could be performed. Two examples are symmetric orthogonalization of

the frozen orbitals, or some localization of those orthogonalized orbitals70. However, we

prefer (II.1) because it uses energetic optimality to associate fragment subspaces with their

respective fragment nuclei, the only particles with unambiguous fragment tagging, and it

also minimizes what is most often the largest repulsive contribution to the initial interaction

energy, (II.6).

The sum of the electrostatic, (II.4), and KEP, (II.6), contributions does not account for

the entire frozen energy, (I.3). The remainder is precisely the exchange-correlation (XC)

interaction between the properly deformed monomer densities:

Exc = EXC [Pinit]−
∑

AEXC [P̃A] (II.7)

EXC [P] is the chosen XC functional, which is assumed to have at most density matrix de-

pendence (as in Hartree-Fock and local and hybrid density functionals but excluding double-

hybrids and post-SCF wavefunction methods). The XC contributions will be divided into

two parts, one corresponding to dispersive correlations, and the other corresponding to XC

contributions to the Pauli energy.
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To identify the dispersive interaction, we subtract the “dispersion-free” part of the inter-

fragment XC interaction from (II.7), which requires evaluation of the same densities using a

“dispersion-free” XC (DFXC) functional:

Edisp =
(
EXC [Pinit]−

∑
AEXC [P̃A]

)
(II.8)

−
(
EDF

XC [Pinit]−
∑

AEDF
XC [P̃A]

)
In principle, the problem of finding a DFXC functional to match any given functional has no

unique solution since the dispersion interaction itself is not uniquely defined in the overlap-

ping regime. However, in practice there are some plausible options available, reflecting the

dispersion-free nature of Hartree-Fock and standard semi-local density functionals, such as

revPBE71. The former may be natural for functionals that contain a significant fraction of

exact exchange, while the latter may be preferable for functionals without exact exchange.

The “dispersionless” functional72 whose name seems appealing for this purpose could also

be a candidate; however, it should be kept in mind that this method was trained assuming

a SAPT definition of dispersion. Another option is removing a dispersion term from the

density functional if that is possible. We think that the additional ambiguity in the method

introduced by the non-uniqueness of the DFXC functional is offset by the utility provided by

the conceptually significant dispersion term. Regardless, some validation will be necessary.

The interfragment DFXC term that is subtracted in (II.8) is negative semidefinite, and

should be dominated by interfragment exchange (it is exactly that when the DFXC functional

is taken as Hartree-Fock). Since this exchange effect and Pauli exclusion (given by the

“kinetic energy pressure” effect, (II.6)) both result from wavefunction antisymmetrization,

we define the full Pauli repulsion term as their sum

EPauli = EKEP
Pauli +

(
EDF

XC [Pinit]−
∑
A

EDF
XC [P̃A]

)
(II.9)

Our overall decomposition of the frozen interaction energy can be expressed as

Efrz = Eelec + EPauli + Edisp (II.10)

The new decomposition, (II.10), gives quantum mechanically based numerical values for

all three key physical contributions to the frozen interaction. While detailed tests will be
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presented in Sec. III, one can anticipate that (II.10) will be most helpful in the regime of weak

to moderate fragment overlap, where the Pauli term is not too repulsive and the electrostatic

term behaves similarly to classical expectations. However, in the strongly overlapping regime,

the Pauli and electrostatic terms can become large in magnitude and opposite in sign, which

suggests that they could then be usefully recombined as the dispersion-free frozen energy,

EDF
frz = Eelec + EPauli to give the alternative decomposition:

Efrz = EDF
frz + Edisp (II.11)

(II.11) separates only the negative semidefinite (for appropriate functional choices) dispersion

term from the full frozen energy.

While the frozen orbital (Heitler-London) wavefunction was mentioned as the initial su-

persystem wavefunction in the description above, its use is not a requirement. For example,

it is also possible to employ an initial wavefunction that has been energy optimized (with a

constant density constraint53) such as by the removal of constant density polarization53.

