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We propose an optical clock based on narrow, spin-forbidden M1 and E2 transitions in laser-
cooled neutral titanium. These transitions exhibit much smaller black body radiation shifts than
those in alkaline earth atoms, small quadratic Zeeman shifts, and have wavelengths in the S, C,
and L-bands of fiber-optic telecommunication standards, allowing for integration with robust laser
technology. We calculate lifetimes; transition matrix elements; dynamic scalar, vector, and tensor
polarizabilities; and black body radiation shifts of the clock transitions using a high-precision rel-
ativistic hybrid method that combines a configuration interaction and coupled cluster approaches.
We also calculate the line strengths and branching ratios of the transitions used for laser cooling. To
identify magic trapping wavelengths, we have completed the largest-to-date direct dynamical polar-
izability calculations. Finally, we identify new challenges that arise in precision measurements due
to magnetic dipole-dipole interactions and describe an approach to overcome them. Direct access
to a telecommunications-band atomic frequency standard will aid the deployment of optical clock
networks and clock comparisons over long distances.

Optical atomic clocks have taken a giant leap in re-
cent years, with several experiments reaching uncertain-
ties at the 10−18 level [1–3]. The comparison of clocks
based on different atomic standards [4] or placed in sepa-
rate locations [5] enables important applications such as
relativistic geodesy [6], tests of fundamental physics [7],
and dark matter searches [8]. These applications moti-
vate the development of synchronized clock networks and
transportable clocks that operate in extreme and distant
environments [9].

The leading neutral-atom optical clocks operate on
wavelengths of 698 nm (Sr) [10] and 578 nm (Yb) [11].
Light at these wavelengths is strongly attenuated in opti-
cal fibers, posing a challenge to long-distance time trans-
fer. These wavelengths are also inconvenient for con-
structing the ultrastable lasers that are an essential com-
ponent of optical clocks.

By comparison, an optical atomic clock operating in
the telecommunication wavelength band would have clear
advantages. The S-, C- and L-bands, ranging altogether
between about 1460 and 1625 nm, feature low losses
in standard optical fibers. Stable light sources and ro-
bust optical amplifiers are also available across these
ranges [12]. These features would support the develop-
ment of fiber-linked terrestrial clock networks over con-
tinental distances.

We propose the use of ultra-narrow optical tran-
sitions in atomic titanium (Ti) as the basis of a
telecommunications-band atomic clock. It has recently
been pointed out that numerous transition-metal ele-
ments, including Ti, can be laser-cooled on near-cycling
optical transitions [13], allowing for the adoption of op-
tical lattice or tweezer trapping techniques [14] used in
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FIG. 1. (a) Relevant atomic structure in Ti for an optical
clock. The a F3 and a F5 terms serve as the basis for the
optical clock, while the excited y G5 ◦

6 level serves as the excited
state for laser cooling of Ti. The two optical clock transitions
highlighted in the text are shown as maroon arrows; the laser
cooling transition is shown in cyan. (b) A diagram of the
proposed experimental system. Polarizations are indicated
on a given beam by a small arrow of the same color as the
beam itself.

today’s leading neutral-atom clocks. We identify sev-
eral transitions between the 3d24s2 a F3 and 3d3( F4 )4s
a F5 fine structure manifolds in Ti with transition wave-
lengths between 1483 and 1610 nm (see Fig. 1 and Ta-
ble I) that can serve as optical clock references for ultra-
stable telecommunication-band light sources.

From a numerical calculation of the Ti level structure,
we identify several key features that make Ti an attrac-
tive atom for clock applications: the extreme narrowness
of the candidate clock transitions, a weak clock sensi-
tivity to blackbody radiation shifts, and the existence
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of several magic wavelengths for optical trapping. While
we identify challenges posed by the non-zero angular mo-
mentum of the clock states in Ti, we show that a proper
magic-wavelength condition for optical trapping, which
imposes a significant differential tensor ac Stark shift,
mitigates their effects.

Our analysis relies on high precision atomic structure
calculations, by which we characterize 85 levels of neu-
tral Ti. For this, we employ a hybrid method that com-
bines the configuration interaction (CI) and linearized
coupled-cluster (CC) approaches (referred to as CI +
all order method [15, 16]). In this method, the corre-
lations between four valence electrons are included via a
large-scale CI computation using a highly parallel mes-
sage passing interface (MPI) CI code [16, 17]. Several
computations with increased number of configurations
were carried out to ensure convergence. The core-core
and core-valence correlations are included using an effec-
tive Hamiltonian formalism [15]. We construct the effec-
tive Hamiltonian using second-order many-body pertur-
bation theory (MBPT) and more accurate CC methods.
The difference between these results gives the size of the
higher-order corrections, which we use to estimate un-
certainties on all theory values [16]. The results are used
to calculate transition rates, dynamical polarizabilities,
and systematic shifts in the clock transitions. Further
details of the computational methods are given in the
Supplemental Material [18].

Several clock transitions are identified in Table I. Tran-
sitions between the a F3 and a F5 manifolds occur via spin
forbidden electric quadrupole (E2) and magnetic dipole
(M1) transitions. Calculated reduced matrix elements for
these transitions are tabulated. The calculated natural
linewidths account for both the decay of the upper state
to the lower manifold on the listed E2 and M1 transitions
and the M1 decays within each fine-structure manifold.
The transitions are all exceptionally narrow, allowing for
optical atomic clocks with long coherence times.

In this letter, we focus on the a F3 4 → a F5 5 transi-
tion at 1549 nm unless otherwise noted. An advantage
of this transition is that the a F5 5 state is the lower level
of the near-cycling 498 nm transition, which is suited for
laser cooling. Our calculations predict that the cooling
transition has low branching ratios to other even parity
states (∼ 10−6), enabling single-laser state preparation
and readout for atoms in the upper clock state. For de-
tails on calculations relevant to the laser cooling transi-
tion, see the Supplemental Material [18]. An additional
benefit is that light at the 1549 nm clock wavelength can
be generated by narrow-linewidth, high-power Er-doped
fiber lasers, simplifying the required optical setup.

We consider the three titanium isotopes which have
zero nuclear spin, and therefore no hyperfine structure
(46,48,50Ti). To make the clock insensitive to first-order
differential Zeeman shifts from stray magnetic fields, we
drive the |mJ = 0〉 → |m′J = 0〉 transition, with mJ be-
ing the magnetic quantum number and the primed sym-
bols and numbers referring to the upper a F5 state. Be-

J J ′ λ (nm) Tele. DM1 DE2 Γ
Band (10−3µB) (a.u.) (10−6s−1)

4 5 1548.926 C 1.0(5) 0.140(4) 242(5)
4 4 1573.346 L 0.36(18) 0.134(8) 239(5)
4 3 1593.846 L 1.02(12) 0.0015(3) 227(5)
4 2 1609.816 L N/A 0.0314(27) 214(5)
3 5 1498.615 S N/A 0.0472(7) 162.2(2.6)
3 4 1521.463 S 0.4(4) 0.027(10) 159.1(2.5)
3 3 1540.625 C 0.2(2) 0.124(4) 147.2(2.6)
3 2 1555.541 C 0.3(4) 0.0204(22) 134.3(2.6)
3 1 1565.754 L N/A 0.0463(23) 129.2(2.5)
2 4 1483.073 S N/A 0.0196(26) 32.75(29)
2 3 1501.275 S 0.40(16) 0.024(7) 20.83(36)
2 2 1515.435 S 0.1(1) 0.1006(24) 7.93(38)
2 1 1525.127 S 0.23(2) 0.0643(11) 2.85(11)

