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ABSTRACT OF THE THESIS

Cyber-Physical Attack Detection and Localization in Additive Manufacturing Systems

By

Ashley Sayuri Masuda

Master of Science in Electrical and Computer Engineering

University of California, Irvine, 2023

Professor Mohammad Abdullah Al Faruque, Chair

Additive Manufacturing (AM) systems continue to revolutionize various industries with their

ability to mass-produce complex and custom products. This growing influence, however,

offers its own new set of cybersecurity vulnerabilities. Analog side-channel emissions across

the cyber-physical domain can provide attackers with enough information to compromise the

integrity and performance of the AM Process Chain. Leakage of confidential CAD models,

sabotage of the product’s structure, and manipulation of the printer’s internal instruction

sequence are examples of the potential consequences. Our methodology incorporates multi-

modal machine-learning techniques via a Graph Neural Network (GNN) to accurately detect

and localize the source of discrepancies. By identifying the nature of the anomaly, companies

and consumers can benefit from effective/rapid threat detection and proactive vulnerability

mitigation while being assured of the product’s quality. The logic behind this model is

anticipated to be used in numerous other fields beyond 3D printing applications.
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Chapter 1

Introduction

Recent studies on Additive Manufacturing security have become an area of growing inter-

est in the cybersecurity community. For instance, advances in medical practices, including

the creation of artificial tissues/organs [44] and effective new drug structures using stere-

olithography [31], highlight the flexibility and effectiveness of the practice. However, as 3D

manufacturing becomes more commercialized and computationally dependent, these devices

become increasingly prone to malfunction and sabotage [54]. To safeguard the integrity and

security of this promising industry, it is essential to perform diverse and thorough analyses to

identify possible disruptions that could negatively impact the functionality and performance

of the desired product.

Taking advantage of AM side-channel emissions and modern machine-learning algorithms has

led to innovative methodologies and adversary models, such as sensor fusion [23] and digital

product duplication [36]. Papers [51] and [40] discuss the comparisons of physical and cyber

data from network- and host-based IDS’s for intrusion detection, while methods in [27] utilize

image processing through convolutional neural networks. Despite the promising results of

these projects in malware detection, there has been relatively less emphasis on differentiating
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between particular types of anomalies (e.g. hostile attacks and environmental interruptions).

At first, the distinction between anomalies and malware might seem insignificant in the

context of Additive Manufacturing, for the result is equally unusable in either case. However,

delving deeper into this classification approach could have significant ramifications for AM

devices’ long-term security and effectiveness. A quick and detailed incident response to

users regarding potential hostile attempts to compromise the system or instances where

environmental debris becomes entangled during printing enables proper troubleshooting and

diagnosis. Early detection of any product-related issues during this stage can help prevent

future complications from arising.

It is within our interest to develop a multi-modal machine-learning algorithm that uses

sensor fusion of vibration, acoustic, magnetic, and power side-channel emissions to accurately

distinguish between malicious malware and irregular anomalies.

1.1 Research Challenges

While there have been previous studies on AM side-channel emissions [1] [2], collecting data

from various external sensors to create a sufficiently large dataset for the learning phase of

our GNN model in order to ensure the accuracy of the attack localization classifiers presents

a significant challenge. The dataset needs to illustrate consistent patterns during training

for accurate forecasting of future values, as well as be extensive enough to differentiate

abnormalities under zero-day conditions.

Another challenge involves precisely identifying the behaviors exhibited by various types

of anomalies, whether malicious, environmental, or user-based. The classifier for localiza-

tion should be capable of distinguishing specific analog signals associated with each kind of

anomaly, producing reliable and consistent classification results. Multiple experimental sce-
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narios must be implemented to validate the classifier’s performance across different datasets,

emulating its effectiveness in real-world situations.

The following are recognized as research challenges for our experiment:

1. Acquiring a comprehensive and synchronized dataset, consisting of both sensor and

G-code information for effective model training/testing.

2. Designing an algorithm for assigning attack labels during the testing phase based on

compromised times defined by modified G-code deviation

3. Generating a thorough multi-modal Graph Neural Network with optimized weight

correlations between sensors that produce consistent results

4. Testing the accuracy and reliability of classifiers to identify the nature of the anomaly:

G-code or sensor

1.2 Contribution

Past lab research have established a measurable and dependable connection between acoustic

side-channel analog emissions and instructions in the cyber domain [15][1]. Recent exper-

iments have further explored this relationship by employing an algorithmic multi-modal

sabotage attack system to demonstrate the correlation between side-channel data and ab-

normal behavior [55]. Their model incorporated various sensor types for increased system

understanding and precision. Our research contributions will involve applying neural net-

work machine-learning techniques coupled with post-processing attack localization methods.