B. Expected Behavior of Terms

When the occupied subspaces of fragments computed in isolation are not overlapping

and the basis is sufficiently large such that there is no BSSE, then the orthogonal fragment

subspaces that are the solution to (II.1) are precisely the occupied subspaces computed in

isolation. This fact guarantees the correct limiting behavior of all terms. For well-separated

fragments, the full Pauli repulsion term (II.9) vanishes, and the electrostatic term (II.5) is

identical to the classical electrostatic term for equivalently treated fragments and will decay

as classical electrostatics predicts. In the short-range, we expect the two components of

the Pauli term, KEP and DFXC, to both exhibit exponential decay with intermolecular

separation, just as hydrogenic orbital overlap does. In practice, since the magnitude of

KEP is significantly larger, the full Pauli term usually turns out to be repulsive, and decays

similarly to the KEP term. As the sum of the electrostatic and Pauli terms, the dispersion-

free frozen term is evidently repulsive in the compressed region where the latter dominates,

and it finally merges with the electrostatic term in the long range because of the rapid decay
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of the Pauli term.

As long as the underlying XC functional can describe dispersion interactions, the Edisp

term should decay as R−6 in the long range. At short range, the decay behavior of Edisp

cannot be predicted, as it will depend on the compatibility between the XC and DFXC

functionals, as well as the fact that inter- and intrafragment dynamic correlation effects

are not well-separated in the short range. However the short-range behavior will transition

smoothly to polynomial R−6 decay in the long range if the XC functional permits.

C. Solution of the Optimization Problem for Monomer Subspace

Determination

We now turn to the solution of the optimization problem from which the three newly

defined EDA terms, Eelec, EPauli, and Edisp, follow. The structure of the problem (II.1)

is very similar to restricted open shell Hartree-Fock (ROHF) in that only inter-subspace

rotations are energetically relevant, and the subspaces are constrained to be orthogonal. For

simplicity and without loss of generality we also assume intra-subspace orthogonality. We

parametrize the vectors, T, defining the new orthogonal fragment subspaces in terms of

orbital rotation parameters, ∆, as:

T← T exp
(
∆−∆T

)
(II.12)

T µ •
• Ai ←

∑
B

T µ •
• Bj

[
δBjAi +∆BjAi (II.13)

−∆AiBj +
1
2

∑
D

(∆BjDl∆DlAi −∆BjDl∆AiDl

−∆DlBj∆DlAi +∆DlBj∆AiDl) +O (∆3)
]

P̃ µν
A = T µ •

• AiT
ν •
• Ai (II.14)

The Taylor series is truncated at 2nd order because only the first and second derivatives

of the objective function (II.1) are of interest in this work, and they are both computed at

∆ = 0.
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The gradient of the objective function with respect to orbital rotation parameters is thus:

∂Eortho
frag

∂∆CkDl

∣∣∣∣
∆=0

= 2
[
TT (FD − FC)T

]
CkDl

(II.15)

where:

(FA)µν =
∂EA[P̃A]

∂P̃ µν
A

(II.16)

Iterations for this optimization problem are fairly expensive, requiring number of fragments

full Fock matrix builds in the supersystem basis. With this in mind, we now present a

preconditioning strategy for this problem that has proven effective within a preconditioned

L-BFGS73–75 algorithm incorporating a robust line search76. As in past work53,54,75, we invert

the portion of the Hessian that does not require the evaluation of new two-electron integrals

or second functional derivatives of the exchange-correlation energy, which in this case is:∑
A

∂Eortho
frag

∂P̃ µν
A

∂2P̃ µν
A

∂∆CkDl∂∆XiY j

∣∣∣∣
∆=0

(II.17)

=
[
TT (FD − 2FC + FX)T

]
XiDl

δCkY j

−
[
TT (FC − 2FD + FX)T

]
XiCk

δDlY j

+
[
TT (FC − 2FD + FY )T

]
Y jCk

δDlXi

−
[
TT (FD − 2FC + FY )T

]
Y jDl

δCkXi

We compute the inverse of this approximate Hessian applied to a vector iteratively using

conjugate gradients, which itself requires only the contraction of (II.17) with a trial vector.

This conjugate gradient algorithm is in turn preconditioned with the inverse of an even more

approximate form of the Hessian that incorporates only subspace-pair diagonal blocks:

∑
A

∂Eortho
frag

∂P̃ µν
A

∂2P̃ µν
A

∂∆CkDl∂∆CiDj

∣∣∣∣
∆=0

(II.18)

=− 2
[
TT (FC − FD)T

]
CkCi

δDlDj

+ 2
[
TT (FC − FD)T

]
DlDj

δCkCi

These blocks can be easily inverted after pseudocanonical-like transformations within sub-

spaces. Our guess for the problem (II.1) is the symmetric orthogonalization of the occupied
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subspace vectors computed for the fragments in isolation, and it has proven to be a good

guess in practice, corresponding to the geometrically optimal instead of the energetically

optimal choice for the fragment subspace orthogonalization.

