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Multiple antennas can effectively minimize the negative impact of multi-

plicative fading in wireless communication systems by providing spatial diversity.

In this thesis we consider a spatial diversity scheme with multiple antennas at the

base station. In order to achieve the optimum performance gains, i.e., to achieve

both the array gain and the diversity gain, the transmitter needs to know chan-

nel information. In frequency division duplexing systems the channel information

has to be fedback to the transmitter. This feedback requirement leads to various

forms of imperfection. A typical practical system has three main sources of feed-

back imperfection, namely, channel estimation errors, channel quantization, and

feedback delay. In this thesis we comprehensively study the impact of feedback

imperfections on the performance of multi-antenna systems.

We develop a general framework capturing the three forms of feedback

imperfection, i.e., estimation errors, quantization, and delay, for both spatially in-

dependent and correlated fading scenarios. In the modeling of imperfect feedback,

we show that depending on the beamforming vector construction, the feedback

delay error term can be known or unknown at the receiver. On the other hand,

channel estimation error term is always unknown at the receiver. In a slow fading
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context, i.e., in scenarios where channel remains constant for the entire packet,

we highlight the fact that both the estimation error term and the delay error

term remain constant, with estimation error term unknown at the receiver and

delay error term known at the receiver, for the entire packet while the thermal

noise changes from symbol-to-symbol. For spatially independent channels, with

the help of general framework, we then analytically quantify the effect of the three

forms of feedback imperfection on the symbol and bit error probabilities of both

M -PSK and M -ary rectangular QAM constellations with Gray code mapping. We

also derive an analytical expression for the average packet error probability with

BPSK signaling.

In addition, with channel estimation errors and feedback delay, for spa-

tially correlated channels, we develop codebook design algorithms specific to the

modulation format and ergodic capacity. The new optimum codebooks show an

improvement in performance compared to the existing set of codebooks available

in the literature. Utilizing high resolution quantization theory and assuming per-

fect channel estimation at the receiver, we analyze the loss in average symbol error

probability for spatially independent and correlated finite-rate feedback transmit

beamforming multiple input single output systems with M1×M2-QAM constella-

tion.

We also address the issue of minimizing the negative impact of feedback

delay. A natural way to combat the effect of feedback delay is channel prediction.

We study the role of ergodicity in wireless channel modeling and provide an insight

into when statistical channel models that employ ensemble averaging are appro-

priate for the purpose of channel prediction. Simulation results complement the

extensive set of analytical expressions derived in the thesis.
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1 Introduction

The random nature of multiplicative fading is at the heart of wireless

communications. The wireless channel is typically understood in terms of three

broadly defined phenomena. The first is the path-loss or slow fading, i.e., the power

of electromagnetic waves, carrying the information, decreases exponentially with

distance. Second is the shadow fading, which captures the coarse details of the

environment of the mobile receiver. Shadow fading captures the loss in the power

of electromagnetic waves as they pass through buildings, foliage and various other

objects between the transmitter and the mobile receiver. The third phenomena is

known as fast fading. Due to scattering and reflection, a number of electromagnetic

waves get added up at the receiver thus giving rise to rapid variations in the phase

and magnitude of the resulting channel.

Due to the randomness in the environment between the transmitter and

the receiver, combined with the motion of transmitter or receiver or both, it is

important to note that slow, shadow, and fast fadings are all random processes.

However, the time scales of variation are different. Typically the slow and shadow

fadings happen at a much slower pace than the fast fading. The power variations

caused by slow and shadow fadings can be adjusted and thus, with proper plan-

ning, they do not impact the system performance that severely. The fast fading

phenomena can cause a signal power drop of about 30− 40 dB and the time scale

of variation is of the order of milliseconds and hence this is the most detrimental

form of fading. In order to see the effect analytically, we consider the impact of fast

fading on the performance of a simple binary phase shift keying (BPSK) wireless

1
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communication system.

1.1 Fast Fading

In this thesis from here on fading refers to ‘fast fading ’ among the three

broadly defined forms of fading discussed earlier. Also throughout the thesis we

consider a frequency flat scenario, i.e., the coherence bandwidth of the wireless

channel is larger than the bandwidth of the signal. For simplicity let us begin with

a single transmit antenna and single receive antenna scenario. The complex flat

fading process is typically modeled as a sum of complex sinusoids [1]-[6]:

h(t) =
N∑
n=1

βne
j(ωnt+φn), (1.1)

where, βn is the amplitude, φn is the phase, and ωn is the Doppler frequency of the

nth multipath. ωn = ωmax cos θn where ωmax is the maximum Doppler frequency and

θn is the angle of arrival of nth multipath. ωmax = 2πv/λ where v is the velocity of

mobile and λ is the carrier wavelength.

In order to study the system performance over a wide range of environ-

ments and assuming that there is rich scattering, the above process (1.1) can be

modeled as a zero mean circular symmetric complex Gaussian (CSCG) process

with unit variance, denoted as h ∼ NC (0, 1) . This statistical modeling of fading

process is universally accepted. For the performance analysis we also follow this

statistical channel model, i.e., the fading process is assumed to be distributed as

h ∼ NC (0, 1).

Let s be the transmitted BPSK symbol and h be the multiplicative fast-

fading channel between the transmitter and receiver. The discrete time baseband-

equivalent of received signal, after the matched filter operation, is given by

y[k] = h[k] s[k] + η[k] (1.2)

where k denotes time index, the channel coefficient h is a zero-mean CSCG random

variable with unit variance, and η is the thermal noise at the front end of the re-
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Figure 1.1 Effect of diversity on the bit error probability of BPSK constellation.

Degree of diversity t ∈ {1, 2, 6}, channel is distributed as h ∼ NC (0, 1). For

comparison, the bit error probability in an AWGN channel is also shown.

ceiver. η is a zero-mean CSCG random variable with E[|η|2] = σ2
n. To understand

the impact of fading we now look at the relationship between the bit error prob-

ability (BEP), pe, and the signal-to-noise ratio (SNR). pe and SNR are related

as [1]

pe ∝
1

SNR
. (1.3)

In contrast, in an AWGN channel, with h = 1 in (1.2), the relation between BEP

and SNR is given by [1]

pe ∝ e−SNR . (1.4)

The performance loss caused by fading can be clearly seen by comparing (1.3)

and (1.4). To achieve the same order of performance as an AWGN channel, one

has to use an order of magnitude higher power in a fading channel. Note that

in both (1.3) and (1.4) the focus is only on how SNR effects the BEP, the exact

constants are not relevant to the present discussion.

One of the popular solutions to combat the negative effects of fading is to
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provide diversity. In a diversity based scheme, multiple copies of the information

symbol are transmitted through independently faded channels. These copies are

then combined at the receiver. The main idea behind a diversity schemes is that

the probability that all the independently faded paths are simultaneously in deep

fade is low. To analytically illustrate the effectiveness of diversity, consider a sys-

tem where t independently faded symbols are available at the receiver. Assuming

that the receiver knows all the channel co-efficients perfectly, the t independently

faded symbols can be combined coherently. The resulting system’s BEP and SNR

relation is given by

pe ∝
1

SNR t . (1.5)

In the above equation t is referred to as the diversity order. As seen in Fig. 1.1,

compared to (1.3), the improvement in performance is evident. However, note that

to achieve the same performance as an AWGN channel an infinite diversity order

is required. There are many ways to provide diversity such as time, frequency,

polarization, and spatial diversity.

In wireless communications one of the earlier applications of multiple

antennas is in the area of spatial diversity. However, the rapid growth in wireless

industry, and the demand for high data rates with high reliability has intensified the

research efforts in multiple-input and multiple-output (MIMO) wireless systems in

venues other than spatial diversity schemes. It is well-known that the capacity

of MIMO systems in a rich scattering environment increases linearly with the

minimum number of transmit and receive antennas [7, 8]. It should be noted that

the usage of multiple antennas in wireless communications primarily falls into

two categories, one is for providing diversity and the other is to provide spatial

multiplexing. Generally speaking the diversity schemes provide a reliable link

and spatial multiplexing provides parallel data streams and hence higher data

rates. This thesis falls under the diversity camp. In recent years, a new point

of view has emerged with respect to fading, and the fading is seen as a friendly

phenomena. If one has no delay constraints and if there is a feedback link, one can
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employ opportunistic communication principle and transmit only when the channel

is strong. As mentioned earlier, this thesis takes the approach of minimizing the

fluctuations in the effective channel between the transmitter and receiver.

1.2 Spatial Diversity

In this thesis we consider a spatial transmit diversity scheme in the con-

text of multiple antennas. In this scheme the multiple antennas are placed suffi-

ciently apart so that they experience independent fading. Theoretically speaking

one could have multiple antennas at the transmitter, or at the receiver, or at both

the transmitter and receiver. However, in a practical system, having multiple an-

tennas at the receiver (mobile) is not an attractive option and hence this thesis

considers a system where there are multiple antennas at the transmitter (base

station).

In a multiple-input and single-output (MISO) system, if the channel state

information (CSI) is available at the transmitter, one can achieve both the diver-

sity and array gains with transmit beamforming via maximal ratio transmission [9],

whereas only diversity gain can be realized with space-time coding [10, 11]. Our

work studies how the transmitter gets the CSI in a feedback based practical sys-

tem. In time division duplexing systems using channel reciprocity the transmitter

can estimate the channel based on some pilot sequence from receiver. Most of

the practical systems are frequency division duplexing (FDD) based and to avoid

interference at the transmitter the spacing of uplink and downlink frequencies are

selected as far apart as possible. Hence, in FDD systems channel reciprocity does

not apply. An important consequence of not having channel reciprocity is that

in an FDD system the receiver has the CSI and it has to be conveyed to the

transmitter.

In an FDD system, as shown in Fig. 1.2, the transmitter sends a pilot

sequence for channel estimation. Using the pilot sequence the receiver estimates
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Figure 1.2 Block diagram of a transmit beamforming MISO system with imperfect

feedback. Feedback imperfections include, inaccurate channel estimation, channel

quantization and feedback delay.

the channel state information. The receiver has to convey the estimated CSI to the

transmitter through a feedback link. Due to various practical constraints, generally

there is a mismatch between the actual channel and the CSI that is available at

the receiver. Some possible sources of mismatch are:

1. The presence of thermal noise at the front end of receiver inevitably creates

a mismatch between the actual channel and its estimate. The estimation

error can be reduced by having a longer pilot sequence and/or by increasing

the power of the pilot sequence. However, it is nearly impossible to have a

perfect estimate of channel.

2. In most practical systems the bandwidth of the feedback link is low. Hence

the receiver has to convey the estimated CSI, not in its actual form but in a

compressed form. An optimum way of doing this is through vector quantiza-

tion. Based on the channel statistics, a fixed codebook is constructed off-line

and it is known at both transmitter and receiver. Based on an optimum cri-

teria, the estimated channel is then used to pick one of the codepoints from

the codebook. The index of the selected codepoint is sent to the transmitter
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through the low rate feedback link. Assuming that there are no errors (with

the help of strong channel coding) in the feedback link, the transmitter then

picks the codepoint and uses it to beamform the data.

Since a vector quantized version of channel estimate is sent to the transmitter,

there is a further mismatch between the actual channel and the selected

codepoint.

3. The third form of imperfection, or source of mismatch, is the delay involved

in the feedback process. The receiver has to estimate the channel, quantize

it, and feed the index back to the transmitter. By the time the transmitter

uses the codepoint to transmit data, the actual channel might have changed.

Depending on the channel variations the mismatch due to delay can be severe.

In any practical system the above mentioned three forms of feedback

imperfection namely estimation errors, feedback delay, and channel quantization

are present. The main theme of this thesis is to develop suitable modeling of these

three forms of feedback imperfection and the analytical quantification of their effect

on some of the commonly accepted performance metrics such as symbol, bit, and

packet error probabilities. The thesis is also concerned with optimum codebook

design and with the study of some statistical properties of channel models that are

important in channel prediction. A brief summary of related work is provided in

the next section.

1.3 Related Work

In communication systems, in general, it is a common practice to first

study the performance of a system under ideal assumptions. In real systems,

because of the mismatch between assumed behavior and actual behavior in various

system parameters, the performance is worse than what is predicted with ideal

system parameters. However, the performance analysis studies carried out under

ideal assumptions are important as they provide insight into the system behavior as
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well as they can always be used as upper (or lower) bounds on system performance.

In the present context of feedback for multi-antenna systems, most of the existing

literature dealt with either perfect feedback scenario or with one form of feedback

imperfection. As explained earlier, in order to understand the performance under

realistic assumptions, in this thesis, we study the various implications of imperfect

feedback in transmit beamforming multiple input single output systems. Now, we

briefly summarize some of the relevant literature.

Under ideal channel estimate assumption, extensive analytical results

quantifying the impact of fading on average symbol and bit error probability

(SEP/BEP) are available for various modulation schemes [12]. In [13] authors

consider efficient use of channel state information for transmit beamforming. An

information theoretic approach to transmit beamforming with imperfect feedback

is presented in [14, 15]. With maximum ratio transmission and BPSK modula-

tion, the effect of feedback delay with perfect channel estimation at the receiver

is investigated in [16], whereas [17] studies the effect of imperfect channel esti-

mation without feedback delay. In [18], the authors extend the analysis of [16]

accounting for the effects of channel estimation errors. The effect of feedback de-

lay and feedback errors on the receiver SNR performance is investigated in [19] for

phase-only feedback, whereas [20] analyzes the bit error probability degradation

with BPSK due to feedback errors with selection and co-phasing feedback schemes.

The effects of finite-rate channel quantization and feedback delay are considered

for BPSK in [21].

Approaches for the design and analysis of transmit beamforming schemes

under finite-rate constraints are presented in [22]-[27]. While the aforementioned

works considered either BPSK (or quadrature PSK, QPSK) with channel estima-

tion errors and perfect quantization [16]- [21], or ideal channel estimation with

finite-rate quantization for general modulations [22]- [26], combined effects of vari-

ous channel imperfections for general modulations is not available in the literature.

One of the contributions of this thesis is targeted to fill in this important void.
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Channel coding and interleaving can offer some protection from the neg-

ative effects of fading. However, in some wireless systems data has to be organized

into small packets, which are confined to fixed time slots, with or without interleav-

ing. One popular example of such a system is the slotted multiple access scheme.

It is important for the system designers to know the impact of fading on the per-

formance. An important metric for studying the performance of a non-interleaved

wireless packet data transmission is the average packet error probability.

Assuming perfect channel estimation, analytical quantification of average

packet error probability (PEP), mostly for non-coherent FSK modulation, is stud-

ied in [38]-[53]. The non-coherent FSK’s SEP, conditioned on the channel, is an

exponential function and taking expectation of the higher powers of conditional

SEP w.r.t. the fading random variable is analytically tractable. However, closed-

form expressions are not available for coherent BPSK and other constellations.

Conditional PEP (conditioned on a function of the wireless channel) for a scheme

such as coherent BPSK results in integer powers of the Gaussian-Q function. This

makes the analysis challenging because in order to derive the average PEP ex-

pression, one has to integrate the integer powers of the Gaussian-Q function w.r.t.

the random variable that captures the fading environment, an analytically difficult

exercise. In this thesis we consider the problem of deriving analytical expressions

for PEP of a multiple input single output system with various forms of practi-

cal imperfections. We later show that this problem captures various commonly

interested performance analysis of wireless systems as special cases.

Much of the past work on feedback delay [16, 18, 62], [64]-[70] effectively

make the delay related error term part of receiver noise. Also it is important

to note that the work in [64]-[78] treats estimation errors and feedback delay in

a similar manner, i.e., either both the error terms are assumed to be known or

unknown to the receiver. In this thesis we make an important distinction between

channel estimation errors and feedback delay. [92] discussed the importance of

using right metric for codebook design. In this thesis we consider the design of an
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optimum codebook that minimizes the average SEP of a modulation scheme. We

now outline the important contributions and the organization of the thesis.

1.4 Contributions and Outline of the Thesis

In the second chapter, we analyze the performance of transmit beam-

forming on spatially independent multiple-antenna Rayleigh fading channels with

imperfect channel feedback. As mentioned in Section 1.2 we characterize the feed-

back imperfections in terms of noisy channel estimation, feedback delay, and finite

rate channel quantization. We develop a general framework, valid for any arbi-

trary two-dimensional linear modulation, that captures the aforementioned im-

perfections, and derive the symbol and bit error probability expressions for both

M -PSK and M -ary rectangular QAM constellations with Gray code mapping.

We show that the proposed analytical formulation is valid for frequency-

domain duplexing system with/without finite rate channel quantization and time-

domain duplexing system. We validate the accuracy of the analysis through sim-

ulations, and assess the relative effects of channel estimation inaccuracy, feedback

delay, and finite-rate quantization on the symbol and bit error performances for

various constellations. Finally, we present a selected set of numerical results show-

ing the impact of various feedback imperfections on the performance of higher

order constellations.

Developing a distinction between the delay related error term and esti-

mation related error term, and analyzing its consequences on average packet error

probability (PEP) is the main theme of Chapter 3. PEP is an important error

statistic for slowly fading wireless communication system designers. In Chapter 3,

we address the problem of analytically quantifying the effect of channel estimation

errors, feedback delay, and channel vector quantization on the PEP of transmit

beamforming multiple input single output systems in a spatially independent fad-

ing wireless channel environment. We develop an accurate characterization of
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estimation errors as well as errors due to feedback delay and tools relevant for

deriving analytical expressions for the PEP.

The modeling presented in Chapter 3 highlights the distinction between

errors that arise due to channel estimation from those that arise due to feedback de-

lay and represents an important departure from past work. Analytical expressions

are derived for the PEP for BPSK signaling. The derived approximated closed-

form analytical expression is complemented by simulations. We also develop some

analytical tools in Chapter 3 that help in a simpler evaluation of complicated

communication performance metrics.

In Chapter 4, we turn our attention to the spatially correlated channels.

