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Characterization of footprint-scale surface soil moisture variability

using Gaussian and beta distribution functions during the

Southern Great Plains 1997 (SGP97) hydrology experiment

Dongryeol Ryu and James S. Famiglietti

Department of Earth System Science, University of California, Irvine, California, USA

Received 22 November 2004; revised 31 August 2005; accepted 15 September 2005; published 29 December 2005.

[1] The behavior of satellite footprint-scale surface soil moisture probability density
functions (PDF) was analyzed using 50-km-scale samples taken from soil moisture images
collected during the Southern Great Plains 1997 (SGP97) hydrology experiment. Under
the observed wetness conditions, soil moisture variability generally peaked in the
midrange of mean soil moisture content and decreased toward the wet and dry ends, while
in the midrange it was more widely distributed. High variability in the midrange is
attributed to the multimodality of soil moisture PDFs, which apparently results from
fractional precipitation within the footprint-scale fields. Single Gaussian, single beta, and
mixtures of two Gaussian distributions were utilized to fit observed footprint-scale soil
moisture distributions. As a single-component density, the Gaussian PDF was shown to be
a good choice, compared to the beta distribution, for representing spatial variability,
particularly under wet conditions. The performance of the Gaussian PDF was greatly
improved by using a mixture of two Gaussian distributions. Implications of this study for
the validating spaceborne remotely sensed soil moisture estimates and for
parameterization of subgrid-scale surface soil moisture content in land surface models are
discussed.

Citation: Ryu, D., and J. S. Famiglietti (2005), Characterization of footprint-scale surface soil moisture variability using Gaussian

and beta distribution functions during the Southern Great Plains 1997 (SGP97) hydrology experiment, Water Resour. Res., 41,

W12433, doi:10.1029/2004WR003835.

1. Introduction

[2] Landscape- to regional-scale spatial-temporal varia-
tions in surface soil water content are important for a range
of hydrological, ecological, and biogeochemical processes.
Proper characterization of this variability is important for
improved understanding of Earth system interactions, and
for enhancing terrestrial process models. For example,
ignoring this variability within large-scale model grids can
cause a substantial bias in the prediction of surface water
and energy fluxes [Crow and Wood, 2002; Nakaegawa et
al., 2000], which in turn can alter predictions of convective
precipitation [Mohr et al., 2003; Pielke, 2001] and yield
underestimates of surface runoff [Bronstert and Bárdossy,
1999; Stieglitz et al., 1997]. Transpiration and plant primary
production [Rodriguez-Iturbe et al., 2001; Porporato et al.,
2001], and the emission rate of mineral dust aerosol [Fécan
et al., 1999] are both nonlinearly related to soil wetness, so
that providing reliable information on soil moisture vari-
ability plays a key role in characterizing biogeochemical
cycling as well as that of water and energy.
[3] Current and future satellite microwave sensors will

have the capability to map regional-scale spatial-temporal
surface moisture variations across the globe [Famiglietti,
2004]. The Advanced Microwave Scanning Radiometer
(AMSR-E), on board the National Aeronautics and Space

Administration (NASA) Earth Observing System (EOS)
Aqua is now providing 60-km footprint-scale soil moisture
estimates for the upper 2 cm of the soil surface for nearly
55% of land areas. The European Space Agency (ESA) Soil
Moisture Ocean Salinity (SMOS) mission will map soil
moisture in the upper 5 cm of the soil surface, with 50-km
resolution and greater global coverage after its launch in
2007. The NASA Hydrosphere State (Hydros) mission is
scheduled for launch in 2010 and will have 0- to 5-cm soil
moisture mapping capabilities at 40-km and 10-km reso-
lutions for 75% of the land surface.
[4] While these sensors will ultimately provide regional-

scale monitoring of spatial patterns of surface moisture
content at the specified resolutions, they will not provide
information on subfootprint-scale variations that are so
important to the processes and interactions mentioned
previously. Understanding this subfootprint-scale spatial
variability is an important step toward enabling the full
utilization of remotely sensed soil moisture data by the
Earth system science community. Further, knowledge of the
subgrid-scale spatial distribution of soil moisture and its
temporal evolution is essential for characterizing ground-
based sampling and in situ network error, which plays a
crucial role in validating satellite soil moisture estimates.
Finally, understanding the spatial-temporal distribution of
subfootprint-scale soil moisture variability will contribute to
improved parameterization of soil moisture dynamics within
land surface models [Entekhabi and Eagleson, 1989; Giorgi
and Avissar, 1997].
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[5] One approach to characterizing the variability at
the subfootprint-scale has been the use of probability
density functions (PDFs). Entekhabi and Eagleson [1989],
Famiglietti and Wood [1991, 1994], Koster and Suarez
[1992], and Stieglitz et al. [1997] have used the PDF
approach to represent the distribution of surface soil mois-
ture in land surface models. While several field studies
[e.g., Famiglietti et al., 1999; Wilson et al., 2003] have
provided some basis for choosing the form of the subgrid-
scale soil moisture distribution, the choice of an appropriate
PDF is not always clear. In previous research, Gaussian
[Crow and Wood, 2002], lognormal [Sivapalan and Wood,
1986; Li and Avissar, 1994], beta [Li and Avissar, 1994],
and gamma distributions [Entekhabi and Eagleson, 1989;
Famiglietti and Wood, 1994] have been assumed to repre-
sent subgrid-scale soil wetness. However, there is no
consensus PDF for subfootprint-scale variability based on
rigorous analysis of available footprint-scale soil moisture
observations.
[6] In this paper, 800-m resolution remotely sensed soil

