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NORMS OF RANDOM MATRICES: LOCAL AND GLOBAL

PROBLEMS

ELIZAVETA REBROVA AND ROMAN VERSHYNIN

Abstract. Can the behavior of a random matrix be improved by mod-
ifying a small fraction of its entries? Consider a random matrix A with
i.i.d. entries. We show that the operator norm of A can be reduced to
the optimal order O(

√

n) by zeroing out a small submatrix of A if and
only if the entries have zero mean and finite variance. Moreover, we
obtain an almost optimal dependence between the size of the removed
submatrix and the resulting operator norm. Our approach utilizes the
cut norm and Grothendieck-Pietsch factorization for matrices, and it
combines the methods developed recently by C. Le and R. Vershynin
and by E. Rebrova and K. Tikhomirov.

1. Introduction

1.1. Local and global problems. When a certain mathematical or sci-
entific structure fails to meet reasonable expectations, one often wonders:
is this a local or global problem? In other words, is the failure caused by
some small, localized part of the structure, and if so, can this part be identi-
fied and repaired? Or, alternatively, is the structure entirely, globally bad?
Many results in mathematics can be understood as either local or global
statements. For example, not every measurable function f : R → R is con-
tinuous, but Lusin’s theorem implies that f can always be made continuous
by changing its values on a set of arbitrarily small measure. Thus, imposing
continuity is a local problem. On the other hand, a continuous function may
not be differentiable, and there even exist continuous and nowhere differen-
tiable functions. Thus imposing differentiability may be a global problem.
In statistics, the notion of outliers – small, pathological subsets of data, the
removal of which makes data better – points to local problems.

1.2. Random matrices and their norms. In this paper about random
matrices we ask: is bounding the norm of a random matrix a local or a
global problem? To be specific, we consider n× n random matrices A with
independent and identically distributed (i.i.d.) entries. The operator norm

of A is defined by considering A as a linear operator on R
n equipped with

R. V. is partially supported by NSF grant 1265782 and U.S. Air Force grant FA9550-
14-1-0009.
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2 ELIZAVETA REBROVA AND ROMAN VERSHYNIN

the Euclidean norm ‖ · ‖2, i.e.

‖A‖ = max
x 6=0

‖Ax‖2
‖x‖2

.

Suppose for a moment that the entries of A have zero mean and bounded
fourth moment, i.e. EA4

ij ≤ C where C is a constant. Then

‖A‖ = O(
√
n) (1.1)

with high probability. This is the consequence of Bai-Yin’s law, which is
valid as n → ∞ [2]. Non-asymptotic versions of this bound, which hold for
fixed dimensions n, can be deduced from [16, 8, 5]. Note that the O(

√
n)

bound is the best one can generally hope for. Indeed, if the entries of A
have unit variance, then the typical magnitude of the Euclidean norm of a
row of A is ∼ √

n, and the operator norm of A can not be smaller than that.
Moreover, the entries of A must have finite fourth moment for (1.1) to hold
[4].

1.3. Main results. Now let us postulate nothing at all about the distribu-
tion of the i.i.d. entries of A. It still makes sense to ask: is enforcing the

ideal bound (1.1) for random matrices a local or a global problem? That is,
can we enforce the bound (1.1) by modifying the entries in a small subma-
trix of A? We will show in this paper that this is possible if and only if the
entries of A have zero moment and finite variance. The “if” part is covered
by the following theorem.

Theorem 1.1 (Local problem). Consider an n× n random matrix A with

i.i.d. entries that have mean zero and unit variance, and let ε ∈ (0, 1/2].
Then, with probability at least 1 − 7 exp(−εn/4), there exists an εn × εn
submatrix of A such that replacing all of its entries with zero leads to a

well-bounded matrix Ã:

‖Ã‖ ≤ C ln ε−1

√
ε

·
√
n,

where C is a sufficiently large absolute constant.

Remark 1.2 (Optimality). The dependence on ε in Theorem 1.1 is best
possible up to the ln ε−1 factor. To see this, let p := 2ε/n and suppose Aij
take values ±1/

√
p with probability p/2 each and value 0 with probability

1−p. Then Aij have zero mean and unit variance as required. The expected
number of non-zero entries in A equals pn2 = 2εn. Thus the number of the
rows of A containing these entries is bigger than εn with high probability.
(This is a standard observation about the balls-into-bins model.) Therefore,
no εn × εn submatrix can contain all the non-zero entries of A. In other
words, Ã must contain at least one non-zero entry of A, and thus it has
magnitude

‖Ã‖ ≥ 1√
p
&

√
n√
ε
.
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This shows that the dependence on ε in Theorem 1.1 is almost optimal.

By rescaling, a more general version of Theorem 1.1 holds for any finite
variance of the entries. The two main assumptions in this theorem – mean
zero and finite variance – are necessary in Theorem 1.1. Without either of
them, the problem becomes global in a strong sense: the desired O(

√
n)

bound can not be achieved even after modifying of a large submatrix. This
is the content of the following result.

Theorem 1.3 (Global problem). Consider an n × n random matrix An
whose entries are i.i.d. copies of a random variable that has either nonzero

mean or infinite second moment,1 and let ε ∈ (0, 1). Then

min
‖Ãn‖√
n

→ ∞ as n→ ∞

almost surely. Here the minimum is with respect to the matrices Ãn obtained

by any modification of any εn× εn submatrix of An.

It should be noted that while Theorem 1.1 becomes harder for smaller ε,
Theorem 1.3 becomes harder for larger ε, those near 1.

We prove Theorem 1.3 in Section 9. The argument is considerably simpler
than for Theorem 1.1. Indeed, the nonzero mean forces the sum of the entries
of Ãn to be & n2, and the infinite second moment forces the Frobenius norm
of Ãn (the square root of the sum of the entries squared) to be ≫ n2 with
high probability. Either of these two bounds can be easily used to show that
the operator norm of Ãn is ≫ √

n.

1.4. Related results. There have been several precursors to this work.
When Y. Yin, Z. Bai, P. Krishnaiah and J. Silverstein showed that ‖A‖ ≫√
n if the i.i.d. entries of A have infinite weak fourth moment [4], they

obtained this result by checking that the largest entry of A must be ≫ √
n

in this case. However, the number of such large entries is typically small.
This suggests – but does not prove – that the only obstruction to the desired
bound ‖A‖ = O(

√
n) could be a few large entries, and that removing those

entries could enforce this bound. This is consistent with the conclusion
Theorem 1.1.

A related result for the partial case of a symmetric Bernoulli random
matrix B was proved by U. Feige and E. Ofek [6]; an alternative argument
and a more informative result was given later in [10]. Suppose the entries
of B on an above the diagonal are independent, Bernoulli random variables
with mean p ∈ (0, 1). If one removes the heavy rows and columns – those
containing more than 2pn ones, then the resulting matrix B′ satisfies the
optimal norm bound ‖B′ − EB′‖ ≤ C

√
pn. (To see that this bound is

1Although this is a minor terminological distinction, in this theorem we prefer to talk
about second moment rather than variance. This is because the second moment EX

2

of a random variable X is always defined in the extended real line, while the variance
Var(X) = E(X − EX)2 is undefined if the mean EX is infinite.



4 ELIZAVETA REBROVA AND ROMAN VERSHYNIN

consistent with that of Theorem 1.1, divide both sides by
√
p to normalize

the variance of the entries.) One can quickly check using concentration that
the number of heavy rows and columns in B is typically small. With a little
more work, one can even place all ones from the heavy rows and columns
into a small submatrix (see Lemma 8.1 below). Thus Feige-Ofek’s result is
an example of Theorem 1.1.

Weaker versions of Theorem 1.1, with an additional factor log n in the
norm bound and weaker probability guarantees, can be derived from known
general bounds on random matrices, such as the matrix Bernstein’s inequal-
ity [17]. (One would apply the matrix Bernstein’s inequality for the entries
truncated at level

√
n, and control the larger entries as in Section 8.) A dif-

ferent weaker bound ‖Ã‖ ≤ (C/ε)
√
n, which has a suboptimal dependence

on ε, can be derived in a faster way by using results of [13] directly rather
by improving the method of [13].

2. The method

Our approach to Theorem 1.1 utilizes and advances the methods devel-
oped recently in [13] and [10]. We will first control the cut norm of A and
then pass to the operator norm using Grothendieck-Pietsch factorization.
Let us describe these steps in more detail.

2.1. Three matrix norms. The operator norm of a matrix A, as we al-
ready mentioned, is defined by considering A as a linear operator on the
(finite dimensional) space ℓ2, i.e.

‖A‖ = ‖A : ℓ2 → ℓ2‖.
Rather than bounding the operator norm of a random matrix A directly, we
shall compare it with two simpler norms,

‖A‖∞→2 = ‖A : ℓ∞ → ℓ2‖ = max
x 6=0

‖Ax‖2
‖x‖∞

and

‖A‖2→∞ = ‖A : ℓ2 → ℓ∞‖ = max
x 6=0

‖Ax‖∞
‖x‖2

.

