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Abstract

Incorporating Network Considerations into System-level Pavement Management Systems

by

Aditya Medury

Doctor of Philosophy in Civil and Environmental Engineering

University of California, Berkeley

Professor Samer Madanat, Chair

The objective of transportation infrastructure management is to provide optimal mainte-
nance, rehabilitation and replacement (MR&R) policies for a system of facilities over a plan-
ning horizon. While most approaches in the literature have studied it as a finite resource
allocation problem, the presence of an underlying network configuration has been largely ig-
nored. The recognition of the network configuration introduces several challenges, as well as
opportunities, for system-level MR&R decision-making, which cannot be adequately handled
by the existing decision-making frameworks.

This dissertation focuses on furthering the development of Markov decision process
(MDP)-based system-level MR&R decision-making frameworks. In particular, two prob-
lems of interest are identified. The first problem concerns itself with identifying an optimal
system-level optimization approach for solving budget allocation problems. The second prob-
lem of interest involves moving beyond traditional budget allocation problems to incorporate
network considerations into system-level decision-making.

In the first part of the dissertation, a revised MDP-based optimization framework is pro-
posed for solving the budget allocation problem. The framework, referred to as simultaneous
network optimization (SNO), combines the salient features of the different MDP-based opti-
mization approaches in infrastructure management literature, and provides optimal facility-
specific MR&R policies for budget allocation problems. The proposed methodology is then
compared with the other state-of-the-art MDP methodologies using a parametric study in-
volving varying system sizes. The results of the study indicate the SNO outperforms the
other MDP-based optimization frameworks.

In the second part of the dissertation, it is argued that while SNO is optimal for solving
budget allocation problems, it can produce sub-optimal policies upon introducing network
constraints. Consequently, the use of an approximated dynamic programming (ADP) frame-
work is motivated to solve system-level MR&R decision-making problems involving network
constraints. ADP facilitates the modeling of complex problem formulations by overcoming
the curse of dimensionality associated with traditional dynamic programming frameworks.
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To assess the suitability of ADP for system-level infrastructure management, two scenar-
ios involving network considerations are investigated. In the first scenario, an approximate
dynamic programming framework is proposed, wherein capacity losses due to construction
activities are subjected to an agency-defined network capacity threshold. A parametric study
is conducted on a stylized network configuration to infer the impact of network-based con-
straints on the decision-making process. The results indicate that ADP performs better than
SNO when the network capacity constraints are binding on the decision-making process.

In the second scenario, the impact of introducing economies of scale (EOS) within budget
allocation problems is investigated. Herein, incorporating network considerations leads to
economic interdependence, wherein potential cost savings can be achieved by combining
MR&R activities across adjacent road sections. Using parametric case studies, it is observed
that the performances of ADP and SNO are comparable, with ADP improving upon the
results of SNO under low budget and high EOS settings.

In conclusion, the findings from this dissertation indicate that ADP is a robust modeling
framework for MDP-based infrastructure management problems. While previous research
illustrates the use of ADP in solving system-level budget allocation problems, it is shown here
that ADP is more relevant for modeling problems involving complex inter-facility dynamics.
In particular, ADP is most beneficial in scenarios wherein finding optimal policies using
analytical frameworks is not feasible.
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Chapter 1

Introduction

1.1 Introduction

Transportation infrastructure management is a decision-support framework used by agencies
to manage and monitor their aging assets (roads, bridges, pipelines, etc.) under a resource
constrained setting. It facilitates the identification of cost effective maintenance, rehabili-
tation and replacement (MR&R) policies by estimating the resulting improvements in the
condition of the assets in the future years. In order to facilitate this decision-making, a typ-
ical infrastructure management framework involves three important components, as shown
in figure 1.1.

Figure 1.1: A typical infrastructure management framework

The first component of an infrastructure management system involves maintaining a
repository of data pertaining to the assets, containing information such as the current and
past condition states of the facilities, construction and maintenance history, weather in-
dicators, traffic loading, etc. Using this information, facility performance models can be
developed which provide the agency with some predictive power over how the facilities dete-
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riorate over time. Finally, using the facility performance models and the information about
the current state of the system, an optimization framework can be employed to select MR&R
policies.

This dissertation focuses on the development of system-level MR&R optimization method-
ologies for infrastructure management systems, with a special emphasis on the management
of road networks.

1.2 Motivation

The goal of system-level infrastructure management decision-making is to identify optimal
MR&R policies for a system of facilities. In the context of pavement management systems
(PMS), the objective involves minimizing the agency expenditure as well as the costs incurred
by road users (in the form of vehicle wear-and-tear, fuel usage, etc.) over a planning horizon.
While most approaches in the literature have studied it as a problem of optimal allocation of
limited financial resources, the interdependence between facilities, as introduced by a unifying
network configuration, is often not accounted for. For instance, the implementation of MR&R
activities on road networks can result in significant delays to travelers due to the loss in
network capacity, detours, etc. According to one estimate, more than 60 million vehicles
per hour per day of capacity were lost due to work zone activity on the National Highway
System over a two week period in the United States in 2001 (Wunderlich and Hardesty 2003).
Hence, given that the impact of scheduling work zones, especially in saturated traffic flow
conditions, can be severe, it is important to systematically address and incorporate these
user concerns within the decision-making process.

The recognition of an over-arching network configuration introduces several challenges,
as well as opportunities, for system-level MR&R decision-making. Dekker et al. (1997) sug-
gests that interactions between individual components of an infrastructure system can be
classified into three different types: economic dependence (benefits/costs associated with
joint maintenance), structural dependence (set of facilities collectively determining system
performance such as connectivity or capacity) and stochastic dependence (presence of cor-
related deterioration factors like environment, loading). In the context of maintaining road
networks, structural and economic interdependence are relevant issues which need to be
incorporated within the MR&R decision-making process.

To further illustrate the concept of network-induced interdependence, consider a system
comprising of four road segments. Without explicitly identifying the individual pavements
within the network, it is impossible to gauge the impact of the proposed maintenance ac-
tivities on the network performance. However, it can be inferred that if all the facilities in
the system are arranged in series, as shown in figure 1.2(a), then each facility is critical for
the functioning of the network. As a result, a partial/complete road closure during peak
hours of traffic will adversely affect the traffic. In comparison, if all the road segments are in
parallel (figure 1.2(b)), the network exhibits a very high level of redundancy. Consequently,
potential road closures can be accommodated by rerouting traffic through parallel routes. A
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(a) network in series

(b) network in parallel

(c) network with road segments in a combina-
tion of series and parallel

Figure 1.2: Different types of network configurations

more realistic network would perhaps comprise of links in both series and parallel, as shown
in figure 1.2(c). Hence, in order to better mitigate the impact of construction activities
on road users, the identification of optimal system-level MR&R policies should capture the
relation between the road segments in a systematic manner.

1.3 Dissertation Outline

The outline of the dissertation is as follows; chapter 2 reviews the existing system-level
MR&R decision-making frameworks and other relevant literature which helps formalize the
research problems. In chapter 3, a system-level MR&R optimization methodology is pro-
posed, which addresses some of the outstanding issues pertaining to budget allocation prob-
lems. Chapters 4 and 5 consider the structural and economic interdependence problems in
the context of system-level MR&R decision-making. Finally, chapter 5 summarizes the find-
ings from the dissertation and discusses the possibilities for extending this research further.

3



Chapter 2

Literature Review

The review of the existing literature pertaining to transportation infrastructure manage-
ment is organized as follows. Section 2.1 discusses the different MR&R decision-making
frameworks pertaining to transportation infrastructure management problems, with a spe-
cial emphasis on Markov decision processes. Section 2.2 discusses the recent developments in
the infrastructure management literature which take into account the network configuration
within the decision-making process. Section 2.3 discusses work zone scheduling literature
along with the strategies considered by state agencies to quantify the impact of construction
activities on traffic operations. Finally, section 2.4 summarizes the literature to formalize
the research problems.

2.1 MDP-based Optimization Frameworks

System-level MR&R decision-making paradigms in the transportation infrastructure man-
agement literature can be differentiated on the basis of their underlying assumptions of
continuous/discrete condition state variables, continuous/discrete time horizons and/or de-
terministic/stochastic rates of deterioration. Continuous-time methods are useful for pro-
viding high-level strategic policies, but are not well suited for a detailed, tactical planing of
MR&R activities. For such analysis, discrete-time methods are more extensively used in the
literature. For a more detailed discussion of continuous-time frameworks, readers are en-
couraged to refer to Ouyang and Madanat (2006) and Sathaye and Madanat (2011), among
others.

Discrete-state, discrete-time Markov decision process (MDP)-based frameworks have
been widely used in infrastructure management, especially in the context of incorporating
uncertainty in the underlying facility performance models. One of the first instances of using
MDP frameworks for infrastructure management was the development of the Arizona pave-
ment management system (Golabi et al. 1982). The LP-based approach utilized randomized
policies to effectively accommodate budget constraints within the MR&R decision-making
problem. Randomized policies are probabilistic in nature, wherein the optimal policy for a
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facility in a given condition state is defined as a probability distribution function across two
or more actions. The interpretation of randomized policies in a network setting relies on the
assumption that all the facilities in the system deteriorate homogeneously. Consequently,
such an approach can also be referred to as a single dimensional MDP problem. Other
applications of this framework include the bridge management system, Pontis (Golabi and
Shepard 1997), Smilowitz and Madanat (2000), Kuhn and Madanat (2005) and Madanat
et al. (2006), among others.

Kallenberg (1994) shows that linear programming formulations for solving finite horizon
MDP problems with constraints provide optimal solutions in the form of randomized policies.
In the context of incorporating budget constraints, randomization of optimal policies can
be interpreted as facilitating a complete utilization of the available budget, since a purely
deterministic policy can either under-utilize or exceed the budget (Dimitrov and Morton
2009). However, the translation of the probabilistic policies into facility-specific decisions
necessitates the presence of additional sub-routines, which is often cited as a limitation of
randomized policy-based approaches.

In order to provide facility-specific decisions, other MDP-based optimization frameworks
have focussed on obtaining facility-specific policies by using variants of the value iteration
technique proposed by Richard Bellman (Bellman 1954). Since solving a system-level MDP
problem using traditional dynamic programming techniques leads to computational chal-
lenges (referred to as the curse of dimensionality), researchers decompose the problem into
two-stage (facility-level and system-level) problems. In the India Bridge Management Sys-
tem (Sinha et al. 1988), the Markovian deterioration assumption was relaxed to obtain
deterministic performance models using regression techniques (Sinha et al. 1988). Ohlmann
and Bean (2009) utilized a Lagrangian relaxation approach to relax the budget constraints,
thereby decoupling the system-level MDP problem into facility-specific MDPs. Yeo et al.
(2012) solved for a set of optimal and sub-optimal policies for each facility using a facility-
level problem, and subsequently solved a multi-choice knapsack problem at the system-level
which involves the budget constraint. An advantage of these techniques is that they do not
assume the facilities to be homogeneous, and hence are classified as multidimensional MDP
frameworks. However, since these approaches employ heuristics to simplify the system-level
MDP problem, the optimality of the solution procedure is not guaranteed. In addition, most
of these approaches are catered towards solving the resource allocation problem, and hence
cannot always be extended to a general set of constraints.

In recent times, reinforcement learning/approximate dynamic programming (ADP) al-
gorithms have also been applied to infrastructure management problems. Durango-Cohen
(2004) applied some learning techniques to facility-level problems under imperfect deterio-
ration information scenarios. Gao and Zhang (2009) and Kuhn (2010) utilized ADP frame-
works to provide system-level MR&R policies in the context of budget allocation problems.
Through the use of simulation techniques and value function approximations, ADP seeks
to solve multidimensional MDP problems with complex constraints. However, one of the
limitations of the approach is that theoretical optimality results are hard to guarantee. In
addition, while Gao and Zhang (2009) and Kuhn (2010) demonstrate the applicability of
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ADP-based approaches to infrastructure management problems, their performance vis-a-vis
other MDP-based approaches was not evaluated.

2.2 Incorporating network effects into system-level

MR&R decision-making frameworks

Network effects have primarily been incorporated into MR&R decision-making involving
deterministic performance models. Ouyang (2007) used a deterministic infinite horizon dy-
namic program with multidimensional continuous state and control variables to account
for travelers’ route choices and the agency’s resource allocation decisions simultaneously.
Durango-Cohen and Sarutipand (2009) addressed the demand responsiveness associated with
coordinating maintenance activities on a road network using a quadratic programming for-
mulation. Ng et al. (2009) represented the traffic dynamics using a cell transmission model
within a two-stage mixed integer programming formulation. Chu and Chen (2012) also pro-
posed a bi-level programming formulation which provides threshold-based minimum cost
MR&R policies using a deterministic user equilibrium problem to quantify the change in
network traffic. In the context of MDP-based system-level MR&R decision-making, Furuya
and Madanat (2012) extended the Yeo et al. (2012) framework to incorporate structural and
economic interdependence in railway asset management.

