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To the Editor:
We acknowledge the invaluable contributions of Bastani et al. 

(1) in their recent publication on predicting patient nonadher-
ence to the follow-up recommendations made at the time of 
baseline (first) lung cancer screening (LCS) exams. The authors 
developed machine-learning-based models using 9 clinical and 
demographic variables in a retrospective cohort of 1875 patients. 
The best-performing gradient-boosting model achieved a cross- 
validated area under the receiver operating characteristics curve 
(AUC) of 0.89 (95% confidence interval [CI] ¼ 0.87 to 0.90).

Given the importance of ensuring adherence to screening out-
comes (2,3), we sought to implement their model, parameterizing 
it using data from our institution. Unfortunately, we were unable 
to attain the same level of predictive performance using these 9 
predictors to predict nonadherence to baseline LCS recommen-
dations in our cohort. A total of 2430 eligible patients who under-
went a baseline low-dose computed tomography (LDCT) screen 
at our institution between July 31, 2013, and November 30, 2021, 
were included. We used the same definition of nonadherence as 
Bastani et al. and retained the same categories for the predictors. 
Random forest yielded the highest cross-validated AUC (10-fold 
with grid search) of 0.68 (95% CI ¼ 0.66 to 0.69), considerably 
lower than the reported 0.89 by Bastani et al. Our previous analy-
sis using 6 clinical, demographic, and health-related variables 
yielded a similar test AUC (4). The data underlying this study 
cannot be shared publicly to protect the privacy of study partici-
pants.

Low adherence in clinical LCS programs is concerning (5). 
Models capable of accurately predicting nonadherence to LCS 
recommendations are pivotal in identifying patients at a high 
risk of nonadherence, allowing targeted interventions with lim-
ited clinical resources. One potential reason existing adherence 
prediction models do not generalize is due to underspecification 
(ie, underfitting due to a lack of key predictors). Many of the vari-
ables that we suspect may improve model performance are not 
routinely readily available in the electronic medical record, and 
further research may focus on additional patient-level [eg, 

smoking-related stigma (6)], physician-level (eg, prior LCS experi-
ence), and system-level factors associated with LCS nonadher-
ence. Another potential reason the identified variables did not 
have the same predictive value in our cohort is a difference in 
the target population (see Table 1). Leveraging multicenter data-
sets may improve our ability to identify robust predictors against 
distribution shifts across institutions. Additionally, we observed 
changes in patient characteristics within our LCS programs, such 
as a reduction in pack-years, after the release of the 2021 United 
States Preventive Services Task Force LCS guidelines. Since most 
patients from the two studies were included before implement-
ing the 2021 guidelines, refining models to account for this 
change using prospective data may prove essential. Finally, our 
results are based on our implementation of the authors’ model. 
Making their prediction model open-source would help conduct 
external validation studies and facilitate future adoption.

While we applaud the work of Bastani et al. in building a pre-
diction model for nonadherence, we hope to emphasize the need 
for and encourage additional work within the scientific commun-
ity to improve model specificity and generalizability for effective 
clinical implementation.

Data availability
The study was performed with institutional review board appro-
val and waiver of informed consent, and the data underlying this 
study cannot be shared publicly due to the privacy of individuals 
who participated in the study. Aggregated summaries without 
individual data were shared in the article.
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Table 1. Comparison of patient characteristics at the baseline 
screening between the two studiesa

Variable

Individual, No. (%)

UCLA  
(N¼2430)

Bastani et al.  
(N¼1875) Pd

Sex .002
Female 977 (40.2) 845 (45.1)
Male 1453 (59.8) 1030 (54.9)

Age in years <.001
55-59 510 (21.0) 562 (30.0)
60-69 1244 (51.2) 983 (52.4)
≥70 676 (27.8) 330 (17.6)

Race <.001
Asian 203 (8.4) 100 (5.3)
Black 171 (7.0) 170 (9.1)
White 1933 (79.5) 1501 (80.1)
Othera 59 (2.4) 0 (0)
Unknown 64 (2.6) 104 (5.5)

Lung-RADS <.001
1 362 (14.9) 531 (28.3)
2 1677 (69.0) 1081 (57.7)
3 176 (7.2) 152 (8.1)
4A 116 (4.8) 72 (3.8)
4B 72 (3.0) 23 (1.2)
4X 27 (1.1) 16 (0.9)

Smoking status <.001
Current 955 (39.3) 998 (53.2)
Former 1443 (59.4) 856 (45.7)
Unknown 32 (1.3) 21 (1.1)

Site Not  
comparable

1 848 (34.9) 152 (8.1)
2 257 (10.6) 994 (53.0)
3 62 (2.6) 729 (38.9)
4 847 (34.9) 0 (0)
5 2 (0.1) 0 (0)
6 390 (16.0) 0 (0)
7 24 (1.0) 0 (0)

Median household  
income

<.001

<85k/y 1747 (71.9) 904 (48.2)
85-100k/y 243 (10.0) 484 (25.8)
>100k/y 398 (16.4) 487 (26.0)
Unknown 42 (1.7) 0 (0)

Referral specialty <.001
Internal or family   

medicine
1944 (80.0) 881 (47.0)

Pulmonary 405 (16.7) 715 (38.1)
Thoracic 14 (0.6) 112 (6.0)
Physician assistant or   

nurse practitioner
0 (0) 73 (3.9)

Otherb 67 (2.8) 94 (5.0)
Insurance <.001

Medicaid 21 (0.9) 218 (11.6)
Medicare 1018 (41.9) 777 (41.4)
Private 1347 (55.4) 774 (41.3)
Otherc 39 (1.6) 106 (5.7)
Unknown 5 (0.2) 0 (0)

a Subcategories in other race: American Indian or Alaska Native, Native 
Hawaiian or Pacific Islander, more than one race, or other racial groups not 
otherwise stated. Lung-RADS ¼ Lung Computed Tomography Screening 
Reporting & Data System; UCLA ¼ University of California, Los Angeles; VA ¼
Veterans Administration.

b Subcategories in other referring physician types: other specialties not 
specified above.

c Subcategories in other insurance: Veterans Administration, self-pay, and 
other insurance not specified.

d The P-values are from two-sided χ2 or Fisher’s exact tests.
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