The simplest of the three is the 2 → ∞ norm. A quick check reveals that
it equals the maximum Euclidean norm of the rows AT

i of A:

‖A‖2→∞ = max
i∈[n]

‖Ai‖2. (2.1)

The next simplest norm is ∞ → 2, which can be conveniently computed as

‖A‖∞→2 = max
x∈{−1,1}n

‖Ax‖2. (2.2)

This norm is equivalent within a constant factor to the cut norm from the
computer science literature [3, 1], where the maximum is taken over {0, 1}n.
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The hardest of the three is the operator norm,

‖A‖ = max
x∈Sn−1

‖Ax‖2. (2.3)

To see why the difficulty in bounding these norms rises this way, note that
one has to control n random variables in (2.1), 2n random variables in (2.2),
and infinitely many random variables in (2.3).

2.2. Ideal relationships among the norms. How large do we expect the
three norms to be for random matrices? For a simple example, let us first
consider a Gaussian random matrix A with i.i.d. N(0, 1) entries. Then it is
not difficult to check that

‖A‖2→∞ ∼
√
n, ‖A‖∞→2 ∼ n, ‖A‖ ∼

√
n. (2.4)

Indeed, note that the rows of A have Euclidean norms
√
n on average, so

the bound on the 2 → ∞ norm follows by union bound and using Gaussian
concentration. The bound on the ∞ → 2 norm follows from (2.2) by using
Gaussian concentration for the normal random vector Ax and taking the
union bound over {−1, 1}n. The bound on the operator norm is a non-
asymptotic version of Bai-Yin’s law, see e.g. [18, Theorem 5.32].

One might wonder if (2.4) holds not only in the Gaussian case but gen-
erally for random matrices A with i.i.d. entries that have zero mean and
unit variance. In particular, it would be wonderful if the three norms were
always related to each other as follows:

‖A‖ .
‖A‖∞→2√

n
. ‖A‖2→∞ .

√
n. (2.5)

This, however, would be too optimistic to expect, since the bound ‖A‖ .√
n can not hold without higher moments assumptions as we mentioned in

Section 1.1. Nevertheless, we will obtain a version of (2.5) after removal a
small fraction of rows of A. With high probability, we will be able to find
subsets of rows J1 ⊂ J2 ⊂ J3 with cardinalities |Ji| ≤ εn and such that

‖AJc
3
‖ .

‖AJc
2
‖∞→2√
n

. ‖AJc
1
‖2→∞ .

√
n. (2.6)

where the inequalities hide a factor that depends on ε.

2.3. A roadmap of the proof. The first step in proving (2.6) is to find a
small set J1 with |J1| . εn and such that

‖AJc
1
‖2→∞ .

√
n (2.7)

with high probability. In other words, we would like to bound all rows of A
simultaneously by O(

√
n) after removing a few columns of A. To show this

we first focus on one row, where we need to bound a sum of independent
random variables (the squares of the row’s entries). In Theorem 4.2 we
show how to bound sums of independent random variables almost surely
by gently damping the summands. Damping, or reweighting down, is a
softer operation than removing entries. It allows us to treat in Section 5
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all columns simultaneously without much effort, thus proving (2.7). The
argument in this step is similar to the approach proposed recently in [13].
We somewhat simplify the method of [13] and also improve the dependence
between the number of removed columns and the resulting 2 → ∞ norm;
this will ultimately lead to the optimal dependence on ε in Theorem 1.1.

At the next step, we extend J1 to a bigger set of rows J2 with |J2| . εn
and so that

‖AJc
2
‖∞→2 . n. (2.8)

Suppose for a moment that we are not concerned about removal of any
columns. It is not too hard to show the general bound

E ‖A‖∞→2 .
√
nE ‖A‖2→∞, (2.9)

for a random matrix A with independent, mean zero entries; we prove this
in Lemma 6.1. However, this bound is not very helpful in our situation.
We need to work with the matrix AJc

1
instead of A, which is not trivial: the

removal of the columns in J1 that we did in the first step made the entries of
AJc

1
dependent. In Lemma 6.2, we first prove a variant of (2.9) for AJc

1
under

an additional symmetry assumption on the distribution of the entries of A.
Then we manage to remove this assumption with a delicate symmetrization
argument, which we develop in the rest of Section 6, with the final result
being Theorem 6.6. The general idea of this step, as well as some of our
arguments here, are inspired by [13]. However we need to be considerably
more careful than in [13] to obtain (2.8) with a logarithmic dependence on
ε.

Next, we pass from ∞ → 2 norm to the operator norm in Section 7. This
is done by using Grothendieck-Pietsch factorization (Theorem 7.1), a result
that yields the first inequality in (2.6) for completely arbitrary, even non-
random, matrices. This reasoning was recently used in a similar context in
[10].

The argument we just described works under the additional assumption
that the entries of A be O(

√
n) almost surely. To be specific, such bound-

edness assumption is needed to make the damping argument in Step 1 work
with mild, logarithmic dependence on ε. The contribution of the entries that
are larger than

√
n are controlled in Section 8 by showing that there can

not be too many of them. The unit variance assumption implies that there
are O(1) such large entries per column on average. This does not mean, of
course, that all columns will have O(1) large entries with high probability;
in fact there could be columns with ∼ log n/ log log n large entries. But we
will check in Lemma 8.1 that the number of such heavy columns is small;
removing them will lead to the desired bound O(

√
n) on the operator norm

for the matrix with large entries. We develop this argument in Proposi-
tion 8.4 and Corollary 8.6, and derive the full strength of Theorem 1.1 in
Section 8.4.

Theorem 1.3 is proved in Section 9. The paper is concluded with Sec-
tion 10 where we discuss some further problems.
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Acknowledgements. We are thankful to Ramon van Handel who showed
us a simple argument that we use here to prove Lemma 3.1.

3. Preliminaries

3.1. Notation. Throughout the paper, positive absolute constant are de-
noted C,C1, c, c1, etc. Their values may be different from line to line. We
often write a . b to indicate that a ≤ Cb for some absolute constant C.

The discrete interval {1, 2, . . . , n} is denoted by [n]. If R is some subset
of indices, R ⊂ [n] × [n], let us denote by AR the matrix obtained from A
by replacing the indices in R by zero:

AR := (Āij)
n
i,j=1, where Āij = Aij1{(i,j)∈R}.

We will often consider subsets of columns of the matrix, so when R = J× [n]
we use a simplified notation: for J ⊂ [n]

AJ := A[n]×J .

Given a finite set S, by |S| we denote its cardinality. The standard inner
product in R

n shall be denoted by 〈·, ·〉. Given p ∈ [1,∞], ‖·‖p is the standard
ℓnp -norm in R

n. Also, ‖·‖ψ2
denotes sub-gaussian norm of a random variable

and ‖ · ‖ψ1
– sub-exponential norm (see also in Section 3.3).

3.2. Operator norm via ℓ1 norm of rows and columns. The following
simple result states that the operator norm of any matrix is dominated by
the ℓ1 norms of rows and columns.

Lemma 3.1. For any m× k matrix A, we have

‖A‖ ≤
(

max
i

‖Ai‖1 ·max
j

‖Aj‖1
)1/2

where Ai and A
j denote the rows and columns of A.

Proof. Recall that the operator norm can be computed as a maximum of
the quadratic form:

‖A‖ = sup
‖x‖2=‖y‖2=1

|xTAy|.
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Fix unit vectors x and y and express

|xTAy| =
∣

∣

∣

∑

i,j

xiAijyj

∣

∣

∣

≤
∑

i,j

(

|xi|
√

|Aij |
)(

√

|Aij ||yj |
)

(by triangle inequality)

≤
(

∑

i,j

x2i |Aij |
)1/2(∑

i,j

|Aij |y2j
)1/2

(by Cauchy-Schwarz)

=
(

∑

i

x2i ‖Ai‖1
)1/2(∑

j

‖Aj‖1 y2j
)1/2

≤ max
i

‖Ai‖1/21 ·max
j

‖Aj‖1/21 (since ‖x‖2 = ‖y‖2 = 1).

Taking the maximum over all unit vectors x and y, we complete the proof.
�

3.3. Concentration. A standard way to get some desired estimate on a
random variable X with high probability is to get this estimate for EX first,
and then argue that X concentrates around its expectation. In this case X
usually stays close to EX, and therefore satisfies a close estimate.

In this paper we make use of good concentration properties of the sums of
sub-gaussian (and sub-exponential) random variables, that is, such that grow
not faster than standard normal (respectively, exponential) random vari-
ables. Recall that by definition a random variable Y is called sub-gaussian

if its moments satisfy

E exp(Y 2/M2
2 ) ≤ e,

for some number M2 > 0. The minimal number M2 is called the sub-
gaussian moment of X, denoted as ‖Y ‖ψ2

. Analogously, a random variable
is called sub-exponential if

E exp(Y/M1) ≤ e,

for some number M1 > 0. The minimal number M1 is called the sub-
exponential moment of Y , denoted as ‖Y ‖ψ1

.
The class of sub-gaussian random variables contains standard normal,

Bernoulli, and generally all bounded random variables. The class of sub-
exponential random variables is exactly the class of squares of sub-gaussians.
See [18] for more information and statements of standard concentration in-
equalities.

Also we will need a concentration inequality for random permutations
from [13].

Lemma 3.2 (Concentration for random permutations). Consider arbitrary

vectors a = (a1, . . . , an) ∈ R
n and x ∈ {−1, 1}n. Let π : [n] → [n] denote a
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random permutation chosen uniformly from the symmetric group Sn. Then

the random sum

S :=

n
∑

i=1

aixπ(i)

is sub-gaussian, and

‖S − ES‖ψ2
≤ C‖a‖2.