This comprehensive approach aims to advance the field by leveraging sophisticated compu-

tational algorithms and analysis to further enhance the detection and localization of attacks

in the context of side-channel emissions.
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The novelty of our contribution to this project can be summarized as follows:

1. Graph Neural Network Model: Application of multi-modal neural network model

in an Additive Manufacturing environment capable of accurate forecasting of side-

channel behavior

2. Adversary Recreation: Injection, modification, and deletion of discrepancies within

G-code printer instructions and external sensor data to emulate attacks along various

points in the AM Process Chain

3. Attack Label Generation: Supervised labeling of tampered data under the assump-

tion that the user has no prior knowledge of G-code modifications

4. Attack Localization: Classification for both G-code and sensor anomalies based on

their error scores from a calculated threshold for future predictions

1.3 Motivational Example

Industrial integration of 3D manufacturing into a company’s products and technology has

become increasingly popular in a variety of mass-scale applications [6]. The potential impact

it has on corporations’ supply chains is an important topic of discussion to understand the

reasoning behind its explosive growth over the past decade. Generative, facilitated, and selec-

tive services have flourished in response to the growing demand for Additive Manufacturing

customized and applicable results [42][24].

From a cybersecurity standpoint, authenticating 3D-printed products’ consistency, func-

tionality, and durability is imperative to ensure the quality of results and the safety of its

benefactors. For example, when creating a complex part in a car model, one of many un-

foreseen problems could occur: an attacker injects malware or additional instructions into
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the automated system, a blunt external force damages some of the mechanisms, exposure to

the elements affects the printer’s consistency of product, etc. Recognizing the difference in

quality early on in the manufacturing process will help avoid potential risks down the line,

such as improper fitting of customized parts within the overall system, unexpected breakage

during operation, or the ultimate failure of the entire car to function as intended.

Identifying and localizing these errors involves training a neural network with a large dataset

of sensors’ side-channel readings. Taking it a step further, our process consists of using a

classifier to categorize the nature of the anomaly by backtracking through the data to find

the most likely source of the issue.

Challenges in industry and construction have been identified among seven categories: ma-

terial, printer, software/computational, architecture and design, construction management,

regulations, and stakeholders [20]. Our research tackles the issues of printer-related and

computational errors using machine-learning techniques to observe and effectively mitigate

the possibility of both faults and malware early in the processing pipeline.
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Chapter 2

Background and Related Works

This section reviews relevant topics and current research on Additive Manufacturing and its

cybersecurity concerns. We compare and analyze previous works’ progress to formulate the

best approach for this project.

2.1 Additive Manufacturing Vulnerabilities

Cybersecurity attacks within Additive Manufacturing systems can be localized into three

sections along the AM process chain: the CAD Files, the Network, and the 3D printer itself

[34]. Computer-Aided Design (CAD) files contain details for the product’s overall design,

which can be converted to stereolithography instructions for the printer to read. Stere-

olithography involves the creation of 3D models through the deposition of filament materials

layer-by-layer. These design files are susceptible to extraction through network connections

[49]. Conducive to this experiment, vulnerabilities within the 3D printer and Network space

include modified firmware [35][47], side-channel emission analysis [48], printer spoofing [19],

and file tampering during data transfers [34]. This involves physical-to-cyber and cyber-to-
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physical domain security analysis to identify potential breaches in confidentiality [16]. Figure

2.1 outlines the general process:

Figure 2.1: AM Process Chain

In previous works, attack vectors were identified and injected during CAD Modeling, STL

and Toolpath file processing, and the one-site machine parameter configuration. The experi-

ments were conducted under the assumption that these modifications were made via network

connectivity and physical access ports. Access to the software compilation toolchain, where

attackers can drastically increase the amount of leaked information while remaining unde-

tected, present a new set of confidentiality concerns [9]. Analog emissions from external

sensors collected data from 3D prints that were not previously tampered with and com-

pared them to the sabotaged attack prints [55][4]. Quantifying cross-domain vulnerabilities

of physical-to-cyber system attacks is imperative to re-evaluate potential countermeasures in

future product iterations [4][13][3]. In addition, detection of zero-day kinetic cyber-attacks

through mapping performance between analog emissions and cyber-domain data was con-

ducted with a 77.45% accuracy, providing a solid proof of concept for related sensor behavior

[10]. Acoustic side-channel studies for digital twin recreation has also proved possible, col-

lecting data on print extrusion motors to evaluate position and velocity at a fixed sampling

rate, ultimately recreating a software duplicate of the intended print [15][1].