III. RESULTS AND DISCUSSION

A. Computational Details

Calculations in this work were performed with a development version of the Q-Chem

software package77,78. The initial supersystem wavefunction is the antisymmetric product

of monomer wavefunctions (i.e. the Heitler-London or frozen orbital wavefunction), which

allows direct comparison of the new approach, (II.10), to the common classical approach,

(I.4). For comparison, the total interaction energy is also evaluated as the difference of the

fully relaxed SCF energy of the supersystem and the sum of monomer energies. In order

to focus on assessing (II.10), polarization and charge transfer contributions are not further

separated in this work.

To explore the behavior of the newly defined dispersion term, (II.8), we use the ωB97X-

V16 density functional, which includes the VV1013 non-local correlation (NLC) functional

for the treatment of dispersion. ωB97X-V has been shown to perform accurately for many

noncovalent interactions17,79,80. Since it is a range separated hybrid that includes 100%

exact exchange at long-range, Hartree-Fock (HF) is chosen as the most natural choice for

the dispersion-free XC (DFXC) functional.

Quadruple-ζ basis sets with diffuse functions are used in this work, including aug-cc-

pVQZ81,82 and def2-QZVPPD83. While the results of this decomposition inevitably depend

on the employed basis set, we choose these basis sets because they usually converge both

the total interaction energy and the frozen energy well, requiring no further corrections for

BSSE. Furthermore, our recently developed polarization model has a non-trivial basis set

limit for the polarization term and by extension the charge transfer term, enabling the use of

large basis sets54. The decomposition of the frozen energy presented in this work likewise has

a meaningful basis set limit, and a discussion of the basis set convergence of these new terms
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for two sample systems, Ne dimer and water-Cl−, can be found in the supplemental material

at URL.84 For accurate evaluation of interaction energies at long range, unless otherwise

specified, the (250, 590) grid (250 radial shells with 590 Lebedev angular points in each) is

used to compute the exchange-correlation energy, while (75, 302) is used for the VV10 NLC

functional.

Unless otherwise noted, the coordinates investigated correspond to the rigid displacement

of monomers relative to the ωB97X-V/aug-cc-pVQZ equilibrium structure. No corrections

for BSSE were performed in this work. While our new method applies to an arbitrary

number of fragments as well as the many-body expansion thereof, we restrict ourselves to

dimer applications where chemical intuition is strongest and the distance-dependence of each

term can be easily manifested.

B. Neon dimer

To validate our frozen decomposition scheme, especially the tentative choice of HF for the

DFXC functional, we first investigate the Ne dimer whose long-range interaction is entirely

dispersion. Indeed, the binding is almost completely due to the frozen energy. Due to the

grid sensitivity of this particular system, we upgrade the grid for the XC functional to (500,

974) and the grid for the non-local correlation functional to (99, 590).

Figure 1 shows how the frozen energy (black) is decomposed into three terms based on

the new scheme (solid) and two terms based on the classical scheme (dashed). A sharp

contrast between these two schemes can be observed. The classical Pauli term transitions to

attractive at 2.85Å separation, even shorter than the 3.0Å equilibrium distance, which is in

essence incorrect. By contrast, the Pauli repulsion contribution evaluated by the new scheme

stays repulsive in the entire region. The classical electrostatic term is slightly attractive, and

rapidly decays to near zero for R> 3.0Å. The electrostatic contribution evaluated by the new

scheme, however, is surprisingly attractive.

To understand the results for the electrostatics, we plot the differences in the fragment

densities that are used to compute the new and classical electrostatic terms in Figure 2.

This plot displays the characteristic density deformations that occur upon formation of the
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FIG. 1: Decomposition of the ωB97X-V/aug-cc-pVQZ frozen energy (FRZ) for the Ne

dimer based on the new method ((II.10) and (II.11): ELEC, PAULI, DISP, FRZ(DF))

compared with the classical approach ((I.4): CLS ELEC, CLS PAULI).

antisymmetric product of monomer wavefunctions that have been discussed by others21.