The same inequality holds for the sum S′ =
∑n

i=1 aπ(i)xi as well, since it

has the same distribution as S.

3.4. Discretization. The following lemma allows us to approximate a gen-
eral continuous random variable by a sum of independent, scaled Bernoulli
random variables. This lemma was originally proved in [13]. Here we give
a proof for completeness, and then discuss some particular cases needed for
the proof of Theorem 1.1.

Lemma 3.3 (Discretization). Consider a non-negative, continuous random

variable X. There exists a non-negative random variable X ′ satisfying the

following.

1. EX ′ ≤ 4EX.

2. X ′ stochastically dominates X, i.e.

P
{

X ′ ≥ t
}

≥ P {X ≥ t} for all t ≥ 0.

3. X ′ is a sum of scaled, independent Bernoulli random variables:

X ′ =
∞
∑

k=0

qkξk (3.1)

where qk are non-negative numbers and ξk are independent Ber(2−k) ran-
dom variables.

Proof. Set the values qk to be the quantiles of the distribution of X:

qk := min
{

t ≥ 0 : P{X ≥ t} = 2−k−1
}

, k = 0, 1, 2, . . .

(These values are well defined since the cumulative distribution function
of X is continuous by assumption.) By definition, (qk) is an increasing
sequence. Define X ′ by (3.1).

To check part 1, note that by definition,

EX ′ =
∞
∑

k=0

qk E ξk =

∞
∑

k=0

qk2
−k. (3.2)

To lower bound EX, let us decompose X according to the values it can
take. This gives

X ≥
∞
∑

k=0

X1{X∈[qk,qk+1)} ≥
∞
∑

k=0

qk1{X∈[qk,qk+1)}
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almost surely. Taking expectation of both sides, we obtain

EX ≥
∞
∑

k=0

qkP {X ∈ [qk, qk+1)} .

Now, using the definition of qk, we have

P {X ∈ [qk, qk+1)} = P {X ≥ qk}−P {X ≥ qk+1} = 2−k−1−2−k−2 = 2−k−2.

This yields

EX ≥
∞
∑

k=0

qk2
−k−2. (3.3)

Comparing (3.2) with (3.3), we conclude that EX ′ ≤ 4EX, which proves
part 1 of the lemma.

Let us prove part 2. If t ∈ [qk, qk + 1) for some k = 0, 1, 2, . . ., then using
the definitions of X ′ and qk we obtain

P
{

X ′ ≥ t
}

≥ P
{

X ′ ≥ qk+1

}

≥ P {ξk+1 = 1} = 2−k−1

= P {X ≥ qk} ≥ P {X ≥ t} ,
as required.

It remains to check the domination inequality when t is outside the range
[q0, q∞) where q∞ := limk→∞ qk ∈ R+ ∪ {∞}. If t < q0, we have

P
{

X ′ ≥ t
}

≥ P
{

X ′ ≥ q0
}

≥ P {ξ0 = 1} = 1,

and the inequality in part 2 follows. If t ≥ q∞ then, using the continuity of
the cumulative distribution of X, we obtain

P {X ≥ t} ≤ P {X ≥ q∞} = lim
k→∞

P {X ≥ qk} = lim
k→∞

2−k−1 = 0,

and the inequality in part 2 follows again. The proof is complete. �

Remark 3.4 (Bounded random variables). Suppose X ≤ M almost surely.
Then, in the second part of the conclusion of Lemma 3.3, X can be repre-
sented as a finite sum

X ′ :=
κ
∑

k=0

qkξk

where qk are non-negative numbers, qk ∈ [0,M ], and ξk are independent
Ber(pk) random variables. Here pk = 2−k ≥ 1/M for k < κ and pκ = 1/M .

Remark 3.5 (Coupling). Stochastic dominance of X ′ over X in Lemma 3.3
implies that one can realize the random variables X and X ′ on the same
probability space so that

X ′ ≥ X almost surely.

(See, for example, [19, Section 4.3]).
Moreover, in the same way we can construct a majorizing collection for

any collection of independent random variables. In particular, we can do it
for all entries of the matrix A at once.
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4. Damping a sum of independent random variables

Let X1, . . . ,Xn be non-negative i.i.d. random variables with EXi ≤ 1.
The linearity of expectation gives the trivial bound

E

n
∑

i=1

Xi ≤ n.

Here we will be interested in a stronger result – that the sum be O(n) almost

surely instead of in expectation. To do this, we will be looking for random
weights

W1, . . . ,Wn ∈ [0, 1]

that make the “damped” sum satisfy

n
∑

j=1

WjXj = O(n) almost surely.

To make the damping as gentle as possible, we are looking for largest possible
weights Wi, hopefully very close to 1.

4.1. Damping one random variable. To get started, let us consider the
simple case where n = 1 and try to damp one random variable.

Lemma 4.1 (Damping a random variable). Let X be a random variable

such that

X ≥ 0 and EX ≤ 1.

Let ε ∈ (0, 1). There exists a random variable W taking values in [0, 1] and
such that

XW ≤ ε−1 almost surely; (4.1)

1 ≤ EW−1 ≤ 1 + ε. (4.2)

Proof. Fix a level L ≥ 1 whose value we will choose later, and define

W := min(1, L/X).

To check (4.1), we have

XW = min(X,L) ≤ L almost surely.

Next, the lower bound in (4.2) holds trivially since W ≤ 1. For the upper
bound, we have

EW−1 = Emax(1,X/L) ≤ E(1 +X/L) ≤ 1 +
1

L
,

where we used the assumption that EX ≤ 1. Setting L = ε−1 completes
the proof. �
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4.2. Damping a sum of random variables. Now let us address the
damping problem for general number n of random variables, which we de-
scribed in the beginning of this section. Applying Lemma 4.1 for each ran-
dom variable Xi, we get weights Wi such that

n
∑

j=1

WjXj ≤ ε−1n almost surely;

1 ≤ E

(

n
∏

j=1

Wj

)−1
≤ (1 + ε)n = 1 +O(εn)

for small ε. We will now considerably improve both these bounds, making
only one mild extra assumption that Xi = O(n) almost surely.

Theorem 4.2 (Damping a sum of random variables). Let X1, . . . ,Xn be

i.i.d. random variables such that

0 ≤ Xj ≤ Kn and EXj ≤ 1

for some K ≥ 1. Let ε ∈ (0, 1/2). There exist random variables W1, . . . ,Wn

taking values in [0, 1] and such that

n
∑

j=1

WjXj ≤ CK log(ε−1) · n almost surely; (4.3)

1 ≤ E

(

n
∏

j=1

Wj

)−1
≤ 1 + ε. (4.4)

Remark 4.3. Improvement in the order of n in (4.4) does not require an
extra boundedness assumption, and it was done in previous work [13]. We
employ the same ideas as in [13, Lemma 3.3] and obtain better (logarithmic)
dependence on ε in (4.3) in trade of the additional assumption mentioned.

Proof. Step 1: Bernoulli distribution. Let us first prove the theorem in
the partial case where Xj are scaled Bernoulli random variables. Assume
that Xj can take values q and 0, and

P {Xj = q} = p ≥ 1

Kn
. (4.5)

Let ν denote the (random) number of nonzero Xj’s:

ν := |{j : Xj 6= 0}| , then E ν = pn.

Here is how we will define the weights Wj. If Xj = 0 then clearly there is
no need to damp Xj so put Wj = 1. The same applies if the number ν of
non-zero Xj ’s does not significantly exceed its expectation pn. Otherwise
we damp all terms by the same amount Wj ∼ pn/ν. Formally, we fix some
parameter L = L(K, ε) whose value we will determine later, and set

Wj :=

{

1, if ν ≤ Lpn or Xj = 0

Lpn/ν, if ν > Lpn and Xj 6= 0.
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Let us check (4.3). In the event when ν ≤ Lpn, we have

n
∑

j=1

WjXj =
ν

∑

j=1

1 · q = qν ≤ qLpn = Ln · EX1.

And in the event when ν > Lpn, we have
n
∑

j=1

WjXj =
ν

∑

j=1

Lpn

ν
· q = Lpnq = Ln · EX1.

as before. Thus, we showed that
n
∑

j=1

WjXj ≤ Ln · EX1 ≤ Ln almost surely. (4.6)

Let us now check (4.4). Since the lower bound is trivial, we will only have
to check the upper bound. We will again split the calculation into two cases
based on the size of ν. If ν ≤ Lpn then all Wj = 1, so we trivially get

E− := E

(

n
∏

j=1

Wj

)−1
1{ν≤Lpn} ≤ 1.

If ν > Lpn, then the definition of Wj gives

E+ := E

(

n
∏

j=1

Wj

)−1
1{ν>Lpn} = E

( ν

Lpn

)ν
1{ν>Lpn}

=
n
∑

k=⌈Lpn⌉+1

( k

Lpn

)k
P {ν = k} .

Since ν ∼ Binom(n, p), we have

P {ν = k} =

(

n

k

)

pk ≤
(enp

k

)k
,

using a standard consequence of Stirling’s approximation. Thus

E+ ≤
n
∑

k=⌈Lpn⌉+1

( e

L

)k
≤

( e

L

)Lpn
,

provided that L ≥ 10. Thus we showed that

E

(

n
∏

j=1

Wj

)−1
≤ E− + E+ ≤ 1 +

( e

L

)Lpn
≤ 1 +

( e

L

)L/K
(4.7)

where in the last step we used the assumption that p ≥ 1/Kn that we made
in (4.5).