In both chapters 2 and 3 the modeling of imperfect feedback and performance anal-

ysis was carried out for spatially independent channels. In Chapter 4 we present

an optimum codebook design algorithm that minimizes the loss in average symbol

error probability (SEP) of a spatially correlated multiple input single output sys-

tem with finite-rate feedback under both perfect and imperfect channel estimate

assumptions. Towards the goal of designing an optimum codebook that minimizes

average SEP (ASEP) loss due to finite-rate channel quantization, we derive the

distortion function as a first order approximation of the instantaneous SEP loss.

Utilizing high resolution quantization theory and assuming perfect chan-

nel estimation at the receiver, we analyze the loss in ASEP for spatially indepen-

dent and correlated finite-rate feedback transmit beamforming MISO systems with

M1 ×M2-QAM constellation. We then consider the high-SNR regime and show

that the loss associated with quantizing the spatially independent channels is re-

lated to the loss associated with quantizing the spatially correlated channels by a

scaling constant given by the determinant of the channel correlation matrix. We

also present simulation results that illustrate the effectiveness of the new codebook

design and validate the derived analytical expressions for loss in average symbol

error probability.

Also, in Chapter 4, a novel codebook design algorithm that minimizes the
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loss in ergodic capacity is proposed. Simulation results show that the new codebook

designed under the consideration of estimation errors and feedback delay clearly

outperforms the codebook designed under ideal conditions. Analysis for the loss

in ergodic capacity for spatially i.i.d channels with channel estimation errors and

delay is presented and validated through simulations.

In Chapter 5, we turn our attention to the issue of minimizing the negative

impact of feedback delay. One can increase the pilot power and improve the channel

estimate quality thus minimizing the mismatch due to channel estimation errors.

By increasing the feedback budget (i.e., number of feedback bits) the mismatch

due to quantization can be reduced. The only solution possible for combating the

effect of feedback delay is to predict the channel.

In the context of channel prediction, we take a close look at an important

statistical concept that plays a critical role in deciding which prediction method

is appropriate. In Chapter 5 we study the role of ergodicity in wireless channel

prediction. Following the sinusoidal channel model, conditions under which the

ergodic assumption is valid are presented. This sheds insight into when statistical

channel models that employ ensemble averaging are appropriate. Due to the lack

of ergodicity in a typical real world wireless channel, Least Squares prediction,

an approach based on time averages is motivated as opposed to linear minimum

mean squared error channel prediction, an approach based on ensemble averaging.

We then study methods such as Forward-Backward and rank reduction for high

quality channel prediction. We conclude the thesis in Chapter 6.

Notation: Small and upper case bold letters indicate vector and matrix

respectively. E(.), (.)T , (.)H , |.|, (̄.), and ‖.‖ denote expectation, transpose, Her-

mitian, absolute value, complex conjugate, and 2-norm respectively. x ∼ p(x)

indicates that the random variable x is distributed as p(x). x ∼ NC (µ,Σ) indi-

cates a circularly symmetric complex Gaussian (CSCG) random variable x with

mean µ and covariance Σ.



2 Modeling of Imperfect

Feedback and Error Probability

Analysis

In this chapter we first develop a general framework that captures the

feedback imperfections, namely, noisy channel estimation, feedback delay, and

finite-rate channel quantization. The modeling approach assumes that the receiver

does not know the error terms due to both channel estimation and feedback de-

lay. The general framework is shown to be valid for any arbitrary two-dimensional

linear modulation schemes.

We show that the proposed analytical formulation is valid for a frequency

domain duplexing system with/without finite-rate channel quantization and a time

domain duplexing system. We then analyze the performance of transmit beam-

forming on spatially independent multiple-antenna Rayleigh fading channels with

imperfect channel feedback. The performance criteria considered in this chapter

are the symbol and bit error probability expressions of both M -PSK and M -ary

rectangular QAM constellations with Gray code mapping. We validate the accu-

racy of the analysis through simulations, and assess the relative effects of channel

estimation inaccuracy, feedback delay, and finite-rate quantization on the symbol

and bit error performances. We begin with a brief overview of related work in this

area.

13
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2.1 Introduction

In a multiple input and single output (MISO) system, if the channel state

information (CSI) is available at the transmitter (i.e., CSIT), one can achieve

both the diversity and array gains with transmit beamforming via maximal ratio

transmission (MRT) [9], whereas only diversity gain can be realized with space-

time coding [10,11].

Transmit beamforming for MISO systems is an active area of research.

In [13], the authors consider efficient use of CSIT for transmit beamforming. An

information theoretic approach to transmit beamforming with imperfect feedback

is presented in [14, 15]. With MRT and binary phase shift keying (BPSK) modu-

lation, the effect of feedback delay with perfect channel estimation (PCE) at the

receiver is investigated in [16], whereas [17] studies the effect of imperfect channel

estimation (ICE) without feedback delay. In [18], the authors extend the analysis

of [16] accounting for the effects of channel estimation errors. The effect of feedback

delay and feedback errors on the receiver signal-to-noise ratio (SNR) performance

is investigated in [19] for phase-only feedback, whereas [20] analyzes the bit error

probability (BEP) degradation with BPSK due to feedback errors with selection

and co-phasing feedback schemes. The effects of finite-rate channel quantization

and feedback delay are considered for BPSK in [21]. Finally, approaches for the

design and analysis of transmit beamforming schemes under finite-rate constraints

are presented in [22]-[27].

While the aforementioned works considered either BPSK (or quadrature

PSK, QPSK) with channel estimation errors and perfect quantization [16]-[21], or

ideal channel estimation with finite-rate quantization for general modulations [22]-

[26], combined effect of various channel imperfections for general modulations is

not yet investigated. The contribution in this chapter is targeted to fill in this

important void. In this part of our work, we present a general framework for

the performance analysis of transmit beamforming for MISO systems on spatially
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independent Rayleigh fading channels with imperfect channel feedback. The feed-

back imperfections are characterized in terms of noisy channel estimation at the

receiver side, quantization of CSI, and feedback delay. This formulation is shown

to be applicable for any linear two-dimensional modulation scheme on spatially

independent and identically distributed (i.i.d.) Rayleigh fading channels. Our

analytical framework encompasses three popular MISO system models, namely,

frequency-domain duplexing (FDD), FDD with finite rate quantization of CSI

(FDDQ) and time-domain duplexing (TDD).

The modeling of imperfect feedback assumes that the receiver does not

know both the estimation related error term and the delay related error term. We

analyze average symbol error probability (SEP) and bit error probability (BEP)

performances of M -PSK and M -ary rectangular QAM constellations with Gray

code mapping. Our numerical and simulation results show that channel estima-

tion inaccuracy and feedback delay are more harmful to the system performance

compared to the effects of channel quantization.

The rest of this chapter is organized as follows. In Section 2.2 we introduce

our system model. In Section 2.3 we present a model for imperfect channel feed-

back, and show that it captures the essential features of FDD system with/without

feedback and TDD system. The decision variable (DV) at the receiver with imper-

fect feedback is also derived in Section 2.3. The average SEP and BEP expressions

for M -PSK and M -QAM modulations are derived in Section 2.4. Numerical and

simulation results are presented in Section 2.5. We conclude this chapter in Sec-

tion 2.6.

Important variables: t- number of transmit antennas, ρe- estimation

related correlation co-efficient, ρd- delay related correlation co-efficient, ρ- com-

bined (delay and estimation) correlation coefficient, Ω- variance of the actual chan-

nel, Λ- variance of the estimated channel, B- number of feedback bits, and C- size

of the codebook.



16

2.2 System Model

We consider a MISO system with t antennas at the base station (BS)

and one antenna at the mobile station (MS) as shown in Fig. 1.2. The channel

between the BS and the MS is modeled as a frequency-flat Rayleigh fading channel.

Specifically, let us denote by hi[k] the complex channel gain at time k between the

ith antenna at the BS and the MS. We assume that hi[k] is a zero-mean, circularly

symmetric complex Gaussian (CSCG) random variable with variance E[|hi[k]|2] =

Ω. We also assume that for any i and j (i 6= j), and for any k1 and k2, hi[k1]

and hj[k2] are uncorrelated, which can be justified for sufficient spacing between

antenna elements. The vector valued channel at time k is denoted by h[k] =

[h1[k], h2[k], . . . , ht[k]]T. The transmitted two-dimensional modulation symbol at

time k is denoted by sm[k] which belongs to the constellation S. The average energy

of sm[k] is E[|sm[k]|2] = Es. Let us denote by w[k] = [w1[k], w2[k], . . . , wt[k]]T, the

unit norm (i.e., ‖w‖2 = 1) beamforming vector (BV) at the base station at time

k. Then, the received signal at the MS at time k is

y[k] = hH [k]w[k]sm[k] + η[k] (2.1)

where η[k] is a zero-mean CSCG random variable with E[|η[k]|2] = σ2
n.

2.3 A General Framework for Feedback Imperfections

The specific structure of the beamforming vector w[k] at the base sta-

tion (or transmitter) depends on various design considerations and system imper-

fections. However, for both FDD and TDD systems on Rayleigh fading channels,

the BV w[k] is derived from the estimated channel vector which is assumed to be

jointly Gaussian with the actual channel h[k]. Note that this assumption is well

justified [28] for many practical estimation techniques such as additive channel

estimation, minimum mean square error (MMSE) channel estimation, and channel

estimation derived from pilot-symbol assisted modulation [29].
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We now dwell in detail on three popular channel feedback approaches for

which we present a general framework for modeling nonideal feedback for MISO

systems, and derive the decision variable at the input of the demodulator. These

systems are: i) FDD with channel estimation errors and delayed feedback, ii) FDD

with channel estimation errors, finite-rate quantization, and delayed feedback, and

iii) TDD with channel estimation errors and channel decorrelation.

2.3.1 FDD System

Let us denote by ĥ[k] =
[
ĥ1[k], ĥ2[k], . . . , ĥt[k]

]T
the channel estimate at

the mobile station at time k. We assume that the estimate ĥi[k] on the path from

the MS antenna and the ith antenna of the base station is a zero-mean, CSCG

random variable with variance E[|ĥi[k]|2] = Λ. Similar to h[k], ĥi[k1] and ĥj[k2],

for i 6= j, are also uncorrelated with each other. The MS simply feeds back the

estimate ĥ[k] to the BS. Assuming a feedback delay of D, the channel observed

at the BS is ĥ[k − D]. The normalized delayed estimate forms the beamforming

vector at the transmitter

w[k] =
ĥ[k −D]

‖ĥ[k −D]‖
. (2.2)

Let ρ be the complex correlation coefficient between hi[k] and ĥi[k −D]. That is,

ρ =
E
[
hi[k]ĥ∗i [k −D]

]
√
E [|hi[k]|2]× E

[
|ĥi[k −D]|2

]
=

E
[
hi[k]ĥ∗i [k −D]

]
√

ΩΛ
. (2.3)

As hi[k] and ĥi[k −D] are assumed to be jointly Gaussian, we can write [30]

hi[k] = ρ

√
Ω

Λ
ĥi[k −D] +

√
(1− |ρ|2)Ω εi[k −D], i = 1, . . . , t (2.4)

where εi[k] is zero-mean, CSCG random variable with variance E[|εi[k]|2] = 1 and

is uncorrelated with ĥi[k]. In [28], it is shown that additive channel estimation
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errors, MMSE channel estimation, and pilot-symbol assisted modulation-based

channel estimation schemes [29] can be modeled by (2.4). Upon stacking the

elements {hi[k]} in a column, (2.4) reads as

h[k] = ρ

√
Ω

Λ
ĥ[k −D] +

√
(1− |ρ|2)Ω ε[k −D] (2.5)

where ε[k] = [ε1[k], ε2[k], . . . , εt[k]]T. Then, using (2.5), the equivalent received

signal of (2.1) can be written as

y[k] = hH [k]w[k]sm[k] + η[k]

=

(
ρ

√
Ω

Λ
ĥ[k −D] +

√
(1− |ρ|2)Ω ε[k −D]

)H
ĥ[k −D]

‖ĥ[k −D]‖
sm[k] + η[k]

= ρ̄

√
Ω

Λ
‖ĥ[k −D]‖ sm[k] + ζ[k] (2.6)

where

ζ[k] =
√

(1− |ρ|2)Ω
(
εH [k −D]w[k]

)
sm[k] + η[k].

ζ[k] conditioned on |sm[k]|, is a zero-mean, CSCG random variable with

variance

Σ2
|sm[k]| = σ2

n + |sm[k]|2Ω(1− |ρ|2).

We need the DV at the receiver for demodulation and for SEP/BEP analysis of a

transmitted modulation symbol. The mobile station obtains the DV by dividing

y[k] by ‖ĥ[k−D]‖, provided that the feedback delay D is known. We remark that

for constant amplitude signals (i.e., M -PSK) such a normalization is not needed

as the decision regions are unchanged due to a positive scale factor. In this thesis,

we assume that D is known to the MS, so that the decision variable becomes

r[k] =
y[k]

‖ĥ[k −D]‖

= ρ̄

√
Ω

Λ
sm[k] + ζ̃[k] (2.7)

where ζ̃[k], conditioned on |sm[k]| and ‖ĥ[k −D]‖, is a zero-mean CSCG random

variable with variance

σ2
ζ̃

=
Σ2
|sm[k]|

‖ĥ[k −D]‖2
.
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For simplicity, let us define

β ,
‖ĥ[k −D]‖2

Λ
.

Clearly, β is a sum of t i.i.d. exponential random variables, each with unit mean.

That is, β is gamma distributed with the probability density function (pdf) [30]

fβ(x) =
e−xxt−1

Γ(t)
, x ≥ 0, (2.8)

and the cumulative distribution function (cdf) [30]

Fβ(x) = Prob(β ≤ x) = 1− e−x
t−1∑
k=0

xk

Γ(k + 1)
, x ≥ 0 (2.9)

where

Γ(n) =

∞∫
0

e−uun−1du

is the standard Gamma function [103]. With this, σ2
ζ̃
, conditioned on |sm[k]| and

β, can be written as

σ2
ζ̃

=
Σ2
|sm[k]|

βΛ
.

From (2.7), we notice that the effect of imperfect channel estimation and feedback

delay on the DV at the mobile station is that of scaling the transmitted symbol

sm[k] by an unknown complex number ρ̄
√

Ω/Λ and introducing symbol dependent

non-Gaussian noise ζ̃[k]. The aforementioned framework can be directly applied

to model non-ideal channel feedback effects in an analog feedback system [31],

where feedback is not only delayed but also noisy.

To understand the combined effects of delay and estimation errors, we

now describe the structure of the combined correlation coefficient ρ and show

how it relates to delay only correlation coefficient, ρd, and estimation error only

correlation coefficient, ρe. With delay and no estimation errors, we have

hi[k] = ρdhi[k −D] +
√

(1− |ρd|2)Ω ν̃i[k] (2.10)

where

ρd =
E [hi[k]h∗i [k −D]]

Ω
. (2.11)
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On the other hand, estimation errors and no delay allows us to write

hi[k] = ρe

√
Ω

Λ
ĥi[k] +

√
(1− |ρe|2)Ω νi[k], (2.12)

where νi[k] is a zero-mean, CSCG random variable with variance E[|νi[k]|2] = 1

and is uncorrelated with ĥi[k]. Here, ρe is given by

ρe =
E
[
hi[k]ĥ∗i [k]

]
√

ΩΛ
.

Using (2.10) and (2.12) in the definition of ρ, given in (2.3), we arrive at

ρ =
E
[(
ρe

√
Ω
Λ
ĥi[k] +

√
(1− |ρe|2)Ω νi[k]

)
ĥ∗i [k −D]

]
√

ΩΛ
. (2.13)

Since νi[k] is uncorrelated with ĥi[k −D], (2.13) simplifies to

ρ = ρe
E
[
ĥi[k]ĥ∗i [k −D]

]
Λ

= ρeρd. (2.14)

That is, the combined correlation coefficient ρ is the product of delay only cor-

relation coefficient ρd and estimation error only correlation coefficient ρe. Note

that in the derivation of this result no particular structure is assumed for the

time-variations of the channel.

2.3.2 FDD with Finite Rate Feedback (FDDQ) System

In this subsection we consider the effects of finite rate quantization along

with imperfect channel estimation and delay. As illustrated in Fig. 1.2, in FDDQ,

the mobile station estimates the channel, and quantizes it into one of C = 2B code

words. The index, which is represented by B bits, of the code word corresponding

to the channel estimate is fed back to the base station. In this section, we assume

that the feedback channel is error free, which can be justified by employing powerful

error correction codes for protecting the index of the code word [22]-[27]. However,

in addition to the delay in the feedback channel, channel coding introduces non

negligible delay in decoding the code word index. For simplicity, let

v̂[k −D] =
ĥ[k −D]

‖ĥ[k −D]‖
,
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and ṽ[k −D] = w[k]. Then,

ṽ[k −D] = Q [v̂[k −D]] , (2.15)

where Q is the vector quantization function. Now, the received signal with (2.15)

is given by

y[k] = hH [k]ṽ[k −D] sm[k] + η[k]. (2.16)

After substituting (2.5) for h[k], the received signal (2.16) can be written as

y[k] = ρ̄

√
Ω

Λ
ĥ
H

[k −D]ṽ[k −D]sm[k] + υ[k]. (2.17)

Here, conditioned on |sm[k]| and ṽ[k − D], υ[k] is a zero-mean, CSCG random

variable with variance

σ2
n + |sm[k]|2(1− |ρ|2)Ω.

Let us define the following to simplify (2.17)

ϑ , 〈v̂[k −D], ṽ[k −D]〉,

where 〈x,y〉 = xHy. This allows us to write y[k] as

y[k] = ρ̄

√
Ω

Λ
‖ĥ[k −D]‖ϑsm[k] + υ[k].