Density is depleted from the region between the monomers and increased near the nuclei.

Since we have divided the initial supersystem wavefunction into monomer contributions,

we are able to visualize the deformation in each monomer. Figure 2 clearly reveals that

each fragment develops density close to the nuclei of the other, and this significant charge

penetration effect is the key origin of the attractive electrostatics at short-range. This charge

penetration effect is likely a consequence of the orthogonality constraint, (II.2).

To verify this, we compute the deformed fragment densities using two alternative schemes:

(1) using symmetrically orthogonalized isolated fragment MOs (the old fragment tags still

hold after orthogonalization) to construct P̃A for each fragment (the initial guess used in

optimizing (II.1)–(II.3)); (2) using the orthogonalized fragment densities that maximize their

self-repulsion energies, which is essentially performing Edmiston-Ruedenberg (ER) localiza-

tion for fragment densities85. In the second case, the original objective function (II.1) is

replaced by

Eortho
J,frag = max

{P̃tot,A}

∑
A

∑
µνλσ

P̃ µν
tot,A(µν|λσ)P̃

λσ
tot,A (III.1)

where P̃tot,A = P̃α,A + P̃β,A and the constraints, (II.2) and (II.3), still apply.

The resulting electrostatic energies evaluated using (II.5) are plotted in Figure 3 for all
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FIG. 2: Contour plot of the change in ωB97X-V/aug-cc-pVQZ density for two interacting

Ne atoms, at RNe-Ne = 2.5Å. Values plotted are the differences in the total electron density,

integrated to a plane (∆ρA(x, y) =
∫
dz∆ρA(x, y, z)), for each fragment, A, upon going

from the optimal isolated fragment density matrix to that of the fragment in the initial

supersystem wavefunction (P̃A). Contours are evenly spaced at 0.01 e−/Å3 with positive

contours (density enhanced) solid and negative contours (density depleted) dashed. Dots

indicate the positions of nuclei.

four definitions. Despite their different choices for the objective function, all schemes with

the orthogonality constraint enforced yield a considerably more attractive electrostatics term

compared to the classical scheme. Only minimal differences exist between them, and the

objective function based on energetic optimality, (II.1), gives slightly less attractive results

than its alternatives, mainly because of its variationally minimized kinetic energy pressure

term. We hence conclude that the more attractive electrostatic term in the new scheme

originates from the constraint of partitioning the initial supersystem density matrix into

strictly orthogonal fragment densities. It does not seem that fragment subspaces meeting

these criteria can be constructed without such density tails.

While robust to its exact definition as established above, the new electrostatics term

does behave counterintuitively, both in terms of distance dependence and magnitude, when

the density distortions that are a consequence of electron antisymmetry are large. We thus

alternatively report the dispersion-free frozen term defined as the sum of Eelec and EPauli
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FIG. 3: The contribution of electrostatics to the Ne dimer interaction evaluated based on

equation (II.4), with fragment densities that are (i) fully optimized based on (II.1)–(II.3)

(solid green), (ii) localized with an Edmiston-Ruedenberg (ER) scheme (blue),

(iii) symmetrically orthogonalized (SO) (violet), in the strongly interacting region

(2.5Å–3.5Å). Values evaluated with the classical scheme are also plotted (dashed green) for

comparison.

in these scenarios (the grey curve in Figure 1). It is repulsive in the plotted region but not

nearly as strongly as the new Pauli term. In this neon dimer case, it roughly corresponds to

the repulsive van der Waals (vdW) component of classical force fields.

Dispersion is not separated in the classical scheme and thus contributes to the classical

Pauli term. By contrast, in the new scheme, with the assistance of DFXC, the attractive

dispersion contribution is separated out (as the light blue curve in Figure 1). The long-

distance R−6 asymptotic behavior of the new dispersion term is confirmed by the log-log

plot from 5Å to 10Å in Figure 4b. The decaying behavior of new and classical Pauli terms,

as well as the FRZ(DF) term and the attractive electrostatic term discussed above, are

displayed in Figure 4a (logE vs. R). The new Pauli and electrostatic terms exhibit almost

synchronous exponential decay although they have opposite signs, which further confirms

the necessity of using the FRZ(DF) term (it decays exponentially when R < 4.5Å as well)

in this case. On the other hand, the classical Pauli term only shows exponential decay at

compressed distances due to its contamination by what are truly dispersion interactions at
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greater separations.