moisture images, collected by aircraft during the Southern
Great Plains 1997 (SGP97) hydrology experiment, were
used to characterize variations in surface moisture content
within large, 50-km, satellite footprint-scale regions. In
particular, the appropriate form for the footprint-scale soil
moisture PDF, including Gaussian and beta distributions, is
explored. The SGP97 data pointed to the existence of
multimodal PDFs at the footprint-scale. In these cases,
the use of a finite mixture model of multiple PDFs for
characterizing subfootprint-scale soil moisture variability is
proposed, and the efficiency of the proposed method is
tested. Finally, the implications of these results are dis-
cussed in the context of Earth system modeling and of
validating satellite-derived soil moisture estimates.

2. Background

2.1. Statistical Characterization of
Soil Moisture Variability

[7] A number of earlier studies of surface soil moisture
variability have discussed its statistical characterization and
choice of an appropriate PDF. Since remote sensing yields a
spatially averaged estimate of soil moisture content over a
satellite footprint, it masks the underlying variability dis-
cussed in the previous section. Hence the relationship
between mean soil moisture content and the standard
deviation of moisture content measurements within an area
has been an important topic of the research that can provide
insight into identification of a representative PDF and its
parameters. Famiglietti et al. [1999] summarize several
earlier field studies on this topic, and Famiglietti et al.
[1998] and Western et al. [2002] review a number of
previous works that addressed the environmental controls
responsible for the observed statistical behavior of the soil
moisture variations. Review of these previous works reveals
an incomplete understanding of how soil moisture varia-
tions evolve across the range of footprint mean moisture
conditions. Recently, a consistent picture is emerging that
soil moisture variance peaks in the midrange of mean soil
moisture content as suggested by Owe et al. [1982] due to
subfootprint-scale variations in precipitation, and heteroge-
neity in soil hydraulic properties that result in differing rates
of drying [Peters-Lidard and Pan, 2002].

[8] Similarly, it is also unclear whether the behavior of
the subfootprint-scale soil moisture PDF across the dynamic
wetness range is well understood. Hills and Reynolds
[1969], Bell et al. [1980], Hawley et al. [1983], Francis et
al. [1986], Nyberg [1996], and Wilson et al. [2003] reported
that soil moisture content was normally distributed. How-
ever, due to the bounded nature of soil moisture content
between its residual value and porosity, the PDF of soil
moisture, in general, becomes skewed and less variable as
the mean approaches a boundary [Famiglietti et al., 1999;
Western et al., 2002]. Using extensive ground-based soil
moisture measurements taken during SGP97, Famiglietti et
al. [1999] observed that PDFs of surface (0–6 cm) soil
moisture content evolve systematically from negatively
skewed under very wet conditions, to normal in the mid-
range, to positively skewed under dry conditions at the
aircraft remote sensing footprint-scale (800 m by 800 m)
fields. On the basis of these observations they suggested
that a beta distribution, which is sufficiently flexible to
represent these changes in skewness, is a reasonable choice
of PDF to represent soil moisture variation. The chance of
observing skewness during field studies is likely affected by
several factors, including their varied spatial scales, spatial
and temporal sampling frequencies, experiment duration,
and the range of wetness conditions observed.
[9] In this work the SGP97 data were used, which include

high-frequency spatial-temporal aircraft soil moisture
(800 m; near daily) data collected within a large (50 km
by 250 km) region over a 1-month period. Our analyses
target a representative footprint-scale (50 km), so that the
impact of important heterogeneity (e.g., in precipitation, soil
type, topography, land cover, etc.) on the evolution of soil
moisture fields and their statistics are included. Further, the
month-long duration of the experiment ensures that several
wetting-drying cycles, and hence the full dynamic range of
surface wetness, is represented in the data. Though the
relatively high resolution aircraft remote sensing data
smoothes over the even higher-frequency landscape-scale
soil moisture variability [Famiglietti et al., 1999], it has
been utilized successfully to characterize larger, satellite
footprint-scale spatial correlations [Schmugge and Jackson,
1996; Cosh and Brutsaert, 1999; Kim and Barros, 2002;
Oldak et al., 2002], scaling effects [Rodriguez-Iturbe et al.,
1995; Hu et al., 1997; Nykanen and Foufoula-Georgiou,
2001; Peters-Lidard et al., 2001], and spatial variability of
soil moisture. To achieve high statistical power, 800-m
resolution aircraft soil moisture images from SGP97 will
be used in this study to represent spatial variations within
larger, 50-km regions. The use of point-scale, ground-based
soil moisture measurements for enhancing and extending
the work described here, is the topic of ongoing research.

