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Abstract

A method for the analysis of the plastic deformation of a
circular plate subject to projectile impact is presented based on
the assumption that the material is rigid viscoplastic, obeying a
von Mises yield condition and associated flow rule. The predic-
tions of the analysis are compared with the results of experiments
in which projectiles of different masses are fired at various veloc-
ities at clamped plates of mild steel. The plétes used in the ex-
periments are such that substantial plastic strains can develop
while the maximum displacements are of the same order as the thick-
ness. The analytical method presented predicts the behavior of the
plates to within the accuracy of the tests. The material constants
which fit the results are in accord with those obtained from differ-

ent tests.



I. Introduction

One of the more interesting problems of structural mechanics
is the analysis of the behavior of structural systems which are
subject to impulsive loading and there are increasing demands for
the design of structural systems which will withstand high stresses
and often substantial plastic deformations for very short periods
of time. In general a complete description of the history of stress
and strain could only be obtained by massive and expensive computa-
tion and even if available there are problems of interpretation, and
some question as to the applicability of material properties obtain-
ed from conventional tests to such situations. There exists there-
fore a two fold need. On the one hand a rapid method is needed for
the prediction of the major features of the dynamic structural re-
sponse in the plastic range, and on the other hand an experimental
method is needed for obtaining relevant data which cannot be obtain-
ed by conventional tests.

In this paper we are concerned with the dynamic plastic be-
havior of a particularly simple structural system namely a clamped
circular plate subject to ilmpact by a cylindrical projectile. We
will demonstrate the application of a particular method of analysis
showing how the method predicts the overall behavior of the system
in good agreement with experimental results which are also reported
here. Further, we will show that the experimental model provides a
simple method for the determination of the dynamic biaxial plastic
behavior of a material at strain rates of the order of 100-300 sec_l,
this being intermediate between the psuedo-static biaxial test meth-

od of Lindholm and Yeakley [1] for strain rates below 10 sec—l and

.



the higher strain rates of stress wave methods which are however
uniaxial stress (see for example [2]) or uniaxial strain (for ex-
ample [3]).

The problem of the dynamic deformation of a thin plate on the
basis of rigid perfectly plastic rate independent material behavior
has been studied by a number of authors. The responses of a simply
supported plate to an ideal impulse and a rectangular pulse were
examined by Wang [4] and by Hopkins and Prager [5] respectively.
Recently Florence has obtained the response of a clamped plate to a
rectangular pulse over the entire surface [6] and over a central re-
gion [7]. 1In all of the above cases a Tresca yield condition was
assumed.

Experimental studies corresponding to the above theoretical
analyses provide results which are considerably different from the
theoretical predictions (see for example [8]); the differences have
generally been attributed to the effects of membrane forces which
are neglected in the analyses. However all these solutions were
based on the assumption that the yield stress of the materiél was
independent of strain rate, but the plastic behavior of mild steel,
the most commonly used structural material, is very sensitive to
strain rate. Furthermore the flow rule associated with the Tresca
yield condition leads to velocity fields which are unrealistic as a
result of the piecewise constant direction required of the strain
rate vector. It is possible then that some of the discrepancies
between theory and experiment might be eliminated by inclusion of
rate effects and the use of a von Mises yield condition.

In the present paper the behavior of the plate is analyzed



on the basis of a rigid viscoplastic material obeying the von Mises
yield condition and associated flow rule. The system of equations
resulting from this material assumption is non-linear but a method
of linearization used by Wierzbicki [9] in a problem of impulsive
loading over the entire surface of a plate can be used also for the
plate subject to projectile impact [10]. 1In this solution the
effects of changes in geometry and membrane action are neglected but
as the displacements of the plates in the experiments rarely exceed
the plate thickness this is not an unrealistic assumption.

The closed form solution given here is similar to that given
in [10] but has wider application. An approximation to the closed
form solution was developed in [10] but is valid only for projectiles
which are massive in comparison to the plate. In this case the pro-
jectiles are quite light in comparison to the plate and for such

cases a different approximation has beén developed.



