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Climate impacts of the Atlantic Multidecadal Oscillation
simulated in the CMIP5 models: A re-evaluation
based on a revised index
Kewei Lyu1 and Jin-Yi Yu1

1Department of Earth System Science, University of California, Irvine, California, USA

Abstract The Atlantic Multidecadal Oscillation (AMO) has pronounced influences on weather and climate
across the globe. This study provides a direct comparison of the observed AMO-related surface temperature
and precipitation anomalies to those simulated in the Coupled Model Intercomparison Project Phase 5
(CMIP5) models. It is found that the model-simulated AMO-related features are obscured by the global signal
in some key regions if the North Atlantic sea surface temperature (SST) itself is used to represent the AMO as
in previous studies. After the global mean SST is removed from the North Atlantic SST, the CMIP5 models
show substantially better agreement with the observations in terms of the AMO-related worldwide impacts,
such as the Pacific SST and the rainfall over the United States and India. These results suggest the removal of
the global signal or signals originating in other ocean basins is a necessary procedure to uncover the AMO
features in climate model simulations.

1. Introduction

Sea surface temperatures (SSTs) in the North Atlantic exhibit a basin-scale fluctuation on multidecadal time
scales known as the Atlantic Multidecadal Oscillation (AMO) [Kerr, 2000]. The underlying mechanisms for
the observed AMO are still a subject of debate. The AMO could arise from internal dynamics of the climate
system, given the existence of AMO-like spatial-temporal features in preindustrial proxy-based climate recon-
structions and long climate model simulations with constant external forcing [Delworth and Mann, 2000;
Knight et al., 2005]. This “internally generated” AMO has been attributed to changes in northward heat trans-
port by the Atlantic meridional overturning circulation (AMOC) [e.g., Delworth et al., 1993; O’Reilly et al., 2016;
Zhang et al., 2016] or the middle-latitude atmospheric stochastic forcing [Clement et al., 2015]. Besides these
unforced climate dynamics, external forcings, either anthropogenic or naturally occurring (e.g., aerosols and
volcanos), may also contribute to the observed AMO [Otterå et al., 2010; Booth et al., 2012]. A number of
studies suggested that the observed AMO should be viewed as a combination of both internal variability
and responses to external forcings, which have somewhat distinct signatures though it is still challenging
to clearly distinguish them [Knight, 2009; Ting et al., 2009, 2014; DelSole et al., 2011; Terray, 2012; Zhang
et al., 2013; Lyu et al., 2015].

Although the primary drivers remain unclear [e.g., Keenlyside et al., 2015], as one of the most important
climate modes, the AMO has been widely linked to prominent regional climate anomalies that can have
tremendous socioeconomic consequences. The AMO can modulate Atlantic hurricane activity [Goldenberg
et al., 2001], disrupt the North American and European summer climate [Sutton and Hodson, 2005], and
change rainfall over the United States [Enfield et al., 2001], the Sahel [Folland et al., 1986], and northeast
Brazil [Knight et al., 2006]. The AMO impacts are not confined in and around the Atlantic but have been found
worldwide, e.g., in the Asian and Indian monsoon [Zhang and Delworth, 2005], China summer drought
pattern [Qian et al., 2014], Siberian rainfall [Sun et al., 2015], low-frequency El Niño–Southern Oscillation
modulations [Dong et al., 2006; Timmermann et al., 2007; Yu et al., 2015], and Antarctic sea ice [Li et al.,
2014]. In light of its connections to these high-impact regional climate phenomena, a realistic simulation
of the AMO and its climate impacts is of great importance for better understanding the historical climate
record and also for improving near-term climate predictions.

Several studies have examined whether global climate models can simulate the AMO and its climate impacts.
Ting et al. [2011, 2014] found that the AMO SST patterns and associated tropical Atlantic precipitation anoma-
lies simulated in the Coupled Model Intercomparison Project Phase 3 (CMIP3) models resemble those in the
observations. However, they also found that the CMIP3 models cannot simulate the AMO-related SST
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anomalies in the tropical Pacific and the precipitation anomalies in some other regions such as North
America, India, and Australia. The current generation global climate models from the Coupled Model
Intercomparison Project Phase 5 (CMIP5) can also simulate AMO-like patterns in the North Atlantic but
may underestimate its amplitude and multidecadal component [Zhang and Wang, 2013; Peings et al.,
2016]. Kavvada et al. [2013] and Ruiz-Barradas et al. [2013] suggested that the CMIP5 models cannot simulate
some detailed features of the AMO as well as its hydroclimate impacts on neighboring continents. Han et al.
[2016] found that the AMO-related climate signals around the North Atlantic in the CMIP5 models are fairly
consistent with the observations, while major disagreements exist in other regions. The failures of climate
models to reproduce some observed AMO-related climate phenomena raise questions about the robust-
ness of their linkages with the AMO that have been inferred from short instrumental records and also cast
doubt on the capability of current global climate models to represent and predict these and perhaps other
climate impacts.