Since the delay D is assumed to be known to the receiver (i.e., the mobile station

knows ‖ĥ[k −D]‖ and ϑ), we form the decision variable as

r[k] =
y[k]

‖ĥ[k −D]‖ϑ

= ρ̄

√
Ω

Λ
sm[k] +

υ[k]

‖ĥ[k −D]‖ϑ

= ρ̄

√
Ω

Λ
sm[k] + υ̃[k], (2.18)

where, conditioned on |sm[k]|, β and ∆̃, υ̃[k] is a zero-mean CSCG random variable

with variance
σ2
n + |sm[k]|2(1− |ρ|2)Ω

β∆̃Λ
.
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Here, ∆̃ , |ϑ|2. Since finding the exact pdf of ∆̃ is rather difficult, [25] upper

bounded ∆̃ (i.e., lower bounded the average error performance) by a random vari-

able ∆, whose pdf is given by

f∆(x) = 2B(t− 1)(1− x)t−2, 1− ψ < x < 1, (2.19)

where ψ = 2−B/(t−1). Independently, in [26] the authors showed that (2.19) is a

very accurate approximation to the true pdf of ∆̃. Note that when B → ∞, we

have ψ → 0 and (2.19) reduces to f∆(x) = δ(x − 1) [22, 25, 26], where, δ is the

dirac delta function. In what follows, we use ∆ in place of ∆̃.

2.3.3 TDD System

In this subsection we briefly describe how the framework developed in the

previous Section 2.3.1, with some modifications, is applicable to a time division

duplexing system. In a TDD system, assuming channel reciprocity, the mobile sta-

tion sounds the channel with known symbols to facilitate the base station estimate

of the channel. Assuming a single pilot symbol x0, which is known to the base

station, the received signal on the lth antenna at the BS is given by

pl[k] = hl[k]x0 + µl[k], l = 1, 2, . . . , t, (2.20)

where µl[k] is a zero-mean, CSCG random variable with variance E[|µl[k]|2] =

σ2
n, x0 is deterministic with power |x0|2 = σ2

x, and hl[k] is the channel between

the lth antenna at the base station and mobile station. For simplicity, assuming

minimum mean-square error (MMSE) channel estimation, the estimate ĥl[k] of the

lth channel is given by

ĥl[k] =

(
σxΩ

σ2
xΩ + σ2

n

)
pl[k] , l = 1, 2, . . . , t. (2.21)

Therefore,

Λ = E[|ĥl[k]|2] =
Ωγp,T

1 + γp,T
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and

ρ2
e =

γp,T
1 + γp,T

where

γp,T =
Ωσ2

x

σ2
n

is the average received SNR for the pilot. For FDD systems, a simple approach to

channel estimation is the use of orthogonal pilot transmissions. That is, single a

pilot symbol-based channel estimation requires t time units. One approach for fair

comparison between TDD and FDD systems is to set the total average received

pilot SNR the same. Then, the aforementioned Λ and ρ2
e can be used with

γp,F =
γp,T
t
.

We note that the above formulation can easily be generalized to multiple

pilot symbols, time varying channel conditions, and for various practical channel

estimation schemes. We also account for a delay D between the time of channel

estimation, and the time of its actual use. Note that this delay might not be as

severe as that of the delay in FDD schemes. Then, the transmit BV is given by

(2.2) and the received signal y[k] is exactly the same as (2.6) of the previous FDD

approach, which is reproduced here as

y[k] = ρ̄

√
Ω

Λ
‖ĥ[k −D]‖sm[k] + ζ[k].

For the demodulation of sm[k], the receiver needs the knowledge of ‖ĥ[k −D]‖,

which has to come from a feed-forward (as opposed to feedback) channel between

the base station and the mobile. This feed-forward requirement in TDD system is

counterintuitive to the traditional argument that feedback is not required for TDD

systems. Assuming ideal channel knowledge of ‖ĥ[k −D]‖ (i.e., in this section we

ignore the quantization of ‖ĥ[k −D]‖) at the receiver, the decision variable is again

given by (2.7), reproduced here as:

r[k] = ρ̄

√
Ω

Λ
sm[k] + ζ̃[k].
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2.4 Error Probability Analysis

In this section, we analyze the average SEP and BEP performances of

M -PSK and rectangular M -QAM modulation with Gray code symbol mapping.

Upon observing (2.7) and (2.18), the decision variable at the demodulation input

can be expressed in a parametric form as

r[k] = κsm[k] + ξ[k] = rI [k] + jrQ[k], (2.22)

where

κ = ρ̄
√

Ω/Λ , µI + jµQ,

and ξ[k], conditioned on |sm[k]|, β and ∆, is a CSCG random variable with variance

F(|sm[k]|)
β∆

where

F(|sm[k]|) =
σ2
n + (1− |ρ|2)|sm[k]|2Ω

Λ
.

Note that for FDD and TDD schemes, we can set ∆ = 1 (i.e., f∆(x) = δ(x− 1)).

On the other hand, for FDDQ the pdf of ∆ is given by (2.19). It is important

to note that, due to the presence of signal dependant noise together with the

unknown constant κ, it is not possible to borrow the existing error probability

expressions that are available in the literature for PSK and rectangular QAM

constellations [12,33], and extend them to the present case of ICE, delay and finite-

rate quantization. This motivates us to derive the error probability expressions ab

initio using the decision variable given by (2.18).

2.4.1 M-PSK Constellation

Since for M -PSK, |sm[k]| is not a function of the index m, we then define

0 , F(|sm[k]|) =
σ2
n + (1− |ρ|2)EsΩ

Λ
.

With M -PSK modulation, the DV of interest is the phase angle Θ of the received

signal r[k]. Conditioned on β and ∆, the cdf of Θ can be obtained as a special case
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of the results presented by Pawula et al. in [36], wherein the authors derived a

general expression for the cdf of the phase angle between two vectors corrupted by

Gaussian noise. Upon using the results in [36], the conditional cdf of Θ, conditioned

on β and ∆, when θm = 2mπ
M

is the transmitted phase, can be expressed as

Prob(ω1 ≤ Θ ≤ ω2;λ|β∆) (2.23)

=



FΘ|β∆(ω2 − θm − φρ;λ)− FΘ|β∆(ω1 − θm − φρ;λ) + 1

if ω1 < θm + φρ < ω2

FΘ|β∆(ω2 − θm − φρ;λ)− FΘ|β∆(ω1 − θm − φρ;λ)

if ω1 > θm + φρ or ω2 < θm + φρ,

where ω1 < ω2, φρ is the phase angle of ρ̄, and

λ =
|κ|2Es

0

=
|ρ|2γ

1 + (1− |ρ|2)γ

where

γ =
ΩEs
σ2
n

is the average received SNR per symbol with ICE. In (2.23)

FΦ|β∆(θ;λ) = −sgn(θ)

2π

π−|θ|∫
0

exp

(
−λβ∆

sin2 θ

sin2 x

)
dx, −π < θ < π, (2.24)

which is also referred to as Pawula’s F function [12]. In (2.24) sgn(x) = 1 for

x ≥ 0 and is equal to −1 otherwise. Due to the discontinuity of FΦ|β∆(θ; ·) of

(2.24) at θ = 0, for evaluating (2.23) either at ω1 = 0 or ω2 = 0 we have to use

FΦ|β∆(ω1 = 0; ·) = −1/2 and FΦ|β∆(ω2 = 0; ·) = 1/2. For more details please refer

to [36].

2.4.1.1 Average Symbol Error Probability

In this subsection we derive the expressions for average SEP of M -PSK.

Upon using the conditional cdf (2.23) of Θ with ω1 = θm−π/M and ω2 = θm+π/M
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and subtracting the result from unity, we can obtain the average SEP of M -PSK

modulation, conditioned on β and ∆, as

Ps,PSK(β∆) =
sgn( π

M
− φρ)

2π

π−| π
M
−φρ|∫

0

e−
λβ∆ sin2( π

M
−φρ)

sin2 θ dθ +
sgn( π

M
+ φρ)

2π

π−| π
M

+φρ|∫
0

e−
λβ∆ sin2( π

M
+φρ)

sin2 θ dθ,

(2.25)

which is valid for |φρ| < π/M1. To arrive at the average SEP performance, we

need to average (2.25) over β and ∆. To reduce the analytical complications, we

note that it is important to take the average of (2.25) first over β then over ∆.

Proceeding further, by averaging (2.25) over the pdf of β, as given in (2.8), we

arrive at

P̃s,PSK(∆) = E [Ps,PSK(β∆)]

=
sgn( π

M
− φρ)

2π

π−| π
M
−φρ|∫

0

(
sin2 θ

sin2 θ + λ∆ sin2( π
M
− φρ)

)t
dθ +

sgn( π
M

+ φρ)

2π

π−| π
M

+φρ|∫
0

(
sin2 θ

sin2 θ + λ∆ sin2( π
M

+ φρ)

)t
dθ. (2.26)

For FDD and TDD schemes, we have ∆ = 1. Therefore, the average SEP is given

by

P s,PSK,FDD/TDD = P̃s,PSK(1). (2.27)

With FDDQ, the average SEP can be obtained by averaging (2.26) over the pdf of

∆ which is given (2.19). In Appendix, this averaging is performed in closed-form,

and the final expression for the average SEP with FDDQ is

P s,PSK,FDDQ =
sgn( π

M
− φρ)

2π
G
(
π − | π

M
− φρ|,

√
λ sin2(

π

M
− φρ), t, B, ψ

)
+

sgn( π
M

+ φρ)

2π
G
(
π − | π

M
+ φρ|,

√
λ sin2(

π

M
+ φρ), t, B, ψ

)
(2.28)

where G(·, ·, ·, ·, ·) is given by (2.72) in Appendix. With ρ = 1 the average SEP,

P s,PSK,FDDQ, simplifies to the results presented in [25].

1 When |φρ| ≥ π/M , the result of (2.25) with |φρ| < π/M should be subtracted from unity.
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2.4.1.2 Average Bit Error Probability

Since average BEP is also an important performance measure on fading

channels, we now derive expressions for the average BEP of M -PSK modulation

with Gray code labeling. Our approach to average BEP analysis is essentially

motivated by [37]. Similar to [37], we define P(k; β∆) as the probability of the

received signal phase, Θ, falling in a wedge of width 2π/M centered around the

kth symbol point k = 1, . . . ,M − 1, conditioned on β and ∆, when S0 =
√
Es

is the transmitted signal. With the help of (2.23) and θm = 0, P(k; β∆) can be

expressed as

P(k; β∆) = Prob
(
θk −

π

M
≤ Θ ≤ θk +

π

M
;λ|β∆

)
. (2.29)

To proceed further, let |φρ − θk| > π/M . This allows us to simplify (2.29), using

(2.23) and (2.24), as

P(k; β∆) =
sgn(θk + π

M
− φρ)

2π

π−|θk+ π
M
−φρ|∫

0

e−
λβ∆ sin2(θk+ π

M
−φρ)

sin2 θ dθ −

sgn(θk − π
M
− φρ)

2π

π−|θk− π
M
−φρ|∫

0

e−
λβ∆ sin2(θk−

π
M
−φρ)

sin2 θ dθ. (2.30)

Note that when |φρ − θk| ≤ π/M , expressions analogous to (2.30) can be derived

in a similar manner. Following the steps of (2.26), P̃(k; ∆) = E[P(k, β∆)] (i.e.,

averaging P(k; β∆) over β) is

P̃(k; ∆) = E[P(k, β∆)]

=
sgn(θk + π

M
− φρ)

2π

π−|θk+ π
M
−φρ|∫

0

(
sin2 θ

sin2 θ + λ∆ sin2(θk + π
M
− φρ)

)t
dθ −

sgn(θk − π
M
− φρ)

2π

π−|θk− π
M
−φρ|∫

0

(
sin2 θ

sin2 θ + λ∆ sin2(θk − π
M
− φρ)

)t
dθ. (2.31)
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Using (2.72) of Appendix, the average P(k) = E[P̃(k; ∆)] of (2.31) over ∆ can be

expressed as

P(k)=
sgn(θk + π

M
− φρ)

2π
G
(
π − |θk +

π

M
− φρ|,

√
λ sin2(θk +

π

M
− φρ), t, B, ψ

)
−

sgn(θk − π
M
− φρ)

2π
G
(
π − |θk −

π

M
− φρ|,

√
λ sin2(θk −

π

M
− φρ), t, B, ψ

)
(2.32)

which is applicable to FDDQ only. For FDD and TDD systems, P(k) = P̃(k; 1).

Using (2.32), the average BEP for Gray coded M -PSK signal set with finite-rate,

imperfect feedback is

P b,PSK =
1

log2(M)

M−1∑
k=1

d(k)P(k), (2.33)

where d(k) is the weight spectrum of Gray code, derived in [37], which is reproduced

here as

d(k) = 2

∣∣∣∣ kM −
⌊
k

M

⌉∣∣∣∣+ 2

log2(M)∑
i=2

∣∣∣∣ k2i −
⌊
k

2i

⌉∣∣∣∣ , (2.34)

where bxe rounds x to the closest integer. With M = 2, ∆ = 1, φρ = 0 and ρe = 1

(i.e., ρ = ρd for a delayed feedback case), (2.33), with the help of (2.31), coincides

with the results presented in [16]. We also note that the average BEP expressions

in [16] can be derived in a very simple way using the methodology presented here.

2.4.2 M1 ×M2-Rectangular QAM Constellation

Let us denote sm[k] = sm,x[k] + jsm,y[k], m = 0, 1, . . . ,M − 1, x =

0, 1, . . . ,M1−1, y = 0, 1, . . . ,M2−1, where theM -QAM constellation is of sizeM =

M1M2. Here sm,x[k] = am,x[k]d, and sm,y[k] = am,y[k]d, where am,x[k] = −(M1 −

1) + 2x (i.e., am,x[k]d is the in-phase M1-PAM constellation symbol) and am,y[k] =

−(M2 − 1) + 2y (i.e., am,y[k]d is the quadrature-phase M2- PAM constellation

symbol). The minimum distance of the constellation is 2d. For simplicity, we

define, for x = 0, 1, . . . ,M1 − 1 and y = 0, 1, . . . ,M2 − 1, the parameter γx,y as

γx,y ,
2d2

F(|sm[k]|)
=

2d2Λ

σ2
n + Ω(1− |ρ|2)|sm[k]|2

. (2.35)
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2.4.2.1 Average Symbol Error Probability

Let us denote by PC,x,y(β∆) the probability of correctly receiving sm,x[k]+

jsm,y[k], conditioned on β and ∆. For x = 1, 2 . . . ,M1 − 2, y = 1, 2, . . . ,M2 − 2,

PC,x,y(β∆) can be expressed as

PC,x,y(β∆) = Prob(sm,x[k]− d ≤ rI [k] < sm,x[k] + d|β∆)×

Prob(sm,y[k]− d ≤ rQ[k] < sm,y[k] + d|β∆) ={
Q(t1(x, y)

√
β∆)−Q(t2(x, y)

√
β∆)

}
×{

Q(t3(x, y)
√
β∆)−Q(t4(x, y)

√
β∆)

}
, (2.36)

where

Q(x) =
1√
2π

∞∫
x

exp(−u2/2) du

and

t1(x, y) = (am,x[k]− 1− am,x[k]µI + am,y[k]µQ)
√
γx,y , (2.37)

t2(x, y) = (am,x[k] + 1− am,x[k]µI + am,y[k]µQ)
√
γx,y , (2.38)

t3(x, y) = (am,y[k]− 1− am,x[k]µQ − am,y[k]µI)
√
γx,y , (2.39)

t4(x, y) = (am,y[k] + 1− am,x[k]µQ − am,y[k]µI)
√
γx,y . (2.40)

For ease of referencing, expressions for PC,x,y(β∆) for other values of x and y are

given in Table 2.1. Let us define by PC,x,y , E[PC,x,y(β∆)] the probability of

correct reception of sm,x[k] + jsm,y[k], averaged over β and ∆. Notice that, each

of the PC,x,y(β∆) expressions in Table 2.1 can be expressed as linear combinations

of Q(a
√
β∆) × Q(b

√
β∆) for real values of a and b. To derive PC,x,y, we must

determine E[Q(a
√
β∆)×Q(b

√
β∆)], averaged over the distributions of β and ∆.

Similar to the PSK analysis of Section 2.4.1.1 we notice that keeping the order

of integration, first over β and then over ∆, results in efficient evaluation of the
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expressions. To this end, we define the following functions:

H1(a, b,∆, t) , E[Q(a
√
β∆)Q(b

√
β∆)] (2.41)

=



J1(|a|, |b|,∆, t) if a ≥ 0, b ≥ 0

K1(|a|,∆, t)− J1(|a|, |b|,∆, t) if a ≥ 0, b < 0

K1(|b|,∆, t)− J1(|a|, |b|,∆, t) if a < 0, b ≥ 0

1−K1(|a|,∆, t)−K1(|b|,∆, t)+

J1(|a|, |b|,∆, t) if a < 0, b < 0 ,

,

J1(a, b, y, t) = E[Q(a
√
yβ)Q(b

√
yβ)] for a, b, y ≥ 0, (2.42)

K1(a, y, t) = E[Q(a
√
yβ)] for a, y ≥ 0, (2.43)

H(a, b, t, B, ψ) = E[H1(a, b,∆, t)] for a, b real, (2.44)

J (a, b, t, B, ψ) = E[J1(a, b,∆, t)] for a, b ≥ 0, (2.45)

K(a, t, B, ψ) = E[K1(a,∆, t)] for a ≥ 0, (2.46)

R1(a, y, t) , E[Q(a
√
yβ)]

=

 K1(|a|, y, t) if a, y ≥ 0 ,

1−K1(|a|, y, t) if a < 0, y ≥ 0 ,
(2.47)

and R(a, t, B, ψ) = E[R1(a,∆, t)]

=

 K(|a|, t, B, ψ) if a ≥ 0 ,

1−K(|a|, t, B, ψ) if a < 0
(2.48)

where, in Appendix, expressions for (2.42), (2.43), (2.45) and (2.46) are given in

(2.56), (2.71), (2.64) and (2.74), respectively. Using (2.41) and (2.37)-(2.40), each

row in Table 2.1 can be averaged over β to arrive at P̃C,x,y(∆), x = 0, 1, . . . ,M1−1,

y = 0, 1, . . . ,M2 − 1. Upon further averaging P̃C,x,y(∆), with the help of (2.44),

over ∆ of (2.19), we arrive at PC,x,y for FDDQ. For FDD and TDD schemes,

note that PC,x,y = P̃C,x,y(1). For convenience, PC,x,y are tabulated in Table 2 for
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Figure 2.1 Average BEP performance of QPSK modulation with imperfect channel

estimation, feedback delay, and feedback channel quantization. Here, we assume

t = 2 and 3 antennas, with B = 2 feedback bits, ρd = 0.99 and average received

SNR of the pilot channel γp = 30 dB.

