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Abstract

Earthquake events are among the most devastating catas-
trophes on Earth. Besides human casualties, they are also
responsible for large damage to a variety of man-built ob-
jects. Civil engineering thus has significant interest in un-
derstanding effects of earthquakes. Induced dynamic mo-
tions will cause significant oscillations in stress and strain
tensors inside 3D solids (soils, concrete and steel). These
fluctuations in stresses and strains can result in failure of
one of the components of the civil engineering object which
might eventually lead to the complete failure and loss of
life. We use tensor visualization techniques to study seis-
mic behavior of concrete pile foundations embedded in
soil. We show results and limitations of current and new
techniques leading to a discussion of possible further re-
search.

Keywords: visualization, tensor field, soil structure
simulation, hyperstreamlines, hyperstreamsurfaces

1. Introduction

Earthquakes have a devastating effect on mankind. They
cost lives and destroy buildings, dams, bridges and other
valuable civil infrastructure. There exists an enormous in-
terest to limit seismic effects on foundations and structures.
Experience has shown that building technology can reduce
damage and save lives as well as increase damage and ca-
sualties. Since earthquakes are vibrations of the ground,
a detailed study of foundation systems is necessary. In
this case study, we concentrate on concrete single piles and
pile groups grounded in soil. The Center for Geotechni-
cal Modeling (CGM) at UC Davis is using the finite ele-
ment method to analyze the mechanics of seismic behavior
of soil–foundation–structure interaction (SFSI). The stress
and strain tensor fields in the concrete piles and in the soil
are of major interest as they control the inelastic (non–
linear) response of the system. A sad example for the prac-
tical relevance of this research is the failure of the Hanshin
Expressway Route 3 in Kobe, Japan, in 1995 [5].

2. Soil-Pile Structure Simulation

The SFSI simulations performed at CGM aim at increas-
ing our understanding of the behavior of the pile–soil sys-
tems during strong earthquake events. To this end CGM
researchers perform direct, time-dependent, 3D elastic–
plastic simulations of solid models representing complete
SFSI systems. Simulations are performed on a Beowulf
parallel computer system. Post–processing of results from
the dynamic analysis of large 3D finite element models tend
to be cumbersome if advanced visualization tools are not
used.

Of particular interest is the visualization of the dy-
namic behavior of stress and strain tensor fields. The cyclic
nature of those tensor fields is mainly responsible for fail-
ures associated with earthquake events.

3. Physical and Mathematical Background

We are dealing with steady and time-dependent stress ten-
sor fields in this case study. These are three-dimensional
symmetric, second-order tensor fields. For a precise de-
scription, we provide a few basic definitions about tensors.
We have also added some basic definitions about stress ten-
sors.

3.1 Tensors

We adopt the notations of Borisenko and Tarapov [1] and
Delmarcelle and Hesselink [2]. A (covariant) real tensor of
second order and dimension d is a linear map

T : Rd
�Rd

! R:

A tensor field

T : Rd
� V ! Lin(Rd

�Rd
! R)

defines a tensor for each position of a region in space. We
will always have a single, fixed orthonormal coordinate
system in three dimensions in our examples, thus we de-



scribe a tensor by a 3� 3-matrix

T =

0
@

T11 T12 T13
T21 T22 T23
T31 T32 T33

1
A :

A tensor field is, in our case, a map

T : R3
! R3�3 (1)

(x; y; z) 7!

0
@

T11 T12 T13
T21 T22 T23
T31 T32 T33

1
A :

Furthermore, we are concerned with symmetric tensor
fields, for which we can use the notation

T : R3
! R3�3 (2)

(x; y; z) 7!

0
@

T11 T12 T13
T12 T22 T23
T13 T23 T33

1
A :

It is well known that a symmetric tensor can always be ex-
pressed by its eigenvalues and eigenvectors, i.e., for each
tensor, there exist three numbers �1; �2, and �3 2 R and
three associated orthogonal vectors v1; v2, and v3, respec-
tively, such that

Tvi = �ivi:

Since the three eigenvectors span the whole space and the
tensor is linear, the tensor can be described completely by
its eigenvalues and eigenvectors.

3.2 Stress Tensor Field

In our application, civil engineers are especially interested
in the stress inside piles, on their boundaries and in the soil
close to piles. Stress can be defined using stress vectors [4].
Let V be a spatial region covered with a material B, and let
S be a closed surface in B. For a small surface element
�S, let N be the outward unit normal vector. If the outer
part exerts a force �F on the inner part, we call the ratio

T =
�F

�S

a stress vector. (Formally, we define T as the differential
limit dF=dS.) For the stress tensor, we consider a small
cube whose edges are aligned with the coordinate axes
e1; e2; e3. Let �S1 be the side having e1 as normal vec-
tor. Then, we define T11; T21, and T31 as the components
of the stress vector on this surface. By considering �S2

and �S3, we obtain the other components T12; T22; T32
and T13; T23; T33 of the stress tensor. The construction is
illustrated in Fig. 1 and Fig. 2.