In the management science literature, the economic interdependence problem has been
studied as a parallel machine replacement problem, wherein the objective is to find a mini-
mum cost policy for a set of economically interdependent machines across a planning horizon
(Jones et al. 1991; Karabakal et al. 1994; Childress and Durango-Cohen 2005). Karabakal
et al. (1994) proposed a mixed integer programming formulation involving a Lagrangian re-
laxation method to replace a set of machines within a budget constraint. Jones et al. (1991)
and Childress and Durango-Cohen (2005) provide insights into the structure of optimal re-
placement strategies under non-resource constrained environments. For instance, the worse
cluster replacement rule proposed by Childress and Durango-Cohen (2005) states that for
problems with arbitrary cost functions, a machine is replaced only if all machines in worse
states have been replaced.

2.3 Work Zone Scheduling Problems

On the operations side of infrastructure management, studies on work zone scheduling of
maintenance activities have sought to incorporate the interaction between individual facil-
ities at the system-level. Fwa et al. (1998) formulated an integer programming problem
to provide an optimal schedule of activities which minimizes traffic delays caused by the
resulting lane closures. Chang et al. (2001) employed a Tabu search-based methodology for
an optimal work zone schedule. Hajdin and Lindenmann (2007) used the notion of corri-
dors as a bundle of maintenance activities on various assets (roads, bridges, tunnels, etc.)

6



in order to determine optimal corridor lengths on a highway network that minimize user
and agency costs. However, while these formulations highlight the interdependence between
individual facilities at the system-level, the work zone scheduling problems do not concern
themselves with the selection of MR&R activities, which also involves trade-offs associated
with deferring maintenance.

Finally, at the policy level, state agencies utilize different construction options, which
trade off duration, safety and loss of road capacity, based on the extent of closure undertaken.
For example, urban freeway repair projects in California traditionally used seven or ten-
hour nighttime closures because daytime closures were seen to cause unacceptable delays to
weekday peak travel. However, nighttime closures are also associated with adverse impacts,
such as poor safety for road users and construction crews, and longer closure times (Lee and
Ibbs 2005). In recognition of these drawbacks, decision-support tools such as Construction
Analysis for Pavement Rehabilitation Strategies (CA4PRS) have been developed in order
to assess multiple highway rehabilitation strategies such as continuous (round-the-clock)
operations during 55 hour weekend closures, or 72 hour weekday along with night-time
closures, with the help of traffic simulation models.

2.4 Summary

Based on the overview of existing literature, there exist two major gaps in the literature, both
in the area of MDP-based optimization frameworks, wherein this dissertation can contribute
to:

1. The literature indicates that multiple MDP frameworks have been proposed to solve
system-level MR&R decision-making problems involving resource constraints. Given
their common underlying modeling assumptions, it is important to compare these
approaches and benchmark them with each other so as to ascertain the relative merits
and demerits of the frameworks in the context of budget allocation problems.

2. The literature also reveals that there exist two aspects to the management of infras-
tructure facilities: the financial allocation of resources for MR&R activities, which
can be referred to as a planning problem, and the operational-level implementation,
which pertains to the scheduling of the MR&R activities. Given the widespread usage
of MDP-based optimization frameworks in transportation infrastructure management,
it is important to extend the state-of-the-art MDP-based methodologies to integrate
these two aspects of the decision-making process.

In the next chapter, a new optimization framework is proposed, which helps bridge the
gap between single dimensional and multidimensional MDPdecision-making frameworks for
budget allocation problems.
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Chapter 3

A Simultaneous Network
Optimization Approach for Pavement
Management Systems

Based on the literature review in chapter 2, it is observed that there exist multiple MDP-
based frameworks which are aimed at providing MR&R policies in a resource constrained
setting. These frameworks have been broadly classified into single dimensional and mul-
tidimensional MDP problems. In the case of single dimensional MDP formulations, the
identification issues associated with randomized policies have thus far acted as a barrier
for comparing these methods with the multidimensional MDP frameworks which provide
facility-specific MR&R policies. In order to alleviate this issue, a simultaneous network op-
timization framework (SNO) is proposed in this chapter, which incorporates the favourable
modeling techniques of both methodologies, while providing optimal facility-specific MR&R
policies for budget allocation problems.

Prior to discussing the problem formulation of the SNO framework, it would be instructive
to compare and contrast the formulations of the single dimensional and multidimensional
MDP approaches. The frameworks presented below are believed to be the state-of-the-
art approaches in their respective categories, and provide the necessary insights to develop
the SNO framework. The discussion is restricted finite planning horizon problems, since the
infinite planning horizon problem provides steady state policies, which are not always readily
implementable.

3.1 Single Dimensional MDP-based Approach

For the implementation of the Arizona pavement management system, Golabi et al. (1982)
proposed a linear programming formulation involving randomized policies, which has seen
been widely used in the area of infrastructure management. In order to solve the decision-
making problem in a given year t of a finite planning horizon of T years, the optimization
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problem can be formulated as follows:

min
w

N

(∑
s∈S

∑
a∈A

(
T∑
τ=t

ατ−t (c(s, a) + u(s))wsat + αT+1−t Ṽ (s)wsa(T+1 )

))
(3.1)

subject to ∑
a∈A

wsat = f ts ∀s ∈ S (3.2)∑
s∈S

∑
a∈A

wsaτ = 1 ∀τ = t + 1 , . . . , T, (3.3)

N

(∑
s∈S

∑
a∈A

c(s, a)wsaτ

)
≤ Bτ ∀τ = t, . . . , T, (3.4)∑

r∈S

∑
a∈A

pa (r, s)wraτ =
∑
a∈A

wsa(τ+1 ) ∀s ∈ S,∀τ = t, . . . , T, (3.5)

wsaτ ∈ [0, 1] ∀s ∈ S,∀a ∈ A,∀τ = t, . . . ,T + 1 ,

where,
wsaτ : fraction of facilities in state s to which action a is applied in year τ

(randomized policies),
f ts: fraction of facilities in state s in year t (the first year of optimization),

c(s, a): cost incurred by the agency to implement action a, when a facility is in state s,
u(s): cost incurred by users due to vehicle wear-and-tear, when a facility is in state s,
Bτ : agency’s annual budget in year τ ,

pa(r, s): probability of a facility transitioning from state r to s, when action a is selected,
α: discount amount factor,

Ṽ (s): salvage value associated with state s at the end of the planning horizon,
N : number of facilities in the network,
A: action space associated with a facility (including do-nothing),
S: state space associated with a facility.

Herein, equation 3.1 refers to the objective, which is to minimize the expected system-
level user-plus-agency costs, incurred from year t to the end of the planning horizon; equation
3.2 represents the state of the system at the start of the optimization; equation 3.3 ensures
that the randomized policies sum up to one for each year; equation 3.4 forces the expected
agency expenditure to be within the annual budget constraint; and equation 3.5 represents
the Chapman-Kolmogorov equations, which relate the policies of a given year with the
policies of the subsequent year.

In order to implement the recommendations from the top-down approach, the randomized
policies need to be associated with individual pavement sections, either using engineering
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judgment, or with the help of additional sub-programs within the PMS. If the size of the
network is sufficiently large, the policies implemented in the future time periods should also
be consistent with the predictions of the randomized policies, due to the law of large numbers.

The LP formulation provides an optimal as well as a computationally attractive frame-
work for solving the constrained MDP problem. The use of randomized policies allows for
budget constraints to be imposed on all future actions, while maintaining the Markovian
evolution of the state of the system. As a result, it provides agencies with a defensible
procedure for preparing multi-year budget plans for MR&R decision-making. However, a
limitation of the top-down approach is that the use of randomized policies precludes the
identification of facility-specific actions from the optimization results.

3.2 Multidimensional MDP-based Approaches

3.2.1 Two Stage Bottom-Up Approach

In order to determine facility-specific policies for a pavement network, Yeo et al. (2012) for-
mulated a two stage bottom-up (TSBU) approach, which consists of a facility-level and a
system-level problem. In the first stage, the facility-level problem is solved to obtain optimal
and sub-optimal policies for each facility, which act as inputs for the second stage. The
system-level problem is then represented as a multi-choice knapsack problem, which incor-
porates the budget constraint for the current year. The decoupled nature of the formulation
is motivated by the curse of dimensionality associated with solving a system-level dynamic
programming problem involving a multidimensional state space.

3.2.1.1 Facility-level Problem

The objective of the facility-level optimization problem is to identify the optimal and sub-
optimal policies for each facility, along with their associated to-go costs for each time period
of a finite planning horizon. Herein, the optimal policy is defined by the action which
minimizes the expected cost-to-go from the current year to the end of the planning horizon,
for a given state s and year t. The motivation behind identifying the alternate policies is to
provide greater flexibility with budget allocation at the system-level, since the sum of all the
optimal policies might exceed the available budget. The optimization problem, represented
as a discrete-state discrete-time MDP, can be solved using a backward-recursive dynamic
programming approach with the following formulation:
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akτ (s) = arg min
a∈A−{ajτ ,j≤k−1}

[
c(s, a) + u(s) + α

∑
r∈S

(
pa (s, r)V1(τ+1 ) (r)

)]
, ∀k = 1, . . . , |A|,

∀s ∈ S,∀τ = t, . . . , T, (3.6)

Vkτ (s) = min
a∈A−{ajτ ,j≤k−1}

[
c(s, a) + u(s) + α

∑
r∈S

(
pa (s, r)V1(τ+1 ) (r)

)]
, ∀k = 1, . . . , |A|,

∀s ∈ S,∀τ = t, . . . , T, (3.7)

V1(T+1 )(s) = Ṽ (s), ∀s ∈ S, (3.8)

where,
akτ (s): k

th optimal action when a facility is in state s in year τ (k = 1 is optimal),
Vkτ (s): expected cost-to-go associated with the kth optimal action, from year τ to the

end of the planning horizon, when a facility is in state s,

V1(T+1 )(s): salvage value associated with state s at the end of the planning horizon, Ṽ (s).

In the absence of system-level constraints in the facility-level formulation, an assumption
is being made that the future costs correspond to an optimal policy implementation, as
denoted by V1(τ+1) (r) (1=optimal) in equations 3.6 and 3.7. In effect, the formulation
implies that optimality/sub-optimality is only restricted to the current year, and in the
subsequent years, the budget would be sufficient for selecting the optimal actions for each
facility. Finally, equation 3.8 specifies a state-dependent salvage value to the cost to-go
function associated with the end of the planning horizon.

3.2.1.2 System-level Problem

The objective of the system-level problem is to allocate the annual budget for MR&R ac-
tivities, so as to minimize the expected cost-to-go for the entire network. Using the ranked
set of actions from the facility-level problem as an input, the problem is formulated as a
multiple-choice knapsack problem:

min
x

|A|∑
k=1

N∑
i=1

V
(i)
kt (st(i))xa(i)kt

(3.9)

subject to
N∑
i=1

|A|∑
k=1

c(st(i), a)xia ≤ Bt, (3.10)∑
a∈A

xia = 1 ∀i = 1, . . . , N, (3.11)

xia ∈ {0, 1} ∀i = 1, . . . , N, ∀a ∈ A,
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where,

a
(i)
kt , V

(i)
kt : kth optimal action and the corresponding expected cost-to-go for facility i,

obtained from the facility-level problem for the year of decision-making, t,

x
a
(i)
kt

: 1 if the action corresponding to a
(i)
kt is selected for facility i; 0 otherwise,

st(i): condition state associated with facility i in year t.

Equation 3.9 represents the objective function, defined as the expected cost-to-go for the
network, based on the actions selected for each facility; equation 3.10 indicates that the total
amount spent on MR&R activities should be within the annual budget, and equation 3.11
ensures that exactly one action (including do-nothing) is selected for each facility.

The system-level problem requires information about the condition state of each facility
at the beginning of each year through annual inspections. Hence, in order to implement the
two stage bottom-up approach, the system-level optimization needs to be re-solved in each
year of the planning horizon. On the other hand, since the facility-level problem is solved
for the entire planning horizon, the optimal and alternate policies for each facility need not
be calculated again.

The use of an integer programming formulation has the benefit of providing unique
policies for individual facilities. However, the disjointed nature of this approach suffers from
the limitation that the facility-level policies are developed without acknowledging the limited
budget availability in the future years. Consequently, it is difficult to justify the optimistic
assumption in the facility-level formulation of considering optimal policies in the future years.