TII. Theoretical Considerations

(i) Visco-plastic Stress Strain Relations

The uniaxial stress strain behavior of mild steel at high
strain rates has been studied for many years and it is generally
recognized to be very rate sensitive. For example, the material
used in the tests described in this/paper has a static yield
strength in simple tension of 35,000 psi (at a strain rate of 10‘3
sec—l) and a yield strength of 58,000 psi at a strain rate of
3 x 102 sec—l. The uniaxial behavior may be approximately repre-

sented by a linear relationship between stress O and plastic

strain rate ¢ of the form

2
e = — (o-0)/0 (1)
V3T ( O)/ ©

where GO is the static yield stress in simple tension and T is
the viscoplastic relaxation time of the material which for the above
values of G,Oo and € 1is 2.5 msec.

Generalizations of Equation (1) to non-uniaxial stress have
been considered by a number of authors; in particular Perzyna [11]
and Craggs [12] from different basic premises have obtained several
forms of multiaxial stress strain relation. The simplest form which
reduces to Equation (1) for uniaxial loading, and which will be used

here is

1/2
e = L (Skzskzzg) i ek (2)
ij T k (s. s /2)1/2
k27 kR
2
. . . . .
applicable when 1/2 Skﬁsklwk In Equation (2) Eij is the strain

rate tensor and sij the stress deviator, T is as before the relax-
ation time and k = GO///§ the static yield dtress in simple shear.

The material is taken as incompressible for plastic deformations

4



and the elastic deformations are neglected.
The physical basis of Equation (2) is the assumption that the

material obeys the von Mises criterion

2

1/2 = k

®13%1;
and its assoclated flow rule for static deformations and an expand-
ed von Mises yield condition and assoclated flow rule for dynamic
deformations, and further the viscosity of the material requires
that the strain rate depend on the difference between the expanded
and the static yield condition. The expansion of the yield con-
dition at’ any time and any location in the body is given by squaring

both sides of Equation (2) leading to

(1/2s, .s )1/2

s = x[1+t(1/2e, . )2 (3)
i3 743 ij

L

The flow rule asserts that the strain rate should be normal to the

yield surface at any time. In the nine-dimensional space of the

stress deviator the yield condition is a hypersphere and the require-
. . 1/2 .

ment of the flow rule is met by noting that Si%/QSkzskﬂ) is a

radial unit vector in this space.

(1i) Governing Equations of Thin Plate Theory

In setting up the governing equations of the viscoplastic
plate all guantities are assumed to be functions only of r the dis-
tance measured from the plate center and of the time t . The sur-
face tractions p or p, eare taken positive in the direction of
positive transverse displacements of the middle surface. The velocity
of points of the middle surface is v(r,t). The plate radius is R,
the thickness is 2h and the mass density per unit of area of the

w5



plate middle surface is M
The constitutive relations of Equation (2) when written in
terms of the radial and circumferential moments Mr and M@ and

the corresponding curvature rates Kr and K¢ take the form (see

for example [13])

o _@;( ~ M : 2Mr—Md)
r T ot ¢ /2 > M

Mr—MrM¢+ M¢ o)

s (L)
i - M 2M¢-Mr

K¢ T ont (l 5 5 )

/MT—MTM¢+ My M
2

where M = 0 h
o) o
The "kinematics of the deformation require that the rates of

curvature Kr and ‘K¢ be related to the velocity Vv through

I T T ——v,r/r (5)

Following the method described in [10] we linearize the con-
stitutive relations by assuming that the stress trajectory in the
nine dimensional space of the stress deviator of any particle is a

. . . 1/2 _
straight line. Thus the quantlty Sij//stﬁst) = const. and the

stress strain rate relation becomes

e,, = = (s”—-é'“/k (6)
i T iJ 1

2

where §.. is the state of stress on the surface 1/2 s..s..
oy iJ i

This condition is satisfied strictly only at the center of the plate
where K, = K¢ and at the edge of the plate where K¢ = 0 but devia-

tions from the straight line may be small at intermediate points.

_6-



The equations relating moments and curvature rates corresponding to

(6) are
/3 - -
<. = E‘SI? ( 2Mr-M¢—(2Mr- Mq)) ]/MO

V3 - -
<y = —2-}3; ( 2M -M, (2~ ) )/MO

where now Mr and M are moments satisfying the initial yield con-

¢
dition M2 - MM, + M2 = M2
T rd ol o

Using the above relations and Equation (5) the governing equa-

tion of the plate velocity v 1is

i 373 1 . -
= ——2e = - + p-
Av ot 7 | ) Mo |, T PHVLy (8)
_ o r
The pressure p in this case is zero except of the region of con-
tact of the plate and the projectile and if the projectile is soft-

er than the plate or vice versa this may be taken as constant over

the contact area of radius ro and given by

2
T = -
r. P Mv,t
where M 1s the mass of the projectile.

1 - —
- {i (er),r - M‘b} .

is a pressure distribution and corresponds to that at the static

The quantity

collapse condition of a rigid perfectly plastic plate obeying the
von Mises yield condition. We denote the static pressure distribu-
tion corresponding to the dyriamic loading p by ’po . I1f for ex-
ample p 1s a concentrated point load at r = 0O then P, is a

/

concentrated point load of magnitude MWMO// /3 . TFor other cases

-7



of p the appropriate p, can be obtained by reference to Hopkins
and Wang [14].

