
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Alternation blindness in the perception of binary sequences

Permalink
https://escholarship.org/uc/item/4x13w18w

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 39(0)

Authors
Yu, Ru Qi
Osherson, Daniel
Zhao, Jiaying

Publication Date
2017
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4x13w18w
https://escholarship.org
http://www.cdlib.org/


Alternation blindness in the perception of binary sequences  
 

Ru Qi Yu (ruqiyu@psych.ubc.ca) 
Department of Psychology, University of British Columbia 

 

Daniel Osherson (osherson@princeton.edu) 
Department of Psychology, Princeton University 

 

Jiaying Zhao (jiayingz@psych.ubc.ca) 
Department of Psychology; Institute for Resources, Environment and Sustainability, University of British Columbia 

 

 

Abstract 

Binary information is prevalent in the environment. In this 
study, we examined how people process repetition and 
alternation in binary sequences. Across four paradigms 
involving estimation, working memory, change detection, and 
visual search, we found that the number of alternations is 
under-estimated compared to repetitions (Experiment 1). 
Moreover, recall for binary sequences deteriorates as the 
sequence alternates more (Experiment 2). Changes in bits are 
also harder to detect as the sequence alternates more 
(Experiment 3). Finally, visual targets superimposed on bits 
of a binary sequence take longer to process as alternation 
increases (Experiment 4). Overall, our results indicate that 
compared to repetition, alternation in a binary sequence is 
less salient in the sense of requiring more attention for 
successful encoding. The current study thus reveals the 
cognitive constraints in the representation of alternation and 
provides a new explanation for the over-alternation bias in 
randomness perception. 

Keywords: alternation bias, randomness perception, working 
memory, attention, numerosity perception 

Introduction 

Perceptually, many events in the world can be interpreted as 

binary, from the outcomes of coin flips to the daily 

alternations between the sun and the moon. Past research 

that examines the perception of binary information has 

focused on the perception of randomness (Bar-Hillel & 

Wagenaar, 1991; Nickerson, 2002) and regularities (Julesz, 

1962; Lopes & Oden, 1987). Although it is difficult to 

define randomness (Ayton et al., 1989; Beltrami, 1999; 

Chater & Vitányi, 2003; Fitelson & Osherson, 2012; 

Oskarsson et al., 2009), there are systematic biases in 

people’s conception of randomness, such as the gambler’s 

fallacy (Kahneman & Tversky, 1972) and the hot hand 

fallacy (Gilovich et al., 1985). One particular bias that has 

received much attention in the past is the over-alternation 

bias: a binary sequence that alternates more than expected 

on the basis of random generation tends to be judged as 

random (Bar-Hillel & Wagenaar, 1991; Falk & Konold, 

1997; Lopes & Oden, 1987; Nickerson, 2002), and people 

tend to produce random sequences that contain too many 

alternations (Kahneman & Tversky, 1972; Wagenaar, 1972). 

This bias is robust across different stimulus types, sensory 

modalities, or presentation modes (Yu et al., in press). 

A number of accounts have been proposed to explain the 

over-alternation bias. One explanation focuses on the limits 

of working memory (Baddeley, 1966; Kareev, 1992). Since 

people can only hold a limited number of items in working 

memory at any given time, the amount of bits being 

processed is constrained, leading to a biased sample of 

randomness (Hahn & Warren, 2009; Miller & Sanjuro, 

2015; Yu et al., in press). Another prominent account of the 

over-alternation bias is the idea of local representativeness, 

which suggests that people assume equal frequency of 

outcomes within a local sequence (Tversky & Kahneman, 

1971). A recent account is offered by Falk and Konold 

(1997) who proposed an encoding hypothesis that states that 

the probability that a bit sequence is labelled random varies 

directly with the time needed to correctly memorize or copy 

it. However, this account has been challenged by recent 

work showing a discrepancy between encoding difficulty of 

the binary sequence and labeling the sequence as random 

(Zhao et al., 2014). While these explanations have offered 

valuable insights, there remains a possibility that people 

have an accurate view of randomness, but the cognitive 

limitations contribute to a biased conception of randomness 

(Rapoport & Budescu, 1992). 

The current study 

We explore a new explanation focusing on a perceptual 

limitation in the ability to represent alternations vs. 

repetitions. If alternations are under-represented compared 

to repetitions, there needs to be more alternations in the 

sequence in order for people to perceive a 50% alternation 

rate that is typically assumed in a random sequence.  