3.2.2 Modified Two Stage Bottom-up Approach: Incorporating
Lagrangian Relaxation Methods

In order to obtain non-randomized/deterministic policies for a collection of heterogeneous
assets, Ohlmann and Bean (2009) employed a Lagrangian relaxation technique to account
for the presence of budget constraints within the system-level optimization problem. While
the objective of the MR&R decision-making problem is not to obtain deterministic poli-
cies, the Lagrangian relaxation approach can also be suitably adapted to re-order the opti-
mal/alternate policies obtained from the TSBU approach so as to better reflect the resource
constrained setting of the future years.

A deterministic policy implies that every condition state-time period pair has a unique
action associated with it. Let the optimal deterministic policy matrix be defined as A∗ =
{a∗sτ}, which acknowledges the presence of budget constraints in the current as well as future
time periods. In order to identify these optimal policies, Ohlmann and Bean (2009) propose
the following mathematical programming formulation:

(P) min
A∗

N∑
i=1

∑
s∈mathbbS

(
T∑
τ=t

ατ−t (c(s, a∗sτ ) + u(s)) qi,s,a∗sτ ,τ + αT+1−t Ṽ (s)qi,s,a∗
s(T+1)

,T+1

)
,

(3.12)
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subject to ∑
s∈S

qi,s,a∗sτ ,τ = 1 ∀i = 1, . . . , N, ∀τ = t , . . . , T, (3.13)

N∑
i=1

∑
s∈S

c(s, a∗sτ )qi,s,a∗sτ ,τ ≤ Bτ ∀τ = t, . . . , T, (3.14)∑
s′∈S

P (s|s′, a∗s′τ ) qi,s′,a∗s′τ ,τ = qi,s,a∗
s(τ+1)

,τ+1 ∀i = 1, . . . , N, ∀s ∈ S,∀τ = t, . . . , T, (3.15)

a∗sτ ∈ A, qi,s,a∗sτ ,τ ∈ [0, 1] ∀i = 1, . . . , N, ∀s ∈ S,

∀τ = t, . . . ,T + 1 ,

where,
qi,s,a∗sτ ,τ : probability that facility i is in state s in year τ , when action a∗sτ is

implemented,
Bτ : agency’s annual budget in year τ .

The problem formulation outlined above looks similar to the top-down approach described
in section 3.1. However, the identification of a deterministic policy, A∗, unlike a randomized
policy, cannot be made using a linear programming approach, since the actions, a∗sτ , are only
implicitly modeled using qi,s,a∗sτ ,τ .

In order to solve (P), a Lagrangian relaxation approach is motivated, especially since the
individual facilities are linked to each other only through the budget constraints (equation
3.14). Hence, relaxing the budget constraints using a Lagrangian multiplier, θ ≥ 0, yields
the following objective function:

(Lθ) min
A∗

N∑
i=1

∑
s∈S

(
T∑
τ=t

ατ−t (c(s, a∗sτ ) + u(s)) qi,s,a∗sτ ,τ + αT+1−t Ṽ (s)qi,s,a∗
s(T+1)

,T+1

)

+
T∑
τ=t

θτ

(
N∑
i=1

∑
s∈S

c(s, a∗sτ )qi,s,a∗sτ ,τ −Bτ

)
,

= min
A∗

N∑
i=1

∑
s∈S

T∑
τ=t

ατ−t
(
c(s, a∗sτ ) + u(s) +

θτ
ατ−t

c(s, a∗sτ )

)
qi,s,a∗sτ ,τ

+
N∑
i=1

∑
s∈S

αT+1−t Ṽ (s)qi,s,a∗
s(T+1)

,T+1 −
T∑
τ=t

θτBτ , (3.16)

Since (Lθ) relaxes some of the constraints within (P), its optimal solution represents a
lower bound to the optimal solution of the primal problem. In other words, let Z∗ be the
optimal solution of (P), and let Z∗θ be the optimal solution of (Lθ). For θ ≥ 0, Z∗θ ≤ Z∗.

In order to obtain the solution to the primal problem, the dual problem can be solved
in the form of maxθ≥0 Lθ. The solution procedure proposed by Ohlmann and Bean (2009)
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utilizes a subgradient optimization method, wherein the Lagrangian multipliers, θ, are iter-
atively adjusted by obtaining tight upper and lower bounds to (P). Herein, the lower bound
is obtained by solving (Lθ), whereas an upper bound is obtained finding a feasible solution
to the primal problem, (P).

3.2.2.1 Generating lower bounds: solving (Lθ)

The benefit of relaxing the budget constraints in equation 3.16 is that the resulting problem
formulation can be solved as N independent MDPs with a penalized cost function, cθ(s, a, τ):

cθ(s, a, τ) = c(s, a) +
θτ
ατ−t

c(s, a). (3.17)

The penalized cost function is equivalent to the original cost function at θ = 0, which
corresponds to the scenario when the budget constraint is not significant. However, θ 6= 0
indicates that the budget is a limiting factor, and it suitably penalizes the cost function
to reflect the resource constraint. It is also important to note that the expensive MR&R
actions become relatively more expensive in comparison to the cheaper MR&R actions.
Consequently, the ordering of the optimal and the sub-optimal set of policies may also
change from the constrain-free scenario.

Using cθ(s, a, τ), (Lθ) can be solved for a given value of θ by implementing the backward
recursive dynamic programming approach previously described in the context of the facility-
level problem of the TSBU approach:

akτθ(s) = arg min
a∈A−{ajτ ,j≤k−1}

[
cθ(s, a, τ) + u(s) + α

∑
r∈S

(
pa (s, r)V1(τ+1 )θ (r)

)]
, ∀k = 1, . . . , |A|,

∀s ∈ S,∀τ = t, . . . , T,
(3.18)

Vkτθ(s) = min
a∈A−{ajτ ,j≤k−1}

[
cθ(s, a, τ) + u(s) + α

∑
r∈S

(
pa (s, r)V1(τ+1 )θ (r)

)]
, ∀k = 1, . . . , |A|,

∀s ∈ S,∀τ = t, . . . , T,
(3.19)

The sum of the penalized costs-to-go,
∑N

i=1 V1tθ(sit), represents the resulting objective of
(Lθ), wherein st represents the condition state of the system in year t. However, since the
budget constraints have been relaxed, it is possible that the optimal policies, (Lθ), repre-
sented by Aθ = {a1τθ(s); τ = t, . . . , T, s ∈ S}, may not always satisfy the budget constraints.
Consequently, the lower bound provides an infeasible set of deterministic policies.
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3.2.2.2 Generating upper bounds: obtaining a feasible solution

In order to update the Lagrangian multipliers, θ, it is important to identify a feasible upper
bound to the primal problem. In Ohlmann and Bean (2009), the authors suggest a greedy
repair heuristic wherein MR&R actions are greedily chosen from a set of sub-optimal ac-
tions {aθkτ (s); k = 2, 3, 4, . . .}, in a manner that the budget constraint is satisfied in every
year. As part of this work, an alternate heuristic is proposed which utilizes the system-level
optimization problem of the TSBU approach.

The objective of the problem formulation is to select MR&R actions for a given year t,
so as to minimize the expected penalized system cost-to-go subject to the budget constraint.
Herein, an additional state variable is also used: fist is defined as the probability that facility
i is in state s in year t.

min
x

∑
s∈S

|A|∑
k=1

N∑
i=1

fistV
(i)
ktθ (s)x

s,a
(i)
ktθ(s)

i

(3.20)

subject to

N∑
i=1

∑
s∈S

∑
a∈A

fistc(s, a)x(i)
sa ≤ Bt, (3.21)∑

a∈A

x(i)
sa = 1 ∀i = 1, . . . , N, ∀s ∈ S (3.22)

x(i)
sa ∈ {0, 1} ∀i = 1, . . . , N, ∀a ∈ A,∀s ∈ S,

where,

a
(i)
ktθ(s), V

(i)
ktθ(s): k

th optimal action and the corresponding penalized expected cost-to-go
for facility i in state s in year t (obtained from equations 3.18-3.19),

xi
s,a

(i)
ktθ(s)

: 1 if the action corresponding to a
(i)
ktθ(s) is selected; 0 otherwise.

If the current state of the system is identified, fist is a binary variable, and the problem
formulation is equivalent to the system-level problem of the TSBU approach presented in
equations 3.20-3.22. However, the advantage of using fist is that once the optimal actions
are chosen for the given time period, the optimization for the next time period can also be
implemented by identifying fis(t+1) as follows:

fis(t+1) =
∑
a∈A

∑
s′∈S

P (s|s′, a) fis′tx
(i)
s′a ∀i = 1, . . . , N, ∀s ∈ S, (3.23)

Once fis(t+1) is constructed, the solution procedure can repeated until the end of the
planning horizon. Finally, an upper bound, Z∗f , to the primal problem (P) can be constructed
as follows:
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Z∗f =
N∑
i=1

∑
s∈S

∑
a∈A

(
T∑
τ=t

ατ−t (c(s, a) + u(s)) q̃i,s,a,τ + αT+1−t Ṽ (s)q̃i,s,a,T+1

)
(3.24)

where,

q̃i,s,a,τ = fis′τx
(i)
s′a ∀i = 1, . . . , N, ∀s ∈ S,∀a ∈ A (3.25)

Hence, by using fist, the system-level problem presented here, unlike the Monte Carlo
simulation-based approach of the TSBU approach, can be solved for the future years to
obtain a more realistic estimate of the expected future costs.

It is important to note here that while the original problem proposed by Ohlmann and
Bean (2009) was intended to obtain a set of deterministic policies for a resource constrained
MDP setting, TSBU and the Lagrangian relaxation approach do not always provide deter-
ministic policies. TSBU provides a feasible solution to the MR&Rdecision-making problem,
and the objective of the Lagrangian relaxation approach is to modify the structure of the
optimal/sub-optimal policies so as to improve the quality of the feasible solution.

3.2.2.2.1 Adjusting the Lagrangian multiplier
In order to update the Lagrangian parameters, θ, Ohlmann and Bean (2009) employ a sub-
gradient optimization method. The motivation behind the technique is to increase/decrease
the value of θ as a function of the gap between the best upper (U) and lower (L) bounds,
as well as the extent of budget constraint violation. The pseudocode of the algorithm as
presented by Ohlmann and Bean (2009) is as follows:

Initialization:

Let δ = 2, ε = 0.001, c = 0, noImprovCount = 0, and countLimit = 250.
Let bestUpperIter = 1 and bestLowerIter = 1.
Let θ(c) = 0, U =∞, L = −∞.

while U−L
U

> ε

Let θ = θ(c).
Obtain Z∗θ by solving (Lθ).
if Z∗θ > L then

Let L = Z∗θ .
Set noImproveCount = 0 and bestUpperIter = c.

else

Set noImproveCount = noImproveCount+ 1..

end if
Obtain Z∗f by solving the modified two stage bottom-up approach.
if Z∗f < U
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Let U = Z∗f
Set bestLowerIter = c.

end if
Set c = c+ 1.

θτ (c) = max
{

0, θτ (c− 1) + η
(∑N

i=1

∑
s∈S c(s, a

∗
sτ )qi,s,a∗sτ ,τ −Bτ

)}
, where

η =
δ[U−Z∗θ ]∑T

τ=t[(
∑N
i=1

∑
s∈S c(s,a

∗
sτ )qi,s,a∗sτ ,τ−Bτ)]

2

if noImproveCount > countLimit

Set δ = δ/2.
Set noImproveCount = 0.

end if

end while

In conclusion, the Lagrangian relaxation technique helps incorporate the budget con-
straints within the optimal/sub-optimal policies. It is an improvement over the TSBU
approach, since the policies determined by the TSBU approach correspond to the θ = 0
scenario. A limitation of the technique is that the estimation of the expected penalised fu-
ture cost-to-go also assumes that the optimal policy will be implemented in the future years,
which may not be possible for all facilities. However, the choice of the optimal policy itself
might be better than the one chosen by the TSBU approach.

The reader is encouraged to refer to Ohlmann and Bean (2009) for more details with
regards to the implementation of the Lagrangian relaxation approach.

3.3 A Simultaneous Network Optimization Approach

Based on the discussion of the single and multidimensional MDP approaches, it can be in-
ferred that facility-specific policies need to be developed in accordance with the resource
constraints imposed on the current as well as future years. Herein, the LP-based random-
ized policy approach satisfies all requirements, except for providing facility-specific policies.
At the same time, determining facility-specific policies alludes to an integer programming
formulation. Keeping this in mind, an approach can be developed by modifying the LP
formulation into a mixed-integer linear programming formulation, as shown below:

min
x,w

N∑
i=1

∑
a∈A

(c (st(i), a) + u (st(i)))xiat

+N

(∑
s∈S

∑
a∈A

(
T∑

τ=t+1

ατ−t (c(s, a) + u(s))wsat + αT+1−t Ṽ (s)wsa(T+1 )

))
(3.26)
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subject to ∑
a∈A

xiat = 1 ∀i = 1, . . . , N, (3.27)

1

N

 ∑
i=1,...,N |st(i)=r

xiat

 = wrat ∀r ∈ S,∀a ∈ A, (3.28)

∑
s∈S

∑
a∈A

wsaτ = 1 ∀τ = t + 1 , . . . , T, (3.29)

N

(∑
s∈S

∑
a∈A

c(s, a)wsaτ

)
≤ Bτ ∀τ = t, . . . , T, (3.30)∑

r∈S

∑
a∈A

pa (r, s)wraτ =
∑
a∈A

wsa(τ+1 ) ∀s ∈ S,∀τ = t, . . . , T, (3.31)

wsaτ ∈ [0, 1] ∀s ∈ S,∀a ∈ A,∀τ = t, . . . ,T + 1 ,

where,

xiat: 1 if action a is selected for facility i; 0 otherwise (t refers to the current year),
wsaτ : fraction of the network in state s to which action a is applied in year τ , where τ

is representative of all the future years.