Now that we have the bounds (4.6) and (4.7), it is enough to choose

L := CK log
(1

ε

)
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which implies that E ≤ 1 + ε. The proof for the Bernoulli distribution is
complete.

Step 2. General distribution. Let us now now prove the theorem in
full generality. First we discretize the distribution of Xj using Lemma 3.3.
This result requires Xj be continuous, which can be arranged by a standard
approximation argument. For example, we can add a small Gaussian inde-
pendent component to Xj and then let the variance of this component go
to zero. Taking into account Remarks 3.4 and 3.5, we obtain independent,
non-negative random variables X ′

j that satisfy EX ′
j ≤ 4 and such that

Xj ≤ X ′
j =

κ
∑

k=1

Xjk.

Here Xjk are independent random variables; each Xjk can take values qk
and 0, and

P {Xjk = qk} = pk
with

pk = 2−k ≥ 1

Kn
for k < κ, pκ =

1

Kn
. (4.8)

The argument will be similar to step 1 of the proof. For each level k we
let νk denote number of non-zero Xjk’s:

νk := |{j : Xjk 6= 0}| , then E ν = pkn.

Again, for each level k define the weights Wjk like in step 1:

Wjk :=

{

1, if νk ≤ Lpkn or Xjk = 0

Lpkn/νk, if νk > Lpkn and Xjk 6= 0.

Then we set

Wj :=
κ
∏

k=1

Wjk, j = 1, . . . , n.

Let us check (4.3). We have
n
∑

j=1

WjXj ≤
n
∑

j=1

WjX
′
j =

n
∑

j=1

κ
∑

k=1

WjXjk ≤
κ
∑

k=1

n
∑

j=1

WjkXjk, (4.9)

since Wj ≤ Wjk by construction. Now, for each level k, we can use step 1
of the proof, where we showed in (4.6) that

n
∑

j=1

WjkXjk ≤ Ln · EX1k.

Substituting into (4.9), we obtain
n
∑

j=1

WjXj ≤ Ln ·
κ

∑

k=1

EX1k = Ln · EX ′
1 ≤ 5Ln (4.10)

by construction.
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Let us now check (4.4). The lower bound is trivial, and we will only have
to check the upper bound. For each level k, we can use step 1 of the proof,
where we showed in (4.7) that

E

(

n
∏

j=1

Wjk

)−1
≤ 1 +

( e

L

)Lpkn ≤ 1 + e−Lpkn,

which is true as long as L ≥ 10. Then, by construction we have

E

(

n
∏

j=1

Wj

)−1
= E

κ
∏

k=1

(

n
∏

j=1

Wjk

)−1

=
κ
∏

k=1

E

(

n
∏

j=1

Wjk

)−1
(by independence)

≤
κ
∏

k=1

(

1 + e−Lpkn
)

≤ exp
(

κ
∑

k=1

e−Lpkn
)

where in the last step we used the inequality 1 + x ≤ ex. Recall from (4.8)
that the exponents pk form a decreasing geometric progression with values
2−k until the last (smallest) term of order 1/Kn. So this last term dominates
the sum

∑κ
k=1 e

−Lpkn, and we obtain

E

(

n
∏

j=1

Wj

)−1
≤ exp(2e−L/2K). (4.11)

Now that we have the bounds (4.10) and (4.11), it is enough to choose

AijL := C4.2K log
(1

ε

)

with C4.2 ≥ 6K and the right hand side of (4.11) will be bounded by

exp(2ε3) ≤ exp(ε/2) ≤ 1 + ε,

as claimed. The proof of the theorem is complete. �

5. The 2 → ∞ norm of random matrices

In this section we prove Theorem 1.1 under the additional assumption
that all entries Aij of A are not too large. Specifically, let us assume that

|Aij | ≤
√
n

2
almost surely. (5.1)

Lemma 5.1 (Bounding 2 → ∞ norm by removing a few columns). Consider
an n×n random matrix A with i.i.d. entries Aij which have mean zero and

unit variance and satisfy (5.1). Let ε ∈ (0, 1/2]. Then with probability at

least 1 − exp(−εn), there exists a subset J ∈ [n] with cardinality |J | ≤ εn
such that

‖AJc‖2→∞ ≤ C
√
ln ε−1 ·

√
n.
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Proof. We apply Theorem 4.2 for the squares of the elements in each row of
A, i.e. for the random variables (a2i1, . . . , a

2
in). This gives us random weights

Wij ∈ [0, 1] which satisfy for each i ∈ [n] that

n
∑

j=1

WijA
2
ij ≤ C log(ε−1)n a.s.; E

(

n
∏

j=1

Wij

)−1
≤ exp(ε).

To make the same system of weights work for all rows, we define

Vj :=

n
∏

i=1

∈ [0, 1], j ∈ [n].

Then obviously Vj ≤Wij for every i, and so

n
∑

j=1

VjA
2
ij ≤ C log(ε−1)n ∀i a.s.; E

(

n
∏

j=1

Vj

)−1
≤ exp(εn). (5.2)

We will remove from A the columns whose weights Vj are too small,
namely those in

J := {j ∈ [n] : Vj < e−2}.
Let us first check that

|J | ≤ εn with probability at least 1− exp(−εn), (5.3)

as we claimed in the lemma. Indeed, if |J | > εn then using that all Vj ∈ [0, 1]
we have

Z :=

n
∏

j=1

Vj ≤
∏

j∈J
Vj < e−2εn.

But the probability of this event can be bounded by Markov’s inequality:

P
{

Z < e−2εn
}

= P
{

Z−1 > e2εn
}

≤ e−2εn
EZ−1 ≤ e−εn,

where in the last bound we used (5.2). This proves (5.3).
It remains to check that all rows Bi of the matrix B = A[n]×Jc

0
are bounded

as claimed. We have

‖Bi‖22 =
∑

j∈Jc

A2
ij ≤ e2

∑

j∈Jc

VjA
2
ij (by definition of J)

≤ e2
n
∑

j=1

VjA
2
ij (since all Vj ≤ 1)

≤ e2C ln(ε−1)n (by (5.2)).

Taking the square root of both sides completes the proof. �
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6. From 2 → ∞ norm to ∞ → 2 norm

In this section we will control the ∞ → 2 norm of a random matrix. Our
first task is to bound the ∞ → 2 norm by the simpler 2 → ∞ norm. There
are two ways to do this, both of them going back to [13]. The resulting
comparison inequalities are interesting in their own right; we state them
in Lemmas 6.1 and 6.3. The ultimate result of this section is Theorem 6.6,
which gives an optimal bound O(n) on the ∞ → 2 norm of a random matrix
after removing a small fraction of columns.

6.1. Using random signs. The first method is based on flipping the signs
of the entries independently at random. Here is the main result of this
section.

Lemma 6.1 (From 2 → ∞ to ∞ → 2). Let A be an n × n random matrix

whose entries are independent, mean zero random variables. Then

E ‖A‖∞→2 ≤ C
√
n · E ‖A‖2→∞.

Proof. Let εij be independent Rademacher random variables (which are also
independent of A) and consider the random matrix

Ã := (εijAij).

A basic symmetrization inequality (see [11, Lemma 6.3]) yields

E ‖A‖∞→2 ≤ 2E ‖Ã‖∞→2.

Condition on A; the randomness now rests in the random signs (εij) only.
It suffices to show that the conditional expectation satisfies

E ‖Ã‖∞→2 .
√
n · ‖A‖2→∞. (6.1)

Recalling (2.2), we have

‖Ã‖∞→2 = max
x∈{−1,1}n

‖Ãx‖2. (6.2)

According to the matrix-vector multiplication, we can express ‖Ãx‖2 as a
sum of independent random variables

‖Ãx‖22 =
n
∑

i=1

ξ2i where ξi := 〈Ãi, x〉 =
n
∑

j=1

εijAijxj.

Fix x ∈ {−1, 1}n. Using independence and (2.1), we get

E ξ2i =

n
∑

j=1

(Aijxij)
2 =

n
∑

j=1

A2
ij ≤ ‖A‖22→∞,

so

E

n
∑

i=1

ξ2i ≤ n‖A‖22→∞. (6.3)
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Moreover, the standard concentration results ([18, Lemma 5.9]) show that
each ξi is a sub-gaussian random variable, and we have

‖ξi‖2ψ2
=

∥

∥

∥

n
∑

j=1

εijAijxj

∥

∥

∥

2

ψ2

.

n
∑

j=1

(Aijxij)
2 ≤ ‖A‖22→∞.