2.2. Southern Great Plains 1997 (SGP97)
Hydrology Experiment

[10] The SGP97 experiment was conducted from 18 June
to 17 July 1997 in a 50-km by 250-km region of central
Oklahoma (Figure 1a). The goal of SGP97 was to demon-
strate the large-scale soil moisture mapping capabilities of
the Electronically Scanned Thinned Array Radiometer
(ESTAR) instrument, and to evaluate the performance of
soil moisture retrieval algorithms, developed for small-
scale, homogeneous surface conditions [Jackson et al.,
1999], under moderately heterogeneous surface cover con-
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ditions and at larger spatial scales. The ESTAR, an L band
passive microwave sensor, was flown on a NASA P3B
aircraft. Surface brightness temperature data from ESTAR,
along with ancillary data sets such as soil texture, soil bulk
density, vegetation water content, and surface roughness,
were used to produce 800-m resolution soil moisture
maps over the 50-km by 250-km area. Sixteen daily soil
moisture images (Figure 2) were produced with an average
error (relative to ground-based validation samples) of 3%
volumetric soil moisture [Jackson et al., 1999]. Three main
drying sequences are apparent in Figure 2: 18–25 June,
30 June to 3 July, and 12–16 July. The next section
describes how these images were analyzed to characterize
footprint-scale surface soil moisture variability.

3. Methods

3.1. Satellite Footprint-Scale Sampling

[11] The major concern of this paper is the nature and
behavior of soil moisture PDFs at the satellite footprint
scale. To obtain a sufficient number of footprint-scale
samples for the PDF analysis over a variety of wetness
conditions, sampling was carried out using a 52-km by
50-km scale moving window over the sixteen ESTAR soil
moisture images. For each ESTAR image, the window was
shifted 25-km from 4,100,000 N of UTM (Universal Trans-
verse Mercator) zone 14 to the south until it reached
3,815,000 N. Thus each sample overlaps 50% with its
adjacent neighbors (see Figure 1b). Ten samples of 52-km
by 50-km scale were taken from each of sixteen ESTAR
images. Six footprint samples which contained soil moisture
data in less than 75%of the samplingwindowwere discarded.

3.2. Probability Density Functions

[12] Previously reviewed studies have recommended
either a Gaussian or beta distribution to represent surface
soil moisture variations. In order to test their efficiency in
representing variability in the SGP97 ESTAR data, both
were applied to fit the soil moisture distributions within the
154 footprint samples. Log likelihood functions for the two
distributions were maximized to estimate their optimal
parameters.
[13] Interestingly, an analysis of histograms from the 154

footprint samples showed that a number of them clearly

exhibited multimodal behavior. This (multiple period) mul-
timodality has not been obvious in previous analyses, which
have focused on smaller spatial scales. In many cases,
however, it is not easy to identify the number of modes in
a PDF just by visual inspection of the sample histogram,
especially if the histogram has a number of spurious peaks.
A mode here means ‘‘a local maximum or ‘bump’ of the
population density’’ [Efron and Tibshirani, 1993]. Negative
kurtosis [Balanda and MacGillivray, 1988] or the coefficient
of bimodality [SAS Institute, 1996], could be used to detect
bimodality. The coefficient of bimodality is calculated as

C2
s þ 1

� �
= Ck þ 3 n� 1ð Þ2= n� 2ð Þ n� 3ð Þ
� �

; ð1Þ

where Cs is the skewness and Ck is the kurtosis of the
distribution of a sample with size n. The kurtosis here is
calculated by subtracting 3 from the kurtosis coefficient
which is the fourth central moment divided by the square of
the variance of the data, so Cs is zero for normal
distribution. However, these two measures often fail to
detect bimodality or mislead the interpretation when they
are applied to highly skewed or heavy-tailed distributions
[Wyszomirski, 1992], which are frequently observed in the
sampled distributions. In order to avoid these problems,
sample histograms were first converted to smoothed
distribution curves using Gaussian kernel density estimates.
Unimodality or multimodality was then detected by visual
inspection of the smoothed distributions. The kernel density
estimate has been widely used to investigate multimodality
[e.g., Silverman, 1981; Efron and Tibshirani, 1993].
[14] Given a set of data X1, . . . Xn, with a continuous

density f, the Gaussian kernel density estimate f̂ is defined
by

f̂ x; hð Þ ¼ 1

nh

Xn
i¼1

f
x� Xi

h

� �
; ð2Þ

where n is the sample size, h is the ‘‘window size’’ or
‘‘bandwidth’’ which determines the smoothness of an
estimate [Wand and Jones, 1995], and f(x) is the standard
normal density. As the bandwidth h increases, the density
estimate becomes smoother. By trial and error, 0.02 was
chosen for bandwidth, which retained the most obvious

Figure 1. (a) Location of Southern Great Plains 1997 (SGP97) hydrology experiment area in
Oklahoma. ESTAR soil moisture mapping was conducted within the 50-km by 250-km boxed area. (b)
Sampling scheme used in this study. A 52-km by 50-km scale sampling windows was shifted 25 km from
north to south, yielding 10 samples from each ESTAR image.
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modes without overly smoothing. Note here that the
Gaussian kernel estimate was applied to the scaled soil
moisture content, which varies from 0 to 1. Our analyses
indicated that the number of multimodal samples was
relatively insensitive to the range of h values explored, that
is, around 0.02. Samples with kernel density estimates
having more than one mode were classified as multimodal
distributions.