The problem thus reduces to solving the equation

Iy 3v3 M
v o+ pnr v+ — v |, _o) T “Pq
o mr
o
o<r<r (9)
L 3/3
A'v + Eﬁ?ﬁ; WV, 0 . ro<r5R

subject to an initial specification of v and to the boundary con=-
ditions
v(R,t) = 0 v,r(R,t) = 0 (10)

and the regularity conditions

lim v < o s lim V’rr <
(11)

r-0 . -0

if the loading is not concentrated, the second of which is modified
if it is.

(iii) Ceneral Solution

In developing the subsequent analysis it is convenient to intro-

duce the following dimensionless quantities

2
u = 2hTv 0 _/;/ 8 = ¥7’2 q = 3pOR
- s - > - -
@RQ R uR 3 o QMO

in terms of which Equation ('9) takes the form

B

L
A'u + ou,, = O 5 U,y

TTpo

. o_ a4, Oso<po
N (12)

= 0 po<p<l




3/§R§U

where O = R is a characteristic time of the system and the

Au represents differentiation with respect to p© . The solution of

this equation may be written in the form

oo _kn}/é
u(p,t) = I unwn(p)e - £ (p) (13)

e}
n=1

where wn(p) igs the solution of

L b S .
Ay - AW = AL . v (00 5 p<py
Po (14)
= 0 5 po<p
satisfying the boundary conditions wn(l) = 0 = wn p(l) and reg-
ularity conditions at o = 0 and fo(p) satisfies
oo L
b s = % P<fq
(15)
= 0 P <P
and the same conditions at p = 0 and 1. The solution for wn(p)
takes the form
1 2 3 )
vle) = A g (Ap)+a Y (Xp)+a I (Ap)
i
+a Ko (Ao) , poceclo,
and (16)
Vip) = 23 (e +a% 1 o) —Ev (o) , o<
n n o n n o 'n 1Tp2 n ’ o)




The six constants Ai are evaluated in terms of wn(O) by use of
the boundary conditions at p =1 and by continuity of wn and
its derivatives up to the third order at p = po . Then with Ai s
A as linear terms in wn(O) substitution of o = 0 in the sec-
ond of Equations (16) gives the equation for the eigenvalues An
The indeterminacy of the Ai is removed by setting wn(O) =1,

The solution for fo takes the form

3 L

* 2 fn p + B p2 n p

£ (p) = B + B p2 + B

and (17)

6 2 L
fo(p) = B +B° p° + a, p///gh

with the constants being determined as above.

In many cases it will be adequate to assume that the radius of
the projectile is negligible in comparison with that of the plate in
which case p_ > 0 . The problem has been examined in [10] and the
results obtained there are as follows.

The eigenfunctions wn(p) are

1 XEB 2 )
b (o) = = [Jo(knp) + IO(Aan——B— YO(an) + =K (A P)
(3
—-51 [7 (A p) =1 (3 0)]
where (18)
L ) 50y - A2 B/ Ty (0 ) + 2/m k(A )]
n ' J (An) - IO(A )

-10-



and the corresponding eigenvalues An are solutions of the equa-

tion

The roots of the eigenvalue equation as functions of

B are shown in

Fig. 1, including a more expanded scale for the first eigenvalue over

the range of interest here.