TABLE I. List of proposed optical clock transitions in Ti. All
transitions are between the lower a F3 and upper a F5 terms.
The lower (upper) states are indexed by J (J ′). Transition
wavelengths λ are taken from Ref. [19]. The telecomm band
is indicated, with S (short), C (conventional) and L (long)
bands noted. M1, E2 reduced matrix elements DM1, DE2

and transition linewidths Γ are calculated. The two clock
transitions highlighted in the text are in bold.

cause the E2 matrix element for this transition is zero,
only the M1 matrix element contributes to a direct one-
photon drive of the clock transition. Choosing quantiza-
tion, clock-laser polarization, and clock-laser propagation
axes as shown in Fig. 1, we calculate that for a driving in-
tensity of 0.1 W/mm2, we achieve a clock Rabi frequency
of 91(46) Hz.

To compare the strength of this M1 transition to that
of an E2 transition in the same set of transitions, we also
consider driving the |a F3 4,mJ = 0〉 → |a F5 4,m

′
J = 0〉

transition at a wavelength of 1573 nm. For this transi-
tion, the M1 matrix element vanishes while the E2 matrix
element does not. With the same intensity and polariza-
tion as in Fig. 1, but propagating along the z axis, the
Rabi frequency for such an E2 transition is 214(13) Hz.
For a detailed derivation of these Rabi frequencies, see
the Supplemental Material [18].

Neutral-atom optical clocks often use optical lattice
potentials to confine atoms, allowing for a long interro-
gation time. In order to avoid imposing large differential
ac Stark shifts between the upper and lower states of
the clock transition, it is necessary to use lattice light
which is at a “magic wavelength”, at which the dynamic
polarizabilities of the lower and upper clock states are
identical [20].

In Fig. 2 and Table II, we report several magic wave-
lengths for the |a F3 4,mJ = 0〉 → |a F5 5,m

′
J = 0〉 clock

transition. As with most states in Ti, the clock states ex-
perience significant vector and tensor ac Stark shifts [13],
owing to their non-zero angular momentum and Ti’s com-
plex spectrum. To account for these shifts, we consider
the specific lattice configuration shown in Fig. 1. Here, a
magnetic field applied in the z direction imposes a linear
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λmagic α αS
a F3 4

αS
a F5 5

αV
a F3 4

αV
a F5 5

αT
a F3 4

αT
a F5 5

1036.6+0.4
−0.4 116(10) 115(3) 66(12) -2(2) -470(30) 4(4) 154(8)

887+4
−4 122(5) 121(4) 159.3(2.6) -3(2) -104(5) 5(4) -111(3)

789+5
−2.2 129(5) 127(4) 127.1(1.4) -4(3) 127(4) 5(4) 6.5(1.6)

781+3
−7 130(5) 128(4) 126.3(1.3) -4(3) 138(3) 6(4) 11.5(1.5)

TABLE II. Data for the magic wavelengths for the a F3 4 to a F5 5 clock transition. Wavelengths are given in units of nm,
polarizabilities are given in atomic units.

110010501000950900850800750
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FIG. 2. The scalar dynamic polarizability of the mJ = 0 sub-
levels of the a F3 4 (red) and a F5 5 (blue) states in Ti from 1100
nm to 750 nm as calculated by the sum-over-states method.
The angle between the polarization and the B field direction
is set to 90◦. The locations of magic wavelengths considered
in the rest of this work are circled.

Zeeman shift and defines the quantization direction. All
lattice light is linearly polarized in the transverse x − y
plane. In this configuration, the clock transition is shifted
only by the differential scalar and tensor ac Stark effects
(the vector shift is zero on the mJ = m′J = 0 sublevels).
The sum of the scalar and tensor dynamic polarizabilities
(αS

i and αT
i respectively) on the transition is then given

by

∆α = αS
a F5 5
− αS

a F3 4
+

1

2

(
2

3
αT
a F5 5
− 5

7
αT
a F3 4

)
(1)

At the identified magic wavelengths, the net transition
ac Stark shift is zero. For a more detailed description of
the ac Stark shifts, see the Supplemental Material [18].

Calculations of the polarizabilities were performed by
two methods. First, the sum-over-states method was
used to roughly calculate polarizabilities over a wide
range of frequencies. The 76 transitions with the largest
contributions to dc polarizability were used in the case of
the a F3 4 states, while 51 transitions were used in the case
of the a F5 5 states. Once promising candidates for magic
wavelengths were found, we performed direct dynamical
polarizability calculations to identify the location of the
magic wavelengths more precisely. Direct computations
for two of the magic wavelengths allow us to predict the
remaining values accurately. Previously, the direct com-
putation method was only used for divalent systems such
as Sr [21, 22], Mg [23], Yb [24, 25], Cd [26], or Tm [27].

For more complex atoms, the rapidly increasing num-
ber of relevant configurations makes such a direct compu-
tation intractable. Here, we apply instead a truncation

approximation: we order the configurations by weight
to select the most important ones and then start re-
moving configurations while checking the accuracy of the
energies and relevant matrix elements. This procedure
drastically reduces the number of Slater determinants
required to maintain numerical accuracy. Further de-
tails on our method are found in the Supplemental Mate-
rial [18]. We emphasize that our approach is not specific
to Ti; it should allow for the computation of polarizabil-
ities, magic wavelengths, and other atomic properties for
other atoms with a complex electronic structure.

Using the lattice configuration and magic wavelength
described above not only eliminates the differential light
shift, but also protects against the effects of dipole-
dipole interactions between Ti atoms. These effects
are not present in lattice clocks of Sr, Yb, or Hg as
those clocks operate on transitions between non-magnetic
J = 0 states. In contrast, the magnetic moments of the
proposed Ti clock states are both large, with µa F3 4

=
5.00µB and µa F5 5

= 7.05µB .

There are three processes associated with the dipole-
dipole interaction that we consider: dipolar relaxation,
elastic spin-spin energy shifts, and inelastic spin-spin
mixing [28]. Dipolar relaxation is the process by which
Zeeman energy is converted to kinetic energy, depleting
atoms from the clock states. Such relaxation can be sup-
pressed for atoms trapped in a deep 3D optical lattice by
ensuring the bandgap far exceeds the Zeeman energy [29].
The band energy scale in a lattice is set by the lattice re-
coil energy Er = h2/(8ma2), where a is the lattice spac-
ing. For a 48Ti atom in the magic-wavelength lattice
described above, the recoil energy is Er = h × 6.8 kHz.
3D optical lattice clocks typically use deep lattices to
suppress tunneling and atom-atom contact interactions.
As of 2019, the fermionic Sr 3D lattice clock at JILA
operated at a lattice depth of V0 = 80Er [30]. In deep
lattices, the gap above the ground band is Eg ≈ 2

√
V0Er.

