
UCLA
UCLA Previously Published Works

Title
Diversity in biology: definitions, quantification and models.

Permalink
https://escholarship.org/uc/item/4x13q6r7

Journal
Physical Biology, 17(3)

Authors
Xu, Song
Böttcher, Lucas
Chou, Tom

Publication Date
2020-03-19

DOI
10.1088/1478-3975/ab6754
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4x13q6r7
https://escholarship.org
http://www.cdlib.org/


Diversity in biology: definitions, quantification and models
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3Department of Mathematics, UCLA, Los Angeles, CA 90095-1766

Abstract

Diversity indices are useful single-number metrics for characterizing a complex distribution of 

a set of attributes across a population of interest. The utility of these different metrics or sets 

of metrics depend on the context and application, and whether a predictive mechanistic model 

exists. In this topical review, we first summarize the relevant mathematical principles underlying 

heterogeneity in a large population before outlining the various definitions of ‘diversity’ and 

providing examples of scientific topics in which its quantification plays an important role. 

We then review how diversity has been a ubiquitous concept across multiple fields including 

ecology, immunology, cellular barcoding studies, and socioeconomic studies. Since many of these 

applications involve sampling of populations, we also review how diversity in small samples is 

related to the diversity in the entire population. Features that arise in each of these applications are 

highlighted.
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1. Introduction

Diversity is a frequently used concept across a broad spectrum of scientific disciplines, 

ranging from biology [1-5] and ecology [6-11], over investment and portfolio theory 

[12-16], to linguistics [17, 18] and sociology [19-24]. In each of these disciplines, diversity 

is a measure of the range and distribution of certain features within a given population. It is 

considered a key attribute that can be dynamically varying, influenced by intra-population 

interactions, and modified by environmental factors. The concept of diversity, variety, or 

heterogeneity can be applied to any population. The evolution of the population can also 

be highly correlated with its diversity. Some examples of biological population dynamics 

occurring at different scales are shown in figure 1. At first sight, diversity seems to be an 

intuitively simple concept, but since certain population attributes require a full distribution 
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function to quantify, it can be rather complex and difficult to capture using a single metric 

[3, 4, 25, 26]. We could for example think of a community with a total of four species, 

with one of the species dominating the total population. Consider a second community that 

consists of two equally common species. Which one of the two communities exhibits a 

higher diversity? The first one, because it harbors a larger number of species? Or the second 

one, because a sample is more likely to contain two species? This example shows that 

diversity is intrinsically linked to the total number of extant species (richness) and how the 

population is distributed throughout the species (evenness), and thus cannot be captured by a 

single number [3]. As a result, there are numerous different diversity indices and associated 

concepts used in different applications [3, 4, 25-29]. Nonetheless, diversity measures are 

important for assessing the current condition of ecosystems, to quantify the influence of 

environmental factors on different species, and in the context of conservation planning 

[2, 5, 9, 10, 29-31]. In addition, the concept of diversity is important for the quantitative 

description of wealth distributions and, more generally, to identify mechanisms leading to 

variations in societies [32-36]. In a broader sense, diversity indices may be helpful for the 

design of robust energy distribution systems [37] or even to assemble well-performing teams 

[23]. Thus we see that, despite the ambiguity in the definition of diversity, the concept is 

very relevant to many different disciplines and applications.

In this topical review, we start by summarizing the basic concepts from information theory 

which are necessary for a quantitative treatment of diversity. We continue with describing 

aspects of populations and diversity that are common to many applications in biology. In 

the next section, we present the common mathematical descriptions of diversity in terms of 

both number and species counts. Moreover, in most applications, only a small sample of a 

population is available. Thus, we place particular emphasis on the effects of sampling on 

diversity measures in section 5. In section 6 and subsections within, we survey a number 

of biological systems in which concepts of diversity play a key role in understanding the 

dynamics of the population. These include ecological populations, stem cell barcoding 

experiments, immunology, cancer, and societal wealth distributions. Each of these systems 

carry their unique attributes and thus require specific diversity measures. Finally, in section 

7 we summarize the advantages and disadvantages of some common diversity measures and 

conclude with a discussion of possible future applications of concepts of diversity.

2. Mathematical concepts

2.1. Entropy, relative entropy, KL divergence, KS statistic, mutual information and all that

We first provide a summary of the fundamental mathematical structures that arise in the 

analysis of populations in which one naturally seeks to quantitatively compare distributions 

or frequencies of subpopulations. These mathematical notions invariably involve ideas from 

information theory such as entropy and mutual information which have a rich history 

and deep connections to thermodynamics, coding theory, cryptography, inference, and 

communication [38]. To review the necessary information-theoretic concepts, we consider 

a discrete random variable X which takes on values from the set {x1, x2, …, xN} with 

probability Pk = Pr (X = xk) such that
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∑
k = 1

N
Pk = 1, (1)

where the sum is taken over all possible values xk. This probability mass function may 

represent the relative frequency that the attribute X takes on the value xk in a large 

population. In the case of species diversity, we may interpret Pk as the proportion or 

frequency of species with X = xk in a certain population. The entropy, or ‘Shannon entropy’ 

is defined by

H(X) = − ∑
k = 1

N
Pk log Pk (2)

and can be thought of as the expected uncertainty or surprise −E[log P(X)].

The continuous limit of Shannon entropy, or differential Shannon entropy has also been 

defined, but care must be taken if X carries physical dimensions. If the probability of X 
taking on values in the interval [x, x + dx] is denoted by P(x) dx, the differential Shannon 

entropy is

H(X) = − ∫ P(x) log P(x) dx . (3)

These expressions are synonymous with the ‘Shannon index’ of species diversity with 

some freedom in the choice of the base of the logarithm. Without any constraints on 

the distributions other than being compactly supported, the form of Pk or P(x) that 

maximizes H(X) is a uniform distribution. With additional constraints there are classes 

of distributions that maximize the Shannon index. For example, for a fixed mean and 

variance on an unbounded domain, the Shannon index- or entropy-maximizing distribution 

is Gaussian. Within Gaussian distributions, the Shannon index increases logarithmically with 

the variance. In fact, within a specific class of distributions, the Shannon index is larger for 

flatter distributions [39, 40]. As such, the Shannon index has been used as a measure of 

diversity [41].

The problem with the differential entropy of equation (3) is that P(x) carries dimensions 

X−1, because the cumulative distribution function P(X ⩽ x) = ∫−∞
x P(x′) dx′ has to be 

dimensionless. Therefore, the argument of the logarithm in equation (3) is not dimensionless 

as required. To avoid such an issue, one can define a point-density function P0(x) according 

to [39]

lim
N ∞

#points ∈ [a, b]
N ≡ ∫

a

b
P0(x)dx . (4)

Given that the limit is well-behaved, we can express the difference between two adjacent 

points xk+1 and xk in terms of
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lim
N ∞

[N(xk + 1 − xk)] = P0
−1(xk) . (5)

We now consider the continuum limit of the discrete Shannon entropy as defined in equation 

(2), and set

Pk = P(xk)(xk + 1 − xk) = P(xk) [NP0(xk)]−1 . (6)

In this way, it is possible to derive a continuous Shannon entropy

lim
N ∞

HN(X) = − ∫ P(x) log P(x)
NP0(x) dx − log(N)

= − ∫ P(x) log P(x)
P0(x) dx

(7)

that is invariant under parameter changes and whose logarithm depends on the dimensionless 

quantity P(x)/P0(x). We subtracted log(N) in equation (7) to obtain a finite HN(X).

To characterize the diversity between two communities, we consider two discrete random 

variables X and Y with the corresponding joint probability mass function PX,Y(xk, yℓ) = 

Pr(X = xk, Y = yℓ). Given the joint distribution PX,Y(xk, yℓ), we can compute the marginal 

distributions PX(xk) = ∑ℓPX, Y (xk, yℓ) and PY (yℓ) = ∑kPX, Y (xk, yℓ) by summing over the 

complementary variable. These definitions enable us to define the joint entropy

H(X, Y ) = − ∑
k, ℓ

PX, Y (xk, yℓ) log PX, Y (xk, yℓ), (8)

which may be also written as −E[log PX, Y ]. Moreover, the conditional entropy

H(X ∣ Y ) = − ∑
k, ℓ

PX, Y (xk, yℓ) log PX, Y (xk, yℓ)
PX(xk) (9)

= − ∑
k, ℓ

PX, Y (xk, yℓ) log PX ∣ Y (xk ∣ yℓ) (10)

describes the expected uncertainty in the random variable Y given X. It can be also 

expressed as −E[log PX ∣ Y ] where PX∣Y is the conditional probability mass function. For 

independent random variables X and Y, we find that H(Y∣X) = H(Y) and H(X∣Y) = H(X).