Studies have been done to help manage the risk factors involved in the construction industry,
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where 3D printing has become a potential future resource [33]. Any data leakage or malware

modification to the design can have huge implications on the structure’s integrity and the

company by association. Examples of more specific types of attacks that have become in-

creasingly more viable with the popularity of 3D printers involve: manipulating components

of the printer to cause physical disruption to the printing process [43], altering/injecting print

commands that appear valid but will fail upon application [35], collecting leaked proprietary

data [34], and overloading the printer with tasks to the point of interruption.

2.2 Side-Channel Analysis

The concept of side-channel attacks (SCA) was introduced over 20 years ago under the

pretense that the execution of specific processes will result in a physical leakage that can

be quantified. SCAs became a primary concern in cryptography, where attackers could

determine decryption keys that were thought to be secure. These unintentional emissions

include but are not limited to acoustic [17][1], electromagnetic [45], thermal [14][2], power

consumption [41], vibration [29], magnetic [22], and photon side-channels [46][26][8]. While

there are methods in mitigating the chances of an SCA - such as masking or encasing high-

processing components to avoid electromagnetic information leakage or randomizing signal

values during power consumption analysis via algorithms [28] - recent breakthroughs in deep-

learning have allowed attackers to create multi-input models to create a systematization of

knowledge (SoK) that can bypass any one countermeasure [38].

machine-learning techniques are more effective than pre-existing template attacks when de-

veloping an exploitable leakage model based on physical data [37][30]. Template attacks

are a type of power consumption analysis where the adversary has access to the same ma-

chine/system as the victim. These types of attacks should be the most effective when ex-

ploiting a system. However, learning algorithms and deep-learning have advanced to the
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point where SoK and wholistic data compilation has proved equally, if not more successful.

Just as this behavior can be analyzed to inject malware into the system, a predictive model

can be trained to emulate the future readings of these emissions.

As mentioned previously, research in acoustic analog emissions present a concerning breach

in confidentiality of Additive Manufacturing products. Correlation between this data leakage

and the G-codes of the internal printer commands has been proven with over 80% accuracy

[36][11]. Specifically acoustic and vibration side-channels have demonstrated a high per-

centage of mutual information with the 3D printer’s control parameters, in comparison to

magnetic and power modalities [55][8]. In summary, accurately defining the relation between

side-channel data and G-code instructions executed by the printer will yield more substan-

tial results needed for adversary recreation and develop the proper methods to counteract

them.[12].

2.3 Graph Neural Networks

In the past decade, there has been a significant advancement in the maturity of neural

networks. Graph Neural Networks, in particular, are machine-learning models designed to

be highly proficient in processing graph-structured data, where edges between nodes are

updated with the weights and probabilities of their behavioral connections. The growing

popularity stems from their unique capability to capture intricate relationships and patterns

within multiple input data. Model performance analysis usually focuses on one of the fol-

lowing techniques: node classification, link prediction, and clustering [56]. Applications of

learned networks have expanded into social networking [52], drug side-effect prediction [5],

and computer vision deep-learning techniques for image processing [39].

Graph Neural Networks (GNNs) have become prominent since they can process and predict
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non-Euclidean data [53]. Multivariate time-series data can be formatted as a graph, where

the nodes represent featured data types and the edges emulate the relation between them,

whose weights are determined by correlation matrix. A graph is denoted as G = (V, E ),

where V is the set of nodes and E is the set of edges. The neighborhood of a node would

be N(i) = {j ∈ V | ei,j ∈ E}.

GNNs can aggregate the information of a node’s neighbors to develop a richer representation

of a node and its relationships with other nodes [53]. This process produces a better under-

standing of the graph’s topology. We train a GNN to learn the inter-dependencies between

nodes, updating node embeddings after each training iteration. Sensor embedding is the

process of representing separate data in a flexible and comprehensive way, such as employing

a multidimensional embedding vector to analyze any underlying behavioral correlations.

After training these vectors to imitate the performance of the system, we test the GNN to

make forecasts for future timestamps.