FDDQ. Using them, the average SEP can be written as

P s,QAM =
1

M

M1−1∑
x=0

M2−1∑
y=0

(1− PC,x,y)

= 1− 1

M

M1−1∑
x=0

M2−1∑
y=0

PC,x,y. (2.49)

With κ = 1 and ρ = 1 (i.e., with perfect channel estimation), it is easy to show

that (2.49) coincides with the results presented in [25].

2.4.2.2 Average Bit Error Probability

In this section, we present average BEP analysis of Gray coded M1×M2-

QAM constellation. We follow the same Gray code labeling approach as con-

sidered in [34], which is briefly described as follows. We define k1 = log2(M1),
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Table 2.1 For each x ∈ {0, 1, . . . ,M1− 1} and y ∈ {0, 1, . . . ,M2− 1}, conditioned

on β and ∆, the probability of correct reception of the symbol sm[k]] is tabulated

on the third column. In the above table γ̂ =
√
γx,yβ∆.

x y
PC,x,y(β∆) =

Prob
(
sm,x[k] + jsm,y[k] received successfully

∣∣∣β∆
)

{1, . . . ,M1 − 2} {1, . . . ,M2 − 2}

Prob(sm,x[k]− d ≤ rI [k] < sm,x[k] + d|β∆)×
Prob(sm,y[k]− d ≤ rQ[k] < sm,y[k] + d|β∆) ={
Q ([am,x[k]− 1− am,x[k]µI + am,y[k]µQ] γ̂)−
Q ([am,x[k] + 1− am,x[k]µI + am,y[k]µQ] γ̂)

}
×{

Q ([am,y[k]− 1− am,x[k]µQ − am,y[k]µI ] γ̂)−
Q ([am,y[k] + 1− am,x[k]µQ − am,y[k]µI ] γ̂)

}
{1, . . . ,M1 − 2} {0}

Prob(sm,x[k]− d ≤ rI [k] < sm,x[k] + d|β∆)×
Prob(−∞ < rQ[k] < sm,y[k] + d|β∆) =
Q (− [am,y[k] + 1− am,x[k]µQ − am,y[k]µI ] γ̂)×{
Q ([am,x[k]− 1− am,x[k]µI + am,y[k]µQ] γ̂)−
Q ([am,x[k] + 1− am,x[k]µI + am,y[k]µQ] γ̂)

}
{1, . . . ,M1 − 2} {M2 − 1}

Prob(sm,x[k]− d ≤ rI [k] < sm,x[k] + d|β∆)×
Prob(sm,y[k]− d ≤ rQ[k] <∞|β∆) =
Q ([am,y[k]− 1− am,x[k]µQ − am,y[k]µI ] γ̂)×{
Q ([am,x[k]− 1− am,x[k]µI + am,y[k]µQ] γ̂)−
Q ([am,x[k] + 1− am,x[k]µI + am,y[k]µQ] γ̂)

}
{0} {1, . . . ,M2 − 2}

Prob(−∞ < rI [k] < sm,x[k] + d|β∆)×
Prob(sm,y[k]− d ≤ rQ[k] < sm,y[k] + d|β∆) =
Q (− [am,x[k] + 1− am,x[k]µI + am,y[k]µQ] γ̂)×{
Q ([am,y[k]− 1− am,x[k]µQ − am,y[k]µI ] γ̂)−
Q ([am,y[k] + 1− am,x[k]µQ − am,y[k]µI ] γ̂)

}
{M1 − 1} {1, . . . ,M2 − 2}

Prob(sm,x[k]− d ≤ rI [k] <∞|β∆)×
Prob(sm,y[k]− d ≤ rQ[k] < sm,y[k] + d|β∆) =
Q ([am,x[k]− 1− am,x[k]µI + am,y[k]µQ] γ̂)×{
Q ([am,y[k]− 1− am,x[k]µQ − am,y[k]µI ] γ̂)−
Q ([am,y[k] + 1− am,x[k]µQ − am,y[k]µI ] γ̂)

}
{0} {0}

Prob(−∞ < rI [k] < sm,x[k] + d|β∆)×
Prob(−∞ < rQ[k] < sm,y[k] + d|β∆) =
Q (− [am,x[k] + 1− am,x[k]µI + am,y[k]µQ] γ̂)
Q (− [am,y[k] + 1− am,x[k]µQ − am,y[k]µI ] γ̂)

{M1 − 1} {0}

Prob(sm,x[k]− d ≤ rI [k] <∞|β∆)×
Prob(−∞ < rQ[k] < sm,y[k] + d|β∆) =
Q ([am,x[k]− 1− am,x[k]µI + am,y[k]µQ] γ̂)
Q (− [am,y[k] + 1− am,x[k]µQ − am,y[k]µI ] γ̂)

{0} {M2 − 1}

Prob(−∞ < rI [k] < sm,x[k] + d|β∆)×
Prob(sm,y[k]− d ≤ rQ[k] <∞|β∆) =
Q (− [am,x[k] + 1− am,x[k]µI + am,y[k]µQ] γ̂)
Q ([am,y[k]− 1− am,x[k]µQ − am,y[k]µI ] γ̂)

{M1 − 1} {M2 − 1}

Prob(sm,x[k]− d ≤ rI [k] <∞|β∆)×
Prob(sm,y[k]− d ≤ rQ[k] <∞|β∆) =
Q ([am,x[k]− 1− am,x[k]µI + am,y[k]µQ] γ̂)
Q ([am,y[k]− 1− am,x[k]µQ − am,y[k]µI ] γ̂)
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Table 2.2 For each x ∈ {0, 1, . . . ,M1 − 1} and y ∈ {0, 1, . . . ,M2 − 1} the av-

erage probability of correct reception of the symbol sm[k] = sm,x[k] + jsm,y[k] is

tabulated on the third column for an M1 × M2 rectangular QAM constellation

with FDDQ scheme. The functions t1(x, y), t2(x, y), t3(x, y), t4(x, y) are defined in

Section (2.4.2.1). The function H(a, b, t, B, ψ) is defined in (2.44), whereas the

function R(a, t, B, ψ) is defined in (2.48). Expressions for PC,x,y for FDD and

TDD schemes can easily be obtained by replacing H(a, b, t, B, ψ) by H1(a, b, 1, t)

of (2.41) and R(a, t, B, ψ) by R1(a, 1, t) of (2.47).

x y PC,x,y = E [PC,x,y(β∆)]

{1, 2, . . . ,M1 − 2} {1, 2, . . . ,M2 − 2}

H (t1(x, y), t3(x, y), t, B, ψ)−
H (t1(x, y), t4(x, y), t, B, ψ)−
H (t2(x, y), t3(x, y), t, B, ψ) +
H (t2(x, y), t4(x, y), t, B, ψ)

{1, 2, . . . ,M1 − 2} {0}

R (t1(x, y), t, B, ψ)−
H (t1(x, y), t4(x, y), t, B, ψ)−
R (t2(x, y), t, B, ψ) +
H (t2(x, y), t4(x, y), t, B, ψ)

{1, 2, . . . ,M1 − 2} {M2 − 1} H (t1(x, y), t3(x, y), t, B, ψ)−
H (t2(x, y), t3(x, y), t, B, ψ)

{0} {1, 2, . . . ,M2 − 2}

R (t3(x, y), t, B, ψ)−
R (t4(x, y), t, B, ψ)−
H (t2(x, y), t3(x, y), t, B, ψ) +
H (t2(x, y), t4(x, y), t, B, ψ)

{M1 − 1} {1, 2, . . . ,M2 − 2} H (t1(x, y), t3(x, y), t, B, ψ)−
H (t1(x, y), t4(x, y), t, B, ψ)

{0} {0}
1−R (t4(x, y), t, B, ψ)−
R (t2(x, y), t, B, ψ) +
H (t2(x, y), t4(x, y), t, B, ψ)

{M1 − 1} {0} R (t1(x, y), t, B, ψ)−
H (t1(x, y), t4(x, y), t, B, ψ)

{0} {M2 − 1} R (t3(x, y), t, B, ψ)−
H (t2(x, y), t3(x, y), t, B, ψ)

{M1 − 1} {M2 − 1} H (t1(x, y), t3(x, y), t, B, ψ)
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k2 = log2(M2), and the sets X = {0, 1, . . . ,M1 − 1} and Y = {0, 1, . . . ,M2 − 1}.

The vector (ak1−1, ak1−2, . . . , a0) is the Gray code mapping for the in-phase signal

sm,x[k], and (bk2−1, bk2−2, . . . , b0) is the Gray code mapping for the quadrature-

phase signal sm,y[k]. For i = 0, . . . , k1 − 1, let us define the following sets:

X1(i) = {x : (xmod 2i+2) = 2i + l, l = 0, . . . , 2i − 1} ∪ {x : (xmod 2i+2) =

2i+1 + l, l = 0, . . . , 2i−1} and X0(i) = {x : (xmod 2i+2) = l, l = 0, . . . , 2i−1}∪{x :

(xmod 2i+2) = 3×2i+l, l = 0, . . . , 2i−1}. In a similar manner, for j = 0, . . . , k2−1,

we can define the sets Y1(j) and Y0(j). Y1(j) = {y : (ymod 2j+2) = 2j + l, l =

0, . . . , 2j − 1} ∪ {y : (ymod 2j+2) = 2j+1 + l, l = 0, . . . , 2j − 1} and Y0(j) = {y :

(ymod 2j+2) = l, l = 0, . . . , 2j−1}∪{y : (ymod 2j+2) = 3×2j+l, l = 0, . . . , 2j−1}.

Using these sets, the decision statistic for each bit ai, i = 0, . . . , k1− 1, is given by

the disjoint union of intervals on the x-axis [34], and is expressed as

âi =


1 if rI [k] ∈

∪x∈X1(i)

[
−∞.1{x=0} + (sm,x[k]− d), (sm,x[k] + d) +∞.1{x=M1−1}

)
0 otherwise,

(2.50)

where 1{x} = 1 if ‘x’ is true and 1{x} = 0 if ‘x’ is false. In a similar manner, for

bit bj, j = 0, . . . , k2 − 1, it is given by the following disjoint union of intervals on

the y-axis

b̂j =


1 if rQ[k] ∈

∪y∈Y1(j)

[
−∞.1{y=0} + (sm,y[k]− d), (sm,y[k] + d) +∞.1{y=M2−1}

)
0 otherwise.

(2.51)

Following the approach presented in [32], it is straightforward to show that the

average BEP for bit aj, j = 0, . . . , k1 − 1, with FDDQ is given by

Pb(aj) =
1

M

∑
x0∈X0(j)

∑
x1∈X1(j)

∑
y∈Y

(2.52){
R
([
−∞.1{x1=0} + am,x1 [k]− 1− am,x0 [k]µI + am,y[k]µQ

]√
γx0,y, t, B, ψ

)
−

R
([
∞.1{x1=M1−1} + am,x1 [k] + 1− am,x0 [k]µI + am,y[k]µQ

]√
γx0,y, t, B, ψ

)}
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Figure 2.2 Average SEP performance of QPSK modulation with imperfect feed-

back. Here t = 2 and 3 antennas, with B ∈ {2, 4} feedback bits, ρd = 0.99, and

received SNR of the pilot channel γp = 30 dB.

+
1

M

∑
x1∈X1(j)

∑
x0∈X0(j)

∑
y∈Y{

R
([
−∞.1{x0=0} + am,x0 [k]− 1− am,x1 [k]µI + am,y[k]µQ

]√
γx1,y, t, B, ψ

)
−

R
([
∞.1{x0=M1−1} + am,x0 [k] + 1− am,x1 [k]µI + am,y[k]µQ

]√
γx1,y, t, B, ψ

)}
,

where R(a, t, B, ψ) is defined in (2.48). In (2.52), the first triple summation cap-

tures the probability of transmitting sm,x0 [k]+jsm,y[k] and demodulating sm,x1 [k]+

jsm,y[k], whereas the second triple summation captures the probability of trans-

mitting sm,x1 [k] + jsm,y[k] and demodulating sm,x0 [k] + jsm,y[k]. Similarly, the

average BEP for bj, j = 0, . . . , k2 − 1, with FDDQ is

Pb(bj) =
1

M

∑
y0∈Y0(j)

∑
y1∈Y1(j)

∑
x∈X

(2.53){
R
([
−∞.1{y1=0} + am,y1 [k]− 1− am,x[k]µQ − am,y0 [k]µI

]√
γx,y0 , t, B, ψ

)
−

R
([
∞.1{y1=M2−1} + am,y1 [k] + 1− am,x[k]µQ − am,y0 [k]µI

]√
γx,y0 , t, B, ψ

)}
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Figure 2.3 Average BEP performance of Gray coded 16-QAM modulation with

imperfect channel estimation, feedback delay, and channel quantization. Here, we

assume t = 2 and 3 antennas, with B = 2 feedback bits, ρd = 0.99 and average

received SNR of the pilot channel γp = 30 dB.

+
1

M

∑
y1∈Y1(j)

∑
y0∈Y0(j)

∑
x∈X{

R
([
−∞.1{y0=0} + am,y0 [k]− 1− am,x[k]µQ − am,y1 [k]µI

]√
γx,y1 , t, B, ψ

)
−

R
([
∞.1{y0=M2−1} + am,y0 [k] + 1− am,x[k]µQ − am,y1 [k]µI

]√
γx,y1 , t, B, ψ

)}
.

For FDD and TDD schemes, the average BEP can be obtained by replacing

R(a, t, B, ψ) by R1(a, 1, t) of (2.47). Finally, the average BEP can be obtained as

P b,QAM =
1

log2(M)

{
k1−1∑
j=0

Pb(aj) +

k2−1∑
j=0

Pb(bj)

}
. (2.54)
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Figure 2.4 Average SEP performance of 16-QAM modulation with imperfect feed-

back. Here, t ∈ {2, 3}, with B ∈ {2, 4} bits, ρd = 0.99 and average received SNR

of the pilot γp = 30 dB.

2.5 Results and Discussion

In this section, we present numerical (obtained through the presented

analysis) and simulation results quantifying the combined effects of ICE, feedback

delay and channel quantization. In all the plots in this section, we employ the well-

known Jakes model [2] for the time correlation of the fading process. That is, we

set ρd = J0(2πfdD), where J0(x) is the zeroth order Bessel function [103], fd is the

maximum Doppler frequency which is related to the carrier frequency fc and the

terminal velocity v as fd = vfc/c, and D is the feedback delay. We set fc = 2 GHz,

v = 34.5 Kmph, and D = 0.5 msec, so that ρd = 0.99. For expository purpose, we

assume MMSE channel estimation (as detailed in Section 2.3.3) with pilot SNR

γp ∈ {15, 30} dB. Then, from (2.14), the combined correlation coefficient is

ρ = ρd

√
γp

1 + γp
.
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Figure 2.5 Average BEP performance of Gray coded 8-PSK modulation as a

function of the number of feedback bits B ∈ {2, 4, 8} and the average pilot SNR

γp ∈ {15, 30} dB, for a fixed delay with ρd = 0.99. Here, we set t = 3 antennas.

Fig. 2.1 shows the average BEP performance of Gray-coded QPSK mod-

ulation with t = 2 and 3 antennas, B = 2 bits, and γp = 30 dB. For comparison,

we also plot the ideal performances (i.e., with PCE, no feedback delay, and un-

quantized feedback). The simulation results in Fig. 2.1 match accurately with

the numerical results, thus validating the presented analytical framework. Aver-

age SEP performance of QPSK modulation with t = 2 and 3 antennas, and with

B = 2 and 4 bits is presented in Fig. 2.2. Along with the simulation results corrob-

orating the analysis, Fig. 2.2 also shows the ideal SEP curves, and the performance

with perfect channel estimation and delay-less finite-rate feedback. Fig. 2.2 shows

that imperfect channel estimation and feedback delay cause more degradation to

the error performance compared to channel quantization alone. For example, with

t = 2 antennas and B = 2 bits at an SNR of 20 dB, the SEP with ICE and feedback

delay is an order of magnitude worse than the SEP with PCE and no feedback

delay. Fig. 2.2 also shows that this performance gap increases when the number
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Figure 2.6 Average BEP performance of Gray coded 64-QAM modulation as a

function of the number of feedback bits B ∈ {2, 4, 8} and the average pilot SNR

γp ∈ {15, 30} dB, for a fixed feedback delay with ρd = 0.99. Here, we set t = 3

antennas.

of antennas is increased by one, and the number of feedback bits is increased by

two. With Gray-coded 16-QAM modulation, Figs. 2.3 and 2.4, respectively, show

the average BEP and SEP performances.

Similar to Fig. 2.1, in Fig. 2.3, we use t = 2 and 3 antennas with B = 2

bits, whereas, similar to Fig. 2.2, in Fig. 2.4, we employ t = 2 and 3 antennas with

B = 2 and 4 bits. From Figs. 2.3 and 2.4, we conclude that imperfect channel

feedback degrades the average SEP performance more compared to the average

BEP performance. Figs. 2.3 and 2.4 also show that the performance degradation

of 16-QAM with imperfect channel feedback is qualitatively similar to that of

QPSK in Figs. 2.1 and 2.2.