Thus ξ2i is a sub-exponential random variable (see [18, Lemma 5.9]) and

‖ξ2i ‖ψ1
. ‖ξi‖2ψ2

. ‖A‖22→∞. (6.4)

Applying Bernstein’s concentration inequality [18, Corollary 5.17] to-
gether with (6.3) and (6.4), we obtain

P

{

n
∑

i=1

ξ2i ≥ n‖A‖22→∞ + tn‖A‖22→∞

}

≤ exp(−ctn)

for all t ≥ 1. Thus we obtained a bound on ‖Ãx‖22 =
∑n

i=1 ξ
2
i . It remains to

recall (6.2) and take a union bound over x ∈ {−1, 1}n. It follows that the
inequality

‖Ã‖2∞→2 ≤ (1 + t)n‖A‖22→∞

holds with probability at least

1− 2n exp(−ctn) ≥ 1− exp [(1− ct)n] ,

where t ≥ 1 is arbitrary. Integration of these tails implies (6.1). �

We will need a minor variation of Lemma 6.1 that can be applied even
when some of the columns of A are removed.

Lemma 6.2 (From 2 → ∞ to ∞ → 2 for symmetric distributions). Let A be

an n× n random matrix whose entries are independent, symmetric random

variables. Let J ⊂ [n] be a random subset, which is independent of the signs

of the entries of A. Then

‖AJ‖∞→2 ≤ C
√
n‖AJ‖2→∞

with probability at least 1− e−n.

Proof. It is quite straightforward to check this result by modifying the proof
of Lemma 6.1. By the symmetry assumption, the matrix Ã := (εijAij) has
the same distribution as A. Conditioning on A and J leaves all randomness
with the signs (εij), as before. Then we repeat the reset of the proof of
Lemma 6.1 for the submatrix AJ , In the end, we choose t to be a large
absolute constant to complete the proof. �

So, the only part of Lemma 6.1 that does not work for a matrix with
removed columns is the symmetrization part. In the following two sections
we will develop the tools to overcome the extra symmetry assumption we
have to add in Lemma 6.2.
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6.2. Using random permutations. We just showed how to convert an
∞ → 2 bound to a 2 → ∞ bound for random matrices by using random
signs. Alternatively, one can use random permutations for the same purpose,
and obtain the following bound.

Lemma 6.3 (From 2 → ∞ to ∞ → 2). Let A be an n × n random matrix

with i.i.d. entries. Then

E ‖A‖∞→2 ≤ C
√
n · E ‖A‖2→∞ + C E ‖A1‖2,

where 1 = (1, 1, . . . , 1) denotes the vector whose all coordinates equal 1.

Before we turn to the proof, note that the only difference between Lem-
mas 6.1 and 6.3 is the term E ‖A1‖2. It makes its appearance since there is
no mean zero assumption on the entries. This term is usually quite innocent.
Note also that (2.2) trivially implies that

E ‖A‖∞→2 ≥ E ‖A1‖2,
so we have to control this term anyway.

Proof. Let us apply a random independent permutation πi to the elements
of each row of A. The resulting matrix Ã has the same distribution of A
due to the i.i.d. assumption. Condition on A; the randomness now rests in
the random permutations πi only. It suffices to show that the conditional
expectation satisfies

E ‖Ã‖∞→2 ≤ C
√
n · ‖A‖2→∞ + C‖A1‖2, (6.5)

Similarly to the proof of Lemma 6.1, we express ‖Ãx‖2 as a sum of inde-
pendent random variables

‖Ãx‖22 =
n
∑

i=1

ξ2i where ξi := 〈Ãi, x〉 =
n
∑

j=1

Ai,πi(j)xj. (6.6)

The concentration inequality for random permutations (Lemma 3.2) states
that each ξi is a sub-gaussian random variable, and we have

‖ξi − E ξi‖ψ2
. ‖Ãi‖2 ≤ ‖A‖2→∞.

Just like in the proof of Lemma 6.1, this implies that

‖(ξi − E ξi)
2‖ψ1

. ‖A‖22→∞.

Since the expectation is bounded by the ψ1 norm (see e.g. [18, Defini-
tion 5.13]), we conclude that

E(ξi − E ξi)
2 . ‖(ξi − E ξi)

2‖ψ1
. ‖A‖22→∞

and thus

E

n
∑

i=1

(ξi − E ξi)
2 . n‖A‖22→∞.
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Applying Bernstein’s inequality like in Lemma 6.1, we find that

P

{

n
∑

i=1

(ξi − E ξi)
2 ≥ n‖A‖22→∞ + tn‖A‖22→∞

}

≤ exp
[

−cmin(t2, t)n
]

for all t ≥ 0. Thus, for any t ≥ 1 we have with probability at least 1 −
exp(−tn) that

n
∑

i=1

(ξi − E ξi)
2 ≤ (1 + t)n‖A‖22→∞. (6.7)

From (6.6) we see that we are almost done; we just need to remove E ξi
from our bound. To this end, note that

‖Ãx‖22 =
n
∑

i=1

ξ2i ≤ 2

n
∑

i=1

(ξi − E ξi)
2 + 2

n
∑

i=1

(E ξi)
2. (6.8)

We have already bounded the first sum. As for the second one, the definition
of ξ in (6.6) yields

E ξi =
2m− n

n

n
∑

j=1

Aij =
2m− n

n
〈Ai,1〉

wherem denotes the number of ones in xj and A
T

i is the i-th row of A. Thus

n
∑

i=1

(E ξi)
2 =

(2m− n

n

)2
n
∑

i=1

〈Ai,1〉2 ≤ ‖A1‖22.

We substitute this and (6.7) into (6.8) and obtain that for any t ≥ 1,

‖Ãx‖22 ≤ 2(1 + t)n‖A‖22→∞ + 2‖A1‖22
with probability at least 1− exp(−tn).

It remains to recall (6.2) and take a union bound over x ∈ {−1, 1}n. It
follows that the inequality

‖Ã‖2∞→2 ≤ 2(1 + t)n‖A‖22→∞ + 2‖A1‖22 (6.9)

holds with probability at least

1− 2n exp(−ctn) ≥ 1− exp [(1 − ct)n]

where t ≥ 1 is arbitrary. Integration of these tails implies (6.5). �

It is worthwhile to mention a high-probability version of Lemma 6.3.

Lemma 6.4 (From 2 → ∞ to ∞ → 2 with high probability). Let A be

an n × n random matrix with i.i.d. entries. Then with probability at least

1− e−n we have

‖A‖∞→2 ≤ C
√
n · E ‖A‖2→∞ +C E ‖A1‖2,

where 1 = (1, 1, . . . , 1) denotes the vector whose all coordinates equal 1.
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Proof. At the end of the proof of Lemma 6.3, we obtained inequality (6.9)
which states (for large constant t) that

‖Ã‖∞→2 ≤ C
√
n · ‖A‖2→∞ +C‖A1‖2

with probability at least 1− e−n. Note that

‖A‖2→∞ = ‖Ã‖2→∞ and ‖A1‖2 = ‖Ã1‖2
deterministically. Indeed, it is easy to check that permutations of the ele-
ments of the rows of A do not affect these two quantities. It follows that

‖Ã‖∞→2 ≤ C
√
n · ‖Ã‖2→∞ +C‖Ã1‖2

with probability at least 1 − e−n. It remains to note that Ã has the same
distribution as A. �

6.3. Bounding 2 → ∞ and ∞ → 2 norms with tiny probability.

Recall from Section 2.2 that ideally, we would want

‖A‖2→∞ .
√
n and ‖A‖∞→2 . n

with high probability. But this is too good to be true in our situation,
where we assume only two moments for the entries of A. Nevertheless, we
will now show that these bounds still hold, albeit with exponentially small
probability.

Lemma 6.5 (2 → ∞ and ∞ → 2 norms with tiny probability). Let A be an

n × n random matrix whose entries are i.i.d. random variables with mean

zero and unit variance. Let δ ∈ (0, 1/2). Then

‖A‖2→∞ ≤ 2δ−1√n and ‖A‖∞→2 ≤ Cδ−1n (6.10)

with probability at least 1
2 exp(−δ2n).

Proof. We will first bound below the probability of the event

E :=
{

‖A‖2→∞ ≤ 2δ−1√n and ‖Ã1‖2 ≤ 2δ−1n
}

and then use Lemma 6.4 to control ‖A‖∞→2.
Recall from (2.1) that

‖A‖2→∞ = max
i∈[n]

‖Ai‖2 and ‖Ã1‖22 =
n
∑

i=1

〈Ai,1〉2

where AT

i denote the rows of A. Thus E ⊂ ⋂n
i=1 Ei where

Ei :=
{

‖Ai‖2 ≤ 2δ−1√n and |〈Ai,1〉| ≤ 2δ−1√n
}

are independent events. This reduces the problem to bounding the proba-
bility of each event Ei below.

The assumptions on the entries of A imply that

E ‖Ai‖22 = n and E〈Ai,1〉2 = n.
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Using Chebyshev’s inequality, we see that

P
{

‖Ai‖2 > 2δ−1√n
}

≤ δ2

4
and P

{

|〈Ai,1〉| > 2δ−1√n
}

≤ δ2

4
.

Then a union bound yields

P(Ei) ≥ 1− δ2

2
.

By independence of the events Ei, this implies

P(E) ≥
(

1− δ2

2

)n
≥ exp(−δ2n).

Next we apply Lemma 6.4, which states that the event

F :=
{

‖A‖∞→2 ≤ C
√
n · E ‖A‖2→∞ + C E ‖A1‖2

}

is likely:
P(F) ≥ 1− exp(−n).

It follows that

P(E ∩ F) ≥ exp(−δ2n)− exp(−n) ≥ 1

2
exp(−δ2n).