In terms of the objective function and the resulting optimal solution, SNO is identical
to the approach provided by Golabi et al. (1982). The only modification in the problem
formulation is with regards to the use of binary integer variables for the current year, t, as
is evident from the objective function (equation 3.26). The constraint of interest is equation
3.28, which defines the randomized policies for the current year in terms of the integer
variables. Once the relationship between the two sets of variables is established, it is then
possible to determine the expected future costs in terms of the randomized policies.

The salient feature of SNO is that it provides facility-specific policies for the current
year using a single optimization routine, while utilizing the randomized policies to calculate
the expected future costs. This allows for budget constraints to be imposed on the future
years, as well as retaining the optimal nature of the LP formulation. In comparison, TSBU
is internally inconsistent, as it does not account for the system-level interdependencies at
the facility-level problem. In the case of the Lagrangian relaxation-based approach, while
the identification of the optimal/sub-optimal policies incorporates the budget constraints
using the Lagrangian multipliers, there is scope for the penalized cost-to-go estimates to be
incorrectly estimated.

The SNO framework needs to be implemented for every year of the planning horizon,
since the condition state associated with each facility, st(i), needs to be identified at the
beginning of each year.
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3.4 Parametric Study

For evaluating the proposed methodology (SNO), a parametric study was conducted to
compare its performance with TSBU and the Lagrangian relaxation-based approach. The
condition state of the facilities was defined using an eight point ordinal index, where 1 is
the best state and 8 is deemed to be an unacceptable state by the agency. For the purpose
of illustration, four types of activities were considered: do-nothing, routine maintenance,
rehabilitation and reconstruction. The agency and user cost structure, shown in table A.1,
was taken from Madanat (1993). Herein, maintenance and rehabilitation activities become
prohibitively more expensive as the state worsens, whereas reconstruction incurs a constant
cost. The user cost also increases as the facility deteriorates, and a high penalty cost is
imposed when the facility is in the non-permissible condition state (s = 8). The transition
probability matrices for the different MR&R alternatives, as shown in tables B.1-B.4, were
also adapted from Madanat (1993), but were suitably modified to reflect the increasing levels
of maintenance effectiveness. The planning horizon consisted of 15 years and the discount
rate was 5%. The salvage value at the end of the planning horizon was set equal to the user
costs, which can be interpreted as a proxy for the quality of the terminating state of the
facility.

In order to generate the different scenarios, the annual budget was fixed at B = 250
units, while the number of facilities, n, was varied to be 10, 100, and 500. Hence, for a
network of 10 facilities, an annual budget of 250 units would be sufficiently high, whereas,
for n=500, the same budget would be severely constraining. The initial condition of the
facilities was uniformly distributed between states 1 and 7 (the non-permissible condition
state 8 was excluded), so as to represent a wide range of condition states in the system.

Given the stochastic nature of deterioration, the results were generated using a Monte
Carlo simulation method. Monte Carlo simulation is a popular sampling technique, wherein
random information is generated using an artificial process (typically a uniform distribution),
so as to pick a random observation from a population (Powell 2007). For the parametric
study, the condition states for a new decision-making year were simulated based on the
facility-specific actions recommended by the optimization routine for the previous year of
decision-making using a uniform random number generator. The process was then repeated
for each year, until the end of the planning horizon. For each scenario, 1000 simulations
were carried out to determine the average system-level user-plus-agency costs incurred by
the agency (in net present value).

3.4.1 Results

Figure 3.1 represents the average system-level costs incurred by the agency using SNO, the
Lagrangian relaxation approach and TSBU. As the budget is kept constant, the costs for
all three approaches, represented on a log-scale, increase with an increase in the number of
facilities in the system. For n=10, all three optimization approaches perform equally well.
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Figure 3.1: Comparison of the average system-level costs incurred by implementing SNO,
Lagrangian relaxation, and TSBU

However, as the budget constraint becomes more severe, SNO and the Lagrangian relaxation
approach start providing lower costs than TSBU.

A more informative assessment of the three approaches can be made by comparing the
distributions of the simulation results, as illustrated in figure 3.2. Herein, a box plot repre-
sentation shows the median (the horizontal line inside the box), the lower and upper quartiles
(the edges of the box), and the overall spread of the simulation results (the whiskers extend-
ing above and below the box). In addition, a dot, signifying the expected system-level costs,
predicted by each optimization routine at t = 1, has also been marked on the plot. Ideally,
as the number of simulations tends to infinity, it would be anticipated that the average of the
costs realized through simulation and the expected cost predicted by the optimization should
become identical. Hence, the performance of the three approaches can also be evaluated on
how closely the realized costs match with the a-priori expected minimum costs.

Figure 3.2(a) shows the box plot corresponding to n = 10 (the unconstrained budget
scenario). In this case, the distribution of the simulated costs is identical for SNO, the
Lagrangian relaxation approach, and TSBU. Also, the medians of the box plots coincide
with the costs expected at t = 1, indicating that both approaches predict the future costs
accurately. For n = 100 (figure 3.2(b)), it can be seen that while Lagrangian relaxation
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(a) n=10 (b) n=100

(c) n=500

Figure 3.2: Comparison between the simulated costs and the expected system-level costs
predicted at t=1 for SNO, Lagrangian relaxation, and TSBU

and SNO provide a-priori expected cost-to-go estimates within the range of the simulation
results, differences between the predicted and the realized costs begin to emerge for the TSBU
approach. In fact, it can be observed that TSBU becomes increasingly inconsistent with its
predictions as the budget constraint becomes tighter (i.e., as the number of facilities increase).
Consequently, it can be understood that TSBU’s choice of policies becomes sub-optimal as
the budget constraint becomes more restrictive. In comparison, the Lagrangian relaxation
method is able to re-order the optimal/alternate policies to reflect the severity of the budget
constraints. The simulation results also indicate that SNO performs marginally better than
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the Lagrangian relaxation method in the presence of restrictive budget constraints. In the
case of deviations of the predicted cost-to-go from the median of the box plot, the differences
can be attributed to insufficient Monte Carlo simulations.

3.5 Comparison of the facility-specific poicies

In order to highlight the shortcomings of the TSBU approach, a comparison between the
facility-specific policies obtained from SNO and TSBU is illustrated in figure 3.3. Herein,
the two plots show the evolution of the condition state of a facility starting in state 7,
and the corresponding actions recommended by SNO and TSBU, respectively. The results
correspond to the n = 100 scenario. The optimal policy recommended by TSBU for state
7 in year t = 1, is reconstruction (4), followed by rehabilitation (3), routine maintenance
(2), and do-nothing (1). In comparison, the system-level analysis of SNO recommends the
optimal actions to be distributed between do-nothing (1) and reconstruction (4). Owing
to the budget constraints, TSBU implements the rehabilitation action (second optimal),
while SNO implements do-nothing for the facility under consideration. As the simulation
evolves over time, SNO implements a reconstruction action in year 3, whereas the TSBU
policies result in the facility staying in state 8 for prolonged periods of time. The resulting
user+agency cost accrued through SNO and TSBU are 178.57 and 609.42 units respectively.

Figure 3.3: Comparison between facility-specific policies of SNO and TSBU for a facility from
n = 100 scenario; For the action set, 1: do-nothing, 2: routine maintenance, 3: rehabilitation,
and 4: reconstruction
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While the above discussion corresponds to a single simulation run for a facility repre-
senting a worst-case scenario, some insights can still be obtained on the underlying decision-
making process of both approaches. The policy matrix generated by TSBU assumes that an
optimal policy will be implemented in the future, which in the case of a significantly deterio-
rated condition state is to reconstruct. However, the available budget prevents the selection
of a reconstruction action, leading to multiple implementations of the rehabilitation action.
In comparison, SNO recognizes the budget constraints in the current, as well as the future
years, and concludes that neither routine maintenance nor rehabilitation activities will lead
to a significant improvement in the condition state of the facility in the long run. Conse-
quently, SNO recommends either doing nothing, or reconstructing, for facilities in state 7,
which ensures that over a period of time, most facilities will be reconstructed.

3.5.1 Implementation Issues

In the parametric study undertaken above, the optimization was carried out over a finite
planning horizon. However, from an agency’s perspective, infrastructure assets, like pave-
ments and bridges, may not have predefined useful lives. In such cases, a more realistic
accounting practice would be to use a rolling planning horizon, wherein at every decision
epoch, a new T -year planning horizon is solved for. A long enough planning horizon ensures
that issues pertaining to salvage value selection become insignificant due to the discounting
of future costs. In addition, steady-state policies and costs can also be incorporated into the
SNO framework as a proxy for salvage values, as demonstrated in Golabi et al. (1982).

3.6 Discussion

In this chapter, the top-down approach proposed by Golabi et al. (1982) was extended
using SNO which allows for facility-specific decision-making using randomized policies. The
results of the parametric study indicate that SNO is as effective or better than the other
MDP approaches in providing system-level MR&R policies for resource allocation problems.
Finally, a Lagrangian relaxation-based approach was employed to overcome the limitations
of the two-stage bottom-up approach, which in turn was shown to be sub-optimal and
inconsistent for scenarios with constrained financial resources.

The contribution of SNO lies in facilitating a comparison between the single-dimensional
and multi-dimensional methodologies in MDP-based MR&R decision-making frameworks.
Also, by addressing the identification issues associated with randomized policies, the mixed
integer programming formulation of SNO provides a potential framework for incorporating
network considerations in a MDP setting.

From a methodological perspective, the results of the parametric case study also indi-
cate that benchmarking and internal consistency checks are useful tools while evaluating a
stochastic optimization approach. In the absence of any theoretical guarantee on optimality,
comparing the performance of an approach with other state-of-the-art methods provides a

23



good measure of its efficacy. In contrast, internal consistency checks ensure that the ob-
served costs are always consistent with the a-priori expectations, even if it is known to be
sub-optimal.

In the next chapter, the focus shifts towards incorporating network considerations into
system-level MR&R decision-making. In particular, the structural interdependence problem
is formally introduced, wherein the scheduling MR&R activities on road segments adversely
impacts the network capacity.
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Chapter 4

Incorporating Network
Considerations into the System-level
Optimization Problem

In order to model the network dynamics within the system-level infrastructure management
problem, examples of potential network-based constraint/formulation include calculating the
maximum flow through the network, or solving a deterministic user equilibrium problem to
determine the network travel time. Such computations require the knowledge of the effective
capacities on each link on the network, which in turn are a function of the MR&R activities
being implemented on the links. Consequently, it is important to identify MR&R decision-
making frameworks which provides facility-specific policies.

In the previous chapter, the SNO framework was proposed, which provides optimal
facility-specific policies for a given decision-making year of a resource allocation problem.
However, one of its shortcomings is that the network constraints cannot be simultaneously
imposed on the cost estimates associated with the future years, as the randomized policies
are represented as a probabilistic distribution over the action space. Consequently, while
SNO is optimal for budget allocation problems, it may provide sub-optimal, but feasible,
policies upon the inclusion of network-based constraints.

In order to benchmark the solutions obtained from SNO, the use of an approximate
dynamic programming (ADP) framework is motivated. The advantage of ADP is that it
facilitates the modeling of complex problem formulations within an MDP setting. Also, in
comparison to the other multidimensional MDP frameworks discussed in chapter 3, ADP
is general modeling framework. However, a limitation of ADP is that an optimal solution
cannot always be guaranteed.

The rest of the chapter is structured as follows: the need for ADP is first motivated by
presenting the Bellman equation and the curse of dimensionality associated with it. Subse-
quently, an ADP framework is presented in a general fashion, so as to simplify the problem
formulation and facilitate a holistic understanding of the technique. Finally, a parametric
study is conducted on a stylized network to infer the impact of network-based constraints
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on the decision-making methodologies, wherein the results obtained from ADP and SNO are
compared.