In order to generate a binary sequence that contains 

different levels of alternations while maintaining the equal 

probability of outcomes, we used an algorithm that deviates 

from stochastic independence by allowing previous bit to 

influence the next one. Specifically, for each p in the unit 

interval (from 0 to 1), let D(p) generate a sequence of bits 

consisting of zeros and ones as follows:   

 
A fair coin toss determines the 1st bit. Suppose that the nth bit 

(for n≥1) has been constructed. Then with probability p the 

n + 1st bit is set equal to the opposite of the nth bit; with 

probability 1 − p the n + 1st bit is set equal to the nth bit. 

Repeat this process to generate a sequence of any length. 
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This procedure was first introduced by Zhao, Hahn, and 

Osherson (2014). D(.5) is a genuinely random device. For 

p<.5, D(p) tends to repeat itself, resulting in long streaks, 

whereas for p>.5, D(p) tends to alternate. The expected 

proportion of each bit is 50% for all p∈[0, 1], although 

empirically, the output might deviate from 50%; however 

such deviations should be small and random (Yu et al., in 

press). For any sequence produced by D(p), the expected 

proportion of alternation, called the “switch rate” of the 

generating process, is p. The expected proportion of 

repetitions, called the generating “repeat rate”, is 1 – p. 

We conducted four experiments to examine how people 

represent alternations vs. repetitions. In Experiment 1, 

participants viewed a binary sequence and estimated the 

number of switches or repeats in the sequence. In 

Experiment 2, participants viewed a binary sequence and 

recalled the sequence. In Experiment 3, participants viewed 

two sequences and judged whether the sequences were the 

same or different. In Experiment 4, participants searched for 

a target embedded in a binary sequence. 

Experiment 1 

This experiment examined if there are differences in the 

estimation of alternation vs. repetition in binary sequences. 

Participants 

Forty-five undergraduate students (32 female, mean 

age=19.9 years, SD=2.3) from the University of British 

Columbia (UBC) participated for course credit. Participants 

in all experiments provided informed consent. All 

experiments reported here have been approved by the UBC 

Behavioral Research Ethics Board. We conducted a power 

analysis using G*Power (Faul, Erdfelder, Lang, & Buchner, 

2007), which showed that given an effect size of 0.53 (based 

on our prior work, Zhao & Yu, 2016), a minimum of 38 

participants would be required to have 95% power to detect 

the effect in our design. 

Stimuli 

In each trial, participants viewed a 30-bit sequence. Each 

sequence contained circles of two colors: green (RGB: 0 

255 0) and blue (RGB: 0 0 255). Each circle subtended 0.9° 

in diameter (Figure 1a). There were five levels of switch 

rates in D(p) in generating the sequences, where p = 0.1, 

0.3, 0.5, 0.7, and 0.9. Correspondingly, there were five 

levels of repeat rates (1 – p) = 0.9, 0.7, 0.5, 0.3, and 0.1. 

Temporal sequences. For half of the trials, participants 

viewed a temporal sequence where the 30 circles were 

presented one after another, making simple visual grouping 

impossible. Each circle was presented at the center of the 

screen for 100ms, and the inter-stimulus interval (ISI) was 

100ms with a blank screen (Figure 1a). 

Spatial sequences. For the other half of the trials, 

participants viewed a spatial sequence, where the 30 circles 

were presented on the screen simultaneously. The circles 

were presented left to right. The space between two adjacent 

circles in the sequence subtended 0.1°. Each sequence was 

presented on the screen for 1000ms (Figure 1a). 

Procedure 

There were 200 trials in total for each participant. In each 

trial, participants viewed a sequence with one of the five 

generating switch rates (0.1, 0.3, 0.5, 0.7, or 0.9). Each level 

of switch rate contained 40 trials, among which 20 trials 

were temporal sequences and 20 trials were spatial 

sequences. After viewing the 30-bit sequence, participants 

were asked to estimate either the number of the color 

switches (10 trials), or the number of color repeats (10 

trials). Specifically, the instruction for estimating color 

switches was “How many times did a dot have a 

DIFFERENT color from the previous dot in the sequence?” 

and the instruction for estimating color repeats was “How 

many times did a dot have the SAME color as the previous 

dot in the sequence?”. Participants were also told that the 

range of their estimate was from 0 to 29 (29 was the 

maximum possible number of switches or repeats in the 

sequence). Participants typed in their estimate after seeing 

each sequence. In sum, there were three within-subjects 

factors: the generating switch rate of the sequence (from 0.1 

to 0.9), the presentation of the sequence (temporal vs. 

spatial), and the estimation type (switches vs. repeats). The 

order of the trials was randomized for each participant. 