It remains to note that by definition of E and F , the event E ∩ F implies
the inequalities in (6.10). �

6.4. Bounding ∞ → 2 norm with high probability. In the previous
section, we were able to prove the optimal bounds

‖A‖2→∞ .
√
n and ‖A‖∞→2 . n

for a random matrix A, but they only hold with exponentially small proba-
bility. We claim that the probability of success can be increased to almost
1 if we are allowed to remove a few columns of A. We already proved this
fact for the 2 → ∞ norm in Lemma 5.1. It is time to handle the ∞ → 2
norm.

Theorem 6.6 (Bounding ∞ → 2 norm by removing a few columns). Con-

sider an n×n random matrix A with i.i.d. entries Aij which have mean zero

and unit variance and satisfy (5.1). Let ε ∈ (0, 1/2]. Then with probability

at least 1−2 exp(−εn), there exists a subset J ∈ [n] with cardinality |J | ≤ εn
such that

‖AJc‖∞→2 ≤ C
√
ln ε−1 · n.

Proof. Step 1: Defining the two key events. We will be interested in
the two key events that suitably control the 2 → ∞ and ∞ → 2 norms of
a random matrix. Thus, for a random matrix B and numbers r,K ≥ 0, we
define

E2→∞(B, r,K) :=
{

∃J, |J | ≤ rεn : ‖BJc‖2→∞ ≤ K
√
ln ε−1 ·

√
n
}

,

E∞→2(B, r,K) :=
{

∃J, |J | ≤ rεn : ‖BJc‖∞→2 ≤ K
√
ln ε−1 · n

}

.
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In terms of these events, we want to show that

P (E∞→2(A, 1, C)c) ≤ 2 exp(−εn),
while Lemma 5.1 can be stated as

P
(

E2→∞(A, 1, C ′)
)

≥ 1− exp(−εn).
for some absolute constant C ′. Since the latter event is so likely, intersecting
with it would not cause much harm. Indeed, we will show that the bad event

B := E2→∞(A, 1, C ′) ∩ E∞→2(A, 1, C)c

satisfies

P(B) ≤ exp(−n/2). (6.11)

This would finish the proof, since we would then have

P (E∞→2(A, 1, C)c) ≤ exp(−n/2) + exp(−εn) ≤ 2 exp(−εn)
as required.

Step 2: Symmetrization. As an intermediate step, let us bound the
probability of a symmetrized version of B, namely the event

B̃ := E2→∞(Ã, 1, 2C ′) ∩ E∞→2(Ã, 1, C/2)
c

where

Ã := A−A′

and A′ is an independent copy of the random matrix A. We claim that

P(B̃) ≤ exp(−n). (6.12)

To prove this claim, choose a subset J , |J | ≤ εn, that minimizes ‖ÃJc‖2→∞.
Recall from (2.1) that the 2 → ∞ norm of a matrix is determined by the
Euclidean norms of the columns and thus does not depend on the signs of
the matrix elements. Thus J is independent of the signs of the elements
of Ã. This makes it possible to use Lemma 6.2 for the matrix Ã and the
random set Jc. It gives

‖ÃJc‖∞→2 .
√
n‖ÃJc‖2→∞ (6.13)

with probability at least 1− exp(−n).
Then, turning to B̃, we can bound its probability as follows:

P(B̃) ≤ P(B̃ and (6.13)) + exp(−n).
To prove the claim, it remains to check that B̃ and (6.13) can not hold
together. Assume they do; then

‖ÃJc‖∞→2 .
√
n · 2C ′√ln ε−1

√
n .

√
ln ε−1 · n,

which contradicts the event E∞→2(Ã, 1, C/2)
c in the definition of B̃ for a

suitably chosen constant C. This completes the proof of the claim (6.12).
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Step 3. Using the small-probability bounds. The last piece of
information we will use is the conclusion of Lemma 6.5 for δ := 1/(2 ln ε−1).
It states that the good event

G := E2→∞(A′, 0, C ′) ∩ E∞→2(A
′, 0, C/2)

is likely to happen:

P(G) ≥ 1

2
exp

(

− n

4 ln ε−1

)

. (6.14)

Note in passing that there is no guarantee that this statement would hold
for the same constants C and C ′ as we chose in the definition of B above.
However, we can make this happen by adjusting these constants upwards
as necessary. The reader can easily check both (6.12) and (6.14) would still
hold after such an adjustment.

We claim that

B ∩ G ⊂ B̃. (6.15)

To see this, recall that each of B, G and B̃ is defined an an intersection
of two events, one controlling 2 → ∞ norm and the other, ∞ → 2 norm.
Thus it suffices to check the inclusion for each of these two parts separately.
Namely, the claim (6.15) would follow at once if we show that

E2→∞(A, 1, C ′) ∩ E2→∞(A′, 0, C ′) ⊂ E2→∞(Ã, 1, 2C ′) and

E∞→2(A, 1, C)c ∩ E∞→2(A
′, 0, C/2) ⊂ E∞→2(Ã, 1, C/2)

c.

Both these inclusions are straightforward to check from the definitions of the
events E2→∞ and E∞→2, remembering that Ã = A − A′ and using triangle
triangle inequality. This verifies the claim (6.15).

The event B is determined by A, and G is determined by A′ only. Thus
B and G are independent, and (6.15) gives

P(B)P(G) = P(B ∩ G) ≤ P(B̃).

Thus, using (6.12) and (6.14), we conclude that

P(B) ≤ P(B̃)/P(G) ≤ 2 exp
(

− n+
n

4 ln ε−1

)

≤ exp(−n/2).

We have shown (6.11) and thus have completed the proof of the theorem. �

7. From ∞ → 2 norm to the operator norm: controlling the

bounded entries

In Theorem 6.6, we gave an optimal O(n) bound for the ∞ → 2 norm of a
random matrix with few removed columns. We will now convert this into an
optimal O(

√
n) bound for the operator norm. This can be done by applying

a form of Grothendieck-Pietsch theorem (see [11, Proposition 15.11]), which
has been used recently in [10, section 3.2] in a similar context.
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Theorem 7.1 (Grothendieck-Pietsch). Let B be a k ×m real matrix and

δ > 0. Then there exists J ⊂ [m] with |J | ≤ δm such that

‖BJc‖ ≤ 2‖B‖∞→2√
δm

.

Applying Theorem 6.6 followed by Grothendieck-Pietsch theorem, we ob-
tain the following result.

Lemma 7.2 (Bounding the operator norm by removing a few columns).
Consider an n × n random matrix A with i.i.d. entries Aij which have

mean zero and unit variance and satisfy (5.1). Let ε ∈ (0, 1]. Then with

probability at least 1 − 2 exp(−εn/2), there exists a subset J ∈ [n] with

cardinality |J | ≤ εn such that

‖AJc‖ ≤ C

√

ln ε−1

ε
·
√
n.

Proof. Apply Theorem 6.6 for ε/2 instead of ε. We obtain a subset of
columns J1 ⊂ [n], |J1| ≤ εn/2, which satistfies

‖AJc
1
‖∞→2 ≤ C

√
ln ε−1 · n (7.1)

with probability at least 1− 2 exp(−εn/2).
Next apply Grothendieck-Pietsch Theorem 7.1 for the matrix AJc

1
and for

δ = ε/2. We obtain a further subset J2 ⊂ Jc1 , |J2| ≤ δ|Jc1 | ≤ εn/2, such that
the removal of columns in both J := J1 ∪ J2 leads to

‖AJc‖ ≤
2‖AJc

1
‖∞→2

√

δ|Jc1 |
. C

√

ln ε−1

ε
·
√
n.

In the last inequality, we used the bound (7.1) and that δ = ε/2 and |Jc1 | ≥
n− εn/2 ≥ n/2. The proof is complete. �

We are ready to prove a partial case of Theorem 1.1, for the matrices
whose entries are O(

√
n). It follows by applying Lemma 7.2 for A and AT

separately, and then superposing the results.

Proposition 7.3. Consider an n×n random matrix A with i.i.d. entries Aij
which have mean zero and unit variance and satisfy (5.1). Let ε ∈ (0, 1].
Then with probability at least 1 − 4 exp(−εn/2), there exists an εn × εn
submatrix of A such that replacing all of its entries with zero leads to a

well-bounded matrix Ã:

‖Ã‖ ≤ C

√

ln ε−1

ε
·
√
n.

Proof. Apply Lemma 7.2 for A and AT. We obtain that with probability at
least 1− 4 exp(−εn/2), there exists sets I and J with at most εn indices in
each, and such that

‖A[n]×Jc‖ .

√

ln ε−1

ε
·
√
n and ‖AIc×[n]‖ .

√

ln ε−1

ε
·
√
n. (7.2)
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We claim that Ã := A(I×J)c satisfies the conclusion of the proposition. The
support of this matrix, (I × J)c, is a disjoint union of two sets, [n]× Jc and
Ic × J . Then, using the triangle inequality, we have

‖A(I×J)c‖ ≤ ‖A[n]×Jc‖+ ‖AIc×J‖.

We already controlled the first term in (7.2). As for the second term, since
adding columns can only increase the operator norm, we have ‖AIc×J‖ ≤
‖AIc×[n]‖, which we also bounded in (7.2). The proof is complete. �

8. Controlling the large entries, and completing the proof of

Theorem 1.1

In the previous section, we proved a partial case of Theorem 1.1 that
controls relatively small entries of A, those of the order O(

√
n). Larger

entries will be controlled in this section.