Overall, the energy components of the frozen energy computed by the new scheme behave

as anticipated in Sec. II B. Choosing Hartree-Fock as the DFXC functional is evidently com-

patible with the dispersion-corrected range-separated hybrid ωB97X-V functional employed

here.

C. Ammonia Borane

The strongly interacting ammonia borane complex is dominated by the non-frozen con-

tributions: induced electrostatics and charge transfer. Nonetheless, its frozen interaction is

of interest because both monomers have permanent dipole moments, which make a consid-

erable contribution to the interaction energy. Also, with a rather short value of Re (1.65Å),

and thus large inter-monomer overlap, there may be interesting differences between the new

and classical frozen energy decompositions.

The decomposition of the frozen orbital interaction by both the new and classical schemes

is shown in Figure 5. The energy scales are large due to the strength of the interaction at the

distances considered. On this scale, the magnitude of the dispersion contribution is relatively

small. As a result, the dispersion-free frozen term, FRZ(DF), differs only minimally from

the frozen energy to be decomposed. Most strikingly, relative to the classical model, the

new scheme again offers a qualitatively different description of the permanent electrostatic

interaction at compressed distances. Opposite to the Ne dimer case, the new electrostatic

term is less attractive by 150 kJ/mol at RN-B=1.65Å and becomes repulsive at highly com-

pressed distances (RN-B=1.00Å) while the classical electrostatic term is still becoming more

attractive upon compression at that separation.

To better understand the origin of this dramatic difference in evaluated permanent elec-

trostatics, we plot the change in the fragment densities (Figure 6) just as in the previous

example. While there is some increase in ammonia density (red) near the borane nuclei

due to the orthogonalization tails, the major effect is relocation of ammonia charge from

near the boron nucleus to a region much closer to the nitrogen atom, resulting in greatly

diminished charge interpenetration and increased shielding of nuclei relative to the classical
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frz show exponential decay

with distance. The classical Pauli term changes

sign due to being contaminated with dispersion.
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for the dispersion term computed by the new

scheme. A least-square fit establishes R−6

asymptotic behavior in the long range.

FIG. 4: An assessment of the long-range decay of EDA terms computed with

ωB97X-V/aug-cc-pVQZ for the Ne dimer. Terms that are not uniformly signed throughout

the coordinate are split into attractive(-) and repulsive(+) portions.
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approach. The result is thus an overall diminished electrostatic interaction. Because the

classical electrostatic interaction is considerably more attractive, the corresponding classical
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FIG. 5: Decomposition of the frozen energy for the rigid dissociation of the ammonia

borane complex along the N-B coordinate, relative to the ωB97X-V/aug-cc-pVQZ

optimized geometry (with C3v symmetry, equilibrium RN-B = 1.65Å). Energy terms

evaluated by the new scheme (ELEC, PAULI, DISP, FRZ(DF)) and the classical approach

(CLS ELEC, CLS PAULI) are compared.

FIG. 6: Contour plot of the change in density for NH3 (red) and BH3 (blue) in the

ωB97X-V/aug-cc-pVQZ optimized ammonia borane complex rigidly translated to RN-B =

1.65Å (near Re). Contours are evenly spaced at 0.2 e−/Å3, and other details are as in

Figure 2.
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Pauli repulsion term is also much larger in magnitude despite its inclusion of dispersion

contributions to binding.

Through this case, we see that the relative magnitudes of the new and classical elec-

trostatics terms are affected by two factors with opposite consequences: the localization of

fragment electron densities (more shielded nuclei and diminished charge interpenetration),

and the formation of orthogonalization tails near the nuclei on other fragments (enhanced

interfragment nuclei-electron attraction). The interplay of these two factors can lead to very

different outcomes in different chemical systems, as we see in comparing ammonia borane to

the neon dimer.

D. Water-Na+

The decomposition of the frozen energy for water interacting with Na+ as a function of

rigidly dissociating the complex along the RO-Na coordinate appears in Figure 7. The binding

is dominated by the frozen term, especially the contribution of permanent electrostatics,

which is the primary attractive interaction near equilibrium and beyond. Dispersion is

relatively insignificant as expected. By contrast with Ne2 and ammonia borane, there is

only a slight difference in the new and classical electrostatic terms around Re (13 kJ/mol at

RO-Na = 2.25Å). The difference between these two terms increases to a maximum of only 43

kJ/mol (or about 20% of the magnitude of the new electrostatics) at 1.70Å.