There was no mention of randomness in all experiments. 

Results and Discussion 

Estimated switch rate was the derived by dividing the 

estimated number of switches from the participants by 29 

(the maximum possible switches in the sequence). Likewise, 

estimated repeat rate was calculated by dividing the 

estimated number of repeats from the participants by 29 (the 

maximum possible repeats in the sequence). Observed 

switch rate was the objective switch rate in the sequence 

presented to the participants in each trial. Likewise, 

observed repeat rate was the objective repeat rate in the 

sequence presented in each trial. The generating switch rate 

was the p in D(p) in the algorithm that generated the 

sequence. The generating repeat rate was 1 – p. To verify 

that the presented sequence actually exhibited the generating 

switch rate or repeat rate, we plotted the observed switch 

rate or repeat rate for each sequence (Figure 1 b to e), which 

mapped closely to the generating switch rate or repeat rate. 

We computed the signed error (estimated – observed 

switch rate or repeat rate) at each of the five generating 

levels. For temporal trials (Figure 1 b and d), a 5 (generating 

rate: 0.1, 0.3, 0.5, 0.7, and 0.9) × 2 (estimation type: 

switches vs. repeats) repeated-measures ANOVA revealed a 

main effect of generating rate [F(4,176)=162.3, p<.001, 

ηp
2=0.79] and of estimation type [F(1,44)=49.34, p<.001, 

ηp
2=0.53], and a reliable interaction [F(4,176)=10.75, 

p<.001, ηp
2=0.20]. Pair-wise comparisons at each generating 

rate showed that participants underestimated the number of 

switches more than repeats at each of the five generating 

rates [p’s<.01]. For spatial trials (Figure 1 c and e), the same 
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ANOVA revealed a main effect of generating rate 

[F(4,176)=107.2, p<.001, ηp
2=0.71] and of estimation type 

[F(1,44)=114.2, p<.001, ηp
2=0.72], but no interaction 

[F(4,176)=0.07, p=.99, ηp
2<0.01]. Again, pair-wise 

comparisons at each generating rate showed that participants 

underestimated the number of switches more than repeats at 

each of the five generating rates [p’s<.001]. 

 

 
Figure 1. Experiment 1. (a) Participants (N=45) were presented 

with temporal or spatial sequences, and estimated either the 

number of circles that had a different color from the previous circle 

(switch) or the number of circles that had the same color as the 

previous one (repeat). (b) The estimated switch rate and the 

observed switch rate were plotted for temporal trials. (c) The 

estimated switch rate and the observed switch rate were plotted for 

spatial trials. (d) The estimated repeat rate and the observed repeat 

rate were plotted for temporal trials. (e) The estimated repeat rate 

and the observed repeat rate were plotted for spatial trials. (Error 

bars reflect ± 1 SEM; *p < .05, **p < .01, ***p<.001) 
 

 

We further compared the estimated switch or repeat rate 

with the observed switch or repeat rate. For temporal trials 

(Figure 1b), participants over-estimated the switch rate at 

0.1 and 0.3, but under-estimated the switch rate at 0.5, 0.7, 

and 0.9. They also over-estimated the repeat rate at 0.1 and 

0.3, but under-estimated the repeat rate at 0.7 and 0.9 

(Figure 1d). For spatial trials (Figure 1c), participants over-

estimated the switch rate only at 0.1, and under-estimated 

the switch rate at 0.3, 0.5, 0.7, and 0.9. They over-estimated 

the repeat rate at 0.1, 0.3, and 0.5, but under-estimated the 

repeat rate at 0.7 and 0.9 (Figure 1e). 

Interestingly, when estimating the number of repeats, 

participants were the most accurate around 0.5 where the 

sequences were truly random. For the same random 

sequence, participants were significantly under-estimating 

the number of switches. In fact, for people to perceive a 0.5 

switch rate, the sequence must contain more than 50% 

switches, with a switch rate of around 0.7 (Figure 1 b and c). 

This perceptual insensitivity to switches may underlie the 

conceptual over-alternation bias of randomness. Taken 

together, these results suggest that alternations in a binary 

sequence were under-represented compared to repetitions. 