[15] A total of 56 footprint samples (about 37% of the
154) were identified as exhibiting multimodal behavior by
examining their Gaussian kernel estimates. However, be-
cause each sampling window overlaps 50% with adjacent
windows (see Figure 1b), 37% overstates the actual chances
of observing multimodality in the study region. Note that an
important goal of this study is to suggest methods for
representing multimodal distributions, not to characterize
the frequency of their occurrence. As such, the overlapping
windows provide a reasonable number of footprint-scale
samples for this study.

3.3. Finite Mixture Models

[16] In order to characterize the observed multimodal
variability in the 56 footprint samples, a finite mixture
of Gaussian distributions is suggested. Finite mixtures of
distributions have played a useful role in modeling hetero-
geneous or clustered data, owing to their flexibility in
representing a variety of distribution forms, including mul-
timodal and skewed distributions [McLachlan and Peel,
2000]. PDFs for the 56 multimodal footprint-scale distribu-
tions were modeled using this approach. Let X be a random
variable in the sample space <. The finite mixture density
f(x) can be written as

f xð Þ ¼
Xn
i¼1

ai � fi x; lij

� �
for x 2 <; j ¼ 1; 2; . . . ;m ð3Þ

where n is the number of component densities, fi(x; lij) is an
ith-component density, lij is jth parameter of ith component,
m is the number of parameters in each component density,
and ai are mixing proportions (or weights) with the
restriction that

0 	 ai 	 1 for all i and
Xn
i¼1

ai ¼ 1:

Most of the 56 distributions exhibited two major modes,
thus two mixing densities were used for fitting. Two
Gaussian densities were applied to each of the 56 footprint
samples. Mixtures of two Gaussian densities contain five
parameters, two for each component density and one for the
mixing proportion. The optimum values of those five
parameters were estimated by maximizing log likelihood
functions of the mixtures.
[17] Since amixture model with twoGaussian components

has a higher dimension (i.e., number of free parameters) than
a single Gaussian PDF, the suitability of a single density
versus a mixture model cannot be determined by simply
comparing their log likelihood values. For example, because
a mixture of two identical Gaussian densities is equivalent to
a single Gaussian distribution function, a mixture model with
two components is at a minimum as suitable as any single
density model. In order to penalize the log likelihood func-
tion with a term related to themodel complexity, the Bayesian
information criterion (BIC) is introduced to aid in PDFmodel
comparison. The BIC is one of the best known ‘‘dimension
consistent criteria’’ derived by Schwarz [1978] in a Bayesian
framework, which is defined as

BIC ¼ �2 log Lð Þ þ K � log nð Þ; ð4Þ

where L is a likelihood of the given model, K is the number
of free parameters of the model (or the degree of freedom),

Figure 2. Sixteen ESTAR soil moisture images resulting
from the SGP97 experiment [Jackson et al., 1999]. Each
image is composed of 800-m pixels which range from 0 to
51% volumetric soil moisture. See color version of this
figure in the HTML.
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and n is the size of given sample. The BIC is simply viewed
as a log likelihood penalized by the number of free
parameters and sample size. Thus, for a given maximum
likelihood value of a model, the BIC increases as the
number of parameters of the model increases. Note that the
sign of the BIC is opposite to that of log likelihood, so that
the BIC is to be minimized for the optimum parameters. For
the 56 selected multimodal samples, single Gaussian density
functions and mixtures of two Gaussian PDFs are applied to
fit the observed distribution, and the adequacy of each

model is compared using the BIC. Results are presented in
the next section.

4. Results

4.1. Footprint-Scale Soil Moisture Samples and
Summary Statistics

[18] Figure 3 shows the histograms and Gaussian kernel
estimates (gray curves) of the all 154 samples from the 16
ESTAR SGP97 soil moisture images, which represent a

Figure 3. Probability distributions of surface soil moisture content for 154 footprint-scale samples taken
from ESTAR images in SGP97. Soil moisture content is rescaled to range from 0 to 1. Gray curves are
Gaussian kernel estimates with bandwidth 0.02. Shaded plots are classified as multimodal distributions.
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range of wet through dry field conditions. Each row dis-
plays 16 daily histograms from each of the ten sampling
windows (S1–10). Soil moisture data in Figure 3 are scaled
to range from 0 to 1. Shaded plots indicate the multimodal
samples selected by inspecting Gaussian kernel estimates.
Roughly three sequences of drying periods were observed
during SGP97: 18–25 June, 30 June to 3 July, and 12–
16 July. However, there were some small-scale isolated
rainfall events even during these drying periods (see
Figure 2). Figure 3 shows that under very wet conditions
(e.g., see S1–S2 from 30 June to 1 July), soil moisture

distributions are truncated at the maximum value, and are
not negatively skewed as was simultaneously observed
within much smaller 800-m fields [Famiglietti et al.,
1999]. Negatively skewed distributions under moderately
wet conditions (e.g., S3 on 30 June to 1 July) result from
bimodality of the soil moisture PDFs (e.g., due to partial
wetting of a drying footprint). The midrange of wetness
conditions is characterized by slightly right skewed or nearly
symmetric distributions, and the existence of multimodal
distributions. Once a multimodal distribution emerges with-
in a footprint sample, it lasts for a few days (see S4 and S6