In this study, we argue that these previous studies using the North Atlantic-averaged SST (NASST) to repre-
sent the AMO failed to account for a global signal that largely masks the AMO-related large-scale features.
Here we present a new estimate of the AMO-related worldwide impacts simulated in the CMIP5 models
based on a revised AMO index constructed by simply subtracting the time-dependent global mean SST
(GMSST) from the NASST. This new estimate shows better agreement with its observed counterpart than that
based on the NASST only, implying a better performance of global climate models than suggested in
previous studies.

2. Observations and CMIP5 Models

Gridded land surface temperatures and precipitation at a horizontal resolution of 0.5° for the period
1901–2014 from the Climatic Research Unit time series data set version 3.23 (CRU TS 3.23) [Harris et al.,
2014] are used to characterize the observed AMO impacts. The SST data on a 1° longitude-latitude grid are
from the Hadley Centre SST data set (HadISST) [Rayner et al., 2003]. We analyzed the 26 CMIP5 models for
which preindustrial runs of at least 400 years are available (supporting information Table S1). The preindus-
trial runs, which have considerably larger samples of AMO cycles than historical runs and observations, were
mainly analyzed here to examine whether the AMO climate impacts seen in the comparatively short obser-
vational record are robust or not. The choice of analyzing the preindustrial runs also excludes possible
contributions from external forcing, thus allowing an investigation of the AMO that is only internally gener-
ated within the climate system.

3. Results

The NASST index was calculated as the 10 year low-pass-filtered area-weighted average of SST over 0°–70°N,
80°W–0° (supporting information Figure S1). The NASST was linearly detrended to remove the long-term
warming signal. Since the anthropogenic effects do not have to be linear, a linear detrending may not fully
remove the imprint of anthropogenic forcing on the NASST. Considering that the observed NASST variations
result from a combination of a background global signal and a regional signal with North Atlantic origins,
written as

NASST ¼ GMSSTþ AMO�; (1)

Trenberth and Shea [2006] proposed a revised AMO index by subtracting the GMSST time series from the
NASST. Here the GMSST serves as a proxy for the nonstationary anthropogenic signal, although it still has
contributions from the internal climate variability. Given that the GMSST may not be sufficient to represent
the North Atlantic local expressions of the external forcing, another way to derive the AMO index is by
removing multimodel ensemble estimates of the forced component of NASST variations from the observed
NASST [Ting et al., 2009]. Deser et al. [2010] and Peings et al. [2016] showed that there is large consistency
among the temporal evolutions of these three types of AMO index, although they differ substantially in
the degree to which the recent North Atlantic warming is attributed to external forcing or the internal
AMO. We found the correlation between the filtered and detrended NASST and AMO* (i.e., NASST minus
GMSST) in observations is as high as 0.88. Therefore, as shown below, regression patterns onto the filtered
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and detrended NASST and AMO* in observations exhibit few differences and also share similar features to
those based on the NASST with the model-estimated forced signal removed [Ting et al., 2011].