Our approach builds on the novelty presented in [18], which proposes a Graph Deviation

Network (GDN). As the name suggests, GDN learns the structure of a graphical representa-

tion of a sensor network and labels deviations from the learned baseline as anomalous. For

further insight on GDN processes, see Section 3.3.

2.4 Attack Localization

Anomaly detection methods have been used to determine the accuracy and validity of sys-

tems. Examples include unsupervised graph clustering, neural networks, parametric statis-

tical modeling, and algorithm-based prediction [7]. Although these types of analyses are

valid, in some cases, knowing exactly where the operation is compromised provides a much

more insightful and practical course of action. This is known as attack localization. By
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understanding the source of the anomaly, the user can backtrace what parts of the system

are affected and appropriately classify the nature of the error.

The methodology of pinpointing the source of security breaches is the employment of classi-

fiers. These algorithms draw upon network traffic and, in our case, external sensor readings

to identify attack types. Standard prediction algorithms whose performance has been tested

against one another include Adaptive Boosting (AB), Classification And Regression Tree

(CART), K-Nearest Neighbors (KNN), Linear Discriminant Analysis (LDA), Logistic Re-

gression (LR), Multi-Layer Perception (MLP), Naive Bayes (NB), and Random Forest (RF)

[25]. Determining which classifier best suits specific experiments is highly dependent on the

application. Future work in this field attempts to combine these methods, where ensem-

ble methods train and compare multiple classifiers to output the best result, while hybrid

methods use different classifiers at various stages of training iterations [32].

Not all anomalies should be correlated to malicious attacks. Harmless types include op-

erational events such as power outages and human mistakes, flash crowds involving large

amounts of traffic, and measurement anomalies during data collection [21]. For the purposes

of this experiment, these lapses in system functionality will be localized to external sensor

data. Supposed attacks on the printer will be limited to G-code anomalies extrapolated

from sensor data. That being said, it is essential to recognize that anywhere along the AM

Process chain that compromises our target areas of interest - sensor and G-code - should be

considered a potential cybersecurity threat during application.
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Chapter 3

Methodology

In this section, we explain the pipeline of our methodology in Figure 3.1 at each of the

following stages: data collection, data pre-processing, GDN model generation (training),

adversary model and attack label creation, and attack localization.

Figure 3.1: Process Chain for Experiment

3.1 Data Pre-processing

The dataset used to train our model includes both sensor and printer data. In order to assure

that the data collected internally and externally is being properly processed, the timestamps
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associated with each are synchronized. Not only do these modified files need to be compared

line-by-line to the original, but the pre-processing stage needs to take into account G-code

execution. Once these files execute along the same timeline, analysis of injected G-code

instructions is used to determine the attack label for testing the model.

Figure 3.2: Preprocessing Pipeline

3.1.1 G-code Synchronization

The files to be processed involve two types: original and modified data. The untouched data

is collected as a control group for training the GDN. Modified data contains injections of

randomized G-code instructions, which range in frequency and magnitude. Within each of

these categories are three types of data: (1) G-code instructions, (2) position and velocity of

the printer head, and (3) external sensor data. Synchronizing this information into a singular

test file requires extensive data processing. Our project will be handling the information

collected from previous experiments and, thus, will need to address the following issues

before applying our model:
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1. Timezone Difference: The internal clock of the printer is executing at a rate ap-

proximately 7 hours ahead of the PCTime.

2. PC Time vs Printer Time: Timestamps have been assigned for each G-code in-

struction for both PCTime and PrinterTime. However, PCTime has been deemed

unreliable with repeat values and missing information.

3. Data Collection Start Time: The time when the external sensor data is collected

does not necessarily match with the time that the G-code instructions are executed.

Starting with the first point, all G-code instruction timestamps are shifted by 7 hours to

match the PCTime. Next, the average difference between PrinterTime and PCTime is

analyzed with a 100 datapoint sampling rate. PCTime for the G-code instructions is updated

to this value. A G-code instruction is selected to evaluate the start time, and its associated

timestamp will determine when the print file begins. Understanding that G-code lines need

to be synonymous with the modified version as well as other print designs is imperative for

the following steps. The process of synchronization is shown in Figure 3.3.

3.2 Adversary Model

The novelty of this paper can be attributed to analyzing and testing different methodologies

of anomaly classification. Our experiment will utilize multiple side-channel emissions and

training models to create the most sophisticated way to accurately flag a potential discrep-

ancy. For this experiment, there are three ways of classifying the data:

• Compromised G-code Instructions: an unknown attacker injects/changes cor-

rupted G-code into the printer which is then executed by the compiler. The results

may range from disfigurement of the product to permanent damage of the equipment.