Figure 3. (continued)
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on 30 June to 3 July), as subsequent drying acts to collapse
the distribution to a unimodal shape. Strongly unequal sized
multimodality can cause either positive (e.g., S5 on 18–
20 June and S8 on 1–3 July) or negative (e.g., S3 on 30 June
to 3 July) skewness, in which cases the smaller mode
merges with larger mode within a few days following
a storm event. Within dry footprint samples, most soil
moisture PDFs converge to narrow and positively skewed
forms (S2–S8 on 14–16 July). The evolution of the
footprint-scale PDFs from wet to dry conditions, including
cases for multimodality, will be further described in the
discussion section.
[19] Figure 4a summarizes the relationship between

footprint-scale mean soil moisture content and standard
deviation sampled in the SGP97 soil moisture images.
Within-footprint soil moisture variability generally peaks
around 20% mean soil moisture content, decreasing toward
both the wet and dry ends of the average wetness conditions.
Moreover, the variability varies within a wider range in the
midrange of wetness, with a maximum also around 20%
mean soil moisture content. Solid squares are the standard
deviations of the selected multimodal samples, which form a

band of high soil moisture variability. This result confirms
what is apparent in Figure 3, and further, it implies that
multimodality of soil moisture distribution may be an
important source of high soil moisture variability in foot-
print-scale soil moisture fields. Detailed discussion on this
topic is given in the discussion section.
[20] Figure 4b displays skewness versus mean soil mois-

ture content for the 154 footprint samples. Skewness,
positive under dry soil wetness, decreases with wetting
approaching zero around the medium range of mean soil
moisture. Figures 3 and 4b indicate that the footprint-scale
data exhibit more or less symmetric PDFs over medium
through moderately wet moisture conditions. Distinct neg-
ative skewness under wet condition is not observed in the
footprint-scale samples. Possible reasons are the range of
the observed mean soil moisture, which doesn’t include
extremely wet footprint-scale mean moisture conditions
(i.e., greater than 40% vol), and the increased extent scale
of the sampling window compared to previous studies (less
than 1 km).

4.2. Gaussian Versus Beta Distribution

[21] Both Gaussian and beta distributions were used for
fitting the 154 samples, here assuming unimodality, in order
to compare their adequacy. For this comparison, soil mois-
ture data were scaled to range from zero to one by dividing
by the maximum soil moisture content, 51 percent. Figure 5
compares the maximum log likelihoods of Gaussian versus
beta PDFs. The frequency of cases in which Gaussian
distributions outperform beta distributions is only just over
50 percent. However, when Gaussian distributions result in
a better fit, they do so by a greater margin than when beta
PDFs result in a better fit. Under dry conditions (solid
squares), beta distributions yield better fits than Gaussian,
while Gaussian distributions provide superior fits to beta
PDFs as the mean soil moisture increases beyond 18%
(open circles and crosses). This is attributed to the fact that,
in spite of the beta density’s flexibility in reproducing

Figure 4. (a) Standard deviation (% vol) versus surface
mean soil moisture content (% vol) for the 154 footprint-
scale samples. (b) Skewness versus mean soil moisture
content (% vol) for the footprint-scale samples. Squares are
from samples classified as multimodal distributions.

Figure 5. Comparison of the maximum log likelihoods of
Gaussian versus beta PDFs. Crosses represent samples with
mean moisture content greater than 34%, circles represent
samples with mean values between 18 and 34%, and
squares represent samples with lower than 18% mean soil
moisture content.
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skewed distributions, it is always positively (negatively)
skewed as the mean approaches its minimum (maximum)
boundary, whereas the distinctly negative skewness is not
observed in the footprint samples. Consequently, the power
of the beta PDF to accommodate negatively skewed dis-
tributions is not required in these data.

4.3. Multimodal Distributions

[22] Mixtures of two Gaussian PDFs were used to fit the
56 observed multimodal distributions. Figure 6 displays
selected histograms and fitted curves from these multimodal
and other special cases. Dotted lines are the fitted curves
of a single Gaussian distribution and solid lines are the
fitted curves of the mixture of two Gaussian distributions.
Mixtures of two Gaussian distributions reproduced most
bimodal distributions where they were nearly symmetric
(Figures 6a–6c) or asymmetric in mixing proportion
(Figure 6d). Comparison of BIC from fitting single Gauss-
ian and mixtures of two Gaussian distributions indicates
that the advantage of using the mixture model becomes
larger when the bimodal distribution is symmetric and the
distance between the two modes is greater. In addition to
the bimodal cases, the mixture model played a very useful
role in fitting skewed distributions (Figures 6e and 6f).
However, once the bimodality is observed over a region,
it persists for a few days, during which time the wetter
mode approaches the drier mode. Under these conditions,
the distribution generally becomes more unimodal (see
Figures 6a–6c) and the advantage of using the mixture
model will decrease.
[23] Figure 7 compares the negative BICs of a single

Gaussian fit with that of the mixture of two Gaussian
densities. Note here that the negative BIC, which is equiv-
alent to the maximum log likelihood penalized by the
number of free parameters and the sample size, is negative
because the units for soil moisture contents (volumetric soil
moisture in %) makes PDF values relatively small, that is,
less than one. For all selected multimodal samples, the
comparison showed that even after penalizing the mixture
model for the extra number of free parameters (which is 3

for the cases concerned) the mixtures of two PDFs are
superior to the single density models.