In the case of Ti, a comparable lattice operating at the
magic wavelength near 781 nm could be achieved by in-
tersecting six 3.5 W beams with waists of 0.1 mm. This
would give a lattice depth of V0 ≈ 79Er = h × 540 kHz
and band gap of Eg ≈ 18Er = h× 120 kHz. Setting the
Zeeman energy below this band gap requires the ambient
magnetic field be well below B ∼ Eg/µB = 60 mG.

The second two processes associated with the dipole-
dipole interaction are captured in the so-called secular
Hamiltonian, which is obtained by time-averaging the
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dipole-dipole interaction over Larmor precession:

Hdd =
µ0µ

2
B

8π

∑

〈i,j〉

gJi
gJj

r3ij

(
1− 3 cos2 θij

)

×
(
Jz
i J

z
j −

1

4

(
J+
i J
−
j + J−i J

+
j

))
, (2)

Here, i and j label two atoms held at different sites of a
lattice, separated by a distance vector of length rij and
polar angle θij with respect to the quantization axis. gJi

is the Landé g-factor of the atom at lattice site i.
The elastic spin-spin energy shift corresponds to the

Jz
i J

z
j term in the secular Hamiltonian. In theory, this

term generates shifts to the transition frequency between
atomic states with non-zero angular momenta. However,
for a clock transition between mJ = m′J = 0 magnetic
sublevels, the shift is zero and can be ignored.

The final process is the spin-mixing interaction, which
corresponds to the J+

i J
−
j + J−i J

+
j term in the Hamil-

tonian. This term couples atoms in an initial two-

body state |m(1)
J = 0,m

(2)
J = 0〉 to final states |m(1)

J =

±n,m(2)
J = ∓n〉, n ∈ {1, . . . , J}. If not controlled, this

would lead to rapid loss of population from the mJ = 0
clock states. The maximal strength of the coupling is
~ΩSM = µ0µ

2
Bg

2
JJ(J+1)

√
2/16π(λ/2)3. In a λ = 781 nm

optical lattice, this gives spin mixing strengths of h× 2.4
Hz (4.6 Hz) within the lower (upper) clock state manifold.
Spin mixing between atoms in the upper and lower clock
states is energetically suppressed because of the signifi-
cant differential Zeeman splitting. For a 30 mG magnetic

field, the splitting between the |m(1)
J = 0,m

′(2)
J = 0〉 and

|m(1)
J = ±1,m

′(2)
J = ∓1〉 states is h× 6.7 kHz.

In the case where both atoms occupy either the up-
per or lower clock state, spin mixing is suppressed by the
tensor ac Stark shift imparted by the optical lattice light.
The tensor light shift creates an energy splitting between

the |m(1)
J = 0,m

(2)
J = 0〉 and |m(1)

J = ±n,m(2)
J = ∓n〉

two-atom states. Using the same optical lattice con-
figuration described above, the splitting between the

|m(1)
J = 0,m

(2)
J = 0〉 and |m(1)

J = ±1,m
(2)
J = ∓1〉 states

is ∆Etens = h × 4(2) kHz (h × 4.8(6) kHz) within the
lower (upper) clock state manifold. Since the differen-
tial Zeeman splitting and ∆Etens are much larger than
~ΩSM , spin mixing is highly suppressed.

In this regime, spin mixing enters as a second-order

perturbative effect. The |m(1)
J = 0,m

(2)
J = 0〉 two-atom

states in both the lower and upper clock manifolds are

weakly coupled to the corresponding |m(1)
J = ±1,m

(2)
J =

∓1〉 states by ΩSM . Both clock states experience an en-
ergy shift on the order of ∼ Ω2

SM/∆Etens. The difference
between the shifts leads to a shift of the clock frequency,
while the sum of the shifts leads to decoherence between
the clock states. For two atoms, the shift is ∼ 3 mHz
and the rate of decoherence is ∼ 6 mHz. For more dis-
cussion of the dipole-dipole interaction, see the Supple-
mental Materials [18].

One complication in our scheme of using tensor light
shifts to combat magnetic dipole-dipole interactions is
that deviations from the lattice-light polarization shown
in Fig. 1 will introduce clock frequency shifts. Consid-
ering the example parameters from above, a 0.5◦ tilt of
the linear polarization away from the desired orientation
would introduce a ∼ 4 Hz overall shift in the clock transi-
tion frequency, and a much smaller differential shift spa-
tially across the lattice owing to variation in the light in-
tensity of the Gaussian-focused beams. Standard meth-
ods for reducing and calibrating this residual shift, in-
cluding measuring the variation of the clock frequency
with lattice-light intensity, should allow the systematic
uncertainty to be reduced to an acceptable level [30, 31].

Additional terms in the light shift, such as the hyper-
polarizability and the M1 and E2 polarizabilities would
also need to be taken into account, but their effects are
small (below 10−18 levels in Sr [32–34]), and their con-
sideration is beyond the scope of this paper.

Another significant systematic uncertainty in optical
clocks is the blackbody radiation (BBR) shift, which has
been the subject of significant past investigation [21, 35].
We model the BBR shift for the Ti clock line as:

∆BBR = −κ
(
α0
a F5 5
− α0

a F3 4

)( T

300

)4

(1 + η) (3)

where κ = 1
2 (831.9[V/m])2 is a constant of proportional-

ity, α0
i is the dc scalar polarizability of the i state of Ti,

T is the thermal background temperature measured in
K, and η is a small dynamical correction omitted in the
present work. The same CI+all-order approach is used to
compute dc and dynamic polarizabilities. In this case, we
find that α0

a F5 5
= 128.53 a.u. and α0

a F3 4
= 100.39 a.u.,

which leads to ∆BBR = −0.24 Hz at T = 300 K. This
value is approximately an order of magnitude lower than
that in Sr, where the BBR shift is known to be -2.2789
Hz [36].

The final systematic uncertainty that we consider is the
quadratic Zeeman shift (QZS). For the 46,48,50Ti isotopes,
the effect will be small since it will arise only from the
mixing of neighboring fine structure states, whereas in
atoms with nonzero nuclear spin, a stronger QZS arises
from mixing of hyperfine states. For the states in the

Ti clock, the QZS of the mJ = 0 sublevels are ∆
(a F3 4)
QZS =

0.129[Hz/G
2
]B2 and ∆

(a F5 5)
QZS = 0.434[Hz/G

2
]B2, and the

QZS on the transition is thus ∆QZS = 0.305[Hz/G
2
]B2.

Given that a Ti clock must operate at a magnetic field
well below 60 mG to suppress dipolar relaxation, the QZS
of the clock transition will be below 1 mHz. This is ap-
proximately an order of magnitude lower than the QZS
that is present in Sr optical lattice clocks, of almost 10
mHz [30, 31].