4.1 Multidimensional MDP Problem

An exact solution to a finite horizon multidimensional MDP problem can be obtained by
employing a backward recursive dynamic programming approach, which is based on Richard
Bellman’s principle of optimality (Bellman 1954). The optimality rule states the following:
an optimal policy has the property that whatever the initial state and initial decisions are,
the remaining decisions must constitute an optimal policy with regard to the state resulting
from the first decisions. In other words, the principle alludes to the Markovian assumption,
wherein the optimal policy in a given year of the planning horizon is only dependent on the
current state of the system.

In the context of MR&R decision-making, the problem is formulated as follows: if the
state of the pavement network at the beginning of year t is represented by st, then the
optimal cost-to-go from year t to the end of the planning horizon, T , can be recursively
obtained using the following set of equations:

Vτ (sτ ) = min
aτ∈AN

c

[
c(sτ , aτ ) + α

∑
s′∈SN

P (s′|sτ , aτ )Vτ+1(s′)

]
∀sτ ∈ SN ,

τ = T, . . . , t, (4.1)

aτ (sτ ) = arg min
aτ∈AN

c

[
c(sτ , aτ ) + α

∑
s′∈SN

P (s′|sτ , aτ )Vτ+1(s′)

]
∀sτ ∈ SN ,

τ = T, . . . , t, (4.2)

VT+1(sT+1) = V̄ (sT+1) ∀sT+1 ∈ SN , (4.3)

where,
Vτ (sτ ): value function associated with state, sτ , in year τ , representing

the minimum expected cost-to-go from year τ to the end of the
planning horizon,

aτ (sτ ): the optimal policy associated with state, sτ , in year τ ,
V̄ (sT+1): salvage value associated with state, sT+1, at the end of the

planning horizon,
c(sτ , aτ ): unit costs associated with implementing the action set, aτ ,

when the network is in state, sτ ,
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P (s′|sτ , aτ ): one-year transition probability of being in state, s′, in year
τ + 1, given that the network is in state, sτ , in year τ , and
action set, aτ , is implemented,

α: discount amount factor,
N : number of facilities in the network,

SN : feasible state space of the network,
AN
c : constrained feasible action space of the network (constraints

can include finite budget, scheduling, network flow, etc.).

The problem formulation are almost identical to the facility-level problem formulation
in the TSBU approach, except that the state space in this formulation is defined over the
network, and instead of finding facility-level policies, the intention is to find an optimal
policy set which satisfies all the system-level constraints.

The advantage of a backward recursive dynamic programming approach is that it guar-
antees an optimal policy. However, it suffers from the curse of dimensionality, wherein the
computational costs associated with solving the Bellman equation increase exponentially
with the size of the network. A major consideration in this regard is that the optimization
problem is required to be solved for all possible state space combinations, which increase
exponentially with the number of facilities in the network. For instance, if |S| = 8, the
number of condition states possible for N = 5 are 85 = 32,768; whereas for N = 10, the
combinations rise up to 810 = 1,073,741,824. Other factors contributing towards an increase
in computational complexity include, looping over the entire state space to calculate the
expectation of the future cost-to-go

(∑
s′∈SN P (s′|sτ , aτ )Vτ+1(s′)

)
, as well as an exponential

increase of the action space, AN
c . Consequently, such an approach is not suitable for solving

a system-level MR&R decision-making problem.

4.2 Approximate Dynamic Programming

Approximate dynamic programming is a MDP-based modeling framework which seeks to
overcome the dimensionality issues associated with traditional dynamic programming meth-
ods. It employs an algorithmic strategy of stepping forward through time, which obviates
the need to loop through the entire state space in future time periods. Researchers have
applied ADP techniques to diverse problems, ranging from learning how to play backgam-
mon (Tesauro 1995) to large-scale vehicle fleet management (Simão et al. 2009). The most
notable references pertaining to ADP include Bertsekas and Tsitsiklis (1996), Sutton and
Barto (1998) and Powell (2007).

The term ”approximate” in ADP refers to the fact that the value functions need to be
estimated using simulations, and may not always converge to the optimal values. In compar-
ison, a backward recursive dynamic programming approach guarantees optimal policies, as it
exactly computes the value functions for all years. However, the advantage of ADP is that it
provides a framework to solve high-dimensional MDP problems which cannot be attempted
otherwise using analytical techniques. It also allows for complex network considerations to
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be represented within the decision-making problem. Hence, while attempting to solve MDP
problems using ADP, the inherent trade-off lies in sacrificing optimality for computational
tractability.

There are many strategies available for estimating value functions and the resulting poli-
cies in the ADP literature. The details of the particular methodology undertaken in this
work are outlined in the following subsections: firstly, the need for approximating the value
function with lower dimensional parametric functions is motivated. Subsequently, the pro-
cedures for stepping forward through time are detailed, and finally, the learning algorithm
for updating the value function approximation is discussed.

4.2.1 Value Function Approximation

In the Bellman equation, the cost-to-go function, Vt(st), is stored using a standard look-up
table representation, wherein each element of the state space (|S|N) is uniquely identified. A
look-up table representation in the context of an ADP framework has several shortcomings.
Firstly, the memory requirements can be unsurmountable for high-dimensional problems.
Secondly, calculating the future cost-to-go requires looping over the entire state space, which
leads to computational inefficiencies. Thirdly, the learning rate associated with a look-up
table representation can be very slow, since each element of the state space must be visited
multiple times in order to develop a good estimate of its cost-to-go. Consequently, there is
a need to approximate the value function so as to make its representation scalable from the
point of view of computational efficiency as well as memory allocation.

The ADP literature recommends different techniques to work with large state spaces.
One such approach relies on the use of aggregation methods to scale down the state and
action spaces. An alternate approach is to develop analytical functions using parameters
which exploit the structure of the problem in order to capture important attributes of the
value function. In this paper, a combination of both approaches is adopted for approximating
the value function. In particular, a set of linear, separable basis functions are chosen, which
can be summed up to provide an estimate of the future cost-to-go for a given state-action
pair, (st, at), in year t:

Q̃t(st, at) =

|Bt|∑
b=1

θb(st, at)φb(st, at), (4.4)

where,
Q̃t(st, at): expected cost-to-go from year t+ 1 to the end of the planning

horizon, when action set, at, is chosen for state, st; also referred
to as the Q-function,

φb(st, at): user-specified basis function which captures specific attributes of
the cost-to-go function; also referred to as the Q-factor,

θb(st, at): weight associated with a given basis function, which is iteratively
updated within the ADP framework,
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|Bt|: the total number of basis functions for time period, t.

Using Q̃t(st, at), system-level MR&R policies can be obtained as follows:

min
at∈AN

c

c(st, at) + αQ̃t(st, at). (4.5)

Herein, it is noteworthy to distinguish Q̃t(st, at) from Vt(st). Vt(st) represents the optimal
expected cost-to-go associated with state, st, from year t to the end of the planning horizon.
A limitation of approximating the optimal cost-to-go is that it still necessitates a calculation
of the expected future cost-to-go for a given action set, at. In comparison, the Q-function
can be viewed as approximating the expected future cost-to-go using an augmented state,
(st, at), which leads to computational savings. The equivalence between Q̃t(st, at) and Vt(st)
can be established by comparing equations 4.5 and 4.1:

Q̃t(st, at) ≈
∑
s′∈S

P (s′|st, at)Vt+1(s′). (4.6)

It is important to note that Q̃t(st, at) excludes the costs incurred in year t, since the
corresponding costs can be easily calculated using c(st, at).

4.2.2 Stepping forward through time

For a given ADP iteration, n, let the current state of the network be snt , and the optimal
action set selected on the basis of equation 4.5 be ant . Once ant has been identified, the process
of stepping forward in time is undertaken by generating a sample realization of the future
state of the system, snt+1, using a Monte Carlo simulation procedure. As discussed in the
parametric case study of chapter 3, the procedure involves using a uniform random number
generator to yield a feasible state transition from the transition probability distribution,
P (snt+1|snt , ant ). Let the transition procedure be symbolically represented as:

snt+1 = Ψ(snt , a
n
t , ω

n), (4.7)

wherein, ωn represents a vector of uniform random numbers generated from the distri-
bution, U(0,1).

Once a sample state of the system for year t + 1 is ascertained, the optimal action set
for year t+ 1, ant+1, can be solved for by using equation 4.5. In order to use equation 4.5, it

is assumed that the current estimate of the Q-function, Q̃t+1(snt+1, a
n
t+1) is the best available

estimate of the future cost-to-go.
The procedure is subsequently repeated until the end of the planning horizon, and a se-

quence of state-action pairs,
[
(sn1 , a

n
1 ), (sn2 , a

n
2 ), . . . , (snT , a

n
T ), snT+1

]
, is obtained. The sequence

is referred to as a sample path, since it is a simulated realization of a stochastic process.
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4.2.3 Updating the value function approximation

The concept of a sample path is fundamental to the idea of learning in approximate dynamic
programming (Powell 2007). Its importance lies in the fact that the costs accrued over a
sample path can be compared with the costs predicted by the latest estimate of the future
cost-to-go, Q̃n−1

t (snt , a
n
t ). If the realized costs are very different from the costs predicted by

the Q-function, it implies that the current parameter estimates are poor, thus allowing for
the weights associated with the Q-factors to be updated. Conversely, if the predicted and
realized costs are similar, it implies that the Q-function provides an accurate representation
of the future costs.

In this paper, a temporal difference (TD) learning algorithm is employed for updating
the value function approximation. TD learning is a two-stage procedure which relies on a
forward pass to generate a sample path, and a backward pass to update the parameters. More
importantly, it generalizes the different types of estimation errors which can be obtained from
a given sample path.

For instance, a one-period look-ahead temporal difference error compares the Q-function
estimates of the states visited in two successive years of a sample path, as shown below:

δnt = c(s
n
t+1, a

n
t+1) + αQ̃n−1

t+1 (snt+1, a
n
t+1)− Q̃n−1

t (snt , a
n
t ), (4.8)

The one-period look-ahead update can also be classified as a bootstrapping approach,
wherein a value estimate is updated based on an existing value estimate (Sutton and Barto
1998). Dynamic programming is another example of bootstrapping, since the cost-to-go in
year t is estimated using the cost-to-go estimate corresponding to year t + 1. However, a
limitation of the one-period look-ahead update is that, unlike dynamic programming, if the
initial estimates of the value function approximation in year t+ 1 are poor, the update may
lead to a bias in the future cost estimation.

An alternate approach for updating the Q-factors is to compare Q̃n
t (snt , a

n
t ) with the costs

realized through the sample path, which can be represented as follows:

z̃nt = c(snt+1, a
n
t+1) + αc(snt+2, a

n
t+2) + . . .+ αT−t+1c(snT+1, a

n
T+1). (4.9)

Unlike bootstrapping, z̃nt provides a cost-to-go estimate that is purely based on the Monte
Carlo simulation of the sample path. Consequently, z̃nt as an estimate is representative of
the costs associated with the current state of the value function approximations. However, a
cost-to-go estimate based on the entire sample path does not account for the possibility that
the difference between the predicted and realized cost-to-go could have been generated by
the sub-optimal nature of the policies belonging to the intermediate years. In such a case,
the Q-factor update of the current policy, ant , may suffer from an over-fitting problem.

The TD learning algorithm generalizes the bootstrapping and Monte Carlo-based learning
approaches, shown in equations 4.8 and 4.9, as follows:
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∆n
t =

T∑
τ=t

(αλ)τ−t
(
c(snτ+1, a

n
τ+1) + αQ̃n−1

τ+1(snτ+1, a
n
τ+1)− Q̃n−1

τ (snτ , a
n
τ )
)
, (4.10)

=
T∑
τ=t

(αλ)τ−t (δnτ ) , (4.11)

where,
∆n
t : temporal difference error associated with the current estimate of

the future cost-to-go, Q̃n−1
t (snt , a

n
t ),

λ ∈ [0, 1]: heuristic discount amount factor which determines the contribution
of the errors associated with policies implemented farther down
the sample path.

The learning framework presented in equations 4.10 and 4.11 is referred to as TD(λ)
learning, wherein the parameter, λ, generalizes the learning process. It can be shown that
TD(0) is equivalent to equation 4.8, whereas TD(1) reduces the problem to estimating the
temporal difference error using the costs accrued over the sample path (equation 4.9). More
generally, the artificial discounting introduced by the parameter, λ, allows the algorithm
to look into the future, while accounting for the possibility that the policies implemented
further along the sample path may be sub-optimal.

Once the temporal difference error is calculated for a given year t, the weights associated
with the Q-factors can be updated using a stochastic gradient algorithm:

θntb ←− θn−1
tb + γn ∇θtb(v̂

n
t ) ∆t. (4.12)

where,

v̂nt = c(snt , a
n
t ) + αQ̃n−1

t (snt , a
n
t ), (4.13)

and γn represents the step-size of the stochastic gradient algorithm. The step-size de-
termines the magnitude of the update made along the direction of the error-minimizing
gradient.