14



Figure 3.3: Pipeline of data synchronization between G-code instructions, printer-head po-
sition/velocity, and external sensor data

• Faulty Sensor Data: external sensor data which serves as a check for detecting

G-code anomalies may experience unexpected readings that are outside a specific mag-

nitude of standard deviation. Sensor malfunctions and environmental hazards are

considered.

• Normal/Non-Adversary: non-tampered and acceptable data whose values fall within

a set threshold defined by the GDN.

To observe the model’s reaction when exposing the original data to the above modifications,

three experiments of G-code only anomalies, sensor only anomalies, and a combination of

both were conducted.

15



3.2.1 G-code Attack Label

Labeling where the data has been determined as anomalous is imperative for an accurate

model during training. Generating these test files involve supervised differentiation between

original and modified G-code files. These files are then compared to a set threshold from

the pre-processing stage, where any values above said threshold are deemed as anomalous.

After the synchronization of the internal and external data as seen in Figure 3.3, if the

combined data timestamp falls within an anomalous time range - determined by the G-code

- an attack label of ”1” is assigned. Otherwise, the data is seen as non-tampered with a ”0”

label. Algorithm 1 contains pseudo code that illustrates the process of assigning the attack

label to our test file.

Algorithm 1: Pseudocode for Generating Attack Label

Input : Modified Timing+G-code file, external sensor data, threshold
Output: Sensor and position data w/ attack label

1 Isolate G-code information from original and modified Timing files;
2 Create diff.txt that isolates differences;
3 Parse through each line in diff file and compare values to the threshold;
4 if |original value−modified value| <= threshold then
5 Line considered NOT anomalous
6 else
7 Anomalous Data
8 end
9 Record timestamps of anomalous data under anomalous timeranges;

10 Synchronize anomalous timeranges with sensor data;
11 Anomalous lines have their timestamps recorded, where an anomalous timeranges

is determined for potential compromised data:;
12 if Timestamp in modified sensor data in anomalous timeranges then
13 AttackLabel=1
14 else
15 AttackLabel=0
16 end

16



3.2.2 Sensor Anomaly Injection

Using a similar logic to the G-code, sensor anomalies will also be determined via a predeter-

mined threshold value. By evaluating the average value of each sensor throughout the print,

the standard deviation can be determined:

σ =

√√√√ 1

N − 1

N∑
i=1

(xi − x)2 (3.1)

By conducting tests on different ranges of standard deviations, we can determine the thresh-

old at which modified values are considered anomalous during the testing phase. It enables

us to simulate environmental disruptions, sensor malfunctions, and printer readings defects

by injecting unknown and abnormal sensor data. It is important to note that these changes

are implemented, assuming the original sensor data is intact and trustworthy. Next, modifi-

cation starting points are randomly selected, separated by a distance of at least 500. After

these starting points, a specific sensor’s data is changed within a randomized size range.

These steps provide a test dataset similar to the expected abnormal behaviors mentioned

previously, such as individual sensor malfunctions and external force interference.

3.3 Graph Deviation Network

GDNmodel generation begins by creating a graph with the sensors as nodes. These nodes are

inter-connected by directed edges whose dependency patterns are asymmetrical. It selects

the top k nodes with the highest cosine similarity between the source node embedding,

xi, and any other node embedding, xj, to produce eji for each candidate relation sensor i is

dependent on (as seen in Equation 3.2). The adjacency matrix, Aji, captures the information

17



of related sensors based on the computed cosine similarities. It is used to construct the layers

of the model:

eji =
xT
i xj

|xi| · |xj|
(3.2)

Aji =


1, ifj ∈ Top−K({eki : k ∈ Si})

0, otherwise

(3.3)

where Si is the set of embeddings that does not include xi.

In order to capture the relationships between connected nodes, the GDN uses a Graph Atten-

tion Network (GAT) [50]. The GAT combines the node embedding’s information with that

of its neighbors using a sliding window of predetermined size for both training and testing.