The effects of pilot SNR and the feedback quantization bits on the av-

erage BEP performances of 8-PSK and 64-QAM are investigated in Figs. 2.5 and
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2.6, respectively. In Figs. 2.5 and 2.6, we fix the number of antennas at 3, choose

B ∈ {2, 4, 8} and γp ∈ {15, 30} dB. From Figs. 2.5 and 2.6 we observe that at high

SNR, for a given combination of B and γp, increasing the pilot SNR is more ben-

eficial to improving the average BEP performance than increasing the number of

feedback bits. This can be explained by the fact that imperfect channel estimation

introduces error floor at high SNR, which can only be reduced by increasing the

accuracy of channel estimation quality.

For example, in Fig. 2.5, with (B, γp) = (2, 15), increasing B to 8 while

keeping γp at 15 dB improves the BEP by a factor of two, whereas even by keeping

B at 2 and increasing γp to 30 dB improves the BEP by a factor of four. From

Fig. 2.6, a similar observation can be made which emphasizes the importance of

accurate channel quality estimation compared to the feedback quality improvement

with more bits. For a fixed value of B = 8 bits, Fig. 2.7 plots the average SEP of

32-QAM, M ∈ (4 × 8), by varying number of transmit antennas t ∈ {2, 3, 4} and

pilot symbol SNR γp ∈ {15, 30} dB. From Fig. 2.7, we notice that, at high SNR,

for a fixed (t, γp) increasing the pilot SNR has a more direct effect in reducing the

error floor than increasing the number of antennas. This is due to the fact that,

at high SNR, error floor makes having an additional antenna less attractive from

diversity perspective.

Finally, by fixing γp at 30 dB, in Fig. 2.8 we study the average SEP of

8-PSK by varying number of transmit antennas t ∈ {3, 4} and number of feedback

bits B ∈ {2, 4, 8}. As expected, Fig. 2.8 shows that for a given number of antennas

increasing the number of feedback bits monotonically improves the error perfor-

mance. However, Fig. 2.8 also suggests that it is more beneficial to have a high

feedback bit budget for a smaller number of antennas than to have more antennas

with a smaller bit budget. Although extensive set of simulations are performed to

confirm the analysis, for clarity, in Figs. 2.5, 2.6, 2.7, 2.8, and 2.9 we presented

only the analytical results.
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Figure 2.7 Average SEP performance of 32-QAM modulation as a function of the

number of antennas t ∈ {2, 3, 4} and the average pilot SNR γp ∈ {15, 30} dB, for

a fixed feedback delay with ρd = 0.99. Here, we set B = 8 bits.
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Figure 2.8 Average SEP performance of 8-PSK modulation as a function of the

number of antennas t ∈ {3, 4} and B ∈ {2, 4, 8}. Here, we set γp = 30 dB.
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2.6 Conclusion

In this chapter we have considered transmit beamforming for MISO sys-

tems on spatially independent Rayleigh fading channels with imperfect channel

feedback. We characterized the feedback imperfections in terms of noisy channel

estimation, feedback delay, and finite rate channel quantization. A general frame-

work, valid for any two-dimensional constellation and frequency division duplexing

with and without channel quantization and time domain duplexing schemes, was

presented to account for the feedback imperfections. The error probability analysis

is complemented by the simulation results. We demonstrated, through numerical

and simulation results, that channel estimation inaccuracy and feedback delay are

more detrimental to the error performance compared to the effects of finite-rate

channel quantization.

An important feature of the modeling, proposed in this chapter, is that the

receiver is assumed to have no knowledge of the estimation and delay related error

terms as well as the corresponding correlation co-efficients. In the next chapter we

take a critical look at these assumptions and develop a system where the receiver

knows the delay related error term while still unaware of the estimation related

error term.

2.7 Appendix

In this appendix, we derive expressions for (2.42), (2.43), (2.45) and

(2.46). We begin with (2.45),

J (a, b, t, B, ψ) , E
[
Q
(
a
√
β∆
)
Q
(
b
√
β∆
)]

(2.55)

=

∫
y

f∆(y) dy

∞∫
x=0

Q(a
√
xy)Q(b

√
xy) fβ(x) dx,

where, in (2.55), a, b ≥ 0, the pdf of β is given by (2.8), the pdf of ∆ is given by

(2.19), t is the number of transmit antennas, and B is the number of feedback bits.
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Figure 2.9 Average SEP performance of 64-QAM modulation as a function of the

number of antennas t ∈ {2, 3, 4} and the average pilot SNR γp ∈ {15, 30} dB, for

a fixed feedback delay with ρd = 0.99. Here, we set B = 8 bits.

Let us first focus on the inner integral of (2.55), which can be simplified as follows:

Let a1 = a
√
y and b1 = b

√
y, and using integration by-parts, we have

J1(a, b, y, t) ,

∞∫
x=0

Q(a1

√
x)Q(b1

√
x)fβ(x)dx =

[
Q(a
√
x)Q(b

√
x)Fβ(x)

]∞
x=0

+
b1

2
√

2π

∞∫
x=0

Fβ(x)Q(a1

√
x)e−

b21x

2 x−
1
2dx+

a1

2
√

2π

∞∫
x=0

Fβ(x)Q(b1

√
x)e−

a2
1x

2 x−
1
2dx

=
b1

2
√

2π

∞∫
x=0

Fβ(x)Q(a1

√
x)e−

b21x

2 x−
1
2dx+

a1

2
√

2π

∞∫
x=0

Fβ(x)Q(b1

√
x)e−

a2
1x

2 x−
1
2dx

= M(a, b, y, t) +M(b, a, y, t) (2.56)
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where

M(a, b, y, t) ,
b1

2
√

2π

∞∫
x=0

Fβ(x)Q(a1

√
x)e−

b21x

2 x−
1
2dx. (2.57)

To simplify the derivation we use the following alternate representation for the

Gaussian Q-function [12]:

Q(x) =
1

π

π
2∫

θ=0

exp

(
− x2

2 sin2 θ

)
dθ x ≥ 0, (2.58)

and Fβ(x) of (2.9), M(a, b, y, t) of (2.57) can be simplified as

M(a, b, y, t) =
b1

2
√

2π

∞∫
x=0

Q(a1

√
x)e−

b21x

2 x−
1
2dx−

b1

2
√

2π

t−1∑
j=0

1

j!

∞∫
x=0

Q(a1

√
x)e−(

b21
2

+1)xxj−
1
2dx

=
b1

2π
√

2π

π/2∫
0

dθ

∞∫
x=0

e
−
(
b21
2

+
a2
1

2 sin2 θ

)
x
x−

1
2dx−

b1

2π
√

2π

t−1∑
j=0

1

j!

π/2∫
0

dθ

∞∫
x=0

e
−
(
b21
2

+
a2
1

2 sin2 θ
+1

)
x
xj−

1
2dx

=
1

2π

π/2∫
0

dθ

√
b2

1 sin2 θ

b2
1 sin2 θ + a2

1

−

t−1∑
j=0

1

j!

Γ
(
j + 1

2

)
2j+

1
2

2π
√

2π

π/2∫
0

dθb1

(
sin2 θ

b2
1 sin2 θ + 2 sin2 θ + a2

1

)j+ 1
2

=
1

2π

π/2∫
0

dθ

√
b2 sin2 θ

b2 sin2 θ + a2
−

t−1∑
j=0

1

j!

bΓ
(
j + 1

2

)
2j+

1
2

2π
√

2π
×

π/2∫
0

dθ

(
sin2 θ

a2 + b2 sin2 θ

)j+ 1
2 √

y

[
y +

2 sin2 θ

a2 + b2 sin2 θ

]−(j+ 1
2)
.(2.59)

Upon using (2.56), (2.57) and (2.59) in (2.55), we have

J (a, b, t, B, ψ) =

∫
y

f∆(y)M(a, b, y, t)dy +

∫
y

f∆(y)M(b, a, y, t)dy. (2.60)
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In the absence of feedback quantization (i.e., as B → ∞ and ψ → 0), recall that

we have f∆(y) = δ(y − 1). Then, (2.60) reduces to

J (a, b, t,∞, 0) =M(a, b, 1, t) +M(b, a, 1, t), (2.61)

which is also equal to J1(a, b, 1, t) of (2.42). For finite B, using (2.19) for the pdf

of ∆, we have

J (a, b, t, B, ψ) = 2B(t− 1)

1∫
1−ψ

(1− y)t−2 {M(a, b, y, t) +M(b, a, y, t)} dy. (2.62)

To further simplify (2.62), let us define

M1(a, b, ψ, t) ,

1∫
1−ψ

(1− y)t−2M(a, b, y, t)dy (2.63)

so that (2.62) is

J (a, b, t, B, ψ) = 2B(t− 1) {M1(a, b, ψ, t) +M1(b, a, ψ, t)} . (2.64)

Using (2.59) in (2.63), we obtain

M1(a, b, ψ, t) =
1

2π

1∫
1−ψ

(1− y)t−2

π/2∫
0

√
b2 sin2 θ

b2 sin2 θ + a2
dydθ −

t−1∑
j=0

1

j!

bΓ
(
j + 1

2

)
2j+

1
2

2π
√

2π
×

π/2∫
0

dθ

(
sin2 θ

a2 sin2 θ + b2

)j+ 1
2

1∫
1−ψ

dy(1− y)t−2√y
[
y +

2 sin2 θ

a2 sin2 θ + b2

]−(j+ 1
2)
. (2.65)

Owing to the fact that
1∫

1−ψ
f∆(y)dy = 1, the first double integral of (2.65) reduces

to

1∫
1−ψ

(1− y)t−2

π/2∫
0

√
b2 sin2 θ

b2 sin2 θ + a2
dydθ =

1

2B(t− 1)

π/2∫
0

√
b2 sin2 θ

b2 sin2 θ + a2
dθ

=
1

2B(t− 1)

ab

(a2 + b2)
2F1

(
1, 1;

3

2
;

b2

a2 + b2

)
(2.66)
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where 2F1(·, ·; ·; ·) is the hypergeometric function [103], and we have used [12,

Eqn. (5.17)] to simplify the integral in (2.66). On the other hand, to simplify the

inner integral of (2.65) let us consider the following result [35] for positive integer

values of m:

D1(ψ, α,m, n) ,

1∫
1−ψ

√
y(1− y)m(y + α)−ndy

=
m∑
l=0

(−1)l
(
m

l

) 1∫
1−ψ

yl+
1
2 (y + α)−ndy

=
m∑
l=0

(−1)l
(
m
l

)
α−n

(l + 3
2
)

{
2F1

(
l +

3

2
, n; l +

5

2
;
−1

α

)
−

(1− ψ)l+
3
2

2F1

(
l +

3

2
, n; l +

5

2
;
ψ − 1

α

)}
. (2.67)

Using (2.67), the inner integral of (2.65) simplifies to

1∫
1−ψ

dy(1− y)t−2√y
[
y +

2 sin2 θ

a2 sin2 θ + b2

]−(j+ 1
2)

= D1

(
ψ,

2 sin2 θ

a2 sin2 θ + b2
, t− 2, j +

1

2

)
.

(2.68)

Using (2.66) and (2.68), (2.65) simplifies to

M1(a, b, ψ, t) =
1

π2B+1(t− 1)

ab

(a2 + b2)
2F1

(
1, 1;

3

2
;

b2

a2 + b2

)
−

t−1∑
j=0

1

j!

bΓ
(
j + 1

2

)
2j+

1
2

2π
√

2π
×

π/2∫
0

dθ

(
sin2 θ

a2 sin2 θ + b2

)j+ 1
2

×D1

(
ψ,

2 sin2 θ

a2 sin2 θ + b2
, t− 2, j +

1

2

)
. (2.69)

Finally, using (2.69) in (2.64), we arrive at a single-integral based formula for

J (a, b, t, B, ψ). To simplify (2.43) and (2.46), now consider the following random

variable

G(∆, φ, b, t) =

φ∫
θ=0

(
sin2 θ

sin2 θ + b2∆

)t
dθ (2.70)



47

with the pdf of ∆ as defined in (2.19). Note that the function K1(a, y, t) of (2.43)

for a, y ≥ 0 can be expressed in terms of (2.70) as

K1(a, y, t) = E[Q(a
√
yβ)]

=
1

π

π
2∫

0

(
sin2 θ

sin2 θ + ya2/2

)t
dθ =

1

π
G
(
y,
π

2
,
a√
2
, t

)
. (2.71)

The average of (2.70) over ∆ can be performed as follows

G(φ, b, t, B, ψ) , E [G(∆, φ, b, t)]

= 2B(t− 1)

1∫
y=1−ψ

(1− y)t−2G(y, φ, b, t)dy

= 2B(t− 1)

φ∫
θ=0

(
sin2 θ

b2

)t 1∫
y=1−ψ

(1− y)t−2

(
y +

sin2 θ

b2

)−t
dydθ

= 2B(t− 1)

φ∫
θ=0

(
sin2 θ

b2

)t
D2

(
ψ,

sin2 θ

b2
, t− 2, t

)
dθ, (2.72)

where

D2(ψ, α,m, n) ,

1∫
1−ψ

(1− y)m(y + α)−ndy

=
−αn

1 +m
2F1

(
1, n; 2 +m;− 1

α

)
− α1−n(1 + α)m

n− 1
2F1

(
1− n,−m; 2− n;

α

α + 1

)
+

(1 + α)m(1 + α− ψ)1−n

n− 1
2F1

(
1− n,−m; 2− n;

1 + α− ψ
α + 1

)
, (2.73)

and the simplification is due to [35]. As a result, we have, for a > 0,

K(a, t, B, ψ) = E [K1(a,∆, t)]

=
1

π
E

[
G
(

∆,
π

2
,
a√
2
, t

)]
=

1

π
G
(
π

2
,
a√
2
, t, B, ψ

)
(2.74)

which is (2.46).

Acknowledgement

The text of this chapter, in part, has appeared in:



48

• Y. Isukapalli, R. Annavajjala, and B. D. Rao, “Performance analysis of trans-

mit beamforming for MISO systems with imperfect feedback,” IEEE Trans-

actions on Communications, vol. 57, no. 1, pp. 222-231, Jan. 2009.

• Y. Isukapalli, R. Annavajjala, and B. D. Rao, “Average SEP and BEP anal-

ysis of transmit beamforming for MISO systems with imperfect feedback

and M-PSK constellation,” IEEE Symp. on Pers. Indoor and Mobile Radio

Comm. (PIMRC), Athens, Greece, pp. 1-5, Sep. 2007.



3 A Distinction between Delay

Related Error and Estimation

Related Error

In the previous chapter we modeled the estimation errors and feedback

delay in a similar manner, i.e., the error terms due to estimation and delay are

assumed to be unknown and hence both were part of receiver thermal noise when

the performance analysis is carried out. This chapter revolves around the idea that

delay related error term can be known at the receiver while the estimation related

error term can not be known at the receiver. Thus the modeling proposed here

highlights the distinction between errors that arise due to channel estimation from

those that arise due to feedback delay and represents an important departure from

past work. Employing a packet fading model, since the channel is constant for the

whole block, the channel estimation error (as well as the known delay error term)

is also constant for the whole block requiring a more careful approach to carrying

out the performance analysis.

With the new modeling we address the problem of analyzing the effect

of imperfect feedback in a slowly varying spatially independent Rayleigh fading

wireless channel on the average packet error probability (PEP) of transmit beam-

forming multiple input single output systems. PEP is an important error statistic

for slowly fading wireless communication system designers. We also develop the

tools relevant for deriving analytical expressions for the PEP, one such important

49
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tool is the analytically tractable approximation to the Gaussian Q-function, which

helps in the evaluation of the expectation of higher powers (≥ 3) of Q-function.

Analytical expression is derived for the PEP with BPSK signaling. The derived

approximated closed-form analytical expression is complemented by simulations.

3.1 Introduction

Multiplicative fading is a major source of performance degradation in a

multipath wireless environment. Channel coding and interleaving can offer some

protection from the negative effects of fading. However, in some wireless sys-

tems data has to be organized into small packets, which are confined to fixed

time slots, with or without interleaving. One popular example of such a system

is the slotted multiple access scheme. It is important for the system designers to

know the impact of fading on the performance. An important metric for study-

ing the performance of a non-interleaved wireless packet data transmission is the

average packet error probability (PEP) [38]-[53]. Packet error probability is also

increasingly becoming an important quality-of-service parameter for the wireless

networking community since it determines how frequently the information packet

has to be re-transmitted [54]-[59].

Extensive analytical results quantifying the impact of fading on aver-

age symbol and error probability (SEP/BEP) are available for various modulation

schemes [12]. However, in slow fading situations, there is no mapping between the

average SEP/BEP and the average PEP. Consequently knowing average SEP/BEP

does not help in understanding the average PEP. Analysis of average PEP is a more

complicated problem compared to the analysis of average SEP/BEP. Analytical

quantification of packet error probability has received considerable attention in

the literature [38]-[53]. Closed-form expressions for PEP have been derived for the

non-coherent FSK modulation. The non-coherent FSK’s SEP, conditioned on the

channel, is an exponential function and taking expectation of the higher powers
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of conditional SEP w.r.t. the fading random variable is analytically tractable.

However, closed-form expressions are not available for coherent BPSK and other

constellations. Conditional PEP (conditioned on a function of the wireless channel)

for a scheme such as coherent BPSK results in integer powers of the Gaussian-Q

function. This makes the analysis challenging because in order to derive the av-

erage PEP expression, one has to integrate the integer powers of the Gaussian-Q

function w.r.t. the random variable that captures the fading environment, an an-

alytically difficult exercise. We also note that, to the best of our knowledge, the

effect of channel estimation errors on PEP has not been considered in the litera-

ture. In this chapter we consider the problem of deriving analytical expressions for

PEP of a multiple input single output (MISO) system with various forms of prac-

tical imperfections. We later show that this problem captures various commonly

interested performance analysis of wireless systems as special cases.