While the Shannon index is a measure of the absolute entropy of a distribution, the relative 

entropy or Kullback–Leibler (KL) divergence

DKL(P‖Q) = ∑
k

P(xk) log P(xk)
Q(xk) = Ep [log P(xk) − log Q(xk)], (11)
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quantifies the distance between two probability mass functions P and Q. In the case of 

continuous distributions P(x) and Q(x), we obtain DKL(P∥Q) = ∫ P(x) log(P(x)/Q(x)) dx.

The KL divergence is the relative entropy of P with respect to the reference distribution 

Q. Note that the limiting Shannon entropy is simply the KL divergence between the 

distribution P(x) and the associated invariant measure P0(x). Usually, P is an experimental 

or observed distribution and Q is a model that represents P. Furthermore, the KL divergence 

is nonnegative and equals zero if and only if P = Q [38]. It is not symmetric, DKL(P∥Q) ≠ 

DKL(Q∥P), and is thus not a metric. In addition, a special case of the KL divergence is the 

‘mutual information’

I(X; Y ) = DKL(PX, Y ‖PXPY )
= ∑

k, ℓ
PX, Y (xk, yℓ) log PX, Y (xk, yℓ)

PX(xk)PY (yℓ) . (12)

Note that I(X; Y) = I(Y; X) is symmetric and quantifies how much knowing one variable 

reduces the uncertainty in the other. If X and Y are completely independent, I(X, Y) = 0. 

According to equation (12) and the definitions of joint and conditional entropy in equations 

(10) and (8), the mutual information can be written in terms of marginal, conditional, and 

joint entropies [38]:

I(X; Y ) = H(X) − H(X ∣ Y ) = H(Y ) − H(Y ∣ X)
= H(X) + H(Y ) − H(X, Y ) . (13)

A symmetric version of the KL divergence is provided by the Jensen–Shannon divergence 

[42]

JSD(P‖Q) = 1
2DKL(P‖M) + 1

2DKL(Q‖M), (14)

where M = (P + Q)/2 defines the mean distribution of P and Q. These divergences can be 

extended to include multiple and higher-dimensional distributions. The square-root of the 

Jensen–Shannon divergence is a distance metric between two distributions.

Another useful distance metric is the Kolmogorov–Smirnov (KS) distance, which is defined 

as

DKS = max
x

∣ G(x) − F(x) ∣ , (15)

where F(x) is a cumulative reference distribution and G(x) is an empirical distribution 

function. The distribution G(x) is based on different samples with cumulative distribution 

function that can be F(x) or another distribution to be tested against F(x). The KS metric is 

the maximum distance between the two cumulative distributions F(x) and G(x). We outline 

in section 6.6 that the KS metric is related to the Hoover index which is used to quantify 

diversity, or inequity, in wealth or income distributions relative to a uniform distribution.

Xu et al. Page 5

Phys Biol. Author manuscript; available in PMC 2022 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Commonly used measures of diversity

The notions of entropy and information are naturally related to the spread of a distribution 

P(x), and can be subsumed into a general metric for quantifying diversity. Usually, 

a population is measured and can be thought of as one realization of an underlying 

distribution. Consider a realization n = {n1, n2, … , nR} describing the number ni of entities 

of a discrete and distinguishable group/species/type (1 ⩽ i ⩽ R). The total population is 

N = ∑i = 1
R ni. This given realization constitutes a ‘distribution’ across all possible types. 

Thus, any realization is completely described by a set of R numbers. Diversity measures are 

reduced representations of the distribution. An example would be a single parameter which 

captures the spread of the distribution of realizations {ni}. This is not different than, for 

example, defining a Gaussian distribution by its mean and standard deviation. Realizations 

{ni}, however, usually are not described by specific functions that can be defined by one or 

two parameters such as Gaussians. However, many different diversity indices can be unified 

into a single formula called ‘Hill numbers’ of order q [43-45]:

qD = ∑
i = 1

R
fi

q
1 ∕ (1 − q)

, (16)

where fi ≡ ni/N is the relative abundance of types i. This general formula represents different 

classes of ‘diversity indices’ for different values of q. It is also useful because one can 

consistently define an effective proportional abundance

feff ≔ 1 ∕q D = ∑
i = 1

R
fi

q
1 ∕ (q − 1)

(17)

that corresponds to an average abundance with increasing weighting towards the larger-

population species as q increases [45, 46].

Note the similarity of this definition to the standard mathematical p-norm

‖f‖p ≔ ∑
i = 1

R
fi

p
1 ∕ p

, (18)

except that the exponent is 1/p instead of 1/(1 − q). Another diversity measure is provided by 

the Renyi index [47]

qH = log qD = 1
1 − q log ∑

i = 1

R
fi

q , (19)

which is a generalization of the Shannon entropy defined in equation (2). The order q 
describes the sensitivity qD and qH to common and rare types [48]. Below, we provide an 

overview of the most commonly used indices which result from the generalized diversity qD 
for different values of q:
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3.1. Richness

In the limit of q → 0+, the probabilities fi
q are equal to unity and 0D is simply the total 

number of types in the population, or the ‘richness’ R. The richness is often used in 

quantifying the diversity of T cells and species counts in ecology [3] and represents a metric 

that weights the smallest subpopulations the most.

3.2. Shannon index

For q = 1 − ε in the limit ϵ → 0+, the generalized diversity as defined by equation (16) 

becomes

1D = lim
ε 0+

∑
i = 1

R
fi

1 − ε
1 ∕ ε

= lim
ε 0+

∑
i = 1

R
fie−ε lnfi

1 ∕ ε

= lim
ε 0+

∑
i = 1

R
fi(1 − ε lnfi + O(ε2))

1 ∕ ε

= lim
ε 0+

1 − ε ∑
i = 1

R
fi lnfi

1 ∕ ε

= exp − ∑
i = 1

R
fi lnfi ,

(20)

which is the exponential of the Shannon index

Sh ≔ ln lim
q 1−

qD = − ∑
i = 1

R
fi logfi (21)

that parallels the Shannon entropy defined in equations (2) and (10). This index is also 

sometimes called the Shannon–Wiener index (H) and can be defined using any logarithmic 

base. Usually measured values are Sh ~ O(1). Qualitatively, eSh can be thought of as a rule of 

thumb for the number of effective species in a population.

3.3. Evenness

Evenness is another class of diversity indices often invoked in ecological and sociological 

studies. One definition (‘Shannon’s equitability’) is based on simply normalizing the 

Shannon diversity by the maximum Shannon diversity that arises if every species is equally 

likely [49]:

JE ≔ Sh
Shmax

= Sh
ln R . (22)

3.4. Simpson’s index with replacement

When q = 2, we find
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2D = 1 ∕ ∑
i = 1

R
fi

2 . (23)

Simpson’s diversity index is defined as

Sr = 1 ∕2 D = ∑
i = 1

R
fi

2 = ∑
i = 1

R ni
N

2
, (24)

which carries the interpretation that upon drawing an entity from a given population the 

same type is selected twice.

3.5. Simpson’s index without replacement.

A related index that cannot be directly constructed from qD is Simpson’s index without 
replacement:

S = ∑
i = 1

R ni(ni − 1)
N(N − 1) . (25)

Here, when an entity is drawn, it is not replaced before the second entity is drawn. The 

differences between Sr and S are significant only for systems with small numbers of entities 

ni for all types i.

3.6. Berger–Parker diversity index

In the q → ∞ limit, we find

∞D = lim
q ∞

∑
i = 1

R
fi

q
1 ∕ (1 − q)

= lim
q ∞

fmax
− 1

1 − 1 ∕ q ∑
i = 1

R fi
fmax

q 1 ∕ (1 − q)

= fmax
−1

(26)

where fmax = maxi∈{1,…,R}(fi). The Berger–Parker diversity index

1 ∕∞ D ≔ fmax (27)

is defined as the maximum abundance in the set {fi}, i.e. the abundance of the most common 

species. It is equivalent to the optimal solution of an ∞-norm of f= n/N.