8.1. Bernoulli random matrices and random graphs. The following
general lemma will help us analyze the patterns such large entries can form.

Lemma 8.1 (Bernoulli random matrix). Let B be an n×n random matrix

whose entries are independent Bernoulli random variables with mean p. Let

ε ∈ (0, 1/2]. Consider the rows of B with more than 21pn + 2 ln ε−1 ones.

Then with probability 1 − exp(−εn/2), these rows have at most εn ones

altogether.

To see the connection to our original problem, we will later choose the
entries of B to be the indicators of the large entries of A.

Proof. Let Si denote the number of ones in the i-th row of B. Then ESi =
pn. A standard application of Chernoff’s inequality shows that

P {Si > t} ≤ e−2t for t ≥ 21pn. (8.1)

Let K ≥ 21pn be a number to be chosen later. (We will eventually choose
K as 21pn+2 ln ε−1 as in the statement of the lemma.) Define the random
variables

Xi := Si1{Si>K}.

The quantity of interest is the total number of ones in the heavy rows, and
it equals

∑n
i=1Xi. To control this sum of independent random variables, we

can use the standard Bernstein’s trick (commonly called Chernoff’s bound),
where we use Markov’s inequality after exponentiation. We obtain

P

{

n
∑

i=1

Xi > εn

}

≤ e−εn E exp
(

n
∑

i=1

Xi

)

=
[

e−ε E eX1

]n
, (8.2)
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where the last equality follows by independence and identical distribution.
Now, by definition of X1 we have

E eX1 = E eX11{X1=0} + E eX11{X1 6=0} ≤ 1 + E eS11{S1>K}

= 1 +

∫ ∞

eK
P
{

eS1 > u
}

du

= 1 +

∫ ∞

K
P {S1 > t} et dt (by a change of variables)

≤ 1 +

∫ ∞

K
e−2tet dt (using (8.1) for t ≥ K ≥ 21pn)

= 1 + e−K ≤ exp(e−K).

Substituting this bound into (8.2), we conclude that

P

{

n
∑

i=1

Xi > εn

}

≤ exp
[

(−ε+ e−K)n
]

≤ exp(−εn/2),

if we choose K so that e−K ≤ ε/2. To finish the proof, recall that our
argument works if K satisfies the two conditions: K ≥ 21pn and e−K ≤ ε/2.
We thus choose K := 21pn+ 2 ln ε−1 and complete the proof. �

Corollary 8.2 (Bernoulli random matrix). Let B be an n×n random matrix

whose entries are independent Bernoulli random variables with mean p. Let

ε ∈ (0, 1]. Then with probability at least 1 − 2 exp(−εn/4), there exists an

εn× εn submatrix of B such that replacing all of its entries with zero leads

to a matrix B̃ whose rows and columns have at most 21pn + 4 ln ε−1 ones

each.

Proof. Apply Lemma 8.1 for B and BT with ε/2 instead of ε, and take the
intersection of the two good events. With the required probability, we obtain
a set of εn bad entries of B whose removal makes all rows and columns of
B contain at most 21pn + 2 ln ε−1 ones. It remains to note that these εn
entries can be trivially placed in some εn× εn submatrix of B. �

Remark 8.3 (Random graphs). It is not difficult to obtain a version of Corol-
lary 8.2 for symmetric random matrices. This version can be interpreted as
a statement about Erdös-Rényi random graphs G(n, p), with B playing the
role of the adjacency matrix. It states that with high probability, one can
make all degrees of a G(n, p) random graph bounded by O(pn+ln ε−1) after
removing the internal edges from a sub-graph with εn vertices.

8.2. Moderately large entries. We will use Corollary 8.2 to deduce The-
orem 1.1 for matrices with moderately large entries. Namely, we assume
here that all entries of A satisfy

Aij = 0 or

√
n

2
≤ |Aij | ≤

5
√
n√
ε
. (8.3)
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Proposition 8.4. Consider an n × n random matrix A with i.i.d. entries

which satisfy EA2
ij ≤ 1 and (8.3). Let ε ∈ (0, 1/2]. Then with probability

at least 1− 2 exp(−εn/4), there exists an εn× εn submatrix of A such that

replacing all of its entries with zero leads to a well-bounded matrix Ã:

‖Ã‖ ≤ C ln ε−1

√
ε

·
√
n. (8.4)

Proof. Consider the matrix B whose elements are indicators of moderately
large entries of A, i.e.

Bij := 1{Aij 6=0}.

Then Bij are i.i.d. Bernoulli random variables with mean

p := EBij = P {Aij 6= 0} ≤ P

{

|Aij | ≥
√
n

2

}

≤ 2

n
. (8.5)

(In the last inequality, we used Chebyshev’s inequality and the assumption
EA2

ij ≤ 1.) Corollary 8.2 applied to B gives us an εn × εn submatrix of
A such that the number of non-zero elements in every row and column of
Ã (obtained by zeroing out the elements of A outside that submatrix) is
bounded by

21pn+ 4 ln ε−1 . ln ε−1, (8.6)

where we used (8.5) in the last bound.

Moreover, assumption (8.3) shows that all entries of Ã are bounded in
absolute value by 5

√
n/

√
ε. This and (8.6) imply that the ℓ1 norm of all

rows Ãi and columns Ãj can be bounded as follows:

max
i,j

(

‖Ãi‖1, ‖Ãj‖1
)

.

√
n√
ε
· ln ε−1.

Applying Lemma 3.1 leads to (8.4). �

8.3. Very large entries. Finally, we will need to prove Theorem 1.1 for
very large entries – now we assume that all entries of A satisfy

Aij = 0 or |Aij | >
5
√
n√
ε
. (8.7)

There are typically very few such entries, as the following simple result
shows.

Lemma 8.5 (Few very large entries). Consider an n× n random matrix A
with i.i.d. entries which satisfy EA2

ij ≤ 1 and (8.3). Let ε ∈ (0, 1/2]. Then

with probability at least 1− exp(−εn), the matrix A has at most εn non-zero

entries.

Proof. Using Chebyshev’s inequality and the assumption that EA2
ij ≤ 1, we

see that the probability that a given entry is nonzero is

P {Aij 6= 0} ≤ P

{

|Aij | >
5
√
n√
ε

}

≤ ε

25n
.
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Thus the expected number of non-zero entries in A is at most εn/25. A
standard application of Chernoff’s inequality gives

P {A has more than εn nonzero entries} ≤ e−εn.

The proof is complete. �

Since a set of εn indices can be always placed in an εn × εn submatrix,
we can state Lemma 8.5 as follows.

Corollary 8.6 (Few very large entries). Consider an n× n random matrix

A with i.i.d. entries which satisfy EA2
ij ≤ 1 and (8.3). Let ε ∈ (0, 1/2].

Then with probability at least 1 − exp(−εn), all non-zero entries of A are

contained in an εn× εn submatrix.

8.4. Proof of Theorem 1.1. The proof follows simply by combining Propo-
sition 7.3 for small entries of A, Proposition 8.4 for moderately large entries,
and Corollary 8.6 for very large entries. Technically, we decompose A into
a sum of three matrices

A = A1 +A2 +A3

which contain small, moderately large and very large entries of A respec-
tively. Then we apply the results quoted above with ε/3 instead of ε, and
take the intersection of the three good events. At the end, we embed the
three εn/3× εn/3 resulting submatrices into one εn× εn submatrix. Theo-
rem 1.1 follows.

9. Global problem: proof of Theorem 1.3

In this section we prove Theorem 1.3, which states that either nonzero
mean or infinite second moment make it impossible to repair the matrix
norm by removing a small submatrix. We will first prove a non-asymptotic
version version of this result. Once this is done, an application of Borel-
Cantelli Lemma will quickly yield Theorem 1.3.

Proposition 9.1 (Global problem: non-asymptotic regime). Consider an

n× n random matrix A whose entries are i.i.d. random variables that have

either nonzero mean or infinite second moment, and let ε ∈ (0, 1). Then, for

anyM > 0 there exists n0 that may depend only on ε, M and the distribution

of the entries, and such that for any n > n0 the following event holds with

probability at least 1 − e−n: every (1 − ε)n × (1 − ε)n submatrix A′ of A
satisfies

‖A′‖ ≥M
√
n.

Before we prove this proposition, let us pause to see its connection to the
matrix Ãn of Theorem 1.3. Proposition 9.1 yields that this matrix satisfies

‖Ãn‖ ≥M
√
n.

Indeed, modifying an εn×εn submatrix always leaves some (1−ε)n×(1−ε)n
submatrix A′ intact, so we can apply Proposition 9.1 for that submatrix.
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9.1. Infinite second moment. Here we will prove the part of Proposi-
tion 9.1 about infinite second moment; the case of nonzero mean will be
treated in Section 9.2. Let us start with the following lemma which will
help us treat a fixed submatrix.

Lemma 9.2. Consider an m×m random matrix B whose entries are i.i.d.

random variables with infinite second moment. Then, for any M > 0 there

exists m0 that may depend only on M and the distribution of the entries,

and such that for any m > m0 we have

‖B‖ ≥M
√
m

with probability at least 1− exp(−M2m).