Experiment 2 

One explanation for the under-estimation of switches could 

involve working memory. Specifically, people may have 

trouble representing switches accurately in memory, 

mistaking them for repeating bits, thus leading to under-

estimation. To examine this possibility, here participants 

were asked to recall each sequence. 

Participants 

Forty-five students (30 female, mean age=19.6 years, 

SD=1.2) from UBC participated for course credit. 

Stimuli and Procedure 

The stimuli were the same as those in Experiment 1, except 

for these differences: there were 10 circles per sequence to 

circumvent a floor effect in the recall task; each circle was 

slightly larger, subtending 1.4° in diameter, and the distance 

between each circle in spatial sequences was 0.2°; and each 

spatial sequence was presented for 500ms (Figure 2a). 

The procedure was identical to Experiment 1, except for 

one difference: after seeing each sequence, participants were 

asked to recall the sequence as accurately as they could, by 

pressing two keys to produce the green circle (the “G” key) 

or the blue circle (the “B” key). Participants were instructed 

to recall the dots in the same order as they appeared. After 

each key press, the corresponding circle was presented on 

the screen for 100ms, and then disappeared. To recall the 

spatial sequence, participants pressed one key and the 

corresponding circle appeared from left to right on the 

screen, and remained on the screen. 

Results and Discussion 

Since the observed switch rate of the sequences mapped 

closely onto the generating switch rates (Experiment 1), for 

all following experiments task performance was plotted 

against the five generating switch rates.  

To assess the accuracy of participants’ recalled sequences, 

we divided the exact matches between the presented 

sequence and the recalled sequence by 10. The accuracy 

was plotted over the five levels of switch rates. For temporal 

trials (Figure 2b), a one way repeated-measures ANOVA 

revealed a significant difference in accuracy across the five 

switch rates [F(4,176)=75.61, p<.001, ηp
2=0.63]. Post-hoc 

Tukey HSD analysis showed all pair-wise comparisons were 

significant except between 0.7 and 0.9, and 0.5 and 0.9. For 

spatial trials (Figure 2c), accuracy was different across the 

switch rates [F(4,176)=111.5, p<.001, ηp
2=0.72], and post-

hoc Tukey HSD analysis showed that all pair-wise 

comparisons were significant except between 0.7 and 0.9. 

These results demonstrate that as the switch rate of the 

sequence increased, recall accuracy decreased. 
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To obtain a more fine-grained analysis, from the second 

bit on, we calculated the recall accuracy of each bit 

depending on whether the bit repeated or switched from the 

previous bit. We compared the recall accuracy of switching 

versus repeating bits. For temporal trials (Figure 2d), a 5 

(generating rate: 0.1, 0.3, 0.5, 0.7, and 0.9) × 2 (bit type: 

repeating vs. switching) repeated-measures ANOVA 

showed a main effect of generating rate [F(4,176)= 75.61, 

p<.001, ηp
2=0.63] and of bit type [F(1,44)=206.7, p<.001, 

ηp
2=0.82], and a reliable interaction [F(4,176)=37.4, p<.001, 

ηp
2=0.46]. Pair-wise comparisons at each generating rate 

showed that the recall accuracy of repeating bits was 

consistently higher than that of switching bits [p’s<.01]. For 

spatial trials (Figure 2e), the same ANOVA showed a main 

effect of generating rate [F(4,176)= 111.5, p<.001, 

ηp
2=0.46] and of bit type [F(1,44)=28.84, p<.001, ηp

2=0.40], 

and a reliable interaction [F(4,176)=7.18, p<.001, ηp
2=0.14]. 

Pair-wise comparisons at each generating rate showed that 

the recall accuracy of repeating bits was higher than that of 

switching bits [p’s<.001] at switch rates 0.1, 0.3, and 0.5. 

 

 
 

Figure 2. Experiment 2. (a) Participants (N=45) were presented 

with 10-bit temporal or spatial sequences, and recalled the 

sequences. Accuracy was calculated as the proportion of exact 

matches between the presented sequence and the recalled sequence 

for temporal trials (b) and spatial trials (c). From the second bit on 

in each sequence, recall accuracy of each bit was calculated 

depending on whether the bit repeated the previous bit, or switched 

from the previous bit, for temporal sequences (d) and spatial 

sequences (e). We also calculated the switch rate of the recalled 

sequences, plotted with observed switch rate of the presented 

sequences for temporal trials (f) and spatial trials (g). (Error bars 

reflect ± 1 SEM; *p < .05, **p < .01, ***p<.001) 

 

One problem with the accuracy measure based on exact 

matches was that it penalizes cases where participants 

reversed or misplaced bits but were nonetheless accurate. To 

circumvent this problem, we conducted another analysis 

where we calculated the switch rate of the recalled 

sequence, and compared that to the observed switch rate of 

the presented sequence (Figure 2 f and g). 