4. Clone count representation

An alternative way of quantifying a population is through the species abundance distribution 

or ‘clone counts’ defined by
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ck ≔ ∑
i = 1

R
1(ni, k) ∈ ℤ+, (28)

where the discrete indicator function 1(n, k) = 1 if n = k and zero otherwise. The sum is 

usually taken over all species for which ni ⩾ 1. Clone counts can also be defined over only 

a certain special subset of species. Clone counts, or species abundance distributions, in the 

language of computational mathematics, can be thought of as the measure of the level-sets 
[50] of the discrete function ni, or, in the language of condensed matter physics, the density 
of states if ni are thought of as energies of states i [51]. The clone counts also satisfy

N = ∑
k = 1

∞
kck and R = ∑

k = 1

∞
ck, (29)

where N and R are the discrete total population and the total number of species (richness) 

present.

Clone counts are commonly used in the theory of nucleation and self-assembly [52-54], 

where all particles are identical and ck represents the number of clusters of size k. They 

are equivalent to ‘species abundance distributions’ or sometimes ambiguously described as 

‘clone size distributions.’ Clone counts have been recently used to quantify populations in 

barcoding studies [55] described below.

Clone counts do not depend on the specific labeling of the different types i and do not 

contain any identity information. However, since the common diversity indices are only a 

summary of the vector {ni} and also do not retain species identity information, qD can be 

written in terms of ck rather than ni:

qD = ∑
k = 1

∞
ck

k
N

q 1 ∕ (1 − q)
, (30)

which leads to corresponding expressions at specific values of q, e.g. 0D = R,

1D = exp − ∑
k = 1

∞
ck

k
N ln k

N and

1 ∕2 D = ∑
i = 1

∞
ck

k
N

2
.

(31)

While the definitions of qD are well-defined when the discrete species are delineated, for 

more granular or continuous traits, the delineation of different species will affect the values 

of ni and ck. Figure 2 shows population counts ordered by a continuous trait x. By defining 

the discrete species i according to different binning windows over x, we find different sets 

of number and clone counts. Thus, measures of diversity can be highly dependent on the 

resolution and definition of traits and species.
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5. Sampling

In most applications, including all the ones we will discuss below, the entire population 

is not accessible for identification and measurement. In an ecology, all animals of the 

population cannot be tracked. In blood samples, only a small fraction of the cell types in the 

whole organism is drawn for identification/sequencing. Thus, inferring the diversity in the 

entire system from the diversity in the sample is a key problem encountered across many 

fields.

There are numerous ways to randomly sample a population. One approach is to draw one 

individual, record its attributes, return it back into the system, and allow it to well-mix 

or equilibrate before again randomly drawing the next individual. This process can be 

repeated M times. To indicate this type of sampling, we use the subscript 1 × M in the 

corresponding distributions and expectation values. Similar sampling approaches are used 

in the ‘mark-release-recapture’ experiments to estimate population size [56], survival, and 

dispersal of mosquitos [57]. For a given configuration {ni} and total population size N [58], 

the probability that the configuration {mi} is drawn after M samples is simply

P1 × M(m ∣ n, M, N) =
M

m1, m2, …, mR
∏
j = 1

R
fj

mj, (32)

where fj ≡ nj/N is the relative population of species i, N ≡ ∑i = 1
R  ni is the total population 

and M ≡ ∑i = 1
R  mi is the total number of samples.

We can now use P1×M to compute the statistics of how the system diversity is reflected in 

the diversity in the samples. For example, the mean population in the sample in terms of ni is 

E1 × M[mi] ≡ ∑mmP1 × M(m ∣ n, M, N). The lowest moments of the populations in the sample 

are

E1 × M[mi] = Mfi = ni
M
N ,

E1 × M[mimj] = fifjM(M − 1) + fiM1(i, j) .
(33)

An alternative random sampling protocol is to draw a fraction α ≡ M/N < 1 of the entire 

population once. This type of sampling arises in biopsies such as laboratory blood tests. To 

be able to distinguish between this sampling protocol and the previous one, we now use the 

notation M × 1. In this case the combinatorial probability of a specific sample configuration, 

given n, N, and M is

PM × 1(m ∣ n, M, N) = ∏
j = 1

R
nj
mj
N
M

1 M, ∑
i = 1

R
mi , (34)
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where the discrete indicator function enforces the constraint between mi and the sampled 

population M. In this single-draw sampling scenario, we use the Fourier decomposition 

1(x, y) ≡ ∫0
2π dq

2π eiq(x − y) to find

EM × 1[mi] = ni
M
N = niσ, (35)

EM × 1[mimj] = ninj
M
N

M − 1
N − 1

+ 1(i, j)ni
M
N

N − M
N − 1 .

(36)

Results using p1×M and PM×1 rely on perfectly random sampling, where certain clones/

species are not more likely sampled or captured than others. The moments E[mimj] can be 

directly used to evaluate the expected Simpson’s diversities, Sr (with replacement) and S 
(without replacement) defined by equations (24) and (25), in the corresponding sample. In 

the case of 1×M sampling, we find

E1 × M[Sr] = E1 × M ∑
i

mi
M

2

= M(M − 1)
M2 ∑

i
fi

2 + 1
M ∑

i
fi

= Sr 1 − 1
M + 1

M ,

(37)

and

E1 × M[S] = E1 × M ∑
i

mi
M

mi − 1
M − 1

= ∑
i

E1 × M[mi2]
M(M − 1) − ∑

i

E1 × M[mi]
M(M − 1)

= ∑
i

fi
2 ≡ S

(38)

while for M×1 sampling, we find

EM × 1[Sr] = EM × 1 ∑
i

mi
M

2

= Sr
M − 1
M − σ + 1 − σ

M − σ

(39)

and
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EM × 1[S] = EM × 1 ∑
i

mi
M

mi − 1
M − 1

= ∑
i

EM × 1[mi2]
M(M − 1) − ∑

i

EM × 1[mi]
M(M − 1)

= S .

(40)

Note that for both types of random sampling, we find that the expected Simpson’s diversity 

(without replacement) in the samples are equal to the Simpson’s diversity in the full system. 

In general, the expectations do not commute and E[S] ≠ S(E[mi]).

Effects of sampling on clone counts ck can be similarly calculated by averaging the 

definition for the sampled clone count

bk ≔ ∑
i = 1

1(mi, k) ∈ Z+
(41)

over the sampling probabilities PM×1(m∣n, M, N) or P1×M(m∣n, M, N). For clone counts, 

the calculations of moments of sampled quantities bk are more involved, and explicitly 

noncommutative E[bk] ≠ ∑i1(E[mi], k). One advantage of working in the bk representation is 

that diversity indices such as the expected sampled richness are difficult to extract from E[mi]

but is simply E[Rs] = ∑kE[bk]. Some related results are given in [59, 60].

The above results provide expected diversities in the sample assuming full knowledge of 

{ni} in the system. They represent solutions to the forward problem, the so-called mean 

‘rarefaction’ in ecology. However, the problem of interest is usually the inverse problem, or 

extrapolation in ecology. In the simplest case, we wish to infer the expected diversity (or 

{ni} and ck) in the system from a given configuration {mi} or clone count bk. Extrapolation 

is a much harder problem and is the subject of many research papers [61-65].

One may wish to use the observed sample diversity qD(M) to approximate the population 

diversity qD(N). For any q, the underestimation of qD(N) using qD(M) decreases as the 

sample size M increases. The deviation of qD(M) from qD(N) is smaller for larger q, 

as higher-order Hill numbers are more heavily weighted by large species, which are less 

sensitive to subsampling.

Chao and others have shown that for q ⩾ 1 and in the N → ∞ limit nearly unbiased 

approximations can be obtained and when q ⩾ 2, these unbiased estimates are very 

insensitive to sample size M [59, 60]. Using clone counts in a sample of population M, 

Chao et al [66] obtained for q = 1 (in terms of Shannon’s index):
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Sh = ∑
k = 1

M − 1 1
k ∑

1 ⩽ mi ⩽ M − k

mi
M

M − mi
k

M − 1
k

− d1
M(1 − A)M − 1 log A + ∑

r = 1

M − 1 1
r (1 − A)r ,

(42)

where A = 2d2/[(M − 1)d1 + 2d2].