There exist various step-size rules in the stochastic gradient algorithm literature which
can be used in order to achieve convergence of the parameters being updated. However, the
three basic conditions are as follows:

γn ≥ 0, n = 1, 2, . . . , (4.14)
∞∑
n=1

γn =∞, (4.15)

infty∑
n=1

γ2
n <∞. (4.16)
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In this paper, a search-then-converge step-size rule is adopted, which produces an ex-
tended period of learning. The step-size formula is represented as follows:

γn = γ0

(
b
n

+ a
)(

b
n

+ a+ nβ
) , (4.17)

where, γ0, a, b, and β are parameters to be determined.
This class of step-size rules is termed ”search-then-converge” because they provide for a

period of high step-sizes (while the search for optimal policies is taking place) after which
the step-size declines (to achieve convergence). The degree of delayed learning is controlled
by the parameters, b and a (Powell 2007).

In conclusion, the proposed ADP framework for solving a system-level MR&R decision-
making problem can be summarized using the following pseudo-code:

Step 0. Initialization:

Step 0a. Initialize Q̃0
t (st, at), ∀st ∈ SN ,∀at ∈ AN ,∀t = 1, . . . , T + 1.

Step 0b. Choose an initial state s0
1.

Step 1. Do for n = 1, 2, . . . ,N :

Step 2. Do for t = 1, 2, . . . , T :

Step 2a. Solve:

v̂nt = min
at∈AN

c

c(snt , at) + αQ̃n−1
t (snt , at),

and let ant be the optimal solution corresponding to v̂nt .

Step 2b. Compute snt+1 ←− Ψ(snt , a
n
t , ω

n)

Step 3. Initialize ∆T ←− 0, v̂nT+1 ←− V̄ (snT+1), wherein, V̄ (snT+1)
represents the salvage value associated with the end of the
planning horizon.

Step 4. For t = T, T − 1, . . . , 1, do:

Step 4a. δt ←− v̂nt+1 − Q̃n−1
t (snt , a

n
t ).

Step 4b. ∆t ←− ∆t + δt.

Step 4c. θntb ←− θn−1
tb + γn ∇θtb(v̂

n
t ) ∆t.

Step 4d. ∆t−1 ←− αλ∆t.

Herein, N represents the duration of the training period in which the Q-factor weights
are updated. Once the Q-factors have converged to their final values, the facility-specific
MR&R policies can be obtained using equation 4.5.
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4.2.4 Exploration vs. Exploitation

A fundamental challenge within approximate dynamic programming is that in order to es-
timate the cost-to-go for a given state-action pair, the state-action combination must be
visited as part of the sample path. As a result, a trade-off must be made between visiting
a state which leads to the lowest costs (”exploitation”) versus visiting a state in order to
obtain information about the value of being in that state (”exploration”) (Powell 2007).
Prior research indicates that allowing for intermittent exploration during the training period
provides better results than a pure exploitation strategy. In this paper, a ε-greedy policy is
employed, wherein a sub-optimal policy is randomly selected with a probability, ε.

4.2.5 Comparing SNO with ADP

The advantage of ADP is that the optimal actions selected at every time step of the sample
path always satisfy the underlying constraints of the decision-making process. Consequently,
the value function approximation updated using the sample path is also consistent with the
constraints of the system-level MDP problem. Also, since ADP is modeled as a multi-
dimensional MDP problem, it is capable of handling the heterogeneity among individual
facilities in the network. However, owing to its simulation-based approach, ADP does not
provide any optimality guarantees. In fact, its performance depends on several factors:
choice of basis functions, learning strategy, convergence rate, among others.

In comparison, SNO is an optimal approach for budget allocation problems. Its limitation
arises from the fact in spite of providing facility-specific policies in the first year, it essentially
solves a single-dimensional MDP problem. Consequently, the use of randomized policies,
while suitable for representing the average resource consumption in future time periods, is
not effective in accounting for the network considerations.

4.3 Parametric Case Study

In this section, the network considerations are formally introduced into the MR&R decision-
making framework as mathematical constraints. The structural interdependence between the
individual facilities is incorporated by imposing a network capacity constraint on the MR&R
activity selection. In particular, an agency-chosen network capacity threshold limits the loss
in network capacity due to the implementation of the chosen MR&R policies by an upper
bound. The framework also allows for different work zone options to be considered (partial
vs. complete closure), wherein time, money and loss in link capacity can be traded-off.

The use of capacity as a performance measure can be interpreted as a supply-based crite-
rion, wherein the agency seeks to provide enough capacity during MR&R activity implemen-
tation so that the associated origin-destination demand can be met. While it is recognized
that a capacity-based approach does not take into account the demand on individual links,
it can be argued that the traffic can be re-routed to maximize capacity utilization, using
adequate signages and real-time information dissemination systems.
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4.3.1 Network Representation

(a) network representation

(b) individual link capacities; Cmax = 20 units

Figure 4.1: Stylized 11-link pavement network for incorporating structural interdependence
(individual link capacities expressed in brackets

Let us consider a stylized network configuration consisting of 11 road segments and 10
nodes connecting an origin and a destination, as shown in figures 4.1(a) and 4.1(b). Figure
4.1(b) represents the individual link capacities, using which the resulting network capacity,
Cmax, can be obtained as 20 units. It is to be noted that Cmax represents the maximum
capacity available to the users in the absence of MR&R activities.

In terms of notation, the pavement network is defined as a graph, G = (N,E), wherein
the edges, E, represent the road segments, and the nodes, N , representing the points of
intersection between any two facilities. An individual road segment is defined as a link,
(q, r).

4.3.2 Value Function Approximation: ADP

In order to implement an ADP methodology, the foremost step is to model the value func-
tion approximation for the network under investigation. In this regard, the choice of basis
functions plays an important role in determining the quality of the solutions obtained using
ADP. The objective is to exploit the properties of the problem such that the learning process
is reduced to estimating a few key parameters of interest.

Based on the network configuration depicted in figures 4.1(a) and 4.1(b), it is possible
to identify groups of road segments which respond similarly to the network capacity con-
straints. For instance, it can be argued that the groups defined as, {1, 2, 3}, {4}, {5, 6, 7, 8}
and {9, 10, 11} have a near-identical policy response towards the network-based constraints.
In the case of links, 1-3 and 9-11, since all the road segments are in series, a MR&R ac-
tivity/construction type chosen for any segment within the group leads to the same loss in
capacity of the network. For sections 5-8, the symmetry in the network configuration is
also taken into consideration while aggregating the corresponding state-action space. The
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road segment, {4}, is considered as a singleton for the purpose of approximating the value
function.

Finally, given the Markovian evolution of the system, it can also be assumed that for any
given year, t, the optimal policy for a facility, (q, r) is only a function of its current state,
and the action-construction type pair under consideration. Consequently, the total number
of basis functions chosen for the value function approximation, |B|, can be calculated as
follows:

|B| = T |GN ||S||A||L|, (4.18)

where,
T : length of the planning horizon,

|GN |: number of groups having a homogeneous response to the capacity
constraints,

|L|: number of construction options available (partial and complete
closures).

The savings from using a value function approximation, in terms of memory requirement,
can be gauged from the fact that for a look-up table representation (equation 4.1), the
parameter state space comprises of T |S|N |A|N |L|N combinations.

Using this Q-function representation, the future cost-to-go associated with implementing
the action-construction type combinations, (at, lt), when the network is in state, st, can be
obtained as follows:

Q̃t(st, at, lt) =
∑

(q,r)∈E

θt,GN (q,r),st(q,r),at(q,r)lt(q,r), (4.19)

where, GN(q, r) refers to the group number associated with facility, (q, r).
It is important to acknowledge here that approximating the value function is not a precise

science. For instance, a large state space adversely affects the convergence of ADP since it
requires more parameters to be learnt. In addition, there is also a greater need for exploration
to adequately cover the parameter space. Conversely, having too few parameters may lead to
a poor approximation of the future cost-to-go, leading to inefficient solution. The approach
involves having some a-priori expectations about the decision-making process, followed by
modeling those beliefs using the approximation function, and evaluating its performance
using simulations. Based on the quality of the simulation results, further modifications
can be made to the chosen basis functions, before arriving at a suitable value function
approximation.

4.3.3 Problem Formulation: ADP

The objective of the MR&R optimization is to provide optimal policies for each facility, (q, r),
in the network, while satisfying the budget restrictions and the network capacity constraints:
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min
x,x̃,z̃,y

∑
(q,r)∈E

∑
a∈A

∑
l∈L

(
c(st(q, r), a, l) + u(st(q, r))

+ α θt,GN (q,r),st(q,r),a,l

)
x(q,r),a,l,t, (4.20)

subject to ∑
(q,r)∈E

∑
a∈A

∑
l∈L

c(st(q, r), a, l)x(q,r),a,l,t ≤ B (4.21)

∑
a∈A

∑
l∈L

x(q,r),a,l,t = 1 ∀ (q, r) ∈ E, (4.22)

52∑
∆=1

x̃(q,r),a,l,∆ ≥ x(q,r),a,l,t ∀a ∈ A,∀l ∈ L,

∀ (q, r) ∈ E, (4.23)∑
∆−da,l<∆′≤∆

x̃(q,r),a,l,∆′ ≤ z̃(q,r),a,l,∆ ∀a ∈ A,∀l ∈ L,

∀∆ = 1, . . . , 52,

∀ (q, r) ∈ E, (4.24)

y(D,O),∆ ≥ hCmax ∀∆ = 1, . . . , 52, (4.25)

C(q,r)

[
1−

(∑
a∈A

∑
l∈L

κ(q,r),a,lz̃(q,r),a,l,∆

)]
≥ y(q,r),∆ ∀ (q, r) ∈ E,

∀∆ = 1, . . . , 52, (4.26)∑
r:(r,q)∈E

y(r,q),∆ −
∑

r:(q,r)∈E

y(q,r),∆ = 0 ∀(q, r) ∈ E,

∀∆ = 1, . . . , 52, ,
(4.27)

x(q,r),a,l,t, x̃(q,r),a,l,∆, z̃(q,r),a,l,∆ ∈ {0, 1}, y(q,r),∆ ∈ R+ ∀a ∈ A,∀l ∈ L,

∀∆ = 1, . . . , 52,

∀ (q, r) ∈ E,

where,
x(q,r),a,l,t: 1 if the MR&R action-construction type pair (a, l), is selected

for facility (q, r) in year t; 0 otherwise,
x̃(q,r),a,l,∆: 1 if the action-construction type pair, (a, l), is started in

week ∆ for facility (q, r); 0 otherwise,
z̃(q,r),a,l,∆: 1 if the action-construction type pair, (a, l), is under

implementation in week ∆ for facility (q, r); 0 otherwise,
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y(D,O),∆: available network capacity in the presence of MR&R activities
in week ∆, represented as a virtual edge connecting
destination D and origin O,

y(q,r),∆: available link capacity for facility (q, r) in week ∆,
c(st(q, r), a, l): agency cost of undertaking the action-construction type

pair, (a, l),
u(st(q, r)): user costs linked with increase in vehicle wear-and-tear, fuel

usage, etc.,
B: annual budget,

d(q,r),a,l: duration of implementing the action-construction type
pair, (a, l),

h: fraction of the maximum capacity of the network, Cmax,
representing a minimum network capacity threshold,

C(q,r): maximum link capacity associated with facility (q, r), as
defined when no MR&R activity is scheduled,

κ(q,r),a,l: loss in capacity associated with implementing the
action-construction type pair, (a, l), for facility (q, r).

Herein, equation 4.20 represents the objective function, defined as minimizing the ex-
pected system-level cost-to-go as based on the estimates of the Q-function; equation 4.21
indicates that the total amount spent on MR&R activities should be within the annual bud-
get; equation 4.22 assigns exactly one action-construction type pair (including do-nothing)
to each facility. The scheduling constraints, as represented by equations 4.23 - 4.24, are
modeled as a non-preemptive scheduling problem (Sousa and Wolsey 1992), wherein the
assigned activity is completed in one sequence; equation 4.23 ensures that only the cho-
sen action-construction type pair is considered for assessing the feasibility of the MR&R
scheduling, and equation 4.24 ensures that the chosen action-construction type pair under-
goes a continuous construction period of d(q,r),a,l weeks. Equation 4.25 guarantees that the
network capacity in the presence of MR&R activities does not violate the minimum network
capacity threshold; equation 4.26 represents the loss in link capacity associated with imple-
menting an action-construction type pair on facility(q, r); and equation 4.27 represents the
flow conservation equation for every node in the network.