5. Discussion

[24] In this section, the behavioral features of footprint-scale
soil moisture PDFs, variability, and possible controlling fac-
tors are discussed. Implications for estimating the footprint-
scale soil moisture mean and uncertainty using a limited
number of ground-basedmeasurements will also be addressed.

5.1. Footprint-Scale Soil Moisture Variability

[25] The result of our sampling study suggests that, for
the range of wetness conditions observed, footprint-scale

Figure 6. Selected histograms and fitted curves using single Gaussian (dashed lines) and a mixture of
two Gaussian PDFs (solid lines).

Figure 7. Comparison of Bayesian information criteria
(BIC) of single Gaussian with a mixture of two Gaussian
PDFs for the selected multimodal samples. Crosses represent
multimodal samples with mean moisture content greater than
34%, circles represent multimodal samples with mean values
between 18 and 34%, and squares represent multimodal
samples with lower than 18% mean soil moisture content.
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soil moisture variability was greatest and was more widely
distributed in the midrange of mean soil moisture content.
Extremely wet footprint samples (e.g., 40–50%) were not
observed in the data. Theoretically, in the event of spatially
homogeneous rainfall heavy enough to saturate an entire
region, heterogeneity of the soil moisture field should
represent the heterogeneity of saturated water content (or
effective porosity) over the region, which would be smaller
than the maximum heterogeneity of the soil moisture
observed in the midrange of moisture conditions. Soil
moisture spatial variability increases toward the midrange
due to the combined effects of heterogeneity in rainfall,
soil texture, vegetation, and the topography of land surface,
until the increasing trend is impeded by the constitutive
relationships between water and soil [Peters-Lidard and
Pan, 2002]. As the footprint-scale mean moisture content
decreases past its peak, so too does the variance and the
range of the variability. Under very dry conditions, for
example, at the end of an extended interstorm period, soil
moisture variability should represent the heterogeneity of
residual water content of soil, which is usually smaller than
the heterogeneity of effective porosity [Rawls et al., 1993].
Overall, the mean versus variability relationship of soil
moisture should show a concave downward shape, with
minima at the wet and dry ends of the wetness range. Such a
shape is indicated by the upper dashed line in Figure 4a.
[26] For the case of heterogeneous rainfall, which is

common at regional scales, the drying processes can also
smear out soil moisture spatial variance created by variabil-
ity in precipitation [Entekhabi and Rodriguez-Iturbe, 1994].
Case-by-case changes of the variability for various possible
scenarios are intensively discussed in the work of Albertson
and Montaldo [2003]. Our sampling study at the footprint
scale shows the range of observed soil moisture variability
with respect to mean soil moisture occurring as a result of
the combination of heterogeneous rainfall and land surface
features. In the midrange of footprint mean moisture con-
tent, it is clear that for a given large-area mean value, a
range of variances can occur.

5.2. Bimodality of the Soil Moisture Distribution

[27] Bimodality in the probability distribution of soil
moisture has long been predicted by numerical simulations
as a consequence of positive feedback mechanisms between
the land surface and atmosphere [Rodriguez-Iturbe et al.,
1991; D’Odorico and Porporato, 2004], or interannual rain-
fall fluctuations [D’Odorico et al., 2000]. For example, land-
atmosphere interactions may result in temporal persistence of
soil moisture spatial patterns due to a dependence on precip-
itation. Numerical simulations by Porporato and D’Odorico
[2004] imply that local precipitation recycling or soil-atmo-
sphere interaction could create a spatially patched and tem-
porally stable configuration of soil moisture where emergence
of bimodal soil moisture PDFs is highly probable. Although
the time span of SGP97 is too short to directly link our
findings to those of Porporato and D’Odorico [2004],
atmospheric forcing does play a major role in creating the
observed bimodal distributions of surface soil moisture.
[28] An important source of bimodality in the soil mois-

ture data is fractional precipitation within the footprint-scale
fields. Fractional rainfall is common at this scale over the
Southern Great Plains where mesoscale convective systems
are a major source of precipitation. Figure 8 illustrates the

relationship between the distribution of soil moisture and the
distributions of four variables that could potentially affect
variability in surface moisture content. The left columns of
the boxes in Figure 8 show the PDFs and histograms of
cumulative rainfall, soil texture (percent sand and clay), and
vegetation water content (VWC) at S4 and S5 on 1 July
1997. The right columns contain histograms of surface soil
moisture stratified using the variable on the left. Soil texture
data used are taken from the CONUS-SOIL [Miller and
White, 1998] data set. The VWC was calculated using the
normalized difference vegetation index (NDVI) and TM data
for 25 July 1997 following Jackson et al. [1999].
[29] Distributions of cumulative rainfall from 18 June to