We computed signed error (switch rate of the recalled 

sequences – observed switch rate) separately for temporal 

and spatial trials. For temporal trials (Figure 2f), a one way 

repeated-measures ANOVA revealed a significant 

difference in signed error across the five generating switch 

rates [F(4,176)=140.7, p<.001, ηp
2=0.76]. Post-hoc Tukey 

HSD analysis showed all pair-wise comparisons were 

significant except between 0.1 and 0.3, and 0.1 and 0.5, 

suggesting that errors were greater at higher switch rates. 

For spatial trials (Figure 2g), the same ANOVA revealed a 

significant difference in signed error across the five switch 

rates [F(4,176)=92.54, p<.001, ηp
2=0.68]. Post-hoc Tukey 

HSD analysis showed all pair-wise comparisons were 

significant except between 0.1 and 0.3, and 0.1 and 0.5, 

suggesting errors were greater at higher switch rates.  

These results showed that as the sequence alternated 

more, recall accuracy diminished. The greater recall error in 

switching bits compared to repeating bits suggests that 

people are more likely to encode switches as repeats, than to 

encode repeats as switches. 

Experiment 3 

What explains the encoding difficulty of switching bits? 

One explanation is that switching bits may be less salient 

than repeating bits. To examine salience, Experiment 3 used 

a change detection task where participants detected changes 

in two sequences that were presented one after another. 

Participants 

Forty-five students (24 female, mean age=20.6 years, 

SD=1.8) from UBC participated for course credit. 

Stimuli and Procedure 

There were 200 trials in total. In each trial, participants were 

presented with two back-to-back sequences of 15 green and 

blue circles (Figure 3a). The color and size of the circles 

were identical to those used in Experiment 2. The sequences 

were generated with one of the five switch rates (0.1 to 0.9) 

as before. There were 40 trials per switch rate, 20 of which 

contained a change where the color of one randomly 

selected circle was different between the two sequences, and 

20 of which contained no change where the two sequences 

were the same. In each trial, all circles in the first sequence 

were presented simultaneously at the center of the screen for 

500ms, with an ISI of 500ms, followed by the second 

sequence also presented for 500ms. Participants had to 

judge whether the two sequences were the same or different 
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by pressing the “Y” key or the “N” key, respectively. The 

trials were presented in a random order. 

Results and Discussion 

To examine the performance of the change detection task, 

we calculated A’ by dividing the average of correct rejection 

rate and correct hit rate by two, then adding 0.5 to the 

resultant number (Pollack & Noman, 1964). A’ was plotted 

across the five generating switch rates (Figure 3b). There 

was a reliable difference in A’ across the five rates 

[F(4,176)=24.64, p<.001, ηp
2=0.38]. Post-hoc Tukey HSD 

analysis showed all pair-wise comparisons were significant 

except for between 0.5, 0.7, or 0.9. 

 

 
 

Figure 3. Experiment 3. (a) Participants (N=45) viewed two 

back-to-back sequences, and judged if the two sequences were the 

same or different. (b) Performance was assessed using A’. (c) 

Trials with changes were categorized into three change groups: 1. 

repeats to switches, 2. switches to repeats, and 3. switches to 

switches. (Error bars reflect ± 1 SEM; ***p<.001) 

 

We also examined change detection accuracy depending 

on the local environment where the change occurred. For all 

change trials, we categorized them into three groups: repeats 

to switches (e.g., 000 to 001, 010, or 100), switches to 

repeats (e.g., 010, 001, or 100 to 000), and switches to 

switches (e.g., 001 to 011 or 101, 010 to 110 or 011, 100 to 

101 or 110). Since we only considered trials where a change 

occurred, there was no false alarm. Therefore, we used 

accuracy as the measure here (Figure 3c). Among the three 

types changes, there was a reliable difference in accuracy 

[F(2,88)=55.95, p<.001, ηp
2=0.56]. Post-hoc Tukey HSD 

analysis showed that accuracy in the repeats to switches 

group was reliably higher than that in the switches to repeats 

and switches to switches groups [p’s<.001]. 