For q ⩾ 2, Gotelli and Chao [59] obtained

qD = ∑
mi ⩾ q

mi
(q)

M(q)

1 ∕ (1 − q)
(43)

where x(j) = x(x − 1)…(x − j + 1). For example, 2D = M(M − 1) ∕ ∑mi ⩾ 2mi(mi − 1), the 

inverse of Simpson’s index without replacement (equations (23) and (25)).

The ill-conditioning of the inverse problems is particularly severe for the richness 0D. The 

general formula for an estimate of the system richness is

0D = R(M) + d0, (44)

and reduces to the unseen species problem for determining d0 [67, 68]. Since the sample size 

M and the richness R in the system are uncorrelated, rigorously, one must use information 

contained in the species fractions fi or the clone counts ck in the full system [69, 70]. 

However, a popular estimate for the system richness R(N) is the ‘Chao1’ estimator [59, 71]

Chao1 :R(N) = R(M) + d1
2

2d2
, (45)

which is actually a lower bound and gives reliable estimates for systems of size only up to 

approximately double or triple the sample size M. The uncertainty of the Chao1 estimator 

has also been derived via a variance that is also a function of d1 and d2 [72]. The ‘Chao2’ 

estimator gives the system richness as a function of measured incidence [59]

Chao2 :R(N) = R(M) +
q1

2

2q2
, (46)

where q1, q2 are the number of species found in 1 or 2 samples out of many (as in the 1 × M 
sampling method). Shen et al [73] derived another estimate

R(N) = R(M) + d0 1 − 1 − d1
Md0 + d1

N − M
, (47)

which is only reliable if the sample size M is more than half of the system size N. Many of 

these estimators have been coded into analysis software such as R and iNEXT [74].
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Regardless of the estimator, the major limitation is an insufficient sample size M ⪡ N. 

Models predicting species abundances as a function of system size can help bridge this gap. 

For example a log-normal relationship for the clone count ck [75] has been used to find 

agreeable results [76, 77]. In general, models can be extremely useful analyzing the effects 

of sampling, particularly when a Bayesian prior is desired.

We have outlined the basic mathematical frameworks for quantifying diversity that have 

utility across applications in different disciplines. The above summary of sampling assumes 

a well-mixed population, precluding any spatial dependence of the distribution of individual 

species. Spatially dependent sampling has been proposed for the origin of relationships 

between the number of species detected and the total area occupied by the population (see 

below).

6. Fields in which diversity play a key role

Below, we summarize a few modern applications in which diversity is important. By no 

means exhaustive, the following are simply examples of specific systems in modern biology 

that reflect the authors’ intellectual biases.

6.1. Ecology, paradox of the plankton

The classic problem in the context of biological diversity is dubbed the paradox of the 
plankton and was originally discussed in a paper of the same title [78]. It describes 

diverse populations of plankton in environments of limited number of resources or nutrients. 

Sampled populations of plankton exhibit a large number of species even in low nutrient 

conditions during which one expects strong competition for resources. This observation runs 

counter to the competitive exclusion principle arising in many settings [79].

Perhaps the most common application of diversity arises in biological population studies, 

specifically in ecology [6-11]. Possible areas of application include the monitoring of 

ecosystems and the development of efficient species conservation strategies [2, 5, 9, 10, 

29-31]. Multiple overlapping and nebulous definitions of ecological diversity have been 

advanced [3, 4, 25-29]. Early work by Fisher [6] introduced a logarithmic series model to 

mathematically describe empirical species diversity data. Here, the diversity index referred 

to a free parameter in the corresponding model. In a later study, MacArthur defined species 

diversity based on the size of the sampled area [80]. In the ecological setting, multiple layers 

of subpopulations are an important feature of populations. These subpopulations may be 

delineated by another property of the individual species, such as size, weight, behavioral 

attributes, etc. Subpopulations can also be distinguished through their spatial distribution 

or occupation of different habitats. Whittaker [81, 82] qualitatively defined four types of 

diversity (point, alpha, beta, and gamma) conditioned on habitat or spatial distribution of 

the subpopulations [82]. Fundamentally, these differences arise from different methods of 

sampling, leading to different Hill numbers qD. We summarize a few often-used descriptions 

below:
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• ‘Point diversity’ refers to samples taken at a single point or ‘microhabitat.’ This 

quantity is usually operationally measured by trapping organisms at one or more 

specific points.

• ‘Alpha diversity’ is defined as the diversity within an individual location 

or specific area. In general, one can define a Hill number derived from 

measurements at a specific location as qDα, while the index α ≡ 0Dα is the 

richness encountered within a defined area or specific location. A few subtle 

variations in the definition of the index α exist, mostly related to the sampling 

process [45, 46]. For example, in relation to beta diversity (discussed below), 

alpha diversity is the mean of the specific-location diversities across all locations 

within a larger landscape.

• ‘Gamma diversity’ is the diversity index qDγ determined from the entire dataset, 

the total landscape, or entire ecosystem. The index γ ≡ qDγ usually denotes the 

total number of different species or clones at the largest scale. Note that the mean 

or sum of the alpha diversities is in most cases not equal to the gamma diversity. 

The nonlinearity of the Hill numbers as well as the intersection or exclusion of 

species amongst the different sites suggests a need for indices that connect alpha 

and gamma diversities.

• ‘Beta diversity’ was devised to describe the difference in diversity between two 

habitats or between two different levels of ecosystems. While the different levels 

of diversity are designed to the spatial aspects of diversity, different habitats 

overlap, leading to some amount of arbitrariness in determining, or sampling 

of the β-diversity. Moreover, beta diversity was initially described in different 

ways [45, 81, 82], leading to confusion about its mathematical definition and 

use [45, 46, 48]. One possible definition is Whittaker’s [81] multiplicative 

law qDγ ≡ qDα qDβ where here, α is defined as the mean of the diversities 

across all micro-habitats. Whittaker’s definition describes beta diversity qDβ = 
qDγ/qDα as a measure to quantify the diversity in the total population relative 

to the mean diversity across all micro-habitats [45]. In the limit of q → 1−, 

we obtain the Shannon diversity relationship Shγ = Shα + Shβ according to 

equation (21). Another definition of β is given by Lande’s [83] additive law γ 
≡ α + β according to which diversity indices are measured in the same units. 

One concept associated with β in terms of the additive partitioning is ‘species 

turnover’ quantifying the difference in richness between the entire and the local 

population. As an example, consider two distinguishable or spatially separate 

habitats A and B. If A contains species {a, b, c, d, e} and B contains {b, c, f, g}, 

we find βA,B = 5 associated with the set {a, d, e, f, g}. The laws of Whittaker and 

Lande sparked debates about how to properly define beta diversity, and led to the 

distinction between multiplicative and additive diversity measures [45, 46, 48].

• ‘Delta, epsilon, omega diversity’ are other hierarchical definitions of diversities 

proposed by Whittaker [82]. Delta diversity is analogous to beta diversity but 

defined at the larger among-landscape scale, while epsilon diversity corresponds 

to gamma diversity, but at the regional scale that contains many landscapes. 
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Omega diversity is measured at the biosphere scale, and thus characterizes the 

diversity of all ecosystems [84].

• ‘Zeta diversity’ was introduced by Hui and McGeoch [85], and is defined by 

a set of ζ indices that mathematically describe the species numbers between 

different partitions of a certain habitat. Specifically, ζi is the mean number of 

species shared by i partitions. In particular, ζ1 is the mean richness across all 

sites. For example, between two samples A and B or sets of data, the average 

number of species is ζ1 := (RA + RB)/2, while the intersection is ζ2 := A ∩ 
B. Generalizations to multiple samples can be defined using a series of zeta 

diversity indices ζi.

• Many other indices have been defined for different applications. The Jaccard 

index [45, 81, 85, 86] is defined as J(A, B) = ∣A ∩ B∣/∣A ∪ B∣, and is a 

general measure for quantifying the similarity in richness between two sets of 

populations A and B. Margalef’s index [87] and Menhinick’s index [88] are 

relative richness measures given by R/ ln N and R ∕ N, respectively. Other 

indices include the Bray–Curtis dissimilarity [89], the Berger–Parker diversity 

index [90] as defined in equation (27), Fager’s index [91], Keefe and Bergersen’s 

index [92], McIntosh’s index [93], and Patil and Taillie’s index [94].