Attention coefficients are generated to define the relative importance of information to

one another. The feature extraction process results in aggregated representation, z
(t)
i :

z
(t)
i = ReLU

(
αi,iWx

(t)
i +

∑
j∈N(i)

αi,jWx
(t)
j

)
(3.4)

The three equations below are used to calculate the attention coefficients, α:

g
(t)
i = vi ⊕Wx

(t)
i (3.5)
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π (i, j) = LeakyReLU

(
aT

(
g
(i)
i ⊕ g

(j)
i

))
(3.6)

αi,i =
exp (π (i, j))∑

k∈N(i)∪{i} exp (π (i, k))
(3.7)

, where W is a trainable weight matrix that performs a linear transformation on a node’s

feature vector, x
(t)
i . g

(t)
i concatenates the sensor embedding with the linearly transformed

result. LeakyReLU is used to introduce non-linearity, where the attention coefficients are

then normalized with a softmax function 3.7. Predictions are made by taking each aggre-

gated embedding and element-wise multiplying it with its time-series embedding, vi. This is

done for each node to form the input of a fully-connected layer, whose result is a vector of

predictions, ŝ(t), for each sensor value at time step, t :

ŝ(t) = fθ
([
vi ◦ z(t)

i , . . . ,vN ◦ z(t)
N

])
(3.8)

The loss function for minimization applies the Mean Squared Error, which uses the predicted

output, ŝ(t), and the ground truth data, s(t).

When classifying timestamps as anomalous, we continue with the GDN author’s method by

calculating error scores at time t for each sensor in the dataset [18]:
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Erri(t) = |s(t)i − ŝ(t)i| (3.9)

The error scores are then normalized in order to smooth out any extreme deviations due to

the diversity of sensor characteristics:

ai(t) =
Erri(t− µ̃i)

σ̃i

(3.10)

where µ̃i and σ̃i are defined as the median and inter-quartile range of each sensor’s array of

errors across the time window. The anomaly score at time t is the maximum ai(t) across all

nodes. The reasoning behind finding the maximum value is that in real-world scenarios, it

is reasonable to assume that the cause of anomalies localized within the sensor data would

only affect a fraction of the dataset as a whole. The highest F1-score is then selected as

the threshold. Any error score greater than the threshold is labeled as anomalous, while

any score that is within the threshold is considered normal. More information about the

technical details of GDN can be found in [18].
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Chapter 4

Evaluation

For this section, we first evaluate any thresholds and pre-processing steps necessary for

optimal model performance. Next, we describe the layout of our experiment, from tools and

equipment to device setup. The discussion portion assesses the precision and F1 score of the

GDN model during the testing phase.

4.1 Experimental Setup

The equipment used for verifying our methods will involve the Ultimaker 3 3D-printer, a

Data Acquisition (DAQ) device, two Arduino micro-controller boards coupled with MCP4725

boards for digital-to-analog conversion (DAC), and a personal computer for managing com-

munication and data acquisition. The DAQ served as a hub to connect the GPIO of the

external sensors with a synchronized timestamp.

Similar to [55], our side-channel analysis will consist of three 3-axis magnetometers, three

3-axis accelerometers, four high-definition microphones, a DC current clamp, and internal

sensor data from the 3D printer. These are located on the sides of the printer, as well as on
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Figure 4.1: Experimental Setup of Printer for Data Collection

the stepper motors that create the most vibration. Internal sensor data includes the position

of the printer head through X, Y, and Z coordinates.

Regarding data collection, a connection is established between the printer and the PC to

transmit the printer’s internal data. At the same time, the DAQ compiles and sends external

sensor data at a fixed sampling rate of 0.05 milliseconds. The combined dataset consists of

24GB of data, divided into 48 files of 500k rows each. Each timestamp within these 500k

data points encompasses all analog sensor and printer head positioning/velocity values. The

synchronization of these timestamps is explained in Section 3.1.

The positioning data was filtered to feature X-, Y-, and Z-axis movements exclusively to

capture the actions of the printer extruder in a 3-Dimensional space (Ax, Ay, Az). Due to

the limited Z-axis movement for the print through testing, since the models chosen were

relatively flattened, only the X-velocity and Y-velocity were recorded as part of the trained

dataset (Vx, Vy).
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4.2 Threshold Analysis

The logic in Algorithm 1 was executed for multiple G-code modified datasets of 200k data

points with a resampling rate of 5 data points. Due to the 0.05ms sampling rate for sensor

data in comparison to the inconsistent rate of G-code instructions, some of the extraneous

data was excluded in order to properly assess the general ratio of compromised data points.

A default threshold of +/-5.0 was established, maintaining an average of 9.71% of anomalous

data (See Table 4.1).