Altogether, we have shown that laser-cooled Ti is an
attractive choice for realizing a telecommunications-band
optical atomic clock. Operating Ti clocks on several
of the available telecommunications-band optical tran-
sitions would allow for clock comparisons as a powerful
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method for identifying and reducing systematic correc-
tions. We have advanced atomic structure calculations
to determine critical properties of such clocks, including
identifying magic wavelengths for optical trapping, esti-
mating clock transition widths and line strengths, and
determining that the BBR shift for Ti clock transitions
is an order of magnitude smaller than the shift that dom-
inates current Sr-based clock systematics [30, 31]. We
also describe potential effects of, and mitigation mea-
sures against, magnetic dipole-dipole interactions. These
measures are relevant to other potential applications of
dipole-interacting atoms and molecules for precision mea-
surement.
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S1. CALCULATION OF E1, M1, AND E2
TRANSITION RATES IN TI I

A. Theoretical framework: CI+all-order method

We use the CI+all-order method [S1] that combines
linearized coupled cluster and configuration interaction
(CI) approaches. In this method, the electrons are sepa-
rated into the 1s22s22p63s23p6 core and four remaining
valence electrons. First, the coupled cluster method is
used to construct the effective Hamiltonian Heff that ac-
counts for core and core-valence correlations and can be
constructed using second-order many-body perturbation
theory in the CI + MBPT method or the coupled clus-
ter approach (CI + all-order method). The CI method
is used to correlate the remaining four valence electrons
using this effective Hamiltonian rather than the usual
bare Hamiltonian. This procedure effectively includes all
types of correlation effects in the core and valence spaces.

The CI wave function is constructed as a linear com-
bination of all distinct states of a specified angular mo-
mentum J and parity,

ψJ =
∑

i

ciΦi, (S1)

where {Φi} is the set of Slater determinants generated
by exciting electrons from the reference configuration to
higher orbitals. The many-electron Schrödinger equation
can be written as

HeffΨ = EΨ, (S2)

where the effective Hamiltonian has the form

Heff = HCI + Σ. (S3)

Here, HCI is the CI Hamiltonian described by the equa-
tion

HCI = Ecore +
∑

i>Ncore

hi,CI +
∑

j>i>Mcore

Vij , (S4)

where Ecore is the energy of the frozen core, Ncore is
the number of core electrons, hi,CI represents the kinetic

energy of the valence electrons and their interaction with
the central field and Vij accounts for the valence–valence
correlations.

The core-valence correlation potential,

Σ = Σ1 + Σ2,

is obtained from the all-order method. Here, Σ1 and Σ2

are the one- and two-electron parts of the core–valence
correlation potential, respectively. After Eq. (S2) is
solved using the CI technique and the wave functions are
obtained, they are used to calculate matrix elements of
the electric-dipole, magnetic-dipole, electric-quadrupole,
and other one-electron operators.

B. Energy level calculation

When applying the CI+all-order method to atomic Ti,
we used a a V N−4 potential of the 1s22s22p63s23p6 frozen
core. We solve Dirac-Hartree-Fock equations in this po-
tential to generate 3d, 4s, 4p, 5s, 4d, 5p, and 4f orbitals.
All other orbitals are constructed in a spherical cavity of
40 a.u. using B-splines.

The set of CI configurations has to be constructed
separately for even and odd states. We carry out sev-
eral calculations with increasing number of configura-
tions to ensure convergence of the CI with the num-
ber of included configurations. For even states, we find
it sufficient to make all possible single and double ex-
citations to a 20spd18f16g basis starting from 4s23d2,
4s3d25s, 4s23d4d, 3d24p2, 3d25s2, 4s3d3, 4s3d24d, 3d35s,
and 3d25s4d configurations. We verified that a subset of
triple excitations give a negligible contribution. For odd
states, the CI configuration space is sufficiently saturated
by the single and double excitations to the same large ba-
sis from the 4s3d24p, 3d34p, 4s3d25p, 3d24p5s, 4s3d4p4d,
3d25s5p, and 3d24p4d configurations.

We have carried out calculation of energies for 85 levels
and compared them with experiment. Most of the the-
oretical energies differ from experimental values by only
0.1-2.5%. We present results only for the lines and lev-
els that can be used to pump titanium optically into the
metastable state to perform laser cooling and to drive the
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TABLE S1. Comparison of theoretical even energy levels (in
cm−1) with experiment [S2].

Configuration Term Expt Theory Diff Diff %

3d24s2 a F3 2 0 0 0

a F3 3 170 177 7 4.1%

a F3 4 387 396 9 2.3%

3d3(4F )4s a F5 1 6557 6374 -183 -2.8%

a F5 2 6599 6416 -183 -2.8%

a F5 3 6661 6477 -184 -2.8%

a F5 4 6743 6557 -186 -2.8%

a F5 5 6843 6652 -191 -2.8%

3d3(2G)4s a G3 5 15220 15497 276 1.8%

3d3(2H)4s a H3 5 18141 18450 308 1.7%

a H3 6 18193 18498 306 1.7%

3d3(2H)4s a H1 5 20796 21171 375 1.8%

TABLE S2. Comparison of theoretical odd energy levels (in
cm−1) with experiment [S2].

Configuration Term Expt Theory Diff Diff %

3d2(3F )4s4p(3P o) z G5 o
6 16459 16454 -5 0.0%

3d2(3F )4s4p(3P o) z S1 o
0 24174

3d2(3P )4s4p(3P o) D5 o
4 25927 26081 154 0.6%

3d3(4F )4p y G5 o
6 26911 26982 71 0.3%

relevant clock transitions. The selected energy levels in
cm−1 are listed in Tables S1 and S2.

We compute the expectation values 〈L2〉 and 〈S2〉,
where L and S are the total electron orbital and spin an-
gular momentum operators, to obtain approximate quan-
tum numbers L and S, where 〈L2〉 = L(L + 1) and
〈S2〉 = S(S+1), which allowed us to unambiguously iden-
tify all terms in Tables S1 and S2. As a result, we iden-
tify a level, 3d24s4p 1So0, not listed in the NIST database.
This level is included in Table S2.

C. Optical clock transitions

We study forbidden transitions between the a F3 and
a F5 terms to identify the most suitable clock transition.
The main text summarizes the properties of the clock
transitions. The total clock transition linewidth accounts
not only for spontaneous decay on the clock transition it-
self, but also for decay of the upper and lower levels of the
clock transition to other states, leading to an overall clock
transition linewidth that is larger than the spontaneous
decay rate on the clock transition alone. In Table S3,
we list the contributions that determine the linewidth of
the a3F4 → a5F5 clock transition. We note that the
clock transition linewidth is dominated by M1 decays

of both the lower and upper states to other fine struc-
ture states within their respective manifolds. The same
calculation was performed to calculate the linewidth of
all other clock transitions. The random-phase approx-
imation (RPA) corrections are included to the effective
electric quadupole and magnetic dipole operators, see,
for example Ref. [S3]. Such effective operators account
for the core-valence correlations in analogy with the effec-
tive Hamiltonian Heff discussed above. The uncertainties
in the values of matrix elements were estimated as dif-
ference between values obtained using CI+all-order and
CI+MBPT methods.