We examined the AMO-related surface temperature anomalies by regressing observed SSTs and land surface
temperatures and simulated surface air temperatures onto the filtered and detrended NASST and AMO*. The
AMO has a comma-like SST structure with the largest anomalies in the subpolar North Atlantic extending into
the subtropics in the eastern portion of the basin, which is well simulated by the CMIP5 models whether the
regressions are based on NASST or AMO* (Figure 1). The imprints of the AMO on the SST field, though
centered in the North Atlantic, extend well beyond. In observations, the positive AMO phase is accompanied
by cooling in the South Atlantic, a zonally elongated band in the Southern Ocean, and the tropical Pacific as
well as warming in northwest and southwest Pacific (Figures 1a and 1b). Similar features can be seen in the
recent two AMO phase shift events during the 1960s and the 1990s (supporting information Figure S2) and
also occur for both winter and summer (supporting information Figures S3 and S4). The observed
AMO-related Pacific SST anomalies are generally consistent with responses seen in coupled model experi-
ments using prescribed AMO SST forcing in the North Atlantic [Dong et al., 2006; Kang et al., 2014;
Kucharski et al., 2016; Lyu et al., 2017; Ruprich-Robert et al., 2017]. They are also consistent with the responses
to changes in AMOC intensity [Zhang and Delworth, 2005; Timmermann et al., 2007; Wu et al., 2008] and
agree with a recent analysis by Barcikowska et al. [2017]. McGregor et al. [2014] and Li et al. [2015] suggested
that the recent tropical Atlantic warming contributes to the tropical Pacific cooling during the past
several decades.

The multimodel averaged regression patterns onto the NASST in the CMIP5 preindustrial simulations show
extensive warming over much of the globe (Figure 1c), in clear contrast to the observed anomalies outside
the North Atlantic (Figures 1a and 1b). In the Pacific, the simulated NASST regressions even have SST anoma-
lies of nearly opposite sign to the observations, with warming in the tropical Pacific and insignificant cooling
at middle latitudes (Figure 1c). In contrast, when regressing onto the AMO*, i.e., NASST minus GMSST, we
found that most of the observed AMO-related SST features outside the North Atlantic can be clearly seen
in the CMIP5 preindustrial simulations, including cooling in the South Atlantic, the Southern Ocean, and

Figure 1. Regression patterns in annual surface temperature (°C per 1° of North Atlantic warming) onto the 10 year low-pass-filtered and detrended (a and c) NASST
and (b and d) NASST minus GMSST: observations Figures 1a and 1b and multimodel mean patterns Figures 1c and 1d from the CMIP5 preindustrial runs, with
stippling indicating that at least two thirds of the models (18 out of 26) agree on the sign of regression values.

Geophysical Research Letters 10.1002/2017GL072681

LYU AND YU AMO CLIMATE IMPACTS IN CMIP5 MODELS 3869



the tropical Pacific as well as warming in the extratropical Pacific, although the southwestern Pacific warming
is not consistently reproduced (Figure 1d).

It appears that in order to identify “true” surface temperature anomalies associated with the AMO in climate
model simulations, the GMSST has to be removed from the NASST before the regressions are performed
(Figures 1c and 1d), although this is not a necessary procedure for observations (Figures 1a and 1b). To
explain such difference, we investigated the causes of GMSST variations in observations and the CMIP5
simulations. Regressions onto the 10 year low-pass-filtered and detrended GMSST in observations show
the largest anomalies are in the North Atlantic and closely resemble the AMO (Figure 2a), consistent with
previous studies showing that the variations in the observed global mean surface temperature have a
multidecadal component that is largely in phase with the NASST variations [Schlesinger and Ramankutty,
1994;Wu et al., 2011; Zhou and Tung, 2013; Chylek et al., 2014]. The observed GMSST warming is accompanied
not only by considerable North Atlantic warming but also cooling in the South Atlantic and the Southern
Ocean (Figure 2a), implying a possible signature of the AMOC. Chen and Tung [2014] found substantial ocean
heat uptake occurred in the Atlantic and the Southern Ocean during the recent global mean surface
temperature warming slowdown (i.e., “hiatus”), further supporting the important role for the AMOC in global
heat redistribution. Therefore, the observed multidecadal GMSST variations may be partly due to internal
AMO variability, which implies that removing the GMSST from the NASST in observations would result in
the loss of part of the AMO signal, as also commented on by Enfield and Cid-Serrano [2010]. However, for
the purposes of identifying the AMO large-scale teleconnections rather than the AMO itself, removing the
GMSST does not affect the observational results much (Figures 1a and 1b), since the regional signals asso-
ciated with observed GMSST variations are primarily located in the North Atlantic with much weaker expres-
sions in other regions (Figure 2a). Therefore, in observations, subtracting the GMSST-related signal (Figure 2a)
from the NASST-related signal (Figure 1a) gives very similar patterns both in and outside the North Atlantic
(Figure 1b).