The differences in the densities used to compute the new and classical electrostatic terms

appear in Figure 8. We note that the density difference contours are drawn at intervals of

one quarter the size compared to those used for ammonia borane above. There is diminished

density distortion in this cationic system with its fairly compact density due to less inter-

monomer occupied orbital overlap. Again, density is generally relocated from the inter-

monomer region closer to the nuclei with some tails developing near other nuclei. The

increase in sodium density (red) both near the oxygen atom of water (blue) as well as on

the opposite side of the sodium atom from water (the Na nucleus is less shielded) may be

the reason for a more favorable electrostatic interaction energy as computed by the new

scheme around the equilibrium separation. The decrease in the difference between the two
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FIG. 7: Decomposition of the frozen energy (FRZ) for the rigid dissociation of H2O-Na+

complex along the O-Na coordinate, relative to the ωB97X-V/aug-cc-pVQZ optimized

geometry (with C2v symmetry, equilibrium RO-Na = 2.23Å). Energy terms evaluated by the

new scheme (ELEC, PAULI, DISP) and the classical approach (CLS ELEC, CLS Pauli)

are compared.

electrostatic energies for very compressed geometries can be seen as the negation of this effect

by the generally less extended electron density in the new scheme relative to the classical

approach.

Due to the minimal distortion of the density in the supersystem relative to the isolated

subsystems, the differences in the new and classical Pauli repulsion terms are likewise not

appreciable, with approximately half of the difference in the short range and the entire

difference in the long range explained by the presence of dispersion interactions in the classical

term. For this reason, to report the combination of the electrostatic and Pauli energies

here turns out to be rather unnecessary. Plots of the asymptotic distance dependence of

electrostatics show the expected R−2 charge-dipole behavior, and the characteristic R−6

decay of the new dispersion term. See supplemental material at URL for more information

on these plots.86
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FIG. 8: Contour plot of the change in density for Na+ (red) and H2O (blue) in the

ωB97X-V/aug-cc-pVQZ optimized water sodium cation complex rigidly translated to RO-Na

= 2.25Å. Contours are evenly spaced at 0.05 e−/Å3, and other details are as in Figure 2.

E. Water-Cl−

The water-Cl− complex contains an anion with a considerably more diffuse density than

that in the cationic system investigated above. Hence we expect a larger deviation from

the decomposition produced by the classical approach due to the greater inter-fragment

occupied orbital overlap and thus greater density distortion upon formation of the frozen

wave function. The decomposition of the frozen energy for this system rigidly dissociated

along the H-Cl coordinate is shown in Figure 9. The comparatively bigger difference between

the frozen energy and the total interaction indicates increased importance of polarization

and charge transfer in this case relative to the cationic system investigated above. However,

the frozen interaction is still the most favorable at equilibrium and beyond.

In the long range (roughly > 2.5Å), electrostatics accounts for most of the binding inter-

action via both new and classical schemes. In Figure 9, we see that indeed the electrostatic

terms differ more in this diffuse system than for water-Na+, especially when one considers

the reduced scale of the total interaction energy. Near Re, the electrostatic terms differ by

about 40 kJ/mol (at 2.15Å). They differ by a maximum of 66 kJ/mol (about 40% of the

classical electrostatics) near 1.65Å.

The fact that the new electrostatic term is more attractive in the overlapping regime
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FIG. 9: Decomposition of the frozen energy (FRZ) for the rigid dissociation of H2O-Cl−

complex along the H-Cl coordinate, relative to the ωB97X-V/aug-cc-pVQZ optimized

geometry (with Cs symmetry, equilibrium RH-Cl = 2.15Å). Energy terms evaluated by the

new decomposition scheme (ELEC, PAULI, DISP) and the classical approach (CLS ELEC,

CLS Pauli) are compared.

is due to the fragment density changes occurring on formation of the initial supersystem

wavefunction as illustrated in Figure 10. The usual density depletion in the inter-fragment

region occurs; however, the water density (blue) primarily increases between the hydrogen

(the one closer to Cl−) and oxygen atoms, leaving the proton generally less shielded from the

anion. Again, the difference between them decreases at very compressed geometries where

the new electrostatic term becomes less attractive faster due to the different treatment of

the interpenetration of charge in the two methods.