D. Laser cooling transitions

Ref. [S4] identified two candidate transitions on which
Ti may be laser cooled. To support ongoing experimen-
tal efforts to realize laser cooling of Ti, we character-
ized these two transitions theoretically using our atomic-
structure calculations described herein. Specifically, we
calculated the strengths of the two electric-dipole laser
cooling transitions, and also, critically to experimental ef-
forts, determined the small leakage rate (branching ratio)
out of the laser cooling transitions. Results for two of the
cooling transitions, 3d3( F4 )4p y G5

◦
6 - 3d3( F4 )4s a F5 5 at

λ = 498 nm and 3d3( F3 )4s4p( P3 o) z G5 o
6 - 3d3( F4 )4s

a F5 5 at λ = 1040 nm are listed in Table S4).
In Ref. [S4] it was noted that while there do exist other

even parity states to which a Ti atom in the excited state
of the laser cooling transition can decay, such scattering
would be strongly suppressed because the transitions are
spin forbidden. Our calculations confirm this expecta-
tion. Indeed, we find the branching to those states is
exceptionally low, at the 10−6 level for the 498 nm tran-
sition and at the 3 ·10−7 level for the 1040 nm transition.
These are low enough branching ratios to enable the typ-
ical tools of modern ultracold atomic physics, including
both Doppler and sub-Doppler cooling techniques and
single-atom fluorescenence detection in quantum-gas mi-
croscopes or optical tweezers, without the need for addi-
tional repumping lasers.

To obtain transition rates and branching ratios for the
cooling transitions (see Table S4) we use the electric-
dipole reduced matrix elements calculated with the ef-
fective electric-dipole operator in the random-phase ap-
proximation. We also considered other correction to the
E1 operator beyond RPA: the core-Brueckner (σ), struc-
tural radiation (SR), two-particle (2P), and normaliza-
tion (Norm) corrections [S5–S7]. As has been noted for
the case of Sr [S3], these corrections cannot be omitted
at the 1% level of accuracy.

In Table S4 we include transition matrix elements,
Dtot, obtained taking into account all the corrections
mentioned above. The uncertainties were estimated by
taking the difference between the values obtained using
CI+all-order and CI+MBPT methods. For very small
matrix elements (marked by the tilde symbol), we pro-
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TABLE S3. Results of calculations for the a F3 4 → a F5 5 clock transitions of Ti. Wavelength, λ, (in units of nm), E2 and
M1 reduced matrix elements (ME) (in a.u. for E2 transitions, in µB for M1 transitions), transition rates (in ×10−7s−1), and
branch ratio.

Upper Term Level Lower Term Level λ ME Tr. rate Branching ratio

3d3(4F )4s a F5 5 6843 3d24s2 a F3 3 170 1498.6 E2 0.0472(7) 3.00(9) 0.00838(25)

a F3 4 387 1548.9 M1 0.0010(5) 7(6) 0.020(17)

E2 0.140(4) 22.4(1.3) 0.063(4)

3d3(4F )4s a F5 4 6743 99794.4 M1 3.632(10) 325.43(18) 0.909(16)

E2 1.748(18) 3.14(8)× 10−6 8.78(22)× 10−9

3d24s2 a F3 4 387 3d24s2 a F3 3 170 46138. M1 2.597(0.026) 2059(53) 1

TABLE S4. Wavelengths (in nm), electric-dipole reduced matrix elements Dtot (in a.u.), transition rates (in s−1), and branching
ratios for cooling transitions of Ti I. The Dtot values (in a.u.) are calculated with CI+all-order method and include the random-
phase approximation (RPA), the core-Brueckner (σ), structural radiation (SR), two-particle (2P), and normalization (Norm)
corrections. For approximate values (indicated by a ∼ symbol), the precise value of the matrix element is highly uncertain,
and the reported value should be interpreted as correct only within an order of magnitude.

Upper Term Level Lower Term Level λ Dtot Tr. rate Branch ratio

3d3(4F )4p y G5 o
6 26911 3d3(4F )4s a F5 5 6843 498 E1 7.337(12) 6.780(23)×107 0.9999989(5)

3d3(2G)4s a G3 5 15220 855 E1 ∼ 0.007 ∼ 11 ∼ 2× 10−7

3d3(2H)4s a H3 5 18141 1140 E1 0.0055(14) 3.2(1.4) 4.7(2.0)×10−8

3d3(2H)4s a H3 6 18193 1147 E1 0.025(4) 62(19) 9(3)×10−7

3d3(2H)4s a H1 5 20796 1635 E1 ∼ 0.0004 ∼ 0.005 ∼ 7× 10−11

3d2(3F )4s4p(3P o) z G5 o
6 16459 3d3(4F )4s a F5 5 6843 1040 E1 0.86(3) 1.03(8)×105 0.99999969(2)

3d3(2G)4s a G3 5 15220 8076 E1 0.01040(10) 0.0318(25) 3.1(2)×10−7

TABLE S5. Wavelengths (in nm), calculated and observed transition rates (in s−1×106), and branching ratios for optical
pumping of Ti. The upper state for all transitions is the 3d2(3P )4s4p(3P o) D5 o

4 level, at 25967 cm−1.

Lower Term Level λ Tr. rate, theory Tr. rate, lit Branch ratio

3d24s2 a F3 3 170 388.2 0.13(6) 0.28(6) 0.049

a F3 4 387 391.5 1.8(8) 2.11(28) 0.68

3d3(4F )4s a F5 3 6661 519.1 0.00036(12) 0.00014

a F5 4 6743 521.3 0.08(8) 0.31(16) 0.030

a F5 5 6843 524.0 0.4(4) 0.17

b F3 4 11777 706.7 0.06(3) 0.02

3d3(4P )4s a P5 3 14106 845.9 0.129(4) 0.049
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vide approximate values without explicit evaluation of
errors. For these, the error should be assumed to be at
the same order of magnitude as the quantity itself.

E. Optical pumping transitions

Gas phase Ti atoms may be produced with a ther-
mal source that operates between 1200◦C to 1800◦C. At
these temperatures, a low population of the Ti atoms
produced would be in the a F5 5 laser-coolable state. It
would therefore be necessary to transfer atoms to this
state from the a F3 ground state manifold via optical
pumping. Through our calculations, we examined multi-
ple potential excited states that could be used to trans-
fer population efficiently to the a F5 5 state. We found the
3d2( P3 )4s4p( P3 o) y D5 o

4 state has a significant branching
ratio to both the a F5 5 state and a F3 states, allowing for
optical pumping of atoms from the ground states to the
laser cooling state. The transition wavelengths are also
amenable to current laser technology.

S2. OPTICAL CLOCK RABI FREQUENCIES

The optical clock transitions of Ti can be driven by
either the M1 or E2 multipoles of the electromagnetic
field, both of which must be accounted for when calculat-
ing the overall Rabi frequency. In each of the transitions
we highlighted in the main text (mJ = 0 → m′J = 0,
J = 4 → J ′ = 4, 5) only one of the two multipoles is
allowed.

Given a reduced M1 matrix element, DM1, for a tran-
sitions between lower and upper levels J and J ′, and
a magnetic field B of the clock laser, the M1 Rabi fre-
quency between a lower and upper sublevel mJ and m′J
is given by

ΩM1 = −DM1

~
(−1)J

′−m′J ê∗m′J−mJ
·B

×
(
J 1 J ′

mJ m′J −mJ −m′J

)
. (S5)

For an electric quadrupole transition with reduced ma-
trix element DE2 driven by a plane-wave clock laser field
E with polarization ε and propagation wavevector k, the
Rabi frequency is

ΩE2 =
iDE2

2~
(−1)J

′−m′J
(
J 2 J ′

mJ m′J −mJ −m′J

)

×
∑

i,j

Mij(m
′
J −mJ)kiεj . (S6)

Here, Mij(q) is a geometric factor given by

Mij(q) = (−1)q
√

5
∑

q1,q2

(êi · ê∗q1)(êj · ê∗q1)

(
1 1 2
q1 q2 −q

)
,

(S7)

where êi and êq are the cartesian and spherical basis
vectors respectively.