A myriad of different definitions of diversity indices arise from specific cases of the Hill 

numbers and consideration of different spatial scales of ecosystems. There is potential to 

further unify these definitions in a more systematic way using mathematical norms and more 

general mathematical structures of spatial dispersal of particles.

6.2. Area-species law and Island biodiversity

A particularly consistent, albeit qualitative feature observed in ecology is the species-area 

relationship (SAR) which relates the measured number of species (richness) with the 

relevant area. These areas can represent distinct habitats, such as mountain tops, or islands. 

For the latter, much work has been done in the subfield of island biodiversity.

The SAR is usually expressed as a power-law relationship between the number of species (or 

richness) R and the habitat/island area:

R = cAz, (48)

where c is a constant prefactor and z is an exponent. On a log–log plot, log R = log c + z 
log A defines a line with slope z. An example of the area-species law for species counts of 

long-horned beetles in the Florida Keys is shown in figure 3, yielding a slope z = 0.29. An 

alternative species-area relationship is eR = cAz [95], which is a straight line on a semi-log 

plot.

The classic book by MacArthur and Wilson [96] and many subsequent analyses have 

promoted and extensively analyzed the SAR idea. In MacArthur and Wilson’s neutral 

equilibrium theory, immigration to and death on an island are monotonically decreasing 

and increasing functions of the number of species already on the island, respectively. 

Xu et al. Page 16

Phys Biol. Author manuscript; available in PMC 2022 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Usually, measured values of the exponent fall in the range z ~ 0.1−0.4. Field work has 

also found relationships between the parameters c and z and system-specific attributes such 

as the island distance to the mainland, habitat type, etc [96, 97]. Nonetheless, reasonable 

predictions based on equation (48) are ubiquitous across many ecological examples.

Mechanistic origins of the robustness of the SAR have been proposed [99-101]. Different 

models for species populations ni or clone counts ck were surveyed and the corresponding 

species-area laws were derived by He and Legendre [100]. Spatial clustering of species 

and the averaging of random measurements was shown to robustly generate a power-law 

species-area curve [100, 101], highlighting the fundamental importance of sampling.

6.3. Gut microbiome

Another ecological system that has recently received much attention is the human 

microbiome, especially in the gut. The gut bacterial ecosystem is important for health 

and can impact cardiovascular disease, diabetes, neuropsychiatric diseases, inflammatory 

bowel disease (IBD), digestive and metabolic function to the point that fecal transplantation 

(bacteriotherapy) has become an effective treatment for recurrent C. difficile colitis 
infections [103]. This type of infection often occurs after antibiotics disrupt the gut 

microbiome. Transplants have also shown to be effective in treating slow-transit constipation 

[104].

Recent efforts to collect and curate gut microbiome data have included NIH’s Human 

Microbiome Project (HMP) [105, 106] and the European Metagenomics of the Human 

Intestinal Tract (MetaHIT) [107-109], as well as the integration of the data in [110]. Each 

dataset contains sequence data from samples from different body regions of hundreds of 

individuals, both healthy and diseased.

Bacterial species are usually determined by sequencing of the 16S ribosomal RNA (rRNA), 

a component of prokaryotic ribosomes that contain hypervariable regions that are species-

specific. However, closely related taxa can have very similar sequences, making separation 

imperfect [111]. Nonetheless, with numerous public databases [102, 112-114], estimates 

of species abundances in samples are readily available. In the gut, there are usually on 

the order of 103 bacterial species, with Bacteroidetes and Firmicutes being the dominant 

phyla [115, 116]. Indeed, lower gut diversity is seen to be associated with conditions such 

as Crohn’s disease [115]. For example, the frequency distribution of bacterial species in 

healthy and irritable bowel syndrome patients are shown in figure 4. The quantification of 

diversity of human microbiome is an essential step in ongoing research and the diversity 

indices have been applied to microbiome data, including α-diversity and β-diversity across 

the microbiome from different anatomical regions and different patients. As with island 

biodiversity, the gut microbiome can be modeled as birth-death-immigration (BDI) process.

6.4. Barcoding experiments

Besides taxonomy of gut bacteria, the accurate identification of animal and plant species 

from samples is an essential task in ecology. In the early 2000’s a DNA barcoding method 

was developed to read relatively short DNA regions specific to certain species [120, 121]. 

These barcodes are usually found in mitochondrial DNA and often derived from a region in 
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the cytochrome oxidase gene [120]. By sequencing samples and comparing with a sequence 

database such as The Barcode of Life Data System [122, 123], one can infer the number 

of species present within a sample. Detecting specific species within samples using DNA 

barcoding and DNA libraries have been used in many applications including identification 

of birds [121], identification of flowering plants [124], detecting contaminants [125], and 

tracking plant composition in processed foodstuffs [126].

Recently, a number of barcoding or tagging protocols [127-129] have been developed to 

genetically label a large population of cells to study how they differentiate and proliferate, 

especially in the context of hematopoiesis [117, 118, 130, 131] and cancer progression 

[132-134].

A novel approach used to investigate hematopoiesis exploits in situ barcodes [130]. Mice 

were engineered with an enzyme (Sleeping Beauty Transposase) that randomly moves DNA 

sequences (transposons) to different parts of the genome. The transposase is designed to 

be controllable by doxycycline, an antibiotic that can be used to switch on or off gene 

regulation. When the transposase is briefly activated, transposons within cell are randomly 

rearranged within a brief period. Since the genome length ⪢ transposon length, the new 

locations of the transposons will be distinct across the founder cells. After switching off 

the transposase, proliferation of founder cells will impart, except for rare DNA replication 

events, the same genomic sequence to its daughter cells. These collections of cells constitute 

a multiclonal population that proliferates and differentiates.

Analysis of the clonal population within differentiated cell pools show that granulocytes 

derive from stem cells at particular time points during the life of the mouse [130]. 

Comparing clonal abundance structure within different cell lineages showed that clones 

originally predominant in the lymphoid lineages eventually arise in myeloid cells, 

indicating that multipotent progenitor cells continually produce cells of both lineages. These 

conclusions arise after statistical analysis of the clone (defined by their transposon sites) 

abundance distribution within different groups of cells.

In another recent series of studies on hematopoiesis, stem cells (HSCs) were extracted from 

rhesus macaques and infected with a lentiviral vector. The lentivirus integrates its genome 

randomly in the genome of the HSCs. Since the lentivirus genome is much shorter than 

that of mammalian cells, nearly every successful infection results in a new viral integration 

site (VIS) or clone. The infected stem cells are autologously transplanted into the animal 

and some of them resume differentiation into progenitor cells that transiently proliferate 

and further differentiate. Descendant cells carry the same genetic sequence, including the 

lentivirus integration locations, or the viral integration sites (VIS). Another approach is to 

use libraries of synthesized DNA/RNA as tags. Here, the different sequences, rather than 

their integration sites, serve as the distinguishing feature. This process avoids the need to 

determine VISs.

In all the above approaches, each successive generation of cells will acquire the same 

tag, VIS or specific DNA barcode sequence, as their parent and ultimately the founder 

HSC. Compared to the Sleeping Beauty Transposon protocol, the VIS or barcoding 
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experiments require an additional viral transfection step. Nonetheless, these VIS and 

barcoding experiments are equally effective in dissecting the differentiation process and 

quantifying lineage bias with age. For example, the variation (in time) of the abundances 

of a clone across different lineages indicates the level of fate switching of a stem cell [117, 

135].

These experiments also enabled observation of biological mechanisms on a finer scale 

compared to traditional studies, allowing inference of parameters that are difficult to 

measure directly such as the initial HSC differentiation rate and the proliferative potential 

(number of generations) accessible to progenitor cells [55, 136].

After sampling, PCR amplification, and sequencing (each process exhibiting their specific 

errors), the relative species populations and clone counts within defined cell types can be 

quantified. Figure 6(a) shows frequencies of barcode i as a function of sampling times tj 
in rhesus macaque. The fraction of each clone is depicted by the vertical distance between 

two neighboring curves. Here, it is important to note that the ‘diversity’ is a measure of the 

distribution of clone ID (barcodes) instead of lineages (cell types). In figure 6(b), we plot 

three different and rescaled diversity indices associated with the data in (a). The sampled 

richness is initially low at month 3 when barcoded clones have not fully differentiated 

and emerged in the peripheral blood. The sampled richness then peaks at month 9 before 

stabilizing after month 29. Simpson’s diversity seems to continue to increase after month 

29 which may indicate more unevenness and coarsening (fewer clones dominating the total 

population). Shannon’s index is shown to decrease slightly, suggesting a decrease in the 

effective number of barcodes.