It is important to note that the optimization routine only imposes the constraints on
the policies associated with the current year of decision-making. However, since the sample
path is generated by solving the optimization problem in each time period, the underlying
budget and network considerations are always satisfied along the sample path. Consequently,
the resulting Q-function updates, which are also based on the sample path traversed, are
consistent with the constraints of the problem.
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4.3.4 Problem Formulation: SNO

In section 3.3, the SNO framework was described in the context of budget allocation prob-
lems. In order to add the network-based constraints into the formulation, the budget allo-
cation problem can be reformulated similar to the ADP formulation using a facility-specific
decision variable identical to the ADP formulation, x(q,r),a,l,t. Hence, the network constraints
(equations 4.22 - 4.27) can be modeled in an identical fashion.

The policies obtained using SNO also satisfy the network constraints for the current
year of the decision-making, t. However, the disadvantage of SNO is that its future cost
estimation relies on the use of randomized policies which cannot accommodate the network
constraints. Consequently, while SNO still provides feasible policies, the optimality of the
solutions is no longer guaranteed.

4.3.5 Scenario Generation: Supplementary Information

The condition state of the facilities is evaluated using an eight point ordinal index similar to
the case study in chapter 3, where 1 is the best state and 8 is deemed to be an unacceptable
state by the agency. The four types of activities under consideration include to do nothing,
routine maintenance, rehabilitation and reconstruction. It is assumed that maintenance
activities can be implemented overnight and hence lead to no loss in capacity of a road
segment. There exist two reconstruction options: a partial road closure which requires 10
weeks of construction time and causes 30% loss in capacity, while a complete road closure
can be completed in 2 weeks, but leads to a 100% loss in capacity, i.e., the link is rendered
inaccessible. These values are not based on empirical data, but are representative of the
kind of trade-offs which can be expected in real-life scenarios.

The agency and user cost structure are identical to the values shown in table A.1. The
planning horizon consists of 15 years and the discount rate is chosen to be 5%. The salvage
value at the end of the planning horizon is set equal to the user costs, wherein the user costs
can be interpreted as a proxy for the quality of the terminating state of the facility.

The parameters corresponding to ADP’s step-size rule are a = 300; b = 0.5; β = 0.2; γ0 =
0.7;. The artificial discounting factor, λ, is taken to be 0.4, and the Q-function is trained for
1500 iterations. The algorithms are programmed in C++, and the optimization problems
are solved using CPLEX R© on a Windows-based OS with a 3.10 GHz processor and 4GB
RAM.

In order to compare ADP and SNO, three budget levels are considered, B = 50; 100; 150
units. The network capacity threshold, h, is chosen to be 0.75, such that the network
constraints are active for the purpose of the investigation. The initial condition of the
facilities is uniformly distributed between the states, 1(good), 4(moderate), and 7(poor),
within each group, g, so as to capture a range of deterioration levels. The performance of
the two methodologies is compared on the basis of implementing each scenario 1000 times
using Monte Carlo simulations.
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4.3.6 Results

Figure 4.2: Total costs comparison between SNO and ADP for different budget levels
(h=0.75)

Figure 4.2 represents the simulation-average of the system-level user+ agency costs in-
curred from using SNO and ADP. The results indicate that in the presence of network
constraints, ADP performs better than SNO (on an average) across all budget levels.

Using the box plot representation, figures 4.3(a) to 4.3(c) indicate that ADP’s predicted
costs align well with the median of the costs realized by the simulation. On the other hand,
SNO provides an inaccurate prediction of future costs as the budget increases. The similarity
of the cost distributions in figures 4.3(b) and 4.3(c) indicates that the network constraints
prevents any significant improvements that can be achieved by an increase in the budget
levels.

The primary reason for the disparity in SNO’s simulated and predicted costs is that
the randomized policies corresponding to the future years do not account for the network
constraints. In the context of the numerical example, reconstruction activities are required
to be excluded for certain road segments due to capacity considerations. However, since
the network constraints can only be imposed on the facility-specific MR&R policy selection,
SNO defers the activities to the future years, in the form of randomized policies. As the
sample path is simulated, the policies predicted for the future years are not realized, and the
gap between the predicted and the realized costs widens. With an increase in the available
budget, a greater share of the randomized policies are allocated for reconstruction activities,
thus leading to more inaccuracies in the estimation of the future costs. In comparison, ADP
updates its value function approximation based on states/actions that are in agreement with
the network and budget constraints. Consequently, the costs predicted by ADP at t = 1 are
consistent with the realized cost distribution.
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(a) B=50; h=0.75 (b) B=100; h=0.75

(c) B=150; h=0.75

Figure 4.3: Box plots comparing ADP and SNO for varying budget levels and h = 0.75

Figure 4.4 shows the convergence of the Q-function for B = 100 scenario. As can be
observed, the realized and the predicted costs converge to their final values after 500-600
iterations, which implies that the TD(λ) learning algorithm is suitable for updating the
Q-function.

Finally, in order to assess the efficacy of ADP in a pure budget allocation setting, the
network capacity threshold can be fixed to h = 0, thereby implying that the network capacity
does not constrain the decision-making. The results corresponding to the B = 50 and
B = 100 scenarios are shown in figures 4.5(a) and 4.5(b). These results illustrate that, in
the absence of the network constraints, SNO remains the preferred approach for pure budget
allocation problems. On the other hand, while ADP does not perform as well as SNO, it still
provides internally consistent results, in that the predicted and realized costs are similar in
nature.
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Figure 4.4: Convergence of the value function approximation for B = 100 scenario

(a) B=50; h=0.75 (b) B=100; h=0.75

Figure 4.5: Box plots comparing ADP and SNO in the absence of network constraints

4.4 Comparison between ADP and other

Network-based MR&R Decision-making

Frameworks: A Qualitative Discussion

As illustrated by the results of the parametric study, ADP provides the necessary computa-
tional flexibility to solve multidimensional MDPs involving network considerations. However,

41



given the emerging interest in incorporating network-induced facility interdependence into
MR&R decision-making, it is beneficial to qualitatively discuss the differences between the
proposed approach and the other network-based decision-making frameworks in the litera-
ture.

The use of a minimum network capacity threshold implies that the agency seeks to main-
tain a minimum network performance guarantee in the presence of MR&R activities. It
inherently assumes that the traffic can be rerouted to maximize the use of the available
capacity. However, such an approach has certain shortcomings. A capacity-based perfor-
mance metric does not account for the demand on the individual links, which in turn may
depend on the effective link capacity, route travel time, existing condition of the road seg-
ment, etc. Other researchers have addressed the issue of demand responsiveness in different
ways. Ouyang (2007) modeled the traffic distribution using a route choice model based on
the users’ travel time and the current state of the facility. Durango-Cohen and Sarutipand
(2009) adjusted the demand response on an individual link as a linear function of its his-
torical demand, its current condition state and effective capacity, as well as the condition
state and capacity of the other links in the network. Ng et al. (2009) and Chu and Chen
(2012) formulated bi-level optimization approaches, wherein the MR&R activity selection
takes place in the first level while changes in the network travel time are computed in the
second level.

The advantage of using ADP is that a variety of modeling assumptions can be incor-
porated within the decision-making process. For instance, a MDP-based framework can be
developed involving a traffic assignment/simulation-based approach, wherein the impact of
the MR&R activities on the network travel time will be learnt as part of the future cost
estimation process. However, adequate consideration needs to be given to the ease of solving
the underlying single-period optimization.

In a related issue, the concept of network capacity does not scale very well to multiple
origin-destination (OD) pairs, since it is required to be solved as a multi-commodity network
flow problem. However, in the special case of a multiple origin-single destination or single
origin-multiple destination network, the concept of network capacity thresholds can be easily
extended by using OD-specific thresholds. Alternatively, a travel time-based approach can
be used, which is not affected by the network configuration.

Finally, a prominent phenomenon observed in deterministic deterioration-based frame-
works is that facilities in series are grouped as complements and maintained together, whereas
substitutes representing facilities in parallel are maintained at different times (Durango-
Cohen and Sarutipand 2009). A similar structure is not observed using a network capacity
threshold since it only maintains a lower limit on the network flow. In comparison, incorpo-
rating link travel time/flow parameters within the objective function, as proposed by other
network-based MR&R approaches, can incentivize better co-ordination among construction
activities. Another mitigating factor diffusing the substitution/complementarity effects is
that the duration of construction activities is measured in weeks. Consequently, the schedul-
ing sub-problem allows the flexibility of scheduling MR&R activities within the same year
without having an overlap.
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Nevertheless, the presence of a hard constraint such as the network capacity threshold
does demonstrate some indirect substitution and complementarity effects within the decision-
making process. For instance, given any two links in series, construction activity on either
or both links impacts the network capacity identically. In this regard, the two links can be
assumed to be complements. Similarly, there exists a scenario wherein two parallel links
requiring reconstruction cannot be simultaneously scheduled owing to the network capacity
threshold. In this case, one of the two links might be forced to defer its reconstruction to
a future time period. Also, as indicated in section 4.3.2, the presence of these inter-facility
relationships was also exploited in the selection of the basis functions.

4.5 Discussion

In this chapter, the structural interdependence problem was motivated to account for the
adverse impact of construction activities on the road network. With the help of a paramet-
ric case study, it is shown that ADP provides a cohesive MR&R decision-making framework
which incorporates both budget allocation and work zone scheduling problems. The results
also provide important insights into the applicability of ADP-based approaches in the context
of infrastructure management. In particular, by benchmarking its performance with SNO,
it is shown that ADP is most beneficial for modeling problems wherein finding optimal poli-
cies using analytical frameworks is not feasible. The results also indicate that randomized
policies, while ideal for modeling budget allocation problems, do not adequately capture the
network constraints effectively.

In the next chapter, the economic interdependence problem is explored, wherein cost
savings can be achieved by combining MR&R activities across contiguous road sections.
Hence, in this case, incorporating the network considerations facilitates a better utilization
of the available budget.
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Chapter 5

Modeling Economic Interdependence
Within System-level MR&R
Decision-Making

The costs associated with implementing MR&R activities can be broken down into a fixed
set-up component (e.g., for machine rental and operation, labour), and a variable component
that is proportional to the intensity of the activity (e.g., material expenditures) (Ouyang
2007). Assuming that the fixed set-up component can be shared across multiple projects,
incorporating economies of scale (EOS) within the budget allocation problem can lead to
significant to a better utilization of the available budget.

From a methodological standpoint, the economic interdependence problem requires for
the optimization framework to recognize the contiguous sections, i.e., pavements in series, in
order to achieve the resulting cost savings. Once again, it can be inferred that such a cost
structure cannot be adequately represented using randomized policies. As a result, there is
a case for investigating an ADP framework to account for the network dynamics.

In this chapter, the performance of ADP and SNO is assessed under different EOS sce-
narios involving increasing levels of fixed cost representation. Also, the economic interde-
pendence problem is studied using sets of pavements in series, since only contiguous groups
of pavement sections can exploit a common fixed cost set-up. However, even though the
study does not include the network capacity constraints discussed previously, both aspects
of network interdependence can be readily combined.

5.1 Problem Formulation

Let the cost of implementing an action, a, as represented by c(s, a), be subdivided into its
fixed and variable cost components as follows:
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c(s, a) = cf (a) + cv(s, a). (5.1)

Using this representation, the cost associated with implementing action, a, across n
pavement sections in series, can be represented in the following way:

≡
n∑
i=1

c(s(i, i+ 1), a)− (n− 1)cf (a), (5.2)

where, s(i, i+1) indicates the condition states of the link (i, i+1). Also, n−1 is indicative
of the cost savings associated with grouping n pavement sections into a single project.

In order to incorporate these fixed cost savings into the optimization routine, the number
of contiguous sections associated with a given MR&R activity needs to be identified with the
problem formulation. Alternatively, it is more convenient to model a group of n contiguous
sections as a collection of n−1 overlapping pairs of pavement sections undergoing a common
MR&R activity. For instance, figure 5.1 shows that a group of three and four contiguous
pavement sections can be equivalently represented using two and three overlapping pairs of
pavement sections respectively. Hence, the economies of scale can be calculated by identifying
the number of pairs associated with an MR&R activity.