30 June over S4 and S5 are presented in Figures 8a and 8m,
respectively. Since the cumulative rainfall distributions show
bimodality, a Gaussian mixture model was applied to fit the
distributions. Solid curves in Figures 8a and 8m are the best
fits of the mixture model. The results of the mixture model
fittings are summarized in Table 1. Mixing proportions of
rainfall and soil moisture are very close. Soil moisture
images for S4 and S5 were stratified into two parts using
the cumulative rainfall value at which the mixture PDFs had
the minimum probability between two modes (dashed lines
in Figures 8a and 8m). Originally bimodal soil moisture
histograms (see Figure 3) were partitioned into two unim-
odal histograms in Figures 8g and 8s. Although the compo-
nent histograms with higher mean soil moisture in Figures 8g
and 8s (shown in black) look asymmetric, their shapes
closely follow those of the component histograms of the
higher cumulative rainfall in Figures 8a and 8m.
[30] There exist five classes of percent sand and clay

within S4 and S5 (Figures 8b–8e and 8n–8q) of the soil
texture data used for this study. Given this rough classifica-
tion, it was difficult to determine the bimodality of soil
texture data. Thus two values in the medium ranges of
percent sand and clay were used respectively to partition
the soil moisture data. The criteria values are displayed
as dashed lines in Figures 8b–8e and 8n–8q. It seems that
soil texture data fail to partition the bimodal soil moisture
PDFs into two unimodal distributions. Correlation between
surface soil moisture and soil texture exists and becomes
more significant under dry conditions [Kim and Barros,
2002; Oldak et al., 2002]. Negative correlation between
percent sand and soil moisture, and positive correlation
between percent clay and soil moisture can be found in
Figures 8h–8k and 8t–8w. However our sampling study
indicates that the impact of soil texture is not strong enough
to cause the observed bimodality in soil moisture PDFs.
[31] Since the distributions of VWC at S4 and S5

(Figures 8f and 8r) were unimodal and skewed, mean values
of VWC were used for stratification. It appears that VWC is
only weakly correlated with surface soil moisture in the
given samples (see Figures 8l and 8x). Topography is
usually regarded as another important factor which controls
the spatial distribution of soil moisture. However, Oldak et
al. [2002] reported that the effect of topography on the
distribution of soil moisture is not as significant as that of
soil texture in the SGP97 data.

5.3. Implications for the Satellite Validation and
Land Surface Parameterization

[32] Bimodal distributions and high variability in soil
moisture will lead, in turn, to high uncertainty in estimating
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the footprint-scale mean moisture content. Calculation of
uncertainty in a sample mean is based on the sample
variance and the number of samples taken. In the case of
the Gaussian mixture model, given the total mean mtotal and
component means mi (i = 1, 2, . . ., n), the variance of the
sample is calculated as

Var xð Þ ¼
Xn
i¼1

Z1

�1

ai x� mið Þ2fi xð Þdx

þ
Xn
i¼1

Z1

�1

ai mi � mtotalð Þ2fi xð Þdx; ð5Þ

where mtotal =
Pn
i¼1

aimi and the other symbols are the same as

in Equation 3. The uncertainty of the Gaussian mixture

model, calculated based on Equation 5, is mostly less than,
or at least equal to, the variance from a single PDF model.
Therefore applying the finite mixture model can increase
confidence in the estimated footprint-scale mean soil
moisture from a limited number of ground-based measure-
ments, in particular when the PDFs display bimodality or
high skewness.
[33] In order to demonstrate changes in uncertainty in the

estimated footprint mean moisture content from applying
the mixture model, a random sampling experiment was
carried out in one of the sampling windows used for this
study. Our sampling example here is based on the bootstrap
method, a common way to estimate the standard deviation
of a sample mean [Efron and Tibshirani, 1993]. For the case
of a single distribution fit, 20 random samples were taken
1000 times from S4 of the ESTAR image on 1 July (see

Figure 8. Histograms of (a and m) cumulative rainfall, (b–e and n–q) soil texture, and (f and r)
vegetation water content and (g–l and s–x) the stratified histograms of soil moisture at S4 and S5.
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Figure 3). For the case of the mixture model, the region was
stratified and two sets of 10 samples were taken from each
stratified region. For this case, it is assumed that information
about the stratified pattern of the site is already known. The
stratification was achieved by fitting a mixture of two
Gaussian distributions to the ESTAR data and the results
are summarized in Table 2. Figure 9 compares uncertainties
from applying a single Gaussian and mixture of two
Gaussian distributions computed as the 95% confidence
interval of the sample mean. Note that the samples are taken
from an identical pool (i.e., S4), so that sample means from
both methods are centered by nearly the same values.
However, during the period when soil moisture shows clear
bimodality (30 June to 3 July), 95% confidence intervals
from using a single Gaussian PDF are almost twice as wide
as those from the Gaussian mixture representation.
[34] The observed behavior of footprint-scale soil mois-