Table 4.1: Attack Label Threshold Analysis

Anomaly Percentage from 200k Resampled Dataset
Threshold Anomalies Percentage

1 25212 12.13%
3 21811 10.49%
5 20190 9.71%
7 19629 9.44%

Various methodologies were employed to create a balanced adversary model necessary for

testing. As seen in Figure 4.2, achieving around a 10% anomaly ratio involved carefully

refining a supervised detection algorithm, as well as taking into account a threshold based

on observed irregular behavior. In other words, by monitoring the behavior of sensor and

G-code values during printing, a reasonable threshold could be extrapolated, where it could

be tested amongst various practices for attack labeling. Among these include developing

an in-depth line-by-line comparison (Method 1), flagging the surrounding data as also being

untrustworthy (Method 2), and labeling the rest of the data as compromised once an anomaly

threshold is broken until an acceptable value is reached (Method 3). Our study concluded

that due to the nature of the G-code sampling rate and the accuracy of the threshold during

testing, Method 1 was used with a threshold of +/-5.0.
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Figure 4.2: Methodology Performance of Adversary Model Threshold Testing

Similarly, in order to emulate anomalies generated by environmental interference or malfunc-

tioning sensors, values from the original sensor data were modified by a calculated threshold

of 12 magnitudes of standard deviation above and 15 magnitudes of standard deviation below

the predicted value. This extensive range allows for unintentional noise and false positives

not to affect the overall accuracy of the results. In the case of both G-code and sensor

anomaly interference, data lines that were previously labeled as compromised by an attack

label from the G-code injections were not altered further by the sensor adversary program.

By adopting this approach, we prioritize the detection of malware and attacks targeting

the behavior of printer instructions, placing them above any issues related to faulty data

collection.
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4.3 Attack Detection and Localization Performance

We evaluate the model based on the f1-score, which is considered a mean of precision and

recall scores:

Prec =
TP

TP + FP
, Recall =

TP

TP + FN
(4.1)

F1− score =
2× Prec×Recall

Prec+Recall
(4.2)

, where TP is the number of true positives, FP is the number of false positives, and FN is

the number of false negatives. Each row in Table 4.2 shows the model results for the datasets

with G-code anomalies only, sensor anomalies only, and G-code/sensor injections combined.

Each dataset consists of G-code from different time frames of printing the same object.

Figure 4.3: Pattern Recognition between Magnetic and Vibration sensors (left) and Thresh-
old Analysis (right)
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The model consistently performed better on datasets with G-code and sensor anomalies

combined, most likely because the model does not consider uni-variate data individually but

rather does multivariate anomaly detection. Therefore, as the number of abnormal values

increases within the sensor data and G-code features at a specific timestamp, the attack

becomes more conspicuous, allowing the model to detect it more effectively.

Table 4.2: Results of Anomaly Types

Dataset F1-Scores
Anomaly Type Dataset 1 Dataset 2 Dataset 3
G-code Only 0.71509 0.89525 0.86738
Sensor Only 0.85531 0.65916 0.66060

G-code and Sensor 0.71774 0.89776 0.86862

Table 4.3 shows the results for G-code anomaly localization, while Table 4.4 shows sensor

anomaly localization results for each tested dataset. The method of selecting the threshold

for G-code anomaly localization closely resembles our approach to general attack detection,

with the exception that we take the sum of the total error scores for the G-code data at each

timestamp. This array of errors is then ranked from highest to lowest f1-score, promptly

identifying which error value to set as our threshold. By applying this threshold, we can

determine the presence of a G-code anomaly at a specific timestamp.

Table 4.3: Results of G-code Anomaly Localization

Dataset 1 Dataset 2 Dataset 3
F1 Score 0.71509 0.86737 0.89525
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Table 4.4: Results of Sensor Anomaly Localization

Dataset 1:
Vibration y2

Dataset 2:
Magnetometer y0

Dataset 3:
Vibration y2

F1 Score 0.99971 0.99935 0.99961

For sensor localization, we individually consider each sensor’s array of error scores for each

timestamp. By training a Random Forest classifier using a subset of these errors, predic-

tions for each individual sensor are generated. The exceptional performance of the sensor

localization can be attributed to the utilization of the supervised Random Forest algorithm.

It is important to note that while this approach achieves higher accuracy when trained on

labeled data, it should be acknowledged that our classifier design serves as a proof of concept

rather than a direct emulation of real-world results.
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Chapter 5

Reflection

5.1 Limitations

Our GDN model applied deep-learning strategies to accurately forecast the behavior of time-

series sensor data and localize any detected anomalies. Further correlation analysis and

supervised top k selection may improve accuracy and performance.