The eigenfunctions for the case where the mass is concentrated

at the point po = 0 are orthogonal in the sense that

2
(Wnawm) = lwml . n=m
(20)
= 0 , n#m
if we define (f,g) by
’ 1
(f,g) = 2m of(plglp)ap + Br(0)g(0) (21)
O
and denote (f,f)l/2 by |
The initial condition that
u(p,0) = 0 , p#0
(22)
= u*, p=0
where u¥ = —3}% V with V the initial velocity of the projectile
V3R

allows the determination of the u with the resulting solution in

the form

-11-



h/// u///
-2 t/0 -A_t /0
0 Bu* ‘ n (fo:wn) n

ulp,t) = 2 5 e - 5 (1-e ) b, (o)
T ™
or alternately (23)
u
-A_t/a
. Bu¥* + (fo:wn) n/
ulp,t) = 2 — e b (p) - £ (p)
v, |
n=1

As is seen from Fig. 1, the first eigenvalue for the values
of B covered by the experiments is about 3, the second close to 6
and the third to 9. Since they appear in the form Xi in the expo-
nential term and alsc in the denominator in the time-wise integrated
form of Equation (23) for the deflection it is clear that for any
quantities of interest at times away from © = 0 very few terms of
the series are needed, and in fact to within estimated accuracy of
experimental measurements given in this paper one term only would be

adequate.

12—



ITI. Experimental and Results

The experimental set up is shown in Fig. 2. The target
plates which were 5" diameter were firmly clamped against the
ground face of an angular supporting die with a 4'" diameter hole
leaving a free area of L" diameter and a 1/2 " deep peripheral re-
gion for the clamping action. The whole assembly was bolted to
the bed which also supported a rifle with a 0.454" diameter bore.
The rifle was aligned so that the projectiles struck the middle of
the target area.

The circular target plates, 5" dia. x 0.250" = 0.0005", were
made from a C1l012 mild steel and used in the as received normalized
condition, with hardness Rockwell B 80-81. Two sizes of mild steel
(Rockwell B 88-90) cylindrical projectiles were used with masses
31 gm and 10 gm. The dimensions are shown in Fig. 2. The impact-
ing faces of the projectiles had 10" diameter balled ends to en-
hance interfacial contact between the plate and the projectile dur-
ing deformation and also to maintain contact should any slight
tipping occur during flight.

The velocity of the projectile impact was varied by changing
the size of the powder charge according to the calibration curve
shown in Fig. 3. This curve was made available by the Stanford Re-
search Institute. The projectile velocity was not measured directly
but inferred from the known size of the charge and the calibration
curve Fig. 3.

A series of tests were performed in which plates were impacted

by two types of projectiles over a range of velocities and the

-13-



results are presented in Table 1. The range of velocities was
limited at the high end by actual fracturing of the plates, and at
the low end the projectiles either fell during the trajectory or
there was incomplete burning of the powder due to the smallness of
the charge. Only tests in which the projectiles hit the center of
the plate were recorded. The profiles of the deformed plates were
measured using a transducer and aﬁ x-y plotter to obtain the final
central deflection, ¢ , which was measured to an accuracy of

* 0.0005". The experimental relationship between the final plate
deflection and the energy of the projectile is shown in Fig. L4 for
the two projectile masses.

The plastic deformation properties of this Cl012 mild steel
were determined at two widely different strain-rates to determine
the visco-plastic constant. Uniaxial tensile tests were performed
at a strain-rate of ZLO_3 sec_l and the lower yield stress was deter-
mined as 35,000 psi. The lower yield stress was measured at a
strain-rate of 3 x lO2 sec_l using a previously calibrated instru-

mented Charpy test [15] and was determined as 58,000 psi.

~1h-



- IV. Discussion of Results

It is clear from Fig. 4 that the permanent deflection of the
plate cannot be related to the energy in a simple manner which is
independent of the projectile mass. Replotting the data in terms
of momentum produces no better correlation between the results for
the different masses. It i1s of interest to determine whether the
general solution presented in Section II, (iii) can produce such a
correlation of the data.

Either form of Equation (23) may be used but as it is obvious
from Fig. 4. that the method of determining the velocities from the
charge size has led to considerable scatter of the results, it is
adequate to consider, for times away from t = 0, an approximate
form of the general solution.

To obtain this solution we take only the first term n = 1
and further approximate the first eigenfunction wl by the function

fo(p)///fo(o) which we denote by wo . Equation (23) reduces to

the form
—Aut e}
Bu¥ n ,
ulp,t) = ¢ ———— + £ _(0) 0 ¥ (p) e - £ (p) (2k)
lv_| ° ° °
o)
The time tf at which the motion stops, given by u(p,t) = 0 is
o fO(O)
t, = — n < (25)
f n
A fu¥
n + £ (0)
v 12 ©
o