Sun et al [130] and Kim et al [117] also used simple clustering algorithms that identified 

similar clones according to their activity patterns across time. They identified distinct groups 

of clones that are featured by different time points of contribution to hematopoiesis. Koelle 

et al [135] calculated Shannon diversity to ensure comparability between animals, different 

cell types, and across time.

The employment of neutral barcodes to study blood cell populations is statistically 

insensitive to spatial partitioning (different tissues in the organism). Nonetheless, small 

sampling M ⪡ N makes inference difficult. Thus, mechanistic simplifications and 

mathematical models have been used to quantify clonal evolution. Assuming a multispecies 

birth-death-immigration process (figure 7) Dessalles et al [137] found explicit steady-state 

distribution functions for ni (log series) and ck (Poisson) for constant r and μ, as well as 

formulae for the expected Shannon’s and Simpson’s diversities. Goyal et al [55] derived a 

master equation for the evolution of E[ck] and then extended the solution to expected clone 

counts in the progenitor cell and sampled cell pools. By comparing results to the expected 

clone count in the sample at steady-state, they were able to infer kinetic parameters of the 

differentiation process. Biasco et al [139] proposed two candidate stochastic models for ni 

and used Bayesian Information Criterion (BIC) to assess the likelihood of each.
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6.5. Cells of the adaptive immune system

Another intra-organism system for which diversity is often quantified is the adaptive 

immune system in vertebrates. The simplest immune subsystem consists of lymphoid cells 

(e.g. B and T cells) and tissues. B and T cells originate from common lymphoid progenitors 

(CLPs) that differentiate from HSCs in the bone marrow. B cells develop from CLPs in 

multiple stages in the bone marrow and spleen while T cells are formed from CLPs in the 

thymus. During T cell development in the thymus, T cell receptors (TCRs) are generated 

by random recombination of the associated receptor gene. TCRs are heterodimeric proteins 

that usually consist of an alpha chain and a beta chain. After a specific genetic sequence–

corresponding to a specific amino acid sequence–is chosen and then selected for, the naive 
T cell is exported from the thymus into peripheral tissue (such as circulating blood and 

lymph nodes) where they can further proliferate or interact with antigens presented on the 

surface of antigen-presenting cells (APCs) and become activated. Naive T cells (those that 

have not previously strongly interacted with an antigen) can be activated through association 

of the surface T cell receptors (TCRs) with antigens presented by major histocompatibility 

complex (MHC) molecules on the surface of APCs. Similarly, naive B cells are generated 

in the bone marrow. The B cell receptors (BCRs) are comprised of heavy and light chains 

and an antigen-binding region, which is generated by the same recombination processes as 

TCRs. B cells are subsequently activated within tissues by binding to an antigen via their 

B-cell receptors (BCRs).

The mechanism responsible for creating very diverse repertoires of both BCRs and TCRs is 

V(D)J recombination [140]. In developing B cells, this mechanism involves the random 

recombination of diversity (D) and joining (J) gene segments of the heavy chain (DJ 

recombination). In the following step, a variable (V) gene segment joins the previously 

formed DJ complex to create a VDJ segment. In light chains, D segments are missing and 

therefore only VJ segments are generated. During T cell development and TCR generation, 

gene segments of the alpha chain and beta chain, the VJ and VDJ segments, respectively, 

also undergo random recombination. In the case of the beta chain, one of two different D 

regions of thymocytes recombine with one of six different joining J regions first, followed 

by rearrangement of the variable V region connecting it to the now-combined DJ segment. 

Due to the missing D segments in alpha chains, only VJ recombination is taking place. The 

recombination and joining processes in B cells and T cells involve many different genetic 

deletions and insertions that result in many different BCR and TCR protein sequences and a 

very large theoretical total number of possible clones with R ≳ 1014–1015 [141, 142].

In the end, each T or B cell expresses only one TCR or BCR type (an ‘immunotype’ or 

‘clonotype’). TCR sequences are preserved during proliferation, while BCR sequences can 

further evolve [143]. Since the space of antigens (the different amino acid sequences, or 

epitopes, presented by MHCs) is large, a large number of different TCR and BCR sequences 

should be present in the organism in order to mount an effective response to a wide range 

of infections. However, before T cell export from the thymus, a complex selection process 

occurs [144]. Positive selection eliminates T cells that interact too weakly with MHC 

molecules. Subsequently, negative selection eliminates those T cells and TCRs that bind too 

strongly to epitopes. Cells that escape negative selection may lead to autoimmune disease 
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as they react to self-proteins. Thus, the total number of different distinct immunoclones 

realized in an organism (the richness) defines its T cell repertoire and is estimated to range 

from 106−108 [145], with the lower range describing mice and the higher range an estimate 

for humans. B cell richness in man is estimated to be 108−109 [146, 147]. These values are 

much lower than the theoretical repertoire size R ≳ 1014−1015. TCR and BCR diversity is 

an important factor in health. For example, TCR diversity it has been shown to influence the 

tumor microenvironment and survival in lymphoma [148].

Although specific TCR sequences i can be determined, and their populations ni measured 

and estimated, the TCR identities vary significantly across individuals (private sequences) 

so clone counts are usually studied. Figure 8(a) shows T cell clone counts bk sampled from 

mice [142] that exhibit a biphasic power-law behavior. Figure 8(b) shows preliminary clone 

counts for six individuals, three HIV-negative patients and three HIV-infected patients [151].

Quantifying T cell diversity is confounded by a number of technical limitations. Usually, 

the complete T cell repertoire in an animal cannot be directly measured. Rather, as in most 

other applications, small samples of the entire population are usually drawn. In sampling 

from animals, the fraction of cells drawn and sequenced is perhaps only M/N ~ 10−5−10−2. 

Thus, clones that have small populations may be missed in the sample. Besides sampling, 

sequencing requires PCR amplification of the sample, leading to PCR bias, especially in 

the larger-sized clones [150]. Finally, as in many other applications, there are multiple 

subclasses of the T cell population. Naive T cells that are activated by antigens develop into 

memory T cells that carry the same TCR and that can further proliferate. Thus, it is difficult 

to separate the clone counts of different subpopulations such as naive or memory T cells 

[150].

Many mathematical models for the development and maintenance of the immune systems 

have been developed [136, 137, 141, 144, 152, 153]. For the multiclonal naive T cell 

population, rudimentary insights can also be gleaned from a birth-death-immigration 

process, much as in the modeling of hematopoiesis. Here, the thymus mediates the 

immigration of a large number of clones, which undergo homeostatic proliferation and 

death in the periphery. Immigration rates can be different for different clones, depending on 

the likelihood of specific recombination patterns which may be inferred from probabilistic 

models of VDJ recombination [154, 155].

Proliferation in the periphery depends on interactions between self-peptides with T cell 

receptors and is thus clone-dependent. Recently, it has been shown that TCR-dependent 

thymic output and proliferation rates (a nonneutral BDI model) influence the measured 

clone count patterns [156]. These processes form and maintain a diverse T cell receptor 

repertoire, which is usually characterized by its richness. Unlike the barcode abundances in 

arising during hematopoiesis, the neutral BDI processes are not able to capture the shapes of 

the measured TCR clone counts.

It is also known that T cell residence times depend on interactions between tissues and T 

cell receptors. Thus, different clones of T cells are expected to be differentially spatially 
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distributed in the body. Hence, diversity metrics should be defined within and between 

habitats, much like that in ecology.

Finally, it is known that T cell richness decreases with age [157-160]. Qualitatively, a loss of 

diversity has been predicted within the multispecies BDI process by assuming a decreasing 

thymic output rate with age. Even when the thymus is completely shut down, the diversity 

of the T cell repertoire slowly decreases as successive clones go extinct and the clone 

abundance distribution coarsens. In humans, since the overall T cell population is primarily 

maintained by proliferation rather than thymic immigration [161], the reduction in diversity 

is fortunately a slow process.