As in the water–Na+ case, the Pauli term computed by the new scheme turns out to

be more repulsive at all separations, and the maximum difference takes place at 1.6Å (90

kJ/mol). Approximately half of the difference in Pauli repulsion terms at short and mid

range and the entire difference in the long range is caused by the inclusion of dispersion

in the classical Pauli term. The enhanced contribution of dispersion to the total binding

compared to the former case is also characterized by Figure 9. The dispersion-free frozen

term correspondingly differs more with respect to the entire frozen energy than it did in the

water–Na+ case.
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FIG. 10: Contour plot of the change in density for Cl− (red) and H2O (blue) in the

ωB97X-V/aug-cc-pVQZ optimized water chloride complex rigidly translated to the

essentially equilibrium RH-Cl = 2.15Å. Contours are evenly spaced at 0.1 e−/Å3, and other

details are as in Figure 2.

F. Naphthalene Dimer

The naphthalene dimer has several low-lying conformations87,88, including the parallel

displaced and T-shaped conformers illustrated in Figure 11. In this section we compare

the new and classical decompositions of the frozen interaction energy (which dominates the

total interaction energy) for these two naphthalene dimer configurations as a function of

rigid translation of the monomers inwards and outwards from their equilibrium geometries.

FIG. 11: Equilibrium geometries of naphthalene dimer with two configurations (left:

parallel-displaced; right: T-shaped)

Figure 12 shows ωB97X-V/def2-QZVPPD results for the parallel-displaced naphthalene

dimer (displacements away from Re = 3.51Å) using the geometry from Ref. 88. The (99, 590)
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FIG. 12: Decomposition of the frozen energy for the rigid dissociation of the

parallel-displaced naphthalene dimer. The intermolecular separation is measured by the

interplanar distance. Upper: short-range (3.0–4.25Å); Lower: long-range (4.5–8.0Å).

and SG-189 grids were used to integrate the XC and NLC functionals, respectively. Terms

in the short range and long range are plotted separately with different energy scales to show

the long range with adequate resolution. The frozen interaction is the largest contribution

to the binding energy at all separations, while the non-frozen components gain somewhat

increased importance in the compressed region.

Let us first consider the long-range (lower panel of Figure 12). The new frozen energy

decomposition reveals that the dispersion interaction is the most important stabilizing force.

The value of the new scheme is clear since inspecting the long range (lower panel) shows

that the classical Pauli is entirely dispersion, while the new Pauli term behaves qualita-

tively correctly. Electrostatics at long-range (> 4.75Å) are repulsive by both new and old

schemes, corresponding to an unfavorable quadrupole-quadrupole (Q-Q) interaction, and
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the dispersion-free frozen interaction approaches this limit also. Since the Q-Q interaction

decays more slowly (R−5) than dispersion, at R > 10Å (beyond the plotted region), its mag-

nitude becomes larger than dispersion (+0.26 vs. −0.19 kJ/mol), and thus the net interaction

becomes repulsive.

In the short-range (upper panel of Figure 12), the new electrostatic contribution is signif-

icantly more attractive than its classical counterpart, which has also become net attractive.

As for the Ne dimer, discussed previously, the difference is most exaggerated at the most

compressed distances where density deformations upon the formation of the frozen wave-

function are largest. On the other hand, the dispersion-free frozen term in the overlapping

regime gives a moderately repulsive potential, which seems to be a reasonable estimator for

the effective van der Waals interaction in models where electrostatics are assumed to be zero

(i.e. as might be the case in some simple force fields).

Results for the T-shaped configuration of the naphthalene dimer (Figure 11, right) are

shown in Figure 13, as a function of displacement away from the equilibrium geometry

(Re ∼ 5Å defined as the centroid distance between two monomers) from Ref. 90. Since fewer

atoms are in close contact in this configuration, at equilibrium we see diminished magnitudes

of both the short-range repulsion (characterized by the dispersion-free frozen term) and

dispersion compared to the parallel-displaced case. Thus despite favorable electrostatics,

the net effect is slightly weaker binding at equilibrium.