S3. DYNAMICAL POLARIZABILITY OF TI I

In order to find the magic wavelengths of the clock
transitions, it is necessary to calculate the polarizabil-
ity of Ti in both the a F3 4 and a F5 5 states over a wide
range of frequencies. Performing this calculation directly
remains a computational challenge for complex atoms
like Ti. Direct calculation requires the inversion of huge
matrices — 350,000 × 350,000 in our case — which is
computationally intractable. Instead, we use an iterative
approach included in the pCI Code Package [S8] imple-
menting the CI+all-order technique to calculate the po-
larizability of the considered states of Ti. This approach
allows us to get accurate results using the inversion of
smaller matrices (15,000 × 15,000), making the task fea-
sible. Unfortunately, this method does not work at all
frequencies, owing to the potential divergence of the it-
erative process. We successfully obtained static polariz-
abilities for both 3d24s2 a F3 4 and 3d3(4F )4s a F5 5 levels,
but for dynamic polarizabilities the calculation diverged
for wavelengths shorter than 750 nm (900 nm) for the
a F3 4 (a F5 5) level. To overcome this, we used a combi-
nation of the CI+all-order technique and the sum-over-
states method to calculate the scalar, vector and tensor
polarizability from 1100 nm to 400 nm.

The sum-over-states method involves using only bound
states of an atom, and there is always some inaccuracy
due to missing contributions from continuum states and
bound states not included in the calculation. For the
best accuracy, it is advisable to use as many states as
possible in the sum. However, there are always limits
on the accuracy of calculations of highly excited states.
To balance these trade-offs, we use in the sum-over-state
method for the lower lying states that contribute the ma-
jority of the dc polarizability but still can be properly
calculated. For this purpose, we used 73 states to obtain
the polarizability of the 3d24s2 a F3 4 level and 49 states
for the polarizability of the 3d3(4F )4s a F5 5 level. The
most important contributions to both polarizabilities are
shown in Tables S6, S7. The polarizability is generally
divided into three terms: αS - scalar, αV -vector, and
αT - tensor polarizabilities. They are represented for an
arbitrary state i as follows [S9, S10]:

αSi (ω) =
2

3(2Ji + 1)

∑

n

(En − Ei)|〈n||D||i〉|2
(En − Ei)2 − ω2

(S8)

αVi (ω) = C1

∑

n

(−1)Jn+Ji

{
1 1 1
Ji Ji Jn

}

ω|〈n||D||i〉|2
(En − Ei)2 − ω2

(S9)



5

TABLE S6. Contributions to the static electric-dipole polarizability α0 with the appropriate reduced matrix elements D (in
a.u.) of the 3d24s2 a F5 5 level. For comparison, the experimental and theoretical energy levels (in cm−1) are shown.

Configuration Term Exp. Level Theor. Level Diff % D Contrib. to α0

3d2(3F )4s4p(3P o) z G5 o
6 16459 16454 0.0% 0.86(3) 1.00(8)

z F5 o
5 17215 17185 -0.2% 2.48(6) 7.7(4)

z D5 o
4 18695 18769 0.4% 2.08(3) 4.77(16)

3d3(4F )4p y G5 o
5 26773 26850 0.3% 2.299(5) 3.48(2)

y G5 o
6 26911 26982 0.3% 7.837(12) 40.16(12)

y F5 o
4 28788 29061 1.0% 2.410(7) 3.45(2)

y F5 o
5 28896 29164 0.9% 7.251(6) 31.07(5)

x D5 o
4 30060 30474 1.4% 6.723(12) 25.24(12)

Other 11.7

Total 128.5(2.0)

TABLE S7. Contributions to the static electric-dipole polarizability α0 with the appropriate reduced matrix elements D (in
a.u.) of the 3d24s2 a F3 4 level. For comparison, the experimental and theoretical energy levels (in cm−1) are shown.

Configuration Term Exp. Level Theor. Level Diff % D Contrib. to α0

3d2(3F )4s4p(3P o) z F3 o
4 19574 19632 0.3% 1.682(13) 2.39(4)

z D3 o
3 20126 20115 -0.1% 1.467(9) 1.774(22)

z G3 o
5 21740 22025 1.3% 1.297(4) 1.263(8)

z G1 o
4 24695 25163 1.9% 1.1(4) 0.8(6)

3d2(3F )4s4p(1P o) y F3 o
3 25227 25351 0.5% 1.479(13) 1.423(25)

y F3 o
4 25388 25531 0.6% 3.9(3) 9.8(1.8)

3d3(4F )4p y D3 o
3 25644 25591 -0.2% 3.12(17) 6.3(7)

3d2(1D)4s4p(3P o) x F3 o
4 27026 27325 1.1% 3.36(11) 6.8(5)

3d2(3F )4s4p(1P o) y G3 o
5 27750 27846 0.35% 4.65(25) 12.7(1.4)

w D3 o
3 29912 30145 0.8% 2.983(17) 4.86(5)

3d2(1G)4s4p(3P o) x G3 o
5 30039 30349 1.0% 4.416(10) 10.53(5)

3d3(4F )4p w G3 o
5 31629 32053 1.3% 4.61(20) 10.9(1.0)

3d2(1G)4s4p(3P o) v F3 o
4 34205 34742 1.6% 3.60(14) 6.1(5)

3d3(2D2)4p u F3 o
3 37744 38871 3.0% 2.74(13) 3.2(3)

3d2(3P )4s4p(1P o) u D3 o
3 38159 38909 2.0% 1.74(5) 1.28(7)

3d3(2G)4p t F3 o
4 38671 39560 2.3% 2.6(4) 2.9(8)

3d3(2D2)4p s D3 o
3 39715 40515 2.0% 1.5(4) 0.9(5)

3d24s(4F )5p o D3 o
3 44234 45270 2.3% 2.11(8) 1.61(12)

Other 14.9

Total 100.4(1.8)
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αTi (ω) = C2

∑

n

(−1)Jn+Ji

{
1 1 2
Ji Ji Jn

}

(En − Ei)|〈n||D||i〉|2
(En − Ei)2 − ω2

,

(S10)

where

C1 = −2

√
6Ji

(Ji + 1)(2Ji + 1)

and

C2 = 4

√
5Ji(2Ji − 1)

6(Ji + 1)(2Ji + 1)(2Ji + 3)
.

The index n refers to the states in the sum-over-states
that contribute to the polarizability of the state i; En,i is
the energy and Jn,i is the total angular momentum of the
state; 〈n||D||i〉 is the reduced matrix element between the
two states, and ω is the frequency of the external electric
field. The total dynamic polarizability can be expressed
as follows:

αi(ω) = αSi (ω) + ε cos(θk)
mJi

2Ji
αVi (ω)+

+

(
3 cos2 θp − 1

2

)
3m2

Ji
− Ji(Ji + 1)

Ji(2Ji − 1)
αTi (ω),

(S11)

where ε is the ellipticity of the polarization, θk is the
angle between the direction of propagation of the light
and the quantization axis, θp is the angle between the
polarization of the light and the quantization axis, and
mJi is a magnetic quantum number.