6.6. Societal applications of diversity: wealth distributions

Metrics associated with diversity have been naturally applied in human social contexts 

[19-21, 162], including physical, cultural, educational [24, 32], and economic settings. For 

example, the distribution of wealth is the chief metric in many economic and political 

studies. As with all applications, data collection, sampling, and delineating differences in 

attributes are main research challenges.

Wealth or income, unlike species, are essentially continuous and ordered quantities, and can 

be described by many indices designed by economists to measure different wealth attributes 

of a population. Distinct from cellular or ecological contexts, socio-economic diversity 

is also often discussed in terms of ‘inequality,’ ‘evenness,’ or ‘polarization.’ Diversity or 

‘inequality’ indices in the socioeconomic setting usually invoke a number of additional 

assumptions

• Individual identities are irrelevant: this is analogous to barcoding studies of a 

singular cell type in which the barcode identity is not important.

• Size and total wealth invariance: the diversity is invariant to the total population 

size. Only proportions of the total population that are associated with a 

proportion of the total wealth are relevant.

• Dalton principle: any inequality index should increase if any amount of wealth is 

transferred from an entity to one with higher existing wealth.

Mathematically, one starts by ordering the wealth or income of a population of N entities w1 

⩽ w2 … ⩽ wi ⩽ wi+1, … ⩽ wN. For large N, the rescaled wealth distribution w(f) ≡ WfN is a 

function of the relative fraction of the total population f = n/N ∈ [0, 1]. Furthermore, we can 

define a normalized wealth distribution or density

w(f) = w(f)
W T

, W T = ∑
i = 1

N
wi ≈ ∫

0

1
w(f′)df′, (49)

and the corresponding cumulative distribution

W i = 1
W T

∑
j = 1

i
wj (50)
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or

W (f) = ∫
0

f
w(f′)df′ ≡ 1

W T∫0

t
w(f′)df′ . (51)

The functions W (f) are known as ‘Lorenz-consistent’ if they satisfy the above assumptions 

[33]. Four representative Lorenz consistent raw wealth distributions are shown in figure 9(a) 

as functions of the individual index. In figure 9(b), we plot the continuous cumulative 

rescaled wealth distribution W (f) as a function of the relative population fraction 

f corresponding to the wealth distributions shown in figure 9(a). From any ordered 

distribution, we can define a so-called ‘Lorenz curve’ that illustrates many indices 

graphically. The Lorenz curve is defined as the cumulative wealth of all individuals of a 

relative index f = n/N and lower.

Many indices can be visualized by the Lorenz curves. For example, the Gini index [163, 

164] for the red distribution (linear wealth) in figure 9(a) is calculated by the area of the red 

shaded region (A) divided by the area under the equality curve (A + B = 1/2): Gini = A/(A 
+ B) = 2A. In a society where every person receives the same income, the Gini index equals 

zero. However, if the total wealth is concentrated in only one out of N entities, Gini = 1 – 

2/N. This motivates one to define the Gini index for discrete cumulative wealth values Wi 

according to

Gini = 1 − 2
N ∑

i = 1

N
W i, (52)

while the ‘Hoover’ or ‘Robin Hood’ index defined by [34, 165, 166]

H = max
f

{ ∣ f − W (f) ∣ } (53)

is the Legendre transform at f*, the fraction of individuals corresponding to dW(f)/df∣f=f* = 

1. For the two Lorenz curves in figure 9(b), the Robin Hood index is indicated by the two 

corresponding arrows.

The Robin Hood index happens to be a specific case of the Kolmogorov–Smirnoff statistic 

as defined in equation (15) for two cumulative distributions. For convex functions W(f) such 

that W(0) = 0, W (1) = 1, the index H corresponds to the fraction of the total wealth that 

needs to be distributed in order to achieve uniform wealth. This can be seen by considering 

the wealth wi up to an index n* such that Wi ⩽ N−1 for all i ⩽ n*. The total wealth that needs 

to be redistributed to obtain equal wealth fractions N−1 for every individual is

H = ∑
i = 1

n∗
1
N − wi = n∗

N − W n∗ ≈ f∗ − W (f∗) . (54)

Another possibility is to sum over all entities wi according to
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H = 1
2 ∑

i = 1

N 1
N − wi

≈ 1
2∫0

1
∣ 1 − w(f) ∣ df

= 1
2 ∫

0

f∗
(1 − w(f))df + ∫f∗

1
(w(f) − 1)df

= f∗ − W (f∗) .

(55)

The specific, local redistribution is not specified but it would be intriguing to cast it in the 

language of optimal transport and Wasserstein distances [167]. This way, one might also 

define costs to wealth redistribution.

It is also possible to quantify inequity according to the Theil index [168-170]

T = 1
N ∑

i = 1

N wi
E[w] log wi

E[w] , (56)

which corresponds to a relative entropy as defined in equation (11). In this case, the 

entropy of the distribution of Wi is measured with respect to the expectation value 

E[w] = N−1∑i = 1
N wi. If ∑i = 1

N wi = 1, we may interpret wi as the probability of finding 

an individual in income class i, and E[w] = N−1 corresponds to the relative share of equally 

distributed wealth. Naturally, many others measures for inequality have been defined my 

numerous authors focussing on specific socioeconomic areas [171].

However, typical inequality indices do not convey any judgment, belief system, or 

behavioral propensity on measured inequity and thus may not capture typical social 

concepts. In an effort to better quantify concepts such as inequity or ‘polarization’ [172], 

a sociologists have proposed a number of polarization indices that are argued to be more 

directly correlated with social tension and unrest. For example, Esteban and Ray [35, 36] 

developed a measure of polarization to account for clusters within which individuals are 

more similar in an attribute x (such as wealth) than they are between clusters. While 

there may be many ways to define polarization, imposing a few reasonable features and 

constraints can narrow down the allowable forms. First, they assume an ‘identity-alienation 

framework’ in which an individual also identifies with his own distribution f (x) at value x. 

An effective ‘antagonism’ of an individual with attribute x towards those with attribute y is 

defined as T[f(x), d] where a simple form for the distance is d = ∣x – y∣. The polarization P is 

then assumed to take the form

P[f] = ∫ ∫ T[f(x), ∣ x − y ∣ ]f(x) f(y) dx dy . (57)

By imposing axioms that the polarization (i) cannot increase if the distribution is squeezed 
(compressed towards its peak), (ii) must increase if two non-overlapping distributions are 
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moved farther apart, and (iii) the polarization should be invariant to scalings of the total 

population. Using these constraints, the polarization can be more explicitly defined as

P[f] = ∫ ∫ f1 + α(x)f(y) ∣ x − y ∣ dx dy, (58)

where 1/4 ⩽ α ⩽ 1 [36] (Esteban and Ray [35] and Kawada, Nakamura, and Sunada 

[173] find 0 ⩽ α < 1.6 using slightly different assumptions). The parameter α describes 

the amount of ‘polarization sensitivity.’ It measures identification of a population with 

its distribution and distinguishes polarization from other standard inequity measures such 

as the Gini index (when α = 0 [35]) or Simpson’s index. Also, note that when α = 

0, the form of P[f] resembles the total potential energy of a system of particles which 

is distributed according to f (x) and exhibits an interaction energy ∣x – y∣. The discrete 

analogue of equation (58) is P[f] ∝ ∑i, jfi
1 + αfi ∣ xi − xj ∣, for which the individuals i, j can 

be generalized to groups. In empirical studies, the Esteban and Ray polarization measure is 

given by

PER[f] ∝ ∑
i, j

πi
1 + απj ∣ μi − μj ∣ , (59)

where

πi = ∫xi − 1

xi
f(x) dx and μi = 1

πi∫xi − 1

xi
xf(x) dx, (60)

are the relative frequency and the mean of the wealth in group i, respectively [174]. 

D’Ambrosio and Wolff suggested replacing the difference of mean wealths in equation (59) 

by the Kolmogorov measure of variation distance [174, 175]

Kovij = 1
2∫ ∣ fi(y) − fj(y) ∣ dy, (61)

to obtain

PDW[f] ∝ ∑
i, j

πi
1 + απjKovij . (62)

Additional indices have been proposed, including a class of polarizations by Tsui and Wang 

[176] of the form

PTW(x) = 1
N ∑

i = 1

N
ψ(di), di = xi − m(x)

m(x) , (63)

where ψ is a smooth function of the rescaled distance di. The median income m(x) is 

computed from the individual incomes xi (1 ⩽ i ⩽ N).
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Many of these polarization metrics can in fact be expressed in terms of the Gini coefficient. 