4. Stress and Strain Tensor Visualization

Tensor fields have not yet attracked much attention in the
visualization community despite their importance in engi-
neering problems. We have applied some known and some
extended techniques to our simulated data and discuss the
results in the following.

4.1 Hedgehogs

Our first visualization method is a typical hedgehog
method. Considering the various known tensor hedgehogs,
we use the tripod, since it works for positive and nega-
tive eigenvalues (unlike ellipsoids). The tripod consists of
three orthogonal line segements that indicate the directions
of the eigenvectors of the tensor at a single position. En-
gineers are particulary interested in the tension forces in-
side a pile. The danger of tension forces results from the
fact that concrete can withstand large compression forces
but can break under comparably moderate tension forces.
Steel re-inforcements are necessary to compensate for the
weakness of concrete under tension. Another reason is that
engineers are particularly interested in visualizing direc-
tions and magnitudes of tensile stresses and compressive
stresses. The tripods allow for coloring of eigenvectors
by using sign convention. A logical color coding is there-
fore to color positive eigenvalues (tension) red and negative
eigenvalues (compression) green. The length of the line
segments indicates the absolute value of the eigenvalue.
(Engineers, when first shown this type of representation,
required some training to understand the images. Training
was done by using simple, well understood examples to il-
lustrate our method.)

For simple illustration purposes, we have used the
analytical solution for an infinite half-space with a single
point load at the origin, known as Boussinesq problem. (It
has been used earlier by Hesselink, Levy, and Lavin [6].)
We show the result of the hedgehog presentation in Fig. 3.
The dominant compression is easily noticed due to the long
green line segments. The tensions in the other two direc-
tions can also be deduced from the short red line segments.
We have applied the tripod hedgehogs to two non-trivial
data sets. The result in an one-pile scenario is shown in
Fig. 4. One can clearly see the strong forces around the
pile cap and the very weak forces below. It is also apparent
that this phenomenon is complicated, since the hedgehogs
vary heavily. The results with the four-pile cap were sim-
ilar. In all images, engineers quickly became aware of the
classical problem of any hedgehog presentation: There is
no way to visually interpolate the data except for simple
well understood examples like our analytic data set shown
in Fig. 3.

4.2 Hyperstreamlines

Dickinson introduced the concept of tensor lines into visu-
alization [3]. These are curves that are everywhere tangent
to the major, medium and minor eigenvectors. Their calcu-
lation is similar to the numerical calculation of streamlines
in vector fields by just using the eigenvectors instead of
the vectors.Delmarcelle et al. extended this idea to hyper-
streamlines [2]. A hyperstreamline is a tensor line with a
tube or helix structure defined by the other two eigenval-
ues and eigenvectors. Dickenson and Delmarcelle describe
the algorithms for tensor lines and hyperstreamlines in de-



tail, so the reader may consult the references for further de-
tails. Fig. 5 shows some minor hyperstreamlines in a two-
point-load scenario. Minor hyperstreamlines in a push-pull
scenario are shown in Fig. 6. Some minor tensor lines of
the one-pile data set are shown in Fig. 7. Their calcula-
tion does not lead to rapid changes, so the numerical cal-
culation can be done without using large stepsize adapta-
tion. The minor hyperstreamlines shown in Fig. 8 already
exhibit some problems as a result of large changes of the
other two eigenvectors. This is even more evident in the
behavior of the major hyperstreamlines shown in Fig. 9.
In this example, we stopped the major hyperstreamlines
when the major eigenvalue, i.e., all eigenvalues, became
negative — since tension is the main problem for concrete.
Nevertheless, it can be seen that the forces are difficult to
interpret. Fig. 10 exhibits the same problems in the four-
pile-group data. Major hyperstreamlines showed a rather
chaotic behavior, so we picked the minor hyperstreamlines
which show the major eigenvector as one of the diameters.