Another limitation to recognize would be the quantity and quality of data available. The

datasets utilized to conduct this experiment were taken from previous data collections of a

similar work environment. Testing other CAD models with new firmware provided by the

company may improve performance and information handling.

While our methodology could be applied across different systems, the scope of our project

is restricted to the Ultimaker 3 model. Locations of side-channel data extraction, such as

stepper motors and power flow, will vary from system to system. The position of these

sensors may result in deviating behaviors during correlation analysis. On the other hand,

because most commercial and industrial 3D printers apply G-code instructions, collecting
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sensor data with the proper understanding of side-channel emissions will result in a similar

methodology.

5.2 Feasibility

Acknowledging the significance of feasibility in cybersecurity is essential, as it directly im-

pacts the effectiveness and sustainability of security measures enforced by industry. Our

system primarily consists of affordable sensors and micro-controllers, making it readily us-

able at the workplace and at home. As mentioned in 5.1, while specific 3D printer models

may differ, the underlying techniques remain consistent. Therefore, the sensor types and

overall experimental procedure can be replicated to accommodate any additive manufactur-

ing system as long as the quantification and analysis of analog side-channel emissions are

feasible.

5.3 Future Work

Subsequent research can be done on future iterations of multi-modal neural network models.

One area of improvement involves optimizing the customized edge generation process between

data nodes, particularly when handling the top k correlations. Additionally, expanding the

range and diversity of side-channel modalities, such as incorporating electromagnetic and

optical sensors, has the potential to provide more valuable data for supervised localization

training. These modifications would impact the weights assigned to each node in the graph

and contribute to overall performance improvements. The results of this paper can be

compared to the data obtained from testing attack localization on different classifiers with

varying levels of supervision.
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Chapter 6

Conclusion

The increasing prevalence of 3D printing in modern society raises concerns about the ac-

companying security risks. This paper introduces a methodology to amass a multi-modal

dataset suitable for training a Graph Deviation Network (GDN) model to identify any di-

vergence from expected values. Alongside essential pre-processing synchronization, anomaly

localization using a Random Forest classifier achieved an average accuracy of 82.59% in

detecting G-code abnormalities and an average accuracy exceeding 95% for external sensor

data through supervised learning. While there is still potential for further improvement,

this approach demonstrates promising results that extend beyond Additive Manufacturing,

suggesting its applicability in other domains.
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[50] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph
attention networks. arXiv preprint arXiv:1710.10903, 2017.

[51] M. Wu and Y. B. Moon. Intrusion detection system for cyber-manufacturing system.
Journal of Manufacturing Science and Engineering, 141(3), 2019.

[52] Y. Wu, D. Lian, Y. Xu, L. Wu, and E. Chen. Graph convolutional networks with
markov random field reasoning for social spammer detection. In Proceedings of the
AAAI conference on artificial intelligence, volume 34, pages 1054–1061, 2020.

[53] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. A comprehensive survey
on graph neural networks. IEEE transactions on neural networks and learning systems,
32(1):4–24, 2020.

[54] M. Yampolskiy, W. E. King, J. Gatlin, S. Belikovetsky, A. Brown, A. Skjellum, and
Y. Elovici. Security of additive manufacturing: Attack taxonomy and survey. Additive
Manufacturing, 21:431–457, 2018.

[55] S.-Y. Yu, A. V. Malawade, S. R. Chhetri, and M. A. Al Faruque. Sabotage attack
detection for additive manufacturing systems. IEEE Access, 8:27218–27231, 2020.

[56] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun. Graph
neural networks: A review of methods and applications. AI open, 1:57–81, 2020.

35


	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	ABSTRACT OF THE Thesis
	Introduction
	Research Challenges
	Contribution
	Motivational Example

	Background and Related Works
	Additive Manufacturing Vulnerabilities
	Side-Channel Analysis
	Graph Neural Networks
	Attack Localization

	Methodology
	Data Pre-processing
	G-code Synchronization

	Adversary Model
	G-code Attack Label
	Sensor Anomaly Injection

	Graph Deviation Network

	Evaluation
	Experimental Setup
	Threshold Analysis
	Attack Detection and Localization Performance

	Reflection
	Limitations
	Feasibility
	Future Work

	Conclusion
	Bibliography