Proof. By assumption, we have EB2
ij = ∞. Therefore, for any M > 0 one

can find a truncation level K that depends only on M and the distribution,
and such that the truncated random variables

B̄ij := Bij1|Bij |≤K satisfy E B̄2
ij ≥ 2M2. (9.1)

(This follows easily from Lebesgue’s monotone convergence theorem.)
Consider the matrix B̄ with entries B̄ij . We have

‖B‖ ≥ 1√
m
‖B‖F ≥ 1√

m
‖B̄‖F .

Then we bound the failure probability as follows:

P
{

‖B‖ < M
√
m
}

≤ P
{

‖B̄‖F < Mm
}

= P







m
∑

i,j=1

B̄2
ij < M2m2







≤ P







m
∑

i,j=1

(B̄2
ij − E B̄2

ij) < −M2m2







where we used (9.1) in the last step.
Apply Hoeffding’s inequality for the random variables B̄2

ij and use that

they are bounded byK2 by construction. The probability above gets bounded
by

exp
(

− M4m2

2K2

)

.

Ifm > 2K2/M2 = m0, this probability can be further bounded by exp(−M2m),
as claimed. �

Proof of Proposition 9.1 for infinite second moment. We can assume with-
out loss of generality that M is large enough depending on ε. (Indeed, once
the conclusion of the proposition holds for one value of M it automatically
holds for all smaller values.)
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Apply Lemma 9.2 for an m×m matrix A′
n with m = (1− ε)n, and then

take a union bound over all
(

n
m

)2
possible choices of such submatrices. It

follows that the conclusion of Proposition 9.1 holds with probability at least

1−
(

n

m

)2

exp(−M2m).

By Stirling’s approximation, we have
(n
m

)

≤ (en/m)m. Using this and sub-
stituting m = (1− ε)n, we bound the probability below by

1− exp
[(

2 log
e

1− ε
−M2

)

(1− ε)n
]

.

If the value ofM is sufficiently large depending on ε, this probability is larger
than 1 − exp(−n), as claimed. Proposition 9.1 for infinite second moment
is proved. �

9.2. Nonzero mean. Now we will prove the part of Proposition 9.1 about
nonzero mean. We can assume here that the second moment of the entries
Aij is finite, as the opposite case was treated in Section 9.1. As before, we
will first focus on one submatrix. In the following lemma we make an extra
boundedness assumption, which we will get rid of using truncation later.

Lemma 9.3. Consider an m×m random matrix B whose entries are i.i.d.

random variables that satisfy

EBij = µ > 0, EB2
ij ≤ σ2, |Bij| ≤ K

√
m a.s.

Then, for any M > 0 there exists m0 that may depend only on µ, σ, K and

M , and such that for any m > m0 we have

‖B‖ ≥ µm

2

with probability at least 1− exp(−M2m).

Proof. Notice that

‖B‖ ≥ 1

m

m
∑

i,j=1

Bij.

(To check this inequality, recall that ‖B‖ ≥ xTBx for any unit vector x;
use this for the vector x whose all coordinates equal 1/

√
m.) Then we can

bound the failure probability as follows:

P

{

‖B‖ < µm

2

}

≤ P







m
∑

i,j=1

Bij <
µm2

2







≤ P







m
∑

i,j=1

(Bij − EBij) < −µm
2

2







where we used that EBij = µ in the last step.
Apply Bernstein’s inequality for the random variables Bij and use that

they have variance at most σ2 and are bounded by K
√
m by assumption.
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The failure probability gets bounded by

exp
(

− µ2m4/8

σ2m2 +K
√
m/3

)

.

If m is large enough depending µ, σ, K and M , then this probability can
be further bounded by exp(−M2m), as claimed. �

Next, we will use truncation to get rid of the boundedness assumption in
Lemma 9.3 and thus prove the following.

Lemma 9.4. Consider an m×m random matrix B whose entries are i.i.d.

random variables that satisfy

EBij = µ > 0, EB2
ij ≤ σ2.

Then, for any M > 0 there exists m0 that may depend only on µ, σ, K, M
and the distribution of the entries, and such that for any m > m0 we have

‖B‖ ≥M
√
m (9.2)

with probability at least 1− exp(−M2m).

Proof. Choosing m0 large enough depending on M and the distribution of
Bij, we can make sure that for any m ≥ m0 the truncated random variables

B̄ij := Bij1|Bij |≤M
√
m satisfy E B̄ij ≥ EBij −

µ

2
=
µ

2
.

(This follows easily from Lebesgue’s monotone convergence theorem.)
Let us consider the event that all entries of B are appropriately bounded:

E :=
{

|Bij| ≤M
√
m for all i, j ∈ [n]

}

.

Suppose for a moment that (9.2) fails, so we have ‖B‖ < M
√
m. Since the

inequality ‖B‖ ≥ maxi,j |Bij | is always true, the event E must hold in this
case. This in turn implies that the truncation has no effect on the entries,
i.e. B̄ij = Bij for all i, j.

We have shown that in the event of the failure of (9.2), we may automat-
ically assume that the entries of B are appropriately bounded. Therefore
the failure probability satisfies

P
{

‖B‖ < M
√
m
}

= P
{

‖B̄‖ < M
√
m
}

where B̄ denotes the matrix with the truncated entries B̄ij . It remains to
apply Lemma 9.3 for the random matrix B̄, noting that truncation may
only decrease the second moment. The failure probability gets bounded by
exp(−M2m), as claimed. �

Proof of Proposition 9.1 for non-zero mean. As we mentioned in the begin-
ning of this section, we can assume that the entries Bij have finite second
moment σ2. Then the conclusion of the proposition follows by exact same
union bound argument as in the end of Section 9.1 (just use Lemma 9.4
instead of Lemma 9.2 there.) �
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9.3. Proof of Theorem 1.3. We will prove a stronger fact that

min
‖A′

n‖√
n

→ ∞ as n→ ∞ almost surely, (9.3)

where the minimum is taken over all (1−ε)n×(1−ε)n submatrices A′
n of An.

As we mentioned below Proposition 9.1, this would imply the conclusion of
Theorem 1.3, since modifying an εn× εn submatrix leaves some (1− ε)n×
(1− ε)n sub-matrix intact.

Fix any M > 0 and consider the events

En :=
{

min
‖A′

n‖√
n

≥M
}

, n = 1, 2, . . .

where the minimum has the same meaning as before. By Proposition 9.1,
there exists n0 such that

P(Ecn) ≤ e−n for all n > n0.

In particular, the series
∑∞

n=1 P(Ecn) converges. Borel-Cantelli lemma then
implies that the probability that infinitely many Ecn occur is 0. Equivalently,
with probability 1 there exists N such that En hold for all n ≥ N .

We have shown that for any M > 0, with probability 1 there exists N
such that

min
‖A′

n‖√
n

≥M for all n ≥ N.

Intersecting these almost sure events for M = 1, 2, . . ., we conclude (9.3).
Theorem 1.3 is proved. �

10. Further questions

Several extensions of Theorem 1.1 seem plausible.

1. It is natural to expect a version Theorem 1.1 even if the entries of A
are not identically distributed. Our argument relies on the identical dis-
tribution in several places, including discretization arguments (proof of
Theorem 4.2) and symmetrization (proofs of Lemmas 6.3 and 6.4).

2. A version of Theorem 1.1 should hold for symmetric matrices A with
independent entries on and above the diagonal. A simplest way to get
this result would be to use Theorem 1.1 to control the parts of A above
and below the diagonal separately, and then combine them. However, for
this argument one would need a version of Theorem 1.1 for non-identical
distributed entries.

3. Unlike Feige-Ofek’s result [6] mentioned in Section 1.4, Theorem 1.1 does
not indicate what sub-matrix should be removed to improve the norm;
it is rather an existential result. It would be nice to have an explicit

description of a submatrix to be removed.
4. It would be good to remove the logarithmic factor ln ε−1 from the bound

in Theorem 1.1, or to show that this factor is necessary. Such bound
would be optimal up to an absolute constant factor.
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5. Finally, while Remark 1.2 states that the dependence on ε in Theorem 1.1
is optimal in general, this dependence might be dramatically improved
under a natural boundedness assumption. Namely, suppose that the en-
tries of A are O(

√
n) almost surely. (In fact, most of the proof – until

Section 8 – was done under this additional assumption.) In this case, is
the dependence of the norm on ε logarithmic in Theorem 1.1, i.e.

‖Ã‖ ≤ C ln(ε−1)
√
n? (10.1)

In fact, for the partial case of Bernoulli matrices such that np = c0 =
const (where p is a probability of a non-zero entry) this bound can be
quickly deduced from Corollary 8.2.

Indeed, after renormalization that imposes matrix elements to have
variance one (so we deal with the scaled Bernoulli matrix with Bij =

O(p−1/2)), we can see that such matrices satisfy the boundedness assump-
tion, as Bij = O(p−1/2) = O(

√
n/

√
c0) = O(

√
n). Then, by Corollary 8.2

after a deletion of εn×εn submatrix we get a matrix B̃ with all rows and
columns having at most

21pn + 4 ln ε−1 ≤ 100c0 ln ε
−1

non-zero elements of order O(
√
n). Hence,

max
i,j

(

‖B̃i‖1, ‖B̃j‖1
)

.
√
n · ln ε−1.

Applying Lemma 3.1 leads to (10.1).
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