The first form of feedback imperfection considered is channel estimation

error. As explained in the previous chapter, it is now a common practice to model

the actual channel and its estimate as a jointly Gaussian random process, with

an error term that is orthogonal to the channel estimate [28,60,62,76]. The error

term associated with a particular channel estimate is unknown to the receiver and

hence it becomes part of noise when the performance analysis is carried out. If

the channel under consideration is varying at symbol level, or if the performance

criteria is average symbol/bit error probability (as was the case in the previous

chapter), then the variance of the error term will be simply added (along with the

symbol dependency) to the variance of the receiver noise resulting in an effective

noise term with variance equaling the sum of variance of receiver noise and the

variance of the estimation error term ( [28,60], and the references therein). In this

chapter, we also follow the standard model of joint Gaussianity between the channel

and its estimate, but adapt it to the packet fading model. An important difference

is that in a packet fading model the error term is constant for the entire packet

while each symbol experiences a different noise sample requiring new analytical
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tools.

The second form of feedback imperfection we address is the delay between

constructing the beamforming vector at the receiver and using it at the transmitter.

Another well accepted formulation [16, 18, 62], [64]-[70] is to treat the impact of

feedback delay in a manner similar to estimation errors, i.e., actual channel and

its delayed version are assumed to be jointly Gaussian with an unknown (to the

receiver) error term that is orthogonal to the delayed version. Since the delay

related error term is unknown to the receiver, similar to estimation related error

term, during performance analysis it becomes part of noise thus removing any

conceptual distinction between the mismatch in beamforming due to feedback delay

and estimation errors. Though much of the past work on feedback delay [16, 18,

62], [64]-[70] effectively make the delay related error term part of receiver noise,

alternate options were considered (primarily in the context of adaptive modulation)

in [71]-[78]. However, it is important to note that much of the work in [64]-[78]

treated estimation errors and feedback delay in a similar manner, i.e., either both

the error terms are assumed to be known or unknown to the receiver. In this

chapter, based on feedback system considerations we feel it is appropriate to treat

the errors due to feedback delay to be known at the receiver, while the errors due to

estimation errors are un-known at the receiver. This modeling approach is adopted

in this work and it shows that the impact of feedback delay on beamforming MISO

system performance can be less severe and is also conceptually quite different from

channel estimation errors.

The third form of feedback imperfection considered in this chapter, namely

finite-rate quantization of the channel [22]-[25]. To summarize, the contributions

presented in this chapter are threefold: an accurate characterization of estima-

tion errors in a packet fading context, a new modeling of feedback delay which

shows improved performance for a beamforming MISO system and conceptually

distinguishes it from estimation errors, and derivation of an analytical expression

quantifying the impact of channel estimation errors, feedback delay and channel
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quantization on the average packet error probability. All these contributions fur-

ther the understanding of feedback communication systems. As a side benefit, the

analytical tools developed promise to be of general interest with broad applicabil-

ity.

The rest of this chapter is organized as follows. A general framework for

the modeling of imperfect feedback in the packet fading context is presented in

Section 3.2. An analytical expression for the average packet error probability with

un-coded BPSK constellation is derived in Section 3.3. Numerical and simulation

results are presented in Section 3.4. We conclude this chapter in Section 3.5.

Important variables: t -number of transmit antennas, ` -packet index, k -

symbol index in the packet, N -number of symbols in a packet, ρ̃e estimation related

correlation co-efficient, ρe -magnitude of ρ̃e, ρ̃d delay related correlation co-efficient,

ρd -magnitude of ρ̃d, B -number of feedback bits, γb -SNR per bit, h` -actual channel

of `th packet, ĥ` -estimated channel of `th packet.

3.2 System Model

We consider a multiple input single output system with t antennas at the

transmitter and one antenna at the receiver. Let h` be the channel between the

transmitter and the receiver for the `th packet. h` is modeled as a spatially i.i.d.

frequency-flat Rayleigh fading channel which is constant for all the N un-coded

symbols in packet `. The vector valued channel h` ∼ NC (0, I). Furthermore, it

is assumed that the channel varies from packet to packet but exhibits a significant

correlation. The justification for feedback overhead, in systems such as the ones

considered here, comes from the fact that the low-rate uplink channel is able to

provide an improved link quality between transmitter and receiver. For feedback

systems it is important that the wireless channel varies slowly, otherwise the mis-

match between the beamforming vector and the actual channel will result in a

significant performance degradation.
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Ideally, the channel should be treated as continuously changing, implying

that ρ̃d actually varies across a packet. However, assuming continuous variation

of channel across all the symbols makes the problem analytically more challenging

to the extent of making the analysis intractable. Assuming channel to remain

constant for the packet (or block) is a fairly common assumption in many journal

publications [79]- [83] (and numerous papers that cite them). Using the popular

and well accepted Clark’s model [2], we provide a simple example to validate the

assumption of channel remaining constant for a packet and exhibiting correlation

across the packets. According to Clark’s model, the correlation, R(τ), between

channel samples with a lag of τ is given by

R(τ) = J0(2πfmτ)

where J0() is the 0th order Bessel function of the first kind, fm = v/λ, v is the

velocity of mobile, and λ is the carrier wavelength.
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Figure 3.1 Correlation between two channel samples separated by a lag of τ .

In Fig. 3.1, we plot the correlation R(τ) as a function of lag τ . For this

simulation, we follow the GSM system parameters as listed in page. 67 of [1].

Carrier frequency is assumed to be 900 MHz. Fig. ?? has three curves showing the
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correlation for different mobile speeds (20, 50, and 90 mph). The solid black line

is drawn at 0.57 milliseconds, which is the packet length of user (one of the eight

served in a TDMA fashion) in a GSM system. At 20 mph speed, the correlation is

nearly constant in the time-interval of interest (0.57 milliseconds). As the speed of

mobile increases, at 90 mph, the correlation noticeably changes with-in a packet.

So at relatively smaller speeds we can assume that the channel effectively remain

constant for the entire packet. Another important point is that, the correlation

calculated based on Clark’s model assumes that a large number of multipath are

coming from all directions around the mobile. However, in most of the cases there

will only be a few multipath, and they generally arrive from a narrow angular space.

Hence the correlation values suggested by Clark’s model should be treated as the

worst case scenario. The correlation in many real world situations is considerably

higher than Clark model’s estimate. In summary, smaller packet size combined

with low mobility can justify the assumption of channel remaining constant for

the duration of the packet and exhibiting a correlation across the packets.

The transmitted kth symbol in the packet ` is denoted by s`[k] and

E[|s`[k]|2] = Es. Let w` be the unit norm beamforming vector (BV) at the trans-

mitter for the packet `. Then, the kth received signal in the packet ` is given

by

y`[k] = hH` w` s`[k] + η`[k], k = 1, 2, · · · , N (3.1)

where η`[k] is the thermal noise that effects the kth symbol of `th packet, η`[k] ∼

NC (0, σ2
n). We now discuss in detail the three forms of feedback imperfections and

develop a general model, applicable for the packet fading context, that captures

channel estimation errors, feedback delay, and finite-rate channel quantization for

transmit beamforming MISO systems.

3.2.1 Channel Estimation Errors - Packet Fading Context

Let ĥ` be the estimate of h` . We assume that h` and ĥ` are jointly

Gaussian, a reasonable assumption for many practical estimation techniques (
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[28,60,63,65] and the references therein). The jointly Gaussian assumption allows

us to relate them as follows:

h` =
ρ̃e√
Λ

ĥ` +
√

1− ρ2
e ε` e (3.2)

where ε` e ∼ NC (0, I), ĥ` ∼ NC (0,ΛI), and ρ̃e = ρe e
jφρe is the complex correla-

tion coefficient that determines the degree of accuracy in channel estimation. The

closer ρe is to one, the more accurate is the channel estimate. ρ̃e can be assumed

to be known at the receiver. Assuming instantaneous feedback and no channel

quantization, the beamforming vector to be used at the transmitter is given by

w` =
ĥ`

‖ĥ`‖
. (3.3)

The kth received signal of the `th packet with the BV given in (3.3) and h` given

in (3.2) is

y`[k] = hH` w` s`[k] + η`[k]

=

(
ρ̃e√
Λ

ĥ` +
√

1− ρ2
e ε` e

)H
ĥ`

‖ĥ`‖
s`[k] + η`[k]

=
¯̃ρe√
Λ
‖ĥ`‖ s`[k] +

(√
1− ρ2

e ε̃` e s`[k] + η`[k]
)

(3.4)

where

ε̃` e =
εH` eĥ`

‖ĥ`‖
∼ NC (0, 1) .

In the above equation ε̃` e is unknown to the receiver and hence the receiver can

not compensate for the phase rotation caused due to ε̃` e.

In previous chapter, the performance criteria was average SEP/BEP and

as a consequence the estimation error term simply got absorbed into the thermal

noise and increased its variance (along with introducing a symbol dependency). In

the packet fading model the estimation error term ε̃` e is constant and impacts the

entire packet (while each symbol experiences a different noise sample) and hence it

can not be simply lumped into the additive noise term. As will be evident from the

next section, not lumping the estimation error term into white noise also makes
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the analysis more complicated. Nevertheless, it has to be dealt with since PEP is

a more appropriate performance metric to capture the impact of estimation errors

in slow fading channels.

3.2.2 Feedback Delay with Imperfect Channel Estimation

In the above discussion, a simplistic assumption of feedback being avail-

able instantly was made at the transmitter. In reality there is a delay and to

account for this it is assumed that the beamforming vector for the current packet

` is derived from the channel estimate of the previous packet (`− 1). Since there

is a time lag between forming the BV at the receiver and its use at the transmit-

ter, the BV w` depends on ĥ`−1 as opposed to the current channel estimate ĥ`.

Assuming that the channel estimate and its delayed version are jointly Gaussian,

we can relate them as follows:

ĥ` = ρ̃d ĥ`−1 +
√

(1− ρ2
d)Λ ε` d (3.5)

where ĥ` ∼ NC (0,ΛI) and ρ̃d = ρd e
jφρd is the complex correlation co-efficient

between ĥ` and ĥ`−1, ε` d ∼ NC (0, I) is the error term due to delay and is assumed

to be uncorrelated with ĥ`−1. The delay correlation co-efficient ρ̃d is assumed to

be known to the receiver and measures the impact of delay. With the help of (3.2)

and (3.5), the actual channel h` in terms of delayed version of the estimated channel

ĥ`−1 can be written as

h` = ρ̃e

{
ρ̃d√
Λ

ĥ`−1 +
√

1− ρ2
d ε` d

}
+
√

1− ρ2
e ε` e . (3.6)

With the inclusion of estimation errors along with the feedback delay, the beam-

forming vector (still un-quantized) is given by

w` =
ĥ`−1

‖ĥ`−1‖
. (3.7)

The beamforming vector w` indicates that the BV is formed with the help of

channel estimate from the previous packet (`− 1) and is used to transmit the data
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and pilot sequences as part of packet `. With this formulation, the kth received

symbol of the packet ` can be written as

y`[k] = hH` w` s`[k] + η`[k]

=

(
ρ̃e

{
ρ̃d√
Λ

ĥ`−1 +
√

1− ρ2
d ε` d

}
+
√

1− ρ2
e ε` e

)H
ĥ`−1

‖ĥ`−1‖
s`[k] + η`[k]

= ¯̃ρe

{
¯̃ρd‖ĥ`−1‖√

Λ
+
√

1− ρ2
d έ` d

}
s`[k] +

√
1− ρ2

e έ` e s`[k] + η`[k]︸ ︷︷ ︸
Unknown to the Receiver

(3.8)

where

έ` d =
εH`dĥ`−1

‖ĥ`−1‖
∼ NC (0, 1) ,

έ` e =
εH` e ĥ`−1

‖ĥ`−1‖
∼ NC (0, 1) .

For a particular packet both έ` d and έ` e are constant. The distributions of both

έ` d and έ` e indicate their random nature over packets.

As explained in the previous section the estimation related error term

έ` e is unknown to the receiver and hence the phase rotation caused by έ` e can

not be compensated. The role of delay related error term έ` d, which determines

the penalty due to the feedback delay, will depend on the modeling assumptions.

Notice that if there is no feedback delay, then ρ̃d = 1 and the error term vanishes.

If έ` d is also assumed to be unknown, then it can be treated in a manner similar

to estimation error. In particular, if the performance metric is SEP/BEP, or if

the channel is varying at a symbol level as opposed to packet level, then έ` d can

be merged into the receiver noise greatly simplifying the analysis [16, 18], [64]-

[70]. A closer examination, as explained below, indicates that there is a distinction

between estimation error related term and the delay related term and so lumping

them together is a questionable simplification.

We propose a model/approach to handle this error that we believe more

accurately captures the impact of delay on feedback system performance. The

model is based on the following system assumption: there is a pilot sequence
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before every packet of data and that the beamforming vector (3.7) is based on the

channel estimate from the previous packet. Under this assumption, the receiver

will be knowing both ĥ` and ĥ`−1 and hence it knows the error term due to delay

ε` d, c.f. 3.5 (and subsequently έ` d). As shown later, this simple change in the

approach impacts the performance of the system considerably and indicates more

clearly the conceptual distinction between the imperfections resulting from delay

and estimation. However this modeling also makes the problem of performance

analysis more complicated. Note that even if the receiver knows έ` d, it can not

compensate for all the loss caused due to delay. Its performance lies in between

a system with no feedback delay (ρd = 1), and a system where the receiver does

not know έ` d, (0 < ρd < 1) and is lumped into the receiver noise. By changing the

way beamforming vector is formed, the receiver is able to know the delay related

error term έ` d, on the other hand it is impossible to know the estimation related

error term έ` e.

3.2.3 Quantization of Delayed Version of Channel Estimate

In the previous two sections we assumed that the channel state informa-

tion is exactly conveyed to the transmitter. In practice, the receiver estimates the

channel, and quantizes it into one of C = 2B code words in the codebook which

is known to both transmitter and receiver. The index, which is represented by

B bits, of the code word corresponding to the channel estimate is fed back to

the transmitter. We assume that the feedback channel is error free [22]-[27]. The

beamforming vector formed by quantizing delayed version of the channel estimate

is given by

w` = Q

[
ĥ`−1

‖ĥ`−1‖

]
(3.9)

where Q is the quantization function, here we assume a VQ based codebook (

[25,26]). Using (3.6) and (3.9), the kth received signal of the packet ` is:

y`[k] = hH` w` s`[k] + η`[k]
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=

(
ρ̃e

{
ρ̃d√
Λ

ĥ`−1 +
√

1− ρ2
d ε` d

}
+
√

1− ρ2
e ε` e

)H (
Q

[
ĥ`−1

‖ĥ`−1‖

])
s`[k] + η`[k]

= ¯̃ρe

( ¯̃ρd√
Λ
ϑ`−1 ‖ĥ`−1‖+

√
1− ρ2

d ε̂` d

)
s`[k] +

√
1− ρ2

e ε̂` e s`[k] + η`[k],

(3.10)

where

ε̂` d = εH`d

(
Q
[
ĥ`−1/‖ĥ`−1‖

])
, ε̂` d ∼ NC (0, 1) ,

ε̂` e = εH` e

(
Q
[
ĥ`−1/‖ĥ`−1‖

])
, ε̂` e ∼ NC (0, 1) ,

ϑ`−1 =
(
ĥ`−1/‖ĥ`−1‖

)H (
Q
[
ĥ`−1/‖ĥ`−1‖

])
. (3.11)

We now take a closer look at the additional changes to the kth symbol in the

received packet ` because of use of a quantized beamforming vector. The received

signal with and without quantized BV is given by (3.12) and (3.13) respectively

Un-Quantized BV (3.7)︷︸︸︷
y`[k] = ¯̃ρe

{ ¯̃ρd√
Λ
‖ĥ`−1‖+

√
1− ρ2

d έ` d

}
︸ ︷︷ ︸

known to the Receiver

s`[k] +
√

1− ρ2
e έ` e s`[k] + η`[k]︸ ︷︷ ︸

Unknown to the Receiver

,

(3.12)

Quantized BV (3.9)︷︸︸︷
y`[k] = ¯̃ρe

( ¯̃ρd√
Λ
ϑ`−1 ‖ĥ`−1‖+

√
1− ρ2

d ε̂` d

)
︸ ︷︷ ︸

ψ̃`=ψ` e
j φψ` (Known to the Receiver)

s`[k] +
√

1− ρ2
e ε̂` e s`[k] + η`[k]︸ ︷︷ ︸

Unknown to the Receiver

.

(3.13)

The above two equations mainly defer in three places. The effective error terms

with un-quantized BV are έ` d and έ` e and the effective error terms with quantized

BV are ε̂` d and ε̂` e.

All these effective error terms are different in an instantaneous sense, but

all of them are CSCG random variables with same mean and variance. Since we

are interested in average PEP we can conclude that quantization did not have

any effect in this aspect. The main effect of quantization on the PEP comes from
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ϑ`−1 (underlined term in ψ̃`). ϑ`−1 is the inner product between the unquantized

and quantized BV and the statistical characterization of ∆̃ , |ϑ`−1|2 will be im-

portant for the performance analysis. Since finding the exact pdf of ∆̃ is rather

difficult, [25, 26] upper bounded ∆̃ (i.e., lower bounded the average error perfor-

mance) by a r.v ∆, whose pdf is given by

p∆(x) = 2B(t− 1)(1− x)t−2, 1− ω < x < 1 (3.14)

where ω = 2−B/(t−1). In what follows, we use ∆ in place of ∆̃. Because of our

modeling assumptions, the receiver knows ρ̃d, ρ̃e, ĥ`, ĥ`−1, and Q
[
ĥ`−1/‖ĥ`−1‖

]
,

so it knows ψ̃` which enables coherent detection of the transmitted symbol.