For example, the Foster–Wolfson polarization index is defined as [177]

PFW(x) = (GiniB − GiniW )(μ(x) ∕ m(x)), (64)

where μ(x) is the corresponding mean income, and the subscript indices B and W denote the 

between and within group Gini coefficients. According to the definition of PFW (x), inequity 

differs from polarization in the following way: the Gini index as the sum of GiniB and GiniW 

quantifies the unequal distribution of wealth in a society whereas polarization is measured 

in terms of the difference of GiniB and GiniW. Thus, an increase in within-group inequality 

leads to a larger total inequality, but to a lower polarization. A more refined understanding 

of socioeconomic diversity will need to consider multiple classes of attributes, including 

possible geographic or spatial distributions.

The described polarization measures are relevant not only in the context of wealth 

distributions, but they are also able to provide important insights in other sociological 

phenomena associated with the notion of diversity. As one example, quantitative measures of 

polarization are applicable to examine factors that influence the cohesiveness of groups [23]. 

In addition, diversity measures may help to identify mechanisms which lead to inequality 

among different social groups in our education system [24]. In this context, the social 

entropy theory aims to quantitatively compare diversity across social systems such as 

societies, organizations, and individual groups [19, 20, 178].

7. Summary and discussion

Quantifying the diversity of a given population in terms of a single measure such as 

richness does not fully describe the underlying distribution of species or other properties. 

Various diversity measures have been developed and tailored to specific applications in 

different fields including ecology, biology, and economics. Mathematically, one can describe 

populations in terms of species numbers ni (number of entities of type i) or clone counts ck 

(number of species of size k). Hill numbers qD provide a framework to unify some common 

diversity indices that are based on a species-number description. Hill numbers with large 

values of q put more weight on common species whereas small values of q yield measures 

that are more sensitive to rarer species. This implies that measures such as richness (q = 0) 

and evenness (q = 1) are more prone to sampling effects than Simpson’s diversity index (q 
= 2) or Hill numbers with q > 2 [180]. In table 1, we summarize some common diversity 

measures, their applications, and advantages and disadvantages.

In conclusion, we have provided an overview of the most relevant measures of diversity 

and their information-theoretic counterparts. We then summarized common applications 

of diversity indices in biological and ecological systems. Despite the ambiguity in the 

definitions and the variety of different diversity measures [3, 4, 25-29], the concept is 

of great importance for the monitoring of ecosystems and in the context of conservation 

planning [2, 5, 9, 10, 29-31].

We also described the importance of a quantitative treatment of diversity for experiments 

in the study of the gut microbiome, stem cell barcoding, and the adaptive immune 
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system. Finally, we discussed examples of the application of diversity measures in human 

social systems including the characterization of wealth distributions in societies and 

measures of political or cultural polarization. Scientific conclusion in these fields, and 

in ecology, are particularly sensitive to sampling and measurements. However, accurate 

measurements [181], meaningful classification, spatial resolution [101], and informative 

sampling protocols [69, 76] remain elusive across almost all fields. Sometimes, as shown for 

example in figure 6(b), different measures even lead to contradictory conclusions [182]. 

There is no golden rule in choosing a unique metric for a specific situation, as the 

sampling effects also depend on the underlying unknown clone-count distribution [180]. 

It is recommended that one considers different metrics and cross-checks their values while 

bearing in mind how sampling effects may impact diversity measures differently.
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Figure 1. 
Examples of complex, multicomponent populations in which diversity may be a meaningful 

quantitative concept. (a) Diversity in island ecology. A large number of species may migrate 

onto an island. Organisms can proliferate and die, leading to a specific time-dependent 

pattern of species diversity on the island. (b) Microbes are ingested and form a community 

in the gut by proliferating, competing, and dying. They can also be cleared from the gut. 

(c) Naive T cell generation in vertebrates. Naive T cells develop in the thymus. Each T cell 

expresses only one type of T cell receptor (TCR). Naive T cells can proliferate and die in the 

peripheral blood. The possible number of T cell receptors that can be expressed is enormous 

> 1015, but only perhaps 106−108 different TCRs usually exist in an organism. The diversity 

of the T cell receptor repertoire is an important determinant of the organism ’s response to 

antigens. (a) Island biodiversity. (b) Gut microbiota. (c) T cell production.
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Figure 2. 
Number counts and clone counts vary depending on the definition and thresholding of 

discrete species. This consideration arises in designing experimental measurements.
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Figure 3. 
Plot of ln R versus ln A with area A measured in terms of km2. Species counts of long-

horned beetles in the Florida Keys are plotted against the island size [98]. The linear 

regression line yields a slope of z = 0.29. Usually, fits of the species-area exponent z yield a 

small number.
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Figure 4. 
Frequencies of approximately 200 species of bacteria distributed across about a dozen phyla. 

(a) Group 1 depicts the relative abundance distribution for healthy individuals while (b) 

Group 2 shows the pattern for irritable bowel syndrome (IBD) patients. The differences in 

abundance patterns are apparent and have been quantified using the Shannon index for each 

individual plotted in (c). From Park et al [102]. (a) Group 1. (b) Group 2.
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Figure 5. 
(a) Protocol for Viral Integration site (VIS) barcoding studies of hematopoiesis in rhesus 

macaque [55, 117, 118]. Here, ‘barcodes’ are defined by the random integration sites of a 

lentiviral vector. (b) Xenograft barcode experiments using mice [119] in which a library of 

barcodes was used to tag leukemia-propagating cells before direct transplantation into mice.
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Figure 6. 
(a) The fractional populations of the largest clones (barcodes) detected in granulocyte blood 

samples from rhesus macaque. Relative populations are described by the distances between 

neighboring curves. (b) Diversity indices derived from the data in (a). The Simpson’s index 

and Shannon diversity are rescaled to fit on the same plot.
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Figure 7. 
A simple multispecies birth-death-immigration (BDI) process [55, 136-138]. A constant 

source (i.e. stem cells with slow dynamics) generated by 16 cells, each of a different clone, 

undergo asymmetric differentiation with rate α to produce differentiated cells that can 

undergo birth or death with rates r(N) and μ(N) that may depend on the total population in 

the differentiated pool. In this example, the differentiated population contains N = 30 cells, 

R = 9 different clones (barcodes), thus leaving c0 = 7 unseen species.
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Figure 8. 
Examples of recently published clone count data. (a) Clone counts derived from a small 

sample (105 sequences) of T cells [142]. Note the broad distribution described by a biphasic 

power-law curve. Ignoring the largest clones, power-law fits for each regime yield slopes 

of – 1.13 and – 1.76. However, one should be cautious describing sampled TCR (and 

BCR) clone counts using power laws as they hold typically for far less than two decades. 

(b) Human TCR clone counts for three HIV-infected (red) and three uninfected (black) 

individuals show qualitative differences between the distributions (unpublished). Other data 

from mice and humans, under different conditions and in different cell types, have been 

recently published [149, 150].
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Figure 9. 
(a) Ordering of all N = 100 individuals in increasing wealth or income. The hypothetical 

wealth distributions plotted are wi = 3 (equal wealth, black curve), wi = 10 + (i − 1)/2 (linear 

distribution, red), Wi = 5 + ei/5−15 − e−14.8 (green), and wi = 14.5 + 50/(101 − i) (blue). The 

latter three represent distributions with some amount of inequity. (b) These inequalities can 

be visually quantified by their corresponding Lorenz curves, plotted as the relative fraction 

of the population f. The Lorenz curve for a perfectly uniform wealth distribution is given by 

the straight diagonal line. The area between the diagonal equality line and any other Lorenz 

curve can be used to visualize the Gini coefficient of the associated wealth distribution. The 

Gini coefficient, Gini = A/(A + B), is calculated by dividing the difference in areas between 

the equality line and the Lorenz curve in question (A) by the total area (A + B = 1/2) under 

the equality curves. The ‘Robin Hood’ index is defined as the maximum difference between 

the equality line and a given Lorenz curve, and is indicated by arrow for the red and green 

Lorenz curves.
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