The removal of GMSST from NASST proposed by Trenberth and Shea [2006] was intended to expunge the
anthropogenic effects from observations. One may question why this procedure is necessary for climate

Figure 2. Regression patterns in the SST (°C) onto the normalized, 10 year low-pass-filtered and detrended GMSST: (a) observations and (b, c) multimodel mean
patterns from the CMIP5 preindustrial or historical runs, with stippling indicating that at least two thirds of the models (18 out of 26) agree on the sign of
regression values. (d) Correlations of the NASST and TPSST with the GMSST in observations and the CMIP5 preindustrial and historical runs. The black boxes in
Figures 2a and 2b indicate the NASST and TPSST regions.
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model preindustrial simulations that contain no externally forced signals (Figures 1c and 1d). The multimodel
averaged regression patterns onto the filtered and detrended GMSST in the CMIP5 preindustrial simulations
exhibit prominent SST anomalies in the tropical Pacific and opposite-signed anomalies in the midlatitude
North and South Pacific (Figure 2b), which closely resemble the Interdecadal Pacific Oscillation pattern
[e.g., Lyu et al., 2016]. Such model evidence suggests an important role for Pacific low-frequency climate
variability in the recent global mean surface warming slowdown [e.g., Kosaka and Xie, 2013; Trenberth and
Fasullo, 2013; England et al., 2014; Maher et al., 2014; Song et al., 2014]. To facilitate a direct comparison
between observations and models, we calculated the correlations of the GMSST with the NASST and tropical
Pacific SST (TPSST) on time scales longer than 10 years in observations and the CMIP5 preindustrial simula-
tions. While the observed GMSST is highly correlated with the NASST (~0.77), most of the CMIP5 preindustrial
runs produce unforced GMSST variations that are more associated with the TPSST than with the NASST
(Figure 2d). It seems that the GMSST variations in observations and the preindustrial simulations are likely
the result of different climate processes that have their emphasis in different ocean basins (Figures 2a and
2b). Regressions onto the NASST (Figure 1c) capture the joint effects of both the AMO-related signals
(Figure 1d) and the GMSST-related signals (Figure 2b), with the latter being mainly induced by the Pacific
low-frequency variability in the preindustrial simulations. Since the GMSST-related SST anomalies outside
the North Atlantic are nearly opposite in sign compared to those associated with the AMO* in the preindus-
trial simulations (Figure 2b versus Figure 1d), a combination of these two signals, i.e., regressions onto the
NASST (Figure 1c), easily mask the AMO-related signals that are of Atlantic origin. Therefore, for climate
model preindustrial simulations, the AMO-related SST features outside the North Atlantic can only be
revealed after the global signal is factored out (Figure 1d).

We repeated our analysis using the CMIP5 historical simulations, in which the GMSST variations have
additional contributions from the changing external forcings as in observations [Sutton et al., 2015]. In the
historical simulations, the correlations between the filtered and detrended GMSST and NASST are larger
and closer to the observed value than in the preindustrial simulations (Figure 2d). However, the GMSST is still
highly correlated with TPSST (Figure 2d), with the GMSST regression patterns also showing the largest SST
anomalies in the tropical Pacific (Figure 2c). Therefore, as in the preindustrial simulations, the removal of
the GMSST from the NASST also helps to reveal the AMO-related large-scale features from the global signal
in the historical simulations, although such a simple procedure cannot fully account for the externally forced
NASST signal (supporting information Figure S5). The inconsistency between the GMSST regression patterns
in observations (Figure 2a) and the historical simulations (Figure 2c) poses a challenge to our understanding
of the variations in global mean surface temperature. The possible reasons for this difference could be that
the climate models may overestimate the role of Pacific climate processes in modulating the GMSST, or
the impacts of unforced Pacific climate variability on the GMSST in the real world are dominated by the
impacts of varying external forcings, or the climate models cannot realistically represent global and regional
climate responses to the external forcings.