ture variability can also guide the hydrology and land
surface modeling communities toward better parameteriza-
tion of surface moisture content. Compared to previous
studies, the overall behavior of soil moisture variability in
the footprint-scale fields, which are closer to the actual size
of typical land model grids (e.g., 0.5�–2�), differed from
that observed previously. While most of the previous
observations suggested apparently contradicting decreasing
or increasing trend of soil moisture variability with drying
surface wetness, our footprint-scale sampling data suggest a
comprehensive picture where the mean versus variability
relationship of soil moisture shows an approximately con-
cave downward shape (see Figure 4a) and soil moisture
variability is scattered more widely in the medium range of
mean moisture content. This supports the recently suggested
behavior of soil moisture variability by Albertson and
Montaldo [2003] and Peters-Lidard and Pan [2002].
[35] This study also proposes the application of the finite

mixture model for representing soil moisture PDFs, which
reproduces observed bimodality and skewness in footprint-
scale soil moisture fields. Incorporating soil moisture
bimodality in land models can lead to better prediction of
surface processes that are nonlinearly related to surface soil
moisture content. One approach for conditioning mixing
proportions and component densities in the mixture model
could be based on the observed roles of antecedent and

fractional precipitation on the subsequent distribution of soil
moisture. Further study will be required to determine the
appropriate choice and number of component densities, and
regarding methods for conditioning the mixing proportions
by ancillary data.

6. Summary

[36] The behavioral features of satellite footprint-scale
soil moisture PDFs, their variability, and skewness were
analyzed using 50-km by 52-km samples taken from
ESTAR soil moisture image collected during SGP97. The
range of mean moisture contents observed in these samples
was from moderately wet to dry conditions. Under these
conditions, our sampling study indicated that at the footprint
scale, soil moisture variability generally peaks in the mid-
range, decreasing toward the wet and dry ends of mean soil
moisture content. In addition, soil moisture variability was
widely distributed in the midrange of mean soil moisture
content. This was attributed to the existence of bimodal (or
multimodal) distributions caused by antecedent fractional
rainfall within the footprint-scale samples. Skewness
showed rather consistent patterns similar to observations
from 0.8-km-scale fields in SGP97 [Famiglietti et al.,
1999], although negative skewness was not obvious under
wet conditions. As a single component density, the normal
distribution was shown to be a good choice for representing
footprint-scale soil moisture distribution for wet fields.
Whereas a beta distribution is better for reproducing the
observed soil moisture PDFs under dry conditions, the beta
distribution is forced to negative skewness around the wet
boundary, making it inappropriate for wet conditions. On
the other hand, the performance of Gaussian distribution
was greatly improved by using more than one distribution in
a mixture model, especially when the soil moisture PDF
showed bimodal or highly skewed features. The observa-
tions and suggestions presented here can be utilized to
minimize the uncertainty in estimating footprint-scale mean
moisture content and validating spaceborne remotely sensed
soil moisture estimates. They can also contribute to a better

Table 2. Summary of Component Mixing Ratio, Mean, and

Standard Deviation From the Best Fit of the Gaussian Mixture

Model to the ESTAR Soil Moisture Data at S4 During SGP97

Date

Component 1 Component 2

Weight Mean SD Weight Mean SD

18 June 0.69 14.37 3.56 0.31 22.86 3.99
19 June 0.56 11.85 3.32 0.44 18.06 4.76
20 June 0.22 9.82 1.56 0.78 12.09 4.73
25 June 0.49 8.06 3.34 0.51 12.47 3.54
26 June 0.14 17.45 1.65 0.86 24.33 3.70
27 June 0.53 21.84 4.28 0.47 29.80 5.81
29 June 0.96 18.81 4.30 0.04 28.61 6.71
30 June 0.38 13.14 4.28 0.62 27.96 4.61
1 July 0.38 11.51 3.96 0.62 26.53 5.24
2 July 0.42 8.71 3.76 0.58 21.41 4.12
3 July 0.39 6.74 3.04 0.61 17.15 3.92
11 July 0.10 14.52 2.54 0.90 22.50 4.24
12 July 0.72 14.71 3.51 0.28 21.96 3.20
13 July 0.78 9.27 2.72 0.22 16.55 3.35
14 July 0.74 8.10 2.17 0.26 14.15 3.59
16 July 0.77 8.93 2.29 0.23 16.15 5.81

Table 1. Summary of Component Mixing Ratio (or Weight),

Mean, and Standard Deviation From the Best Fit of the Gaussian

Mixture Model to Cumulative Rainfall and ESTAR Soil Moisture

Data at S4 and S5 on 1 July 1997

Soil Moisture Cumulative Rainfall

Component 1 Component 2 Component 1 Component 2

S4
Weight 0.38 0.62 0.38 0.62
Mean 11.51 26.53 21.01 67.60
Standard
deviation

3.96 5.24 5.03 15.16

S5
Weight 0.75 0.25 0.73 0.27
Mean 11.60 21.41 16.39 52.11
Standard
deviation

3.25 2.80 5.48 19.80
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understanding of soil moisture parameterization in land
surface models by extending the body of work on the
appropriate choice of PDF form. As such, this work can
help improve the simulation of subgrid-scale fluxes and
processes that are nonlinearly related to soil moisture.
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