3.3 Average Packet Error Probability

Since the feedback delay related error term and estimation related error

term are constant for the entire packet, average packet error probability, a metric

that requires averaging over the packet index ` thereby capturing the effect of

imperfect feedback in transmit beamforming MISO systems, provides a meaningful

way to study performance analysis. Also as pointed out in the introduction, for

slotted multiple access schemes and as a quality of service parameter for the MAC

layer of wireless networks, analytical understanding of PEP is important from

system design point of view. Existing results primarily are PEP with non-coherent

FSK modulation and so not readily applicable.

In this section we present the analysis of the average packet error prob-

ability of an un-coded packet of N BPSK symbols with imperfect feedback. We

first begin with the decision statistic required for the detection of kth symbol of `th

packet and then focus on the PEP. The coherent detection of transmitted symbol

is based on r`[k], obtained from y`[k] in (3.13).

r`[k] = e−j φψ` y`[k] (3.15)

=
(
ψ` +

√
1− ρ2

e ε̆` e

)
s`[k] + η̆`[k],
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ψ` =
∣∣∣ ¯̃ρe( ¯̃ρd√

Λ
ϑ`−1 ‖ĥ`−1‖+

√
1− ρ2

d ε̂` d

) ∣∣∣ , (3.16)

ε̆` e = e−j φψ` ε̂` e ∼ NC (0, 1) ,

η̆`[k] = e−j φψ` η`[k] ∼ NC
(
0, σ2

n

)
.

Notice that in the above equation, ψ` and ε̆` e do not depend on [k] indicating that

these two terms are fixed for the entire packet, whereas the notation for the white

noise is η̆`[k] indicating a different noise sample for each symbol.

To highlight the differences with the previous chapter, we now briefly

contrast the decision variable (DV) in (3.15) to that of the the DV we used in the

previous chapter. The performance metric in the previous chapter was average

SEP/BEP and the DV in the previous chapter was given as

r[k] = κs[k] + ξ[k], (3.17)

where κ is an unknown complex constant number(note that in this chapter we

assume the knowledge of ρ̃e, the estiamtion related correlation coefficient, and ρ̃d,

the delay related correlation coefficient, at the receiver) and ξ is conditionally (con-

ditioned on both fading and quantization of channel) CSCG random variable. In

the previous chapter to derive analytical expression average SEP/BEP, we had to

account for the fact that the transmitted symbol is scaled and rotated as well as

the noise is symbol dependent. The DV (3.15) in this chapter is more complicated.

All the symbols of `th block are scaled by a known random variable ψ`. Note that

knowledge of ψ` at the receiver is possible due to the modeling assumptions pre-

sented. Also, all the symbols of `th block experience the same channel estimation

related error term ε̆` e.

Since we are restricting our attention to the BPSK constellation, the

receiver uses the real part (for thresholding) of r`[k] to decode the transmitted

symbol as

r̃`[k] = Real (r`[k]) = κ s`[k] + η̂`[k],

κ = ψ` +
√

(1− ρ2
e)/2 ε̂`er , ψ` > 0, −∞ < κ <∞, (3.18)
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ε̂`er and η̂` are both real random variables with ε̂`er = Real (ε̂`e) ∼ N (0, 1) and

η̂`[k] = Real (η̆`[k]) ∼ N (0, σ2
n/2). As pointed out earlier ε̂`er is a fixed constant

for a particular packet, and viewed over a number of packets it is a statistical

quantity. The derivation of an analytical expression for PEP is quite involved and

here we outline the important steps in the derivation.

1. Derivation of pdf for κ: The signal scaling random variable in the decision

statistic r̃`[k] is κ. So the pdf of κ is important for the analysis of PEP. The

derivation of the pdf of κ is complicated by its dependency on the three forms

of imperfection. Details of the derivation can be found in Subsection 3.3.1.

2. Expectation of the Gaussian Q-function and its higher powers w.r.t the ran-

dom variable κ: Much of the analytical complexity in the performance anal-

ysis (PEP) revolves around the evaluation of expectations of the Gaussian

Q-function and its higher powers w.r.t the random variable κ in closed-form.

For the first two powers of the Gaussian Q-function, we are able to evaluate

the expectation using the exact form of the Gaussian Q-function. For higher

powers (≥ 3), we make use of an approximation of the Gaussian Q-function

and evaluate its expectation w.r.t κ. Details are in Subsection 3.3.2.2.

3.3.1 Derivation of pdf for κ

The signal scaling term κ in the decision statistic r̃`[k] is given in (3.18):

κ = ψ` +
√

(1− ρ2
e)/2 ε̂`er , ψ` > 0, −∞ < κ <∞.

Conditioned on ψ`, the conditional pdf of κ is given by

pκ(z|ψ` = x) =
1√

π(1− ρ2
e)
e
− (z−x)2

1−ρ2e .

and the pdf of κ can be obtained as

pκ(z) =

∫ ∞
−∞

pκ(z, x)dx

=

∫ ∞
−∞

pκ(z|x) pψ`(x) dx (3.19)



64

The evaluation of (3.19) requires the pdf of ψ` which is derived in Section 3.6.1

of the Appendix and the final expression is given in (3.66). Note that if there

are no estimation errors in the model, or if the performance criteria is average

symbol/bit error probability [61], or if the performance criteria is average packet

error probability with any constellation other than BPSK, then the pdf of ψ`

becomes central to the performance analysis. Here, not only is the pdf of ψ`

required, the extra step discussed in (3.19) has to be carried out for the pdf of κ.

Substituting the pdf of ψ` in (3.19), we obtain

pκ(z) =
n∑
l=0

2n−l−1∑
p=0

δ∑
g=0

{
Kp1fa2(l, p, g,L, z) +Kp2fb2(l, p, g,L, z)

}
(3.20)

where the variable and the corresponding defining equation are listed as pairs: n

- (3.46), δ - (3.57), L - (3.54), Kp1 - (3.60), and Kp2 - (3.61), and

fb2(l, p, g,L, z) =
2Ln−l−g e−

z2

1−ρ2e

ρ
2(n−l−g)
e Γ(n− l − g)

√
π(1− ρ2

e)
×

∫ ∞
0

x2(n−l−g)−1 e
−x2[ρ2e+L(1−ρ2e)]

ρ2e(1−ρ2e)
+ 2xz

1−ρ2e dx .

To evaluate the above integral we use the following identity [35]∫ ∞
0

xv−1e−βx
2−γx dx = (2β)−v/2 Γ(v) e

γ2

8β D−v

(
γ√
2β

)
. (3.21)

In the present context

β =
ρ2
e + L(1− ρ2

e)

ρ2
e (1− ρ2

e)
,

γ = − 2z

1− ρ2
e

,

v = 2(n− l − g) .

fb2(l, p, g,L, z) can now be written as

fb2(l, p, g,L, z) = H1 e
−z2H2 D−2(n−l−g) (−zH3) , −∞ < z <∞ (3.22)
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where

H1 =
Ln−l−g (1− ρ2

e)
n−l−g Γ(2[n− l − g])

2n−l−g−1 Γ(n− l − g) (ρ2
e + L(1− ρ2

e))
n−l−g

√
π(1− ρ2

e)
, (3.23)

H2 =
ρ2
e + 2L(1− ρ2

e)

2(1− ρ2
e)(ρ

2
e + L(1− ρ2

e))
, (3.24)

H3 =

√
2 ρe√

(1− ρ2
e)(ρ

2
e + L(1− ρ2

e))
, (3.25)

and Dp̃(l̃) is the parabolic cylinder function [35]. Finally

fa2(l, p, g,L, z) = fb2(l, p, g, 1, z) , (3.26)

which completes all the steps required to compute pκ(z) in (3.20).

The analytical expression for pκ(z) is confirmed using simulations (his-

togram approach is used to get the simulated version of κ’s pdf) in Fig. 3.7 for num-

ber of transmit antennas t ∈ {2, 3}, delay correlation co-efficient ρd ∈ {0.98, 0.94},

and estimation error correlation co-efficient ρe ∈ {0.95, 0.91}. The number of feed-

back bits B which determines the quantization codebook size is fixed at 4. From

the Fig. 3.7 it can be seen that the tail of the pdf increases as the number of

antennas increase, also the tail increases as the correlation increases.

3.3.2 Analytical Expression for Packet Error Probability

Conditioned on κ, the packet error probability (the probability that at

least one symbol in the packet is received incorrectly) is given by

PB,`(γb, ρe, t, N) = 1− {1− pb,`}N

= 1−
N∑
m=0

 N

m

 (−1)m (pb,`)
m

where pb,` is the error probability of a symbol in the `th packet (calculated with the

help of decision statistic r̃`[k])1 Note that since κ is fixed for the entire packet (while

1Similar to [45], the above equation can be easily modified to the scenario of a block channel coded
system that can correct an arbitrary number of errors.
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Figure 3.2 Verification of the pdf for the signal scaling term κ defined in (3.18),

number of transmit antennas t ∈ {2, 3}, delay correlation co-efficient ρd ∈

{0.98, 0.94}, and estimation error correlation co-efficient ρe ∈ {0.95, 0.91}, number

of feedback bits B = 4.

the noise sample is different for each symbol), all the symbols have the same error

probability. The average packet error probability is given by

P̃B(γb, ρe, t, N) = E` [PB,`(γb, ρe, t, N)]

= 1−
N∑
m=0

 N

m

 (−1)mE` [(pb,`)
m] . (3.27)

Accounting for the fact that ‘κ’ can be negative with a non-trivial probability, with

BPSK constellation, E` [(pb,`)
m] can be written as

E` [(pb,`)
m] = ApE`

[
Qm

(√
2γb z1

)]
+ (1− Ap)E`

{
1−Q

(√
2γb z2

)}m
= ApEz1

[
Qm

(√
2γb z1

)]
+

(1− Ap)
m∑
w=0

(−1)w Ez2

{
Qw
(√

2γb z2

)}
(3.28)
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where

Q(x) =
1√
2π

∞∫
u=x

exp

(
−u

2

2

)
du

is the standard Gaussian tail function [12] and Ap is the area under the positive

side of pdf pκ(z). i.e.,

Ap =

∫ ∞
0

pκ(z)dz.

Note that in the evaluation of E` [(pb,`)
m], one can integrate w.r.t z directly, how-

ever, Since −∞ < κ <∞, for clarity in presentation we chose to express E` [(pb,`)
m]

as shown in (3.28). In (3.28), γb is the SNR of a symbol in the packet and

z1 = κ2, 0 < κ <∞,

z2 = κ2, −∞ < κ < 0.

Using transformation of random variables, the pdfs of z1 and z2, needed to eval-

uate (3.28), can be shown to be given by (3.69) and (3.70) respectively. For

readability purpose the pdfs of z1 (3.69) and z2 (3.70) are given at the end of

Section 3.6.1 of the Appendix. To evaluate (3.28), we need to find an expression

for Ap and evaluate the expectations of the Gaussian Q-function and its higher

powers w.r.t the random variable κ. These steps are described below.

3.3.2.1 Evaluation of Ap

A closed-form expression for Ap can be evaluated as

Ap =

∫ ∞
0

pκ(z)dz = 1−
∫ ∞

0

pκ(−z)dz,

=
n∑
l=0

2n−l−1∑
p=0

δ∑
g=0

{
Kp1fap1(l, p, g,L, z) +Kp2fap2(l, p, g,L, z)

}
, (3.29)

fap2(l, p, g,L, z) = 1−H1

∫ ∞
0

e−z
2H2 D−2(n−l−g) (H3 z) dz.

Let

z =
√
x, dz =

1

2
x−

1
2dx.
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fap2(l, p, g,L, z) = 1− H1

2

∫ ∞
0

x−
1
2 e−xH2 D−2(n−l−g)

(
H3

√
x
)
dx,

= 1− H1 2−(n−l−g+1)
√
π

Γ(n− l − g + 1)

2F1

(
n− l − g, 1

2
;n− l − g + 1;

4H2 −H2
3

4H2 +H2
3

)
(3.30)

where 2F1(·, ·; ·; ·) is the hypergeometric function. To evaluate the above integral

we used [35]∫ ∞
0

x−
β
2

+1 e−xcD−ν

(
2(kx)

1
2

)
dx =

21−β− ν
2
√
π Γ(β)

Γ
(
ν+β+1

2

) (c+ k)−
β
2

2F1

(
ν

2
,
β

2
;
ν + β + 1

2
;
c− k
c+ k

)
, (3.31)[

Re (c+ k) > 0, Re
( c
k

)
> 0
]
.

In (3.29)

fap1(l, p, g,L, z) = fap2(l, p, g, 1, z).

3.3.2.2 Evaluating the expectations of the Gaussian Q-functions in (3.28)

In this subsection we evaluate the expectations of the GaussianQ-function

and its higher powers w.r.t the random variable κ. As explained in the previous

subsection, the random variable κ is now split into two random variables z1 (captur-

ing the positive part of κ) and z2 (capturing the negative part of κ) in closed-form.

For m ∈ {1, 2} (m being the power of the Gaussian Q-function), we evaluate the

expectation using the exact form of the Gaussian Q-function. For higher pow-

ers (m ≥ 3), we make use of an approximation of the Gaussian Q-function and

evaluate its expectation w.r.t z1 and z2. We start with ApEz1
[
Qm

(√
2 γb z1

)]
,

m = 1 and 2, required to compute (3.28):

ApEz1

[
Qm

(√
2 γb z1

)]
=

∞∫
z1=0

Qm
(√

2 γb z1

)
[Ap pz1(z1)] dz1

=

∞∫
z1=0

Qm
(√

2 γb z1

)
[p̂1(z1) + p̂2(z1)] dz1. (3.32)
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For m = 1, ApEz1
[
Qm

(√
2 γb z1

)]
can be written as

ApEz1

[
Q
(√

2 γb z1

)]
=

∞∫
z1=0

Q
(√

2 γb z1

)
p̂1(z1) dz1 +

∞∫
z1=0

Q
(√

2 γb z1

)
p̂2(z1) dz1 ,

= G1

(π
2

)
+ G2

(π
2

)
(3.33)

where G1 (ϕ) and G2 (ϕ) are derived in Section 3.6.2 of the Appendix. For m = 1

and 2, in Section 3.6.2 of the Appendix we exploit the fact that the first and

second powers of the Gaussian Q-function are parameterized by ϕ = π
2

and ϕ = π
4

respectively in the function Q̃(x) given below [12], i.e., Q̃
(
π
2

)
= Q (x) and Q̃

(
π
4

)
=

Q2 (x)

Q̃(x) =
1

π

ϕ∫
θ=0

e

(
− x2

2 sin2 θ

)
dθ, x ≥ 0. (3.34)

Following the above steps and Section 3.6.2 of the Appendix, it can be shown that

ApEz1

{
Q2
(√

2γbz1

)}
= G1

(π
4

)
+ G2

(π
4

)
,

(1− Ap)Ez2
{
Q
(√

2γbz2

)}
= G1

(π
2

)
− G2

(π
2

)
,

(1− Ap)Ez2
{
Q2
(√

2γbz2

)}
= G1

(π
4

)
− G2

(π
4

)
.

Exact expressions for ApEz1
[
Qm

(√
2 γb z1

)]
and (1−Ap)Ez2

[
Qm

(√
2 γb z2

)]
, for

m ≥ 3, are difficult to derive. With the help of results presented in Section 3.6.3 of

the Appendix, the following series representation can be given for an analytically

tractable form for Qm(x). We begin with the approximated form for Q(x) (from

Section 3.6.3)

Q(x) ≈ e
−x2

2

ma∑
m̃=0

cm̃ x
m̃ ,

cm̃ =
(−1)m̃+2(A)m̃+1

B
√
π (
√

2)m̃+2 (m̃+ 1)!
.

where A = 1.98, B = 1.135, and ma = 10 [84]. Qm(x) can be written as

Qm(x) ≈ e
−mx2

2

mma∑
k1=0

ck1 x
k1 , (3.35)
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The co-efficients ck1 can be calculated in an easy manner using the fourier transform

properties in a programming language like MATLAB. The expectations of the Q

approximation with respect to z1 and z2 are carried out in Section 3.6.4 of the

Appendix and the final expressions are given by (3.110) and (3.115).

3.3.3 Special Cases of the PEP Expression in (3.27)

In this section we briefly discuss a few special cases of the PEP expression

given in (3.27).

1. With block length N = 1 and assuming that the delay related error term

known at the receiver, the PEP expression (3.27) coincides with the analytical

expression for average SEP in our conference paper [61]. The results in [61]

are for M1 ×M2-QAM constellation, by choosing M1 = 1 and M2 = 1 the

results for BPSK constellation can be obtained. In previous chapter both

the delay and estimation error related terms are not known at the receiver.

According to the formulation in this chapter, delay related term is known

at the receiver while the estimation related error term is not known. In [61]

we derived closed-form average SEP expressions for M1 ×M2-QAM constel-

lation assuming that the delay related error term is known at the receiver.

Another important change between the previous chapter and the present

chapter is that in previous chapter we do not assume the knowledge of ρe

and ρd but in this chapter we assume that both ρe and ρd are known. The

derivation (assuming that ρe is not known at the receiver) of average SEP ex-

pression for M1×M2-QAM constellation from our paper [61] is summarized

in Section 3.6.5 of the Appendix.

The average SEP expression for BPSK, based on (3.27) (i.e., by substituting

N = 1 in (3.27) and after some simplification) is given by

P
SEP

= 2G1

(π
2

)
+ (1− Ap) ,

G1 (ϕ) is defined in Section 3.6.2 of the Appendix.
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2. PEP expression in (3.27) can also be applied to systems where the delay

related error term is not known at the receiver. In (3.27) with ρd = 1 and

changing the value of ρe such that it captures both estimation related cor-

relation co-efficient and delay related correlation co-efficient2 PEP in (3.27)

gives the performance of a system where the delay related error term is not

known at the receiver.