-15-



~and the final deflection & is given by
t

- T
§ % £ (0)
e = uw(0,t) dt = “u Bu = + £ (0) fn | = )
/3 R Mo vl ° Bu*
2ht ° © PRE + £,(0)
LPo
In physical quantities this solution takes the form
3 r 2
5 = 3 E £ m;R £ (0) ghr v, -tn (14 2k2n Vl) (26)
21, BT o /3 B¢ _(0) /3 R°r_(0)

where PO is the static collapse load and Vl is the initial central
velocity in the first mode given by V = BV///WW |2 . In this re~

‘ 0
sult it is clear that the terms dependent on { are Al and Vl

Thus 1f we replot the experimental results as éki h wversus Vl
we obtain a form of plot in which different values of projectile mass
should lie on the same curve. The predicted curve has the form
y = —% [bx - n (1 + bx))
b

which is quadratic for small x and asymptotically linear. Deter-
mination of the two constants a and b allow the determination of
the material constants PO {and hence GO) and T

The data given in Table 1 has been replotted in the manner des-
cribed above and is shown in Fig. 5. It is clear that there is some
scatter in the experimental data due largely to the fact the velo-
cities were not directly neasured by were inferred the calibration

curves Fig. 3. The calibration curves are Vefy steep, particularly

for the 10 gm. projectile so that small changes in the charge and

~16—-



firing conditions can lead to a significant change in the velocity.

In view of the scatter of the experimental points a systematic
method for the derivation of constants from the experimental results
was not carried out. Instead the results were replotted as already
mentioned and predicted curves for reasonable values of PO gnd T
were computed and plotted for comparison.

The quantities used in computing the theoretical curves shown
in Fig. 5 were as follows. TFrom the previously mentioned instrument-
ed Charpy tests T was taken to be 2.5 msecs. From Hopkins and
Wang [14] the static collapse load was estimated to be between 10-11
Mo . TFrom other tests we have Oo = 35,000 psi corresponding to PO

between 5500 1bs and 6000 1bs. The function fo was taken to be

r (p) = l%:— [l~02(1—22n95]

o]

for which

and
Vl = BV//?lhg/{O8 + B)

There is an inconsistency here in that we compute the solution on
the basis of a point load for everything except the static yield
load PO . This is necessary however since the static collapse is
very sensitive to the extent of the locaded area around po = 0, as
is clear from the fact that it changes from 7.25 at p =0 to
about 10 at p = 0.10. The curves obtained from PO = 5500 1b and

6000 1b and T

2.5 msecs. are shown in Fig. 5 and they are in

17~



good agreement with the results to within the experimental accuracy.

A substantial correlation of the data for the two different masses

is achieved by this method of plotting the results and thus theory
does seem to represent the main features of the response. The theory
would however be put to a more severe test if the predictions of the
theory regarding the history of the plate velocity and the time need-~
ed to bring the projectile to rest could be compared with experimental

measurements of these quantities.

-] 8~



V. Conclusion

An approximate method has been presented for the analysis of
a structural model albeit a particularly simple one subjected to a
state of dynamic biaxial plastic deformation. The predictions of
the theory were compared with experimental results and were found
to be in agreement with regard both to the dependence of the final
deflection on the impact velocity and the projectile mass.

The general solution obtained here for the clamped circular
plate could be extended to other boundary conditions with some in-
crease in the algebrailc complexity and could be extended to simply
supported rectangular plates. As far as is known no applications
to other than plates have been made but many possibilities exist.

In addition to the usefulness of the analytical method the
results presented here demonstrate the value of the experimental
method as a technique for obtaining dynamic biaxial material char-

acteristics in the plastic range.

~19-
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TABLE

1

Plate Cha?ge Mass Velocity Eneggy Displacemegg
# Grains M gm V ft/sec. |1/2MVT ft.1B S in x 10
1 7 31 670 L80 200
5 7 31 670 480 210
6 T 31 670 L80 220
LoB 8 31 700 500 190
2 10 31 775 640 320
b 10 31 775 6Lo 280
418 12 31 8Lo 750 350
LoB 1k 31 960 900 L0oo
TA P 10 303 30 10
35A 6 10 500 87 25
364 T 10 750 200 56
Loa T 10 750 200 76
434 7 10 750 200 6l
37A 8 10 960 320 90
LLa 8 10 960 320 80
39A 8 10 960 320 80
Lsa 9 10 1200 500 108
TA 10 10 150k 775 210
LA 11 10 1700 960 184
384 12 10 1950 1300 220
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Fig. 1. Eigenvalues as functions of mass ratioc B.
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