To obtain an accurate value of dynamic polarizabil-
ity with the sum-over-states method, one has to estimate
the residual contribution to the polarizability from states
that are not included in summation. We made this esti-
mate using the fact that |ω/(En − Ei)| � 1 for all such
residual states in the range of wavelengths that we are
considering. Indeed, using this ratio as a small parame-
ter and expanding to the lowest non-zero order in, Eq. S8
can be simplified to

αSi (ω) = αSN
i (ω) + αSres

i (ω) (S12)

where

αSN
i (ω) =

2

3(2Ji + 1)

N∑

n=1

(En − Ei)|〈n|D|i〉|2
(En − Ei)2 − ω2

(S13)

and where N is the number of states used in direct sum-
mation. Moreover, we can write

αSres
i (ω) = A0 +B0 ω

2 (S14)

where A0 and B0 are expansion constants for the long
wavelength scalar polarizability. The same simplifica-
tion works for αVi (ω) and αTi (ω), by writing αVN

i (ω) and

αTN
i (ω) as a summation as in S13. This yields the ex-

pansion of the long wavelength residuals:

αVres
i (ω) = B1ω

αTres
i (ω) = A2 +B2 ω

2
(S15)

whereB1, A2, andB2 are additional expansion constants.
Using the results of the sum-over-states method, we

identified the four candidate magic wavelengths discussed
in the main text. The atoms were assumed to have mag-
netic quantum numbers mJ = 0 and the optical field
parameters were ε = 0 and θp = θk = 90◦. However, the
more accurate iterative approach used by the pCI code
package was found to not converge at all of the candidate
wavelengths. Using the fact that convergence in the iter-
ative polarizability can be achieved at ω = 0.043989 a.u.
(λ = 1035.8 nm) and for all smaller values of ω down
to ω = 0, we subtracted the values of αi(0.043989) and
αi(0) obtained from the sum-over-states method from
the corresponding results computed with the pCI code.
In this way, we found the residuals αSres

i (0), αVres
i (0),

αTres
i (0) and αSres

i (0.043989 a.u.), αVres
i (0.043989 a.u.),

αTres
i (0.043989 a.u.). This allowed us to determine the

parameters A0,2 and B0,1,2 in Eqs. S14, S15 and thus
extend the accuracy of the direct iterative polarizability
calculation to frequencies where the iterative calculation
fails to converge.

The uncertainty on the polarizabilities were obtained
by comparing the calculations of the more accurate
CI+all-order technique with CI+MBPT at the points
where the direct calculation converged. The difference
between the values of the appropriate reduced matrix el-
ements |〈n||D||i〉|CI+all−order and |〈n||D||i〉|CI+MBPT is
an additional possible inaccuracy of the method and thus
is used to estimate the uncertainties of the polarizabili-
ties. Furthermore, possible errors in the parameters A0,2

and B0,1,2 were included in the final uncertainties as the
difference between the correspondent parameters calcu-
lated with the CI+all-order and CI+MBPT methods.

S4. DIPOLE-DIPOLE INTERACTIONS

As discussed in the main text, dipole-dipole interac-
tions underlie several effects that impact the operation
of a Ti atomic clock. One can distinguish between inter-
actions that are inelastic or elastic in the motional de-
grees of freedom. Inelastic interactions can be described
as spin relaxation, a dipole-mediated conversion of inter-
nal Zeeman energy into external motional energy. For
example, in an optical lattice spin relaxation may couple
atoms from lower to higher bands of the lattice. As dis-
cussed in the main text, inelastic motional interactions
can be suppressed by trapping atoms in a lattice with a
sufficiently large band gap [S11].

One may then focus on elastic motional interactions.
We describe these interactions purely in the spin sec-
tor using the secular Hamiltonian, which accounts for
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cycle-averaging over the Larmor precession of the atomic
spins [S12]. This secular Hamiltonian, whose form is pre-
sented also in the main text, is given for two atoms as

Hdd =
µ0µ

2
B

4π

gJ1gJ2
r3
12

(
1− 3 cos2 θ12

)

×
(
Jz1J

z
2 −

1

4

(
J+

1 J
−
2 + J−1 J

+
2

))
(S16)

with 1 and 2 labelling the two atoms, and r12 and θ12

describing their position difference vector and the angle
it makes with the quantization axis.

One can consider separately two effects of this secu-
lar Hamiltonian. The first is a spin-elastic interaction,
which is diagonal in the separable basis of magnetic sub-
level states. This shift is zero on the mJ = 0 magnetic
sublevels and therefore does not affect a clock based on
an mJ = m′J = 0 transition.

The second effect is the spin mixing interaction, which
is off-diagonal in the separable magnetic sublevel basis.
This interaction conserves the total magnetic quantum

number of the two atoms, m
(tot)
J = m

(1)
J + m

(2)
J , but

changes the magnetic quantum numbers of the individual
atoms. In the absence of dipolar interactions, the entire

manifold of two-atom states with identical m
(tot)
J is de-

generate for atoms with equal Zeeman splittings. Dipo-
lar interactions can then generate significant mixing and
energy shifts within this manifold, leading to imprecise
measurement of the clock transition.

While several methods have been developed in NMR to
control dipolar spin mixing, e.g. multiple pulse sequences
[S13] and magic angle spinning [S14], these techniques are
not needed to suppress spin mixing in a Ti clock system.
As described in the main text, spin mixing within the
clock states is mitigated by the tensor light shift imposed
by the optical lattice beams. From Eq. S11, the ten-
sor light shift includes a part proportional to m2

J , which
splits the degeneracy of the aforementioned states and
energetically suppresses the spin mixing process.

To study the suppression of spin mixing, we simulate
the secular dipole-dipole interaction of two nearest neigh-
bor atoms in an optical lattice with and without account-
ing for the lattice-induced ac Stark shift. Figure S1 shows
a schematic of the system under consideration. We no-

tate the single atom states by |ξ(i)
mJ 〉 where ξ ∈ {g, e}

refers to the upper or lower clock states, the superscript
denotes the ithatom, and the mJ subscript is the mag-
netic sublevel. We use g to refer to the lower a3F4 clock
state, and e to refer to the upper a5F5 state. The two
atom system consists of [(2Jg + 1) + (2Je + 1)]2 = 400
states.

We simulate a simple Ramsey interferometry sequence
which includes the dynamics of Hdd, the Zeeman Hamil-
tonian HZ , and, optionally, the ac Stark Hamiltonian

Hac. We initialize two atoms in the |g(1)
0 ; g

(2)
0 〉 state, ap-

ply a π/2 pulse to each atom on the g0 → e0 clock tran-
sition, allow the two-atom state to evolve for a time T

-1 0 1 -1 0 1

-1 0 1 -1 0 1

M1 M1

Hdd

Hdd

J = 5

J = 4

| (1)
mJ

| (2)
mJ

e

g

FIG. S1. The secular dipole-dipole interaction of two atoms in
the a3F4 (g) and a5F5 (e) clock states. The g and e states have
angular momentum quantum numbers J = 4 and J = 5, giv-
ing rise to 2J+1 magnetic sublevels each. For brevity, the fig-
ure shows only three of these mJ sublevels in each state, split
by Zeeman shifts. The clock drive ΩM1 couples the |gmJ=0〉
and |emJ=0〉 states, and Hdd couples the subspaces of the two
atoms.