These results showed that as the sequence became more 

alternating, a change in the sequence was harder to detect. 

This suggests that repetitions were more salient than 

alternations. Moreover, a change was more salient when a 

streak was interrupted, than when an alternating pattern 

became streaky or remained alternating. This differential 

performance suggests that people may have paid more 

attention to the streak presented in the first sequence, than to 

the switches presented in the first sequence. 

Experiment 4 

To provide further support for the salience account, 

Experiment 4 used a visual search task to measure attention 

to switching vs. repeating sequences. 

Participants 

Forty-five students (33 female, mean age=19.6 years, 

SD=2.1) from UBC participated for course credit. 

Stimuli and Procedure 

As in Experiment 3, there were 200 trials, and in each trial, 

a sequence containing 15 colored circles were presented 

simultaneously on the screen. As before, the sequences were 

generated with one of the five switch rates, and there were 

40 trials per switch rate. For each trial, participants had to 

search for a target (a red arrow pointing left “<” or right 

“>”) in one of the randomly selected circles in the sequence. 

They were asked to identify the direction at which the arrow 

was pointing as fast and as accurately as they could (Figure 

4a). Half of the trials contained an arrow pointing left, and 

the other half contained an arrow pointing right. Each 

sequence was presented for 1500ms. The trials were 

presented in a random order. 

 

 
 

Figure 4. Experiment 4. (a) Participants viewed 15-bit spatial 

sequences. The target was a small red arrow, pointing to the left or 

right, in one of the circles. Participants reported the direction of the 

arrow as fast and as accurately as they could. (b) Response time of 

correct trials was plotted. (Error bars reflect ± 1 SEM) 

Results and Discussion 

The accuracy of the target search task was high 

(mean=97.5%, SD=2%). Thus, we only examined the 

response times of correct trials as our measure of attention 

(Figure 4b). There was a reliable difference in response time 

across the five switch rates [F(4,176)=2.55, p<.05, 

ηp
2=0.05]. Post-hoc Tukey HSD analysis showed a reliable 

difference in response times only between switch rates 0.1 

and 0.5. This result showed that participants were faster to 

find the target in sequences with more repetitions than with 

more switches. One explanation is that repeating sequences 

may draw attention more strongly than switching sequences. 
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General Discussion 

The goal of the current study was to examine how people 

represent alternations vs. repetitions in a binary sequence. 

Across four experiments using estimation, working 

memory, change detection, and visual search tasks, we 

found that the number of alternations was under-estimated 

more strongly than the number of repetitions (Experiment 

1). This under-estimation of switches could be explained by 

the fact that recall accuracy diminished as the sequence 

became more alternating (Experiment 2). The greater 

encoding difficulty of alternations could be explained by the 

finding that changes were harder to detect as the sequence 

became more alternating (Experiment 3). Finally, visual 

targets were slower to be found as the sequence became 

more alternating, suggesting that alternating sequences draw 

attention less strongly than repeating sequences (Experiment 

4). Overall, these results converge to support the same 

finding that people are more blind or insensitive to 

alternations than to repetitions, which suggests that 

alternations are under-represented compared to repetitions. 

The current findings support a new account on the over-

alternation bias. Specifically, there is a perceptual limitation 

in the ability to accurately represent alternations as opposed 

to repetitions in a binary sequence. This means that for 

people to perceive a 0.5 switch rate, the sequence must 

contain more than 50% alternations (in fact around 70%). 

Why are alternations under-represented compared to 

repetitions? We offer two explanations. First, two 

alternating bits (e.g., 10) may be perceptually more complex 

than two repeating bits (e.g., 11), and this higher complexity 

in an alternation could be more difficult to encode. Second, 

people may implicitly chunk an alternation into a unit (e.g., 

perceiving 101010 as three chunks of 10, Zhao & Yu, 

2016), but rely on numerosity perception for repetitions 

(e.g., perceiving 111111 as 1 repeating five times). 

The current study reveals a perceptual limitation in the 

representation of alternations. The study is important in 

several ways: first, it provides a new explanation of the 

over-alternation bias in randomness perception; second, it 

reveals new insights on the limits in the perception of binary 

information; and finally, the same finding was replicated in 

four different paradigms using different measures. The 

current findings shed light on how people process binary 

information, which is fundamental to understanding the 

limits of the cognitive system. 
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