4.3 Hypersurfaces

For our application, the objective is to obtain a better under-
standing of the behavior of several tensor lines. Therefore,
we investigated the behavior of families of tensor lines. Us-
ing sets of open (or closed) curves as starting curves leads
to hypersurfaces. We have tested this idea for the one point
load data set. A minor hypersurface is shown in Fig. 11.
A medium hypersurface can be seen in Fig. 12. Fig. 13
shows some of these surfaces on the one-pile data set. The
four-pile-group case is given in Fig. 14. The behavior of
the tensor lines can be depicted clearly in these examples.
We used the simplest method to draw the hyperstreamsur-
faces: A user defines a number of uniformly spaced sample
points on the curves. The sample points serve as starting
points for hyperstreamlines that are propagated in the usual
way. The resulting points on the curves are triangulated
creating triangle strips between two neighboring curves. A
more sophisticated algorithm could be based, for example,
on the ideas of Hultquist for stream surface calculations
[7]. This leads to the insertion of new intermediate traces
if neighboring traces diverge above a treshhold for the dis-
tance. On the other side, one would remove traces if the
two neighboring traces in the list come quite close.

5. Tensor Field Structure

A major goal of our research was the use of structural anal-
ysis methods, like topology analysis, for stress and strain
tensor field analysis, inside and outside a pile. Any struc-
tural analysis has to study carefully the questions of the
underlying phenomenon to be useful. In our case, the in-
terest lies on the tension forces. One structural element
are the regions with an equal number of positive eigenval-
ues. Since the tensor values are interpolated continuously
over the domain and eigenvalues depend continuously on

the tensors, a change of the number of positive eigenvalues
forces a zero eigenvalue in between. This leads to a zero
determinant, which happens along surfaces in the general
case. Instead of calculating these surfaces exactly, it is pos-
sible to simply count the number of positive eigenvalues at
each grid point and apply a marching-tetrahedra algorithm
with the values 0.5, 1.5, and 2.5 to approximate volumes
with zero, one, two, and three positive eigenvalues. The re-
sults for the one-pile data set are shown in Fig. 15 and 16.
Since there are no points with three positive eigenvalues,
we show only the isosurfaces with values 0.5 and 1.5. The
civil engineers like these images as there is a direct relation
between the number of positive eigenvalues and the kind of
breaks in the concrete when the magnitude of the tension is
above the “allowable” limit for the concrete.

We are currently working on extending tensor field
topology [6], but the degenerate points alone do not provide
enough information. More research remains to be done.

6. Conclusions

We have presented an important application for tensor field
visualization. Not many techniques exist for tensor field
data sets, so we have applied some of them: tripods, tensor
lines and hyperstreamlines. Tripods provide some informa-
tion about the data but fail to preserve the continuous nature
of tensor fields that is typical for our driving engineering
applications. Tensor lines and hyperstreamlines consider
this continuous behavior, but engineers need to apply these
methods first to simple, well known examples to get used to
them. Hyperstreamsurfaces are a natural extension of ten-
sor lines, since they can be understood as continuous fam-
ilies of tensor lines. Visualizing results from complex 3D
simulations will require further study, but even our simple
approach works well in some cases.

For our application, a structural analysis can be
started by analyzing tension and by extracting surfaces of
zero determinant. There is a direct relation between the
kinds of cracks in concrete due to large tension forces. A
topological analysis of the stress tensor fields will require
more research.
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Figure 1. Definition of stress vector.
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Figure 2. Definition of stress tensor.

Figure 3. Tripod hedgehogs for single-point-load set.

Figure 4. Tripod hedgehogs for one-pile data set.



Figure 5. Minor hyperstreamlines for two-point-load data
set.

Figure 6. Minor hyperstreamlines for push-pull data set.

Figure 7. Minor tensor lines inside the concrete of one-pile
data set.

Figure 8. Minor hyperstreamlines for one-pile data set.
Varying diameter illustrates rapid changes in other two
eigenvalues.

Figure 9. Major hyperstreamlines for one-pile data set.

Figure 10. Minor hyperstreamlines for four-pile group data
set. Varying diameter indicates problems with other two
eigenvector fields.



Figure 11. Minor hyperstreamsurfaces for one-point-load
data set. The simple “structure” of this tensor data set pre-
vents instability problems in the numerical calculations.

Figure 12. Medium hyperstreamsurfaces for one-point-
load data set.

Figure 13. Minor hyperstreamsurface limited to concrete
pile. Behavior of a family of minor tensor lines starting at
center line of pile becomes evident.

Figure 14. Minor hyperstreamsurface visualizing behav-
ior of a family of minor tensor lines for four-pile-group
data set. (We have removed one of the piles to simplify
the view.)

Figure 15. Isosurface of regions with at least one positive
eigenvalue of the one-pile data set. (The isosurfaces are
limited to the pile and the cells in the soil adjacent to the
pile.)

Figure 16. Isosurfaces of regions with at least two positive
eigenvalues of the one-pile data set. (The isosurfaces are
limited to the pile and the cells in the soil adjacent to the
pile.)