0.0 0.1 0.2
T [s]

0.0

0.2

0.4

0.6

0.8

1.0
C(

T)

Hac on
Hac off

40 80 2 /T 0 2 /T
 [s 1]

0.00

0.25

0.50

0.75

1.00

P
e (T=

0.2)

0.25

FIG. S2. (left) Ramsey contrast of the clock transition as a
function of the free evolution time T . The contrast, shown in
violet (green), dies quickly (slowly) when the ac Stark shift,
Hac, is excluded (included) from the simulation. Note the
split in the T axis and change in scale at 0.25 s. (right) The
resulting Ramsey fringes for T = 0.2 s (indicated by circles
in the left plot). We plot the probability an atom is found
in state |e0〉 as a function of the detuning δ from the clock
transition..

under HZ , Hdd, and (optionally) Hac; apply a second π/2
pulse to each atom; and then determine the probability
of an atom being in the e0 state. We vary the detun-
ing of the clock drive frequency, δ, to generate a Ramsey
interferometry fringe. From this fringe, we obtain the
contrast C(T ) = (maxPe(T, δ)−minPe(T, δ)).

Figure S2 shows the results of the simulation. The
left panel demonstrates the decay of the Ramsey contrast
with and withoutHac included. We break the axis at 0.25
s to illustrate that the tensor ac Stark shift extends the
decay time of the contrast significantly. Because we only
simulate unitary dynamics of two neighboring atoms, re-
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S(|g(1)
mJ

; g(2)
mJ

)

S(|g(1)
0 ; e(2)

0 )

S(|e(1)
mJ

; e(2)
mJ

)

Hac off Hac on

|g(1)
0 ; g(2)

0

S(|g(1)
0 ; e(2)

0 )

|e(1)
0 ; e(2)

0

S(|g(1)
1 ; g(2)

1 )

S(|e(1)
1 ; e(2)

1 )

g
SM

e
SM

FIG. S3. (left) The 2-atom level structure with and with-
out the ac Stark shifts applied (Hac). Only states that
are symmetric under particle exchange are shown, as these
are the only states involved in the dynamics. The states

S(|g(1)mJ 6=0; e
(2)
−mJ
〉) are omitted because they are split from the

S(|g(1)0 ; e
(2)
0 〉) state by the differential Zeeman shift. The dot-

ted lines show that the degeneracy of the mtot
J = 0 sublevels

is lifted when Hac is turned on. The five boxed levels include
the clock states and the states most strongly coupled to them
by Hdd. (right) The simplified picture, including only the lev-

els boxed in the left panel. Hdd couples the states |ξ(1)0 ; ξ
(2)
0 〉

and S(|ξ(1)mJ ; ξ
(2)
−mJ
〉) with rate ΩξSM .

vivals of the contrast are observed in the simulation be-
yond the times plotted in Figure S2, but these would not
occur in a true many-body situation as the coherence
would spread between many particles and be lost. The
right panel shows the resulting Ramsey fringes taken at
the time highlighted on the left side of the figure. When
no optical lattice is applied, the coherence on the clock
transition quickly vanishes, leading to a loss of the Ram-
sey signal. The fringe survives for ∼ 85 s when the lattice
beams are on.

Figure S3 gives a simplified picture of the level struc-
ture at play. S(|ψ〉) is defined as the function that
symmetrizes a multiparticle state by adding states with
swapped mJ and, if necessary, states in which the excited
atom is switched. The initial state of the Ramsey se-

quence (|g(1)
0 ; g

(2)
0 〉) is symmetric under particle exchange

and the Hamiltonian commutes with the exchange oper-
ator, so all states involved in the dynamics must remain
symmetric. The left panel of Figure S3 illustrates that in
the absence of a tensor light field or dipole-dipole shifts,

the |ξ(1)
0 ; ξ

(2)
0 〉 states are degenerate with all the sym-

metrized states S(|ξ(1)
mJ ; ξ

(2)
−mJ
〉) = 1/

√
2(|ξ(1)

mJ ; ξ
(2)
−mJ
〉 +

|ξ(1)
−mJ

; ξ
(2)
mJ 〉). On the other hand, the figure shows the

singly excited state S(|g(1)
0 ; e

(2)
0 〉) = 1/

√
2(|g(1)

0 ; e
(2)
0 〉 +

|e(1)
0 ; g

(2)
0 〉) is not degenerate with states of mixed angu-

lar momentum (e.g. S(|g(1)
1 ; e

(2)
−1〉)) because the g and e

states have different Zeeman splittings.
The dotted lines show the lifting of the degeneracy of

the spin-mixed states by the ac Stark shift (Hac). The
splitting leads to the simplified level structure shown
in the right panel of Figure S3. After the splitting,

only the S(|ξ(1)
1 ; ξ

(2)
−1〉) states remain energetically nearby

the |ξ(1)
0 ; ξ

(2)
0 〉 clock states. The splitting between the

|ξ(1)
0 ; ξ

(2)
0 〉 and S(|ξ(1)

1 ; ξ
(2)
−1〉) states by the tensor ac light

shift is denoted ∆Eξtens. With the parameters previ-
ously used to describe the optical lattice, this splitting
is h×4(2) kHz for gg atoms, h×4.8(6) kHz for ee atoms.
The spin mixing term in Hdd couples the nearby states

with rates ΩξSM (h× 2.4 Hz for gg atoms, h× 4.6 Hz for
ee atoms). The coupling produces first-order level mixing

at the ΩξSM/∆E
ξ
tens ∼ 10−3 level between these states —

small enough to not directly impact the coherence of the
clock.

However at second-order, both of the clock states will

experience an energy shift of ∆Eξξ ∼ −(ΩξSM )2/∆Eξtens.
It is clear that the difference between these two shifts
leads to a shift of the clock frequency, which from the
simplified treatment is ∼ 3 mHz for two atoms. The sum
of the shifts to the clock states also leads to decoherence
through entanglement generation. To understand this
effect, we consider the state of the two atom system after
it has evolved for a time t during the Ramsey sequence:

|ψ(t)〉 =
1

2

[
e−i∆Eggt/~|g(1)

0 ; g
(2)
0 〉+ e−i∆Eeet/~|e(1)

0 ; e
(2)
0 〉

+ |g(1)
0 ; e

(2)
0 〉+ |e(1)

0 ; g
(2)
0 〉
]

(S17)

where we’ve included only the non-trivial phases accu-
mulated from the second-order dipole-dipole interaction.
If we trace over the second atom state space, we find the
single atom reduced density matrix is:

ρ(1)(t) =|g(1)
0 〉〈g

(1)
0 |+ |e

(1)
0 〉〈e

(1)
0 |

+
[
(1 + e−i(∆Egg+∆Eee)t/~)|g(1)

0 〉〈e
(1)
0 |+ h.c.

]

(S18)

From this, we can see the coherence is fully lost when
(∆Egg+∆Eee)t/~ = ±π. Given the second-order dipole-
dipole shifts calculated above, this corresponds to a full
loss of coherence at t ∼ 86 s. This is in agreement with
the lifetime seen in the simulation from Figure S2.
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