Figure 5.1: Modeling economies of scale for a network in series

With regards to the choice of basis functions, it is assumed that the value function
approximation depends only on the state-action pair of the facility. The a-priori beliefs in this
case are that all facilities in series are indistinguishable from each other. The number of basis
functions to be estimated are |B| = T |S||A||L|. Using this information, the optimization
problem can be formulated as follows:

min
x,f

|E|∑
i=1

∑
a∈A

(
c(st(i, i+ 1), a) + u(st(i, i+ 1)) + α θt,st(i,i+1),a

)
x(i,i+1),a,t

−
|E|−1∑
i=1

∑
a∈A

cf (st(i, i+ 1), a)f(i,i+2),a, (5.3)
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subject to∑
a∈A

x(i,i+1),a,t = 1 ∀i = 1, . . . , |E|, (5.4)

f(i,i+2),a,t ≤ x(i,i+1),a,t ∀i = 1, . . . , |E| − 1,∀a ∈ A, (5.5)

f(i,i+2),a,t ≤ x(i+1,i+2),a,t ∀i = 1, . . . , |E| − 1,∀a ∈ A, (5.6)

|E|∑
i=1

∑
a∈A

c(st(i, i+ 1), a)x(i,i+1),a,t −
|E|−1∑
i=1

∑
a∈A

cf (st(i, i+ 1), a)f(i,i+2),a ≤ B, (5.7)

x(i,i+1),a,t ∈ {0, 1}, f(j,j+2),a,t ∈ [0, 1] ∀a ∈ A, ∀i = 1, . . . , |E|,∀j = 1, . . . , |E| − 1,

where,
f(i,i+2),a,t: 1, if two adjacent pavements sections (i, i+ 1) and (i+ 1, i+ 2) have a common

MR&R activity, a; 0 otherwise,
|E|: number of facilities in the network; |E| − 1 represents the number of nodes in

the network (excluding origin and destination), since all facilities are in series.

The equations of interest in the problem formulation outlined above are equations 5.5
and 5.6, which ensure that f(i,i+2),a,t is 1 only when both, x(i,i+1),a,t and x(i+1,i+2),a,t are 1. In
other words, the two equations perform the logical AND operation. An interesting feature
of the problem formulation is that since f(i,i+2),a,t are bounded by integer variables and its
impact of the objective function is to reduce the value of the objective function, its integral-
ity assumption can be relaxed, while ensuring that f(i,i+2),a,t remains a binary variable.

For SNO, the economies of scale can be identically modeled using the facility-specific
policies. However, the future cost estimation cannot accommodate the fixed cost component
due to the use of randomized policies. Hence, as was the case with structural interdepen-
dence, SNO is no longer optimal. In the context of network capacity, the randomized policies
violated the capacity constraints. However, in this case, the randomized policies are more
conservative in nature, as the problem assumes that economies of scale do not exist in the
future. Hence, it is possible that the chosen randomized policies may eventually lead to
certain cost savings when the facility-level policies are re-computed. The cause for concern
is that these savings are not represented in the estimated future costs, and thus lead to the
selection of sub-optimal facility-level policies.

5.2 Numerical Example

In order to assess the performance of ADP and SNO in incorporating economies of scale
in MR&R decision-making, a network of 15 pavement sections in series is considered. It
is also assumed that there are no EOS associated with preventive maintenance activities.
In comparison, the rehabilitation and reconstruction activities have a fixed cost associated
with them. Keeping the total cost of implementing the MR&R activities fixed and identical
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(a) No EOS; B = 50 (b) No EOS; B = 100

(c) Moderate EOS; B = 50 (d) Moderate EOS; B = 100

(e) High EOS; B = 50 (f) High EOS; B = 100

Figure 5.2: Box plots comparing ADP and SNO across varying levels of EOS and budgets
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to table A.1, scenarios corresponding to zero, moderate and high EOS are generated for
rehabilitation and reconstruction activities.

For moderate EOS, the fixed costs corresponding to rehabilitation and reconstruction
are 2 and 10 units respectively. In terms of the percentage of the total rehabilitation cost
(fixed + variable), the fixed costs contribute 9-52 %, depending on the condition state of the
facility. For the replacement costs, the fixed costs represent around 39% of the total costs,
and it does not vary with the condition state of the road section.

For the high EOS scenario, the fixed cost component of the rehabilitation activities is
increased to 3 units, which contributes towards 14-79% of the total costs. The fixed cost
contribution for a replacement activity is 15 units (57% of the total costs).

Finally, two annual budget levels of 50 and 100 units are considered, and the decision-
making process is simulated for both ADP and SNO for 1000 runs using Monte Carlo simu-
lations.

5.3 Results

Figure 5.2 represents the distribution of costs incurred through ADP and SNO for the differ-
ent EOS and budget level combinations. The simulation results indicate that in the absence
of economies of scale (figures 5.2(a)-5.2(b)), SNO performs slightly better than ADP, as
is expected. For moderate and high EOS ((figures 5.2(c)-5.2(f)), both approaches perform
equally well, with ADP improving upon SNO in the lower budget scenarios. In terms of
the costs predicted at t = 1, both approaches fare reasonably well, except for one scenario,
wherein SNO over-predicts the costs (figure 5.2(f)).

5.4 Conclusions

A significant difference between the economic interdependence problem and the network
interdependence problem is that the randomized policies obtained in the presence of EOS
provides a conservative estimate of the future costs. If the MR&R actions most benefited
by the economies of scale are implemented intermittently, the randomized policies can still
provide a reasonably good lower bound for the future costs. However, it is only in scenarios
wherein the available budget is very limited, or the incentive to repeatedly combine MR&R
actions is very high, that a randomized policy can fail to capture the future costs effectively.
Consequently, it is under those scenarios that ADP performs better than SNO.

It is acknowledged that the fixed cost representation used for the case study may not be
representative of the true trade-offs observed in the real world. However, here the motivation
of the study was to compare the two optimization frameworks when one gradually moves
away from a pure budget allocation problem, for which optimal solutions are known, to an
EOS setting where SNO may no longer be optimal.
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Chapter 6

Conclusion

This chapter provides some concluding remarks for the work presented as part of this dis-
sertation. Section 6.1 provides a summary of the major findings in the dissertation. Section
6.2 discusses ways in which this research can be extended in the future.

6.1 Summary

This dissertation focuses on furthering the development of MDP-based system-level MR&R
decision-making frameworks in transportation infrastructure management. Based on the
survey of the infrastructure management literature, two problems of interest were identi-
fied. The first problem concerns itself with the difficulty in comparing the various MDP
frameworks developed for solving budget allocation problems. The second problem of inter-
est involves moving beyond traditional budget allocation problems to incorporate network
considerations into system-level decision-making.

With regards to the first research problem, the simultaneous network optimization (SNO)
framework, discussed in chapter 3, makes an important contribution towards gaining a bet-
ter understanding of single dimensional and multidimensional MDP-based approaches for
resource constrained MDP problems. The implicit assumption of a homogeneous system in
single dimensional MDPs is less restrictive for budget allocation problems, as it allows for
the randomize policies to efficiently estimate the expected budget consumption in the future
years. While the Golabi et al. (1982) approach has been successfully implemented in practice,
the absence of facility-specific policies is often cited as a limitation of the approach. By pro-
viding a suitable framework to overcome the identification issues associated with randomized
policies, SNO allows for the various MDP-based optimization frameworks to be compared
with each other. The results of the comparative study indicate that SNO performs better
than the state-of-the-art MDP methodologies for budget allocation problems.

On incorporating network considerations into the MR&R decision-making problem, the
presence of an underlying network configuration introduces heterogeneity among the indi-
vidual road segments. As a result, the optimal nature of randomized policy frameworks is no
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longer guaranteed. In addition, most multidimensional MDP frameworks developed for solv-
ing budget allocation problems are not easily extendible to account for network constraints.
Consequently, the use of approximate dynamic programming is motivated, as it is a general
modeling framework used for solving MDP problems.

In the context of infrastructure management, the use of approximate dynamic program-
ming is a recent phenomenon. While previous research establishes that MR&R decision-
making problems can be modeled using ADP for budget allocation problems, as part of this
dissertation, it is shown that ADP is more relevant for modeling problems involving complex
inter-facility dynamics. In particular, the parametric case study presented in chapter 4 illus-
trates a cohesive MR&R decision-making methodology for policy makers, which integrates
both budget allocation and work zone scheduling problems in a unified framework.

From a research perspective, this dissertation provides important insights into the suit-
ability of ADP-based approaches for infrastructure management problems. It also high-
lights the benefit of benchmarking ADP against other MDP frameworks, especially since
theoretical guarantees of optimality cannot be obtained. For instance, while the structural
interdependence problem showed that ADP performs significantly better than SNO, the eco-
nomic interdependence problem (chapter 5) indicates that the performance of ADP can be
better/worse than SNO depending on the parameters of the problem. Some of the shortcom-
ings of ADP have also been pointed out, such as the subjectivity in modeling value function
approximations, and the issue of exploration versus exploitation.

In conclusion, it is evident from this research that ADP is a robust modeling framework.
With rapid improvements in computation power taking place, ADP provides an exciting op-
portunity for researchers as well as practitioners to look beyond traditional budget allocation
problems and model the intricacies of system-level MR&R decision-making.

6.2 Future Work

The research presented as part of this dissertation can be improved along several directions.
The discussion on future work is classified here into two parts: Section 6.2.1 outlines the
avenues which can be explored to make the ADP framework perform better. Section 6.2.2
briefly describes some problems of interest, which are either direct extensions of the work
presented in the dissertation, or other problems pertaining to infrastructure management.

6.2.1 Methodological Improvements

A major concern with any ADP implementation is the issue of exploration versus exploita-
tion. Since the state-action space for infrastructure management problems is invariably large,
it is important to identify effective learning strategies which balance the need for exploration
and exploitation. In this regard, a promising technique called the knowledge gradient ap-
proach is discussed in Powell (2007). The objective of this approach is to maintain estimates
of the mean and the variance of the basis function parameters being learnt, and explore for
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new solutions with an objective of minimizing the variance associated with the state-action
pairs.

The dissertation describes a preliminary implementation of an approximate dynamic
programming framework for infrastructure management systems. In texts such as Bertsekas
and Tsitsiklis (1996), Sutton and Barto (1998), and Powell (2007), several different ADP
techniques, such as approximate policy iteration, actor-critic algorithms, approximate linear
programming, etc., have been described. The suitability of these techniques for infrastructure
management problems needs to be investigated.

6.2.2 Related Problems of Interest

• In section 4.4, some of the limitations associated with a capacity-based framework were
discussed, and potential alternatives, such as the use of a travel time-based network
performance measure, were suggested. Some of these alternative modeling techniques
would be useful to implement ADP on larger networks.

• The work presented for the economic interdependence problem should be further ex-
plored using insights from the parallel machine replacement literature.

• In recent times, state augmentation techniques have been used by researchers to model
richer Markovian transition matrices which consider the impact of the prior condition
states and maintenance history on the facility deterioration (Robelin and Madanat
2007). An expansion of the state space can lead to computational challenges with
regards to efficiently solving the SNO framework. The suitability of an ADP approach
is worth exploring in this context.
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Appendix A

Cost Structure for Numerical
Examples

Table A.1: Cost structure for numerical example

Mainte-
nance

Activity

Pavement State

1 2 3 4 5 6 7 8

Acceptable Unacceptable

Do-Nothing 0 0 0 0 0 0 0 0
Maintenance 0.04 0.15 0 .31 0.65 0.83 1.4 2 6.9

Rehabilitation 3.81 3.91 4.11 6.64 9.06 10.69 12.31 21.81
Replacement 25.97 25.97 25.97 25.97 25.97 25.97 25.97 25.97

User Costs 0 2 4 8 14 22 25 100
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Appendix B

Transition Probability Matrices

Table B.1: Do nothing transition matrix

sτ
sτ+1

1 2 3 4 5 6 7 8

1 0.6 0.4 0 0 0 0 0 0
2 0 0.5 0.5 0 0 0 0 0
3 0 0 0.4 0.6 0 0 0 0
4 0 0 0 0.35 0.65 0 0 0
5 0 0 0 0 0.3 0.7 0 0
6 0 0 0 0 0 0.2 0.8 0
7 0 0 0 0 0 0 0.1 0.9
8 0 0 0 0 0 0 0 1
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Table B.2: Routine maintenance transition matrix

sτ
sτ+1

1 2 3 4 5 6 7 8

1 0.85 0.15 0 0 0 0 0 0
2 0 0.73 0.37 0 0 0 0 0
3 0 0 0.62 0.38 0 0 0 0
4 0 0 0 0.52 0.48 0 0 0
5 0 0 0 0 0.43 0.57 0 0
6 0 0 0 0 0 0.35 0.65 0
7 0 0 0 0 0 0 0.29 0.71
8 0 0 0 0 0 0 0 1

Table B.3: Rehabilitation transition matrix

sτ
sτ+1

1 2 3 4 5 6 7 8

1 1 0 0 0 0 0 0 0
2 0.85 0.15 0 0 0 0 0 0
3 0 0.85 0.15 0 0 0 0 0
4 0 0 0.85 0.15 0 0 0 0
5 0 0 0 0.85 0.15 0 0 0
6 0 0 0 0 0.85 0.15 0 0
7 0 0 0 0 0 0.85 0.15 0
8 0 0 0 0 0 0 0.85 0.15
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Table B.4: Reconstruction transition matrix

sτ
sτ+1

1 2 3 4 5 6 7 8

1 1 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0
5 1 0 0 0 0 0 0 0
6 1 0 0 0 0 0 0 0
7 1 0 0 0 0 0 0 0
8 1 0 0 0 0 0 0 0
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