The precipitation data were also regressed onto the filtered and detrended NASST and AMO* in both obser-
vations and the CMIP5 simulations (Figure 3; see the supporting information Figure S6 for annual mean
regression patterns). We also checked the precipitation anomalies associated with the recent two AMO phase
shift events (supporting information Figure S7). Compared to the observations which are for land only, the
climate model simulations enable us to investigate the large-scale patterns that influence the precipitation
over land and the possible causes. In the tropical Atlantic, the CMIP5 multimodel mean regression patterns
show a north-south dipole of precipitation anomalies straddling the climatological precipitation maxima.
In December–February (DJF), the westward extension of this anomalous rainfall dipole over the land leads
to increased rainfall over the northern South America and a reduction in rainfall over the rest of South
America including northeast Brazil [Knight et al., 2006] and southeastern South America [Seager et al., 2010]
(Figures 3a–3d). In June–August (JJA), this dipolar structure moves northward with the climatological
Intertropical Convergence Zone (ITCZ) location, also leading to increased rainfall over Central America, the
Caribbean, and western Africa including the Sahel region (Figures 3e–3h). The linkage between the AMO
and the Sahel summer rainfall has been widely reported based on observations and model simulations
[Knight et al., 2006; Zhang and Delworth, 2006; Mohino et al., 2011; Wang et al., 2012] as well as paleoclimate
reconstructions [Shanahan et al., 2009]. Martin et al. [2014] suggested that the AMO-related Sahel rainfall
anomalies are weak in the CMIP5 simulations (Figures 3g and 3h) due to insufficient SST forcing in the
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tropical North Atlantic and Mediterranean. Regressions onto either the NASST or AMO* in the CMIP5
simulations reproduce these observed precipitation anomalies in the tropical Atlantic (Figure 3), which are
directly induced by a meridional migration of the Atlantic ITCZ as a response to the anomalous
interhemispheric SST contrasts in the Atlantic (Figure 1). The AMO-related SST signals in other ocean

Figure 3. Regression patterns in DJF and JJA precipitation (mm/d per 1° of North Atlantic warming) onto the 10 year low-
pass-filtered and detrended (a, c, e, and g) NASST and (b, d, f, and h) NASST minus GMSST: observations Figures 3a, 3b,
3e, and 3f and multimodel mean patterns Figures 3c, 3d, 3g, and 3h from the CMIP5 preindustrial runs, with stippling
indicating that at least two thirds of the models (18 out of 26) agree on the sign of regression values.
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basins are likely to play a limited role since the NASST and AMO* regressions give distinct SST patterns
outside the North Atlantic (Figures 1c and 1d) but similar precipitation anomalies in the tropical Atlantic.

However, we found that the removal of GMSST from NASST is still necessary to identify the simulated AMO
hydroclimate impacts in other key regions. A prominent example is rainfall over the North America, which
has been widely linked to the AMO [e.g., Enfield et al., 2001; McCabe et al., 2004; Sutton and Hodson, 2005;
Knight et al., 2006]. When the AMO is in its positive phase, the observations show the United States receives
less than normal rainfall in both winter (Figures 3a and 3b) and summer (Figures 3e and 3f) despite different
regional emphasis. Similar to the previous analyses of climate models [Ting et al., 2011; Kavvada et al., 2013;
Ruiz-Barradas et al., 2013; Han et al., 2016], regressions onto the NASST in CMIP5 simulations show very weak
precipitation anomalies over the United States (Figures 3c and 3g). In contrast, regressions onto the AMO*

give consistent droughts over the United States across a majority of the models (Figures 3d and 3h). Given
that regressions onto the NASST and AMO* produce similar AMO SST structures but distinct SST patterns
outside the North Atlantic (Figures 1c and 1d), the contrasting precipitation regression values highlight the
important role of AMO-related SST anomalies outside the North Atlantic in forcing precipitation anomalies
over the United States. McCabe et al. [2004] suggested that the observed droughts over the United States
are related to both the North Atlantic warming and the northeastern and tropical Pacific cooling, with the
latter being captured by the AMO* (Figure 1d). The tropical Pacific warming shown in the NASST regressions
(Figure 1c), which is related to Pacific climate processes rather than the AMO (Figure 2b), may force wet con-
ditions over the United States that mask the AMO impacts. Our finding may partly explain why atmospheric
general circulation models forced with prescribed AMO SST anomalies confined to the North Atlantic have
difficulty simulating the United States rainfall response to the AMO [Hodson et al., 2010], since the La Niña-like
Pacific SST anomalies during the positive AMO phase (Figure 1) could reinforce the AMO direct impacts.