The long-range electrostatics for the T-shaped configuration turns out to be attrac-

tive, which can also be understood from the electrostatic potential around the naphthalene

molecule. At 10Å separation, the attractive permanent electrostatics and the dispersion

interaction contribute almost equally to the binding (Eelec= -0.24 kJ/mol, Edisp= -0.28

kJ/mol). Their combined effect makes the T-shaped configuration more strongly bound

than the parallel-displaced naphthalene dimer at large intermolecular separations, although

it is less favorable at equilibrium.
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FIG. 13: Decomposition of the frozen energy for the rigid dissociation of the T-shaped

naphthalene dimer. The intermolecular separation is measured by the centroid distance

between two monomers. Upper: short-range (4.5–6.0Å); Lower: long-range (6.0–10.0Å).

IV. DISCUSSION AND CONCLUSIONS

In this work, we have presented a new scheme, (II.10), for the identification of permanent

electrostatic, Pauli repulsion, and dispersion contributions to binding in Kohn-Sham density

functional theory calculations of intermolecular interactions. Together these terms make up

the “frozen” interaction which excludes the polarization and charge transfer effects of the

total interaction. A notable difference between this scheme and what we have termed the

classical approach is that antisymmetric electronic wavefunctions are used for the evalua-

tion of all terms. This is accomplished by identifying fragment contributions to the initial

supersystem wavefunction based on a constrained sum-of-fragments energetic optimality cri-
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terion. Dispersion is disentangled from other exchange-correlation (XC) effects with the aid

of a dispersion free XC (DFXC) functional, via (II.8).

We have presented a series of numerical examples that compare results from the new

decomposition against those from the classical scheme for Ne2, NH3-BH3, H2O-Na+, H2O-

Cl−, and the naphthalene dimer, (C10H6)2. These calculations used the ωB97X-V density

functional, together with Hartree-Fock (HF) as the DFXC functional. This combination

yields very reasonable dispersion energies for all examples tested, though there are other

alternatives. The simplest one is to set the DFXC to zero, in which case the dispersion term

becomes the interfragment XC energy, and dispersion is not separated. Another possibility is

to simply remove the VV10 component of the ωB97X-V functional to define DFXC. Further

study is needed to recommend a DFXC functional for other primary functionals, even for

those that add a simple damped C6 potential (i.e. the -D or -D3 type). In the latter case,

the uncorrected functional itself might serve as the DFXC functional. However, the damping

of their contributions in the overlapping regime where interfragment dynamic correlation is

important suggests that testing is still necessary.

The new electrostatic term matches the classical electrostatic term in the non-overlapping

regime, but they differ intriguingly in the overlapping regime, with the ordering depending

on system-specific density deformations associated with the new term. For two dispersion-

bound complexes, the neon dimer and naphthalene dimer, a very interesting result is that

the new electrostatic term is strongly attractive in the overlapping regime, decaying roughly

exponentially with overlap. Detailed analysis for Ne2 shows that this is a consequence of the

orthogonality constraint imposed on the fragment densities, which permits significant charge

penetration from one fragment to nuclei of the other.

The sum of the new electrostatics and the new Pauli repulsion is also used to define a

dispersion-free frozen energy, EDF
frz . It is worthwhile to examine EDF

frz because both the new

and classical electrostatic terms can behave in counterintuitive ways in the strongly overlap-

ping regime. Examples such as Ne2, (C10H6)2 and NH3-BH3 fall into this category. EDF
frz can

be interpreted as an effective van der Waals interaction (incorporating electrostatics).

The new Pauli repulsion term, (II.9), consists of a positive semidefinite kinetic energy pres-

sure term, which is variationally minimized, plus interfragment DFXC interactions, which
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are negative semi-definite. In the examples presented, the new Pauli repulsion is overall

positive, and it decays roughly exponentially as expected. By contrast, the classical Pauli

term includes contributions from what we have separated out as the dispersion term, which

causes the classical Pauli term to become attractive and describe dispersive interactions in

the long range.

In summary, with the dramatic advances in density functionals for accurate treatment

of non-covalent interactions7,16,17, it is important that energy decomposition analysis can

separate the three contributions of the frozen interaction, permanent electrostatics, Pauli

repulsion, and attractive dispersion interactions. The new approach proposed and tested

here provides a useful contribution towards this goal. It may also aid in the development

of classical force fields (both functional forms and specific parameters) based on accurate

density functional theory calculations.
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