Kushnir et al. [2010] found that a warmer tropical Atlantic is accompanied by the suppressed convection over
the equatorial Pacific, which could excite extratropical wave responses that result in reduced rainfall over the
United States. Considering the importance of the tropical Pacific forcing, we also examined the AMO-related
precipitation anomalies over the tropical Pacific. Regressions onto the NASST show increased rainfall over the
equatorial Pacific corresponding to the NASST-projected tropical Pacific warming (Figure 1c). On the contrary,
regressions onto the AMO* show suppressed rainfall over the central equatorial Pacific, which is consistent
with the results from coupled model experiments forced by AMO SST anomalies in the North Atlantic
[Dong et al., 2006; Lyu et al., 2017; Ruprich-Robert et al., 2017]. The AMO* regressions in the CMIP5 simulations
also reproduce the observed positive rainfall anomalies over the Maritime Continent during the positive AMO
phase, which cannot be seen in the NASST regressions. A southward displacement of the South Pacific
Convergence Zone seen in the AMO* regressions leads to increased rainfall over the east coast of Australia
during DJF (Figure 3d). The increased Siberian warm season (JJA) rainfall during the positive AMO phase,
as reported by Sun et al. [2015], cannot be seen in the CMIP5 simulations regardless of the index used for
regression (Figures 3e–3h), even when the external forcings are included (supporting information Figure S5).

Another outstanding example illustrating the necessity of factoring out the global signal is the Indian sum-
mer rainfall. When the AMO is in its positive phase, the observations show more rainfall over the India during
JJA (Figures 3e and 3f), indicating a stronger Indian summer monsoon [Goswami et al., 2006], as also con-
firmed in coupled model experiments [Zhang and Delworth, 2005, 2006; Ruprich-Robert et al., 2017].
Regressions onto the NASST in the CMIP5 simulations instead show inconsistent or even opposite-signed
rainfall anomalies over the India (Figure 3g), while regressions onto the AMO* reveal that the CMIP5 models
generally simulate increased Indian summer rainfall during the positive AMO phase as in observations
(Figure 3h). Our results highlight the potential role for concurrent SST anomalies outside the North Atlantic
in connecting the AMO with the Indian summer monsoon.

4. Summary and Discussion

This study aims to determine to what degree current state-of-the-art CMIP5 models can simulate the AMO-
related climate signals across the globe. When the NASST is used to represent the AMO as in previous studies,
the CMIP5 models mainly simulate the AMO-like SST pattern in the North Atlantic along with the associated
rainfall anomalies over the Central and South America and the Sahel region as direct responses to a meridio-
nal shift of the Atlantic ITCZ. In contrast, by simply removing the GMSST from the NASST and thus separating
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the AMO signal with local origins in the North Atlantic from the global signal, we found that the CMIP5
models can also reproduce the observed SST anomalies outside the North Atlantic as well as hydroclimate
impacts in some key regions, such as drying over the United States, wetting over the Maritime Continent
and the enhanced Indian summer monsoon during the positive phase of the AMO. Our results suggest that
previous analyses of climate model simulations based on the NASST only, which failed to account for the
global signal, underestimated the model performance in simulating the AMO-related worldwide climate
impacts. However, it should be recognized that both the observational and intermodel uncertainties are still
considerably large and the multimodel ensemble mean tends to underestimate the AMO-related climate
signals (supporting information Figure S8). We also found that the CMIP5 models have difficulty in reprodu-
cing some observed AMO-related regional impacts, such as its downstream effects on the Siberian warm
season rainfall. Future investigations are needed to diagnose these model deficiencies.

Our results concur with Marini and Frankignoul [2014] who also emphasized that the global signal should be
carefully removed when examining low-frequency interbasin connections. We also removed regression onto
the low-pass-filtered GMSST from the NASST and found nearly identical AMO patterns, which suggests that
the GMSST itself could represent local expressions of the global signal in the North Atlantic. Removing the
influences of Pacific low-frequency variability on the NASST by subtracting the regression onto the
low-pass-filtered TPSST of the NASST also produces similar results (supporting information Figures S9 and S10).
Further intercomparisons are required to determine which approach for isolating the AMO signal is optimal
[Marini and Frankignoul, 2014].

The agreement between observations and the CMIP5 long preindustrial simulations confirms the robust
climate impacts of an AMO that is internally generated within the climate system, a conclusion that cannot
be firmly drawn from analyses of the short instrumental record. Our finding that global climate models repro-
duce the observed major AMO climate impacts also implies that the predictability of the AMO itself [e.g.,
Keenlyside et al., 2008] may be extended to a range of regional decadal climate predictions.
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