3. By making the block length N = 1, and assuming that the delay related

error term is not known at the receiver, the PEP expression (3.27) coincides

with the results presented in [62] (for BPSK constellation).

4. By making ρe = 1, ρd = 1, and assuming perfect quantization, with t = 1

the results in an approximated analytical expression for PEP with BPSK.

Except for a few modulation schemes (such as non-coherent FSK3), PEP is

generally studied with the help of computer simulations, and to the best of

our knowledge this approximated analytical form (3.27) is the first available

in the literature.

5. With arbitrary t and perfect feedback (ρe = 1, ρd = 1, and B = ∞), (3.27)

gives the average packet error probability with t degrees of diversity.

6. By making appropriate changes to the PEP expression in (3.27), one can

obtain an analytical understanding into the effects of fading, i.e., we can

study the effects of channel estimation errors alone, or delay alone, or channel

quantization alone, or other possible combinations of feedback imperfection.

We believe the general framework (and the closed-form pdfs of random vari-

ables) to derive PEP presented in this chapter can be leveraged to analytically

study the average packet error probability in other system settings as well.

2As explained in the previous chapter and in [62], when both estimation and delay related noise terms
are absorbed into the receiver noise, then the effective correlation co-efficient becomes the product of
delay only correlation co-efficient and estimation only correlation co-efficient.

3Or other modulation schemes where the conditional BEP/SEP expressions result in an exponential
function.



72

0 2 4 6 8 10 12 14 16 18 20
10−3

10−2

10−1

100

Average received SNR per symbol, dB

Av
er

ag
e 

Bl
oc

k 
Er

ro
r P

ro
ba

bi
lit

y

 

 
t=2, B=5, !e=0.98, !d=0.96, N=50, Simulated

t=2, B=5, !e=0.98, !d=0.96, N=50, Analytical

t=3, B=5, !e=0.98, !d=0.96, N=50, Simulated

t=3, B=5, !e=0.98, !d=0.96, N=50, Analytical

t=3, B=4, !e=0.95, !d=0.93, N=30, Simulated

t=3, B=4, !e=0.95,  !d=0.93, N=30, Analytical

Figure 3.3 Effect of imperfections in feedback (estimation, delay and quantization)

on the average packet error probability: packet size N ∈ {30, 50}, t ∈ {2, 3},

ρe ∈ {0.98, 0.95}, ρd ∈ {0.96, 0.93}, and number of feedback bits B ∈ {4, 5}.

3.4 Simulation Results

In this section we present a sample simulation to verify the accuracy of the

derived analytical expression for the average packet error probability and also show

the effectiveness of the modeling of feedback delay. Fig. 3.3 shows the accuracy of

derived analytical expression (in the form of an approximated infinite series) for

average packet error probability of transmit beamforming with imperfect feedback

of a packet of N ∈ {30, 50} un-coded BPSK symbols with t ∈ {2, 3} transmit an-

tennas, the estimation error correlation co-efficient ρe ∈ {0.98, 0.95}, the feedback

delay related correlation co-efficient ρd ∈ {0.96, 0.93}, and number of feedback bits

B ∈ {4, 5}. As pointed out earlier, the first two powers of Q-function are evalu-

ated exactly. For higher powers (m ≥ 3 in (3.28)), we calculate the expectation

w.r.t to the tractable approximation of the Q-function given in (3.101). Fig. 3.3
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Figure 3.4 Impact of delay related error term: number of transmit antennas t = 3,

packet size N = 30, ρe = 0.97, ρd = 0.9, and B = 4.

further validates the tightness of the approximation of Gaussian Q-function in

Section 3.6.3. According to the popular Clark’s model [2], the correlation between

channel samples with a lag of τ is given by R(τ) = J0(2πfmτ) where Jk() is the

kth order Bessel function of the first kind, fm = v/λ, v is the velocity of mobile,

and λ is the carrier wavelength. ρd = 0.96 correspond to a Doppler frequency of

80 Hz, and a delay of 5 milliseconds. At a carrier frequency of 900 MHz, Doppler

frequency of 80 Hz translates into 60 mph of mobile speed. In Fig. 3.3, by fixing

N = 50, ρd = 0.98, ρe = 0.96, and B = 5, improvement in performance can be

seen as the number of antennas are increased from t = 2 to t = 3.

As discussed in the modeling of imperfect feedback, one of the contribu-

tions of this chapter is the modeling aspect of feedback delay. The impact of the

knowledge of delay related error term (at the receiver) on the performance can be

seen in Fig.3.4. With all system parameters being the same, the solid curve shows

the performance of the system with delay related error term assumed known to the
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receiver as in this chapter. The dotted curve shows the performance of the system

when the receiver is assumed to not know the delay related error term as has been

done in the past. Apart from being conceptually distinct from estimation error

related error term, the delay related error term as modeled in the chapter shows

improved system performance. The past modeling [62] (and references therein)

simplifies the analysis but can lead to erroneous conclusions on system perfor-

mance. The simulation parameters for Fig.3.4 are: Number of transmit antennas

t = 3, packet size N = 30, estimation related correlation co-efficient ρe = 0.97,

delay related correlation co-efficient ρd = 0.99, and number of feedback bits B = 4.
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Figure 3.5 Contrast between delay only system and estimation error only system:

number of feedback bits B = 4, block length N = 30, ρe = 0.95 and ρd = 0.95.

Fig.3.5 contrasts the effect due to feedback delay alone and due to esti-

mation errors alone. The solid dotted curve shows PEP due to estimation errors

alone with ρe = 0.95 and the dotted curve shows the PEP due to feedback delay

alone with ρd = 0.95. Clearly the performance due to estimation errors alone is

worse than performance due to delay alone. In this figure the feedback delay error
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Figure 3.6 Trade-off between channel estimation errors and channel quantization:

number of transmit antennas t = 3, block sizeN = 30, and delay related correlation

coefficient ρd = 0.97.

term is known at the receiver thus it is able to perform better. If the feedback

delay is not modeled in the way explained in this chapter, then both curves would

be same. The important message from this figure is: if a trade-off is possible it is

better to put more resources into reducing estimation errors as opposed to trying

to reduce the feedback delay.

In Fig.3.5- number of feedback bits B = 4 and the block length N = 30.

In Fig.3.6 we consider a possible trade-off between the number of feedback bits

and the channel estimation quality. Quality of channel estimation depends on

number of pilots and the pilot SNR [62]. If the forward link budget is constrained

then increasing the number of feedback bits, which in turn improves the quality

of channel quantization, can help in achieving a performance which is equivalent

to increasing the pilot SNR. Similarly if the feedback link is constrained then

pilot SNR can be increased to achieve an improvement in performance. Fig.3.6
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illustrates this observation. In Fig.3.6- number of transmit antennas t = 3, block

size N = 30, and delay related correlation coefficient ρd = 0.97.

3.5 Conclusion

We considered the problem of analyzing the average packet error prob-

ability, an important quality-of-service parameter, of closed loop MISO systems

with imperfect feedback. The feedback imperfections include channel estimation

errors, feedback delay and finite-rate channel quantization. Modeling of channel es-

timation errors in the packet fading context makes use of the fact that the channel

estimate and the related error term are constant for the entire packet.

The modeling approach distinguishes between errors due to channel esti-

mation (un-known to the receiver) from those due to feedback delay (known to the

receiver). Knowledge of delay related error term at the receiver helps in improved

performance compared to a system without the knowledge of delay error term.

An approximated analytical expression for the PEP of an un-coded (or a simple

block channel coded) packet of BPSK symbols is derived. An important tool in

the derivation of the PEP expression is the analytically tractable approximation

for the Gaussian Q-function, derived in Section 3.3.2 of the Appendix.

The general expressions derived are quite complex and not easily amenable

to interpretation. Nevertheless, the steps taken in this chapter are necessary and

hopefully will prove to be useful for future work that has greater interpretabil-

ity. Special cases of interest are discussed. The derived closed-form analytical

expression is validated by simulations. Simulation results have also been used to

contrast the relative effects of the three forms of feedback imperfections on the

average packet error probability. Sections 2 and 3 studied the impact of imperfect

under different assumptions, however, both chapters have dealt with only spatially

independent scenario. In the next chapter we study the imperfect feedback in a

spatial correlation context.
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3.6 Appendix

3.6.1 Derivation of the pdf for ψ`

In this section of the Appendix we derive the pdf of the random vari-

able ψ`

ψ` =
∣∣∣ ¯̃ρe( ¯̃ρd ϑ`−1

‖ĥ`−1‖√
Λ

+
√

1− ρ2
d ε̂` d

)∣∣∣ .
ψ` has the parameters associated with all three forms of feedback imperfection. ρ̃e

determines the estimation quality, ρ̃d determines the effect due to delay,
√

1− ρ2
d ε̂` d

is the error term due to feedback delay that is known to the receiver (because of

the modeling approach presented in Section 3.2.2), and ϑ`−1 is the inner product

between the estimated and delayed channel direction and its quantized version.

Because of the analytical complexity involved in deriving pψ` , the pdf of ψ`, we

begin with first writng ψ` as

ψ` = ρe ϕ ,

ϕ =
∣∣∣ ¯̃ρd ϑ`−1

‖ĥ`−1‖√
Λ

+
√

1− ρ2
d ε̂` d

∣∣∣ . (3.36)

pdf of ϕ2 :

We first derive pϕ2(z), pdf of ϕ2 and then use a simple transformation to

get the pdf of ψ`. In ϕ,

‖ĥ`−1‖√
Λ

∼ 2x2t−1e−x
2

Γ(t)
, x ≥ 0 , (3.37)

ε̂` d ∼ NC (0, 1) , (3.38)

and the pdf of ∆ = |ϑ`−1|2 (later in the derivation we will be needing the pdf of ∆

not ϑ`−1) is

p∆(x) = 2B(t− 1)(1− x)t−2, 1− ω < x < 1,

ω = 2−
B
t−1 . (3.39)
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Note that ϕ has three random variables (ϑ`−1, ‖ĥ`−1‖, and ε̂` d) in it and all three

are independent of each other. To begin with assume that ϑ is a constant (we will

relax this assumption at a later stage).

If X1 and X2 are statistically independent Gaussian random variables,

each one with same variance σ2 and with the non-centrality parameter s2 = m2
1+m2

2

(m1 and m2 are the means of X1 and X2 respectively), then the non-central chi-

squared distribution, Z = X2
1 +X2

2 is given by

p(z|s) =
1

2σ2
e−

(s2+z)
2σ2 I 0

(√
z s

σ2

)
(3.40)

where I 0(x) is the modified bessel function of 0th order [35]. Let

σ =

√
1− ρ2

d

2
, (3.41)

s2 , y =
ρ2
d ∆ ‖ĥ`−1‖2

Λ
. (3.42)

After a simple transformation, the conditional pdf of y is given by

p(y|∆) =
e−y/(ρ

2
d ∆) yt−1

(ρ2
d∆)t Γ(t)

, y ≥ 0. (3.43)

With σ defined in (3.41) and y defined in (3.42), (3.40) can be applied to the

present context to get pϕ2(z|y,∆), the conditional pdf of ϕ2

pϕ2(z|y,∆) =
1

2σ2
e−

(y+z)

2σ2 I 0

(√
zy

σ2

)
.

The conditional pdf of ϕ2 is given by

pϕ2(z|∆) =

∫ ∞
−∞

pϕ2(z|y,∆) p(y|∆) dy

=

∫ ∞
−∞

 1

2σ2
e−

(y+z)

2σ2

∞∑
k̃=0

(zy)k̃

4k̃σ4k̃ (k̃!)2

(e−y/(ρ2
d∆)yt−1

(ρ2
d ∆)t Γ(t)

)
dy

pϕ2(z|∆) = λ e−
z

2σ2

∞∑
k̃=0

L(k̃) zk̃, z > 0 (3.44)

where

λ =
(1− ρ2

d)
t−1

Γ(t) [1− ρ2
d (1−∆)]

t ,

L(k̃) =
Γ(k̃ + t)ρ2k̃

d ∆k̃

(1− ρ2
d)
k̃

[1− ρ2
d (1−∆)]

k̃
(k̃!)2

.
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In the above derivation we used the infinite series representation for I 0(x):

I α(x) =
∞∑
k̄=0

(x/2)α+2k̄

k̄! Γ(α + k̄ + 1)
,

and the following identity [35]∫ ∞
0

xne−ωx dx = n!ω−(n+1). (3.45)

We can further simplify pϕ2(z|∆) given in (3.44) by writing the infinte series as

∞∑
k̃=0

L(k̃) zk̃ =
∞∑
k̃=0

(k̃ + t− 1) · · · (k̃ + 1)
β k̃

k̃!

=
dn

dβn

 ∞∑
k̃=0

β k̃+n

k̃!


=

dn

dβn
(
βneβ

)
= eβ

(
n∑
l=0

n c ln p l β
n−l

)
where

n = t− 1 , (3.46)

n c l =
n!

l!(n− l)!
,

n p l =
n!

(n− l)!
,

β =
ρ2
d ∆ z

(1− ρ2
d) [1− ρ2

d (1−∆)]
.

After some simplification pϕ2(z|∆) can be written as

pϕ2(z|∆) =
(1− ρ2

d)
n

Γ(t) [1− ρ2
d (1−∆)]

n+1 e
− z

2σ2 +β
n∑
l=0

n c ln p l β
n−l

=
(1− ρ2

d)
n
e−z/[1−ρ

2
d(1−∆)]

Γ(t) [1− ρ2
d (1−∆)]

n+1

n∑
l=0

n c l {n p lΓ(l + 1)} zn−l

Γ(l + 1)

(
ρ2
d

1− ρ2
d

)n−l
=

(1− ρ2
d)
n

[1− ρ2
d (1−∆)]

n

n∑
l=0

n c l fl(z)

{
ρ2
d ∆

1− ρ2
d

}n−l
(3.47)

where

fl(z) =
e−z/[1−ρ

2
d(1−∆)] zn−l

[1− ρ2
d (1−∆)]

n−l+1
Γ(n− l + 1)

, 0 ≤ l ≤ n.
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For sanity check the area under the pdf pϕ2(z|∆) can be verified to be one. To

begin with note that ∫ ∞
0

fl(z)dz = 1 (3.48)

∫ ∞
0

pϕ2(z|∆) dz =

∫ ∞
0

(1− ρ2
d)
n

[1− ρ2
d (1−∆)]

n

n∑
l=0

n c l fl(z)

(
ρ2
d∆

1− ρ2
d

)n−l
=

(1− ρ2
d)
n

[1− ρ2
d (1−∆)]

n

n∑
l=0

n c l

(
ρ2
d ∆

1− ρ2
d

)n−l
=

(1− ρ2
d)
n

[1− ρ2
d (1−∆)]

n

(
1 +

ρ2
d ∆

1− ρ2
d

)n
= 1.

We now look at the case where ∆ is random. The pdf for ∆ is given in (3.14). We

now integrate out the randomness due to ∆ to get pϕ2(z), the pdf of ϕ2.

pϕ2(z) =

∫ ∞
−∞

pϕ2(z|∆)p∆(∆) d∆

=

∫ 1

1−ω

(
(1− ρ2

d)
n

[1− ρ2
d (1−∆)]

n

n∑
l=0

n c l fl(z)

{
ρ2
d ∆

1− ρ2
d

}n−l)
×(

2B n (1−∆)n−1
)
d∆

= 2Bn(1− ρ2
d)
n

n∑
l=0

n c lz
n−l

Γ(n− l + 1)

{
ρ2
d

1− ρ2
d

}n−l
×

∫ 1

1−ω

e−z/[1−ρ
2
d(1−∆)] (∆)n−l (1−∆)n−1

[1− ρ2
d (1−∆)]

2n−l+1
d∆︸ ︷︷ ︸

J(z)

. (3.49)

In order to evaluate J(z), let

1

[1− ρ2
d (1−∆)]

= α ,

which implies

∆ =
αρ2

d − α + 1

αρ2
d

and

d∆ = − dα

α2ρ2
d

.
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J(z) =

∫ 1

1−ω

e−z/[1−ρ
2
d(1−∆)] ∆n−l (1−∆)n−1

[1− ρ2
d (1−∆)]

n−l+1
d∆

=
(−1)n (ρ2

d − 1)
n−l

(ρ2
d)

2n−l

∫ 1

1

1−ρ2
d
ω

e−zα
(

1

ρ2
d − 1

+ α

)n−l
(1− α)n−1dα

=
(−1)n (ρ2

d − 1)
n−l

(ρ2
d)

2n−l

∫ 1

1

1−ρ2
d
ω

e−zα
2n−l−1∑
p=0

cp α
p dα . (3.50)

The co-efficients cp are calculated as follows. Let F (x) be a function defined as

follows:

F (x) = (d+ x)s (1− x)r =
s+r∑
h=0

ch x
h,

ch =
1

h!

dh (F (x))

dxh

∣∣∣∣∣
x=0

=
1

h!

h∑
q=0

 h

q

Lr Ls(−1)h−qds−q, (3.51)

Lr =
r!

(r − h+ q)!
if r ≥ (h− q) else Lr = 0,

Ls =
s!

(s− q)!
if s ≥ q else Ls = 0.

In the present context,

x = α,

s = n− l,

r = n− 1,

d =
1

ρ2
d − 1

. (3.52)

With the help of the above function, J(z) can now be expressed as

J(z) =
(−1)n (ρ2

d − 1)
n−l

(ρ2
d)

2n−l

2n−l−1∑
p=0

cp Ip (3.53)

where cp is calculated with the help of (3.51) and Ip can be evaluated as

Ip =

∫ 1

1
1−ρ2ω

e−zα αp dα

=

[
−e−zα

(
αp

z
+

p∑
g=1

p (p− 1) · · · (p− g + 1)

zg+1
αp−g

)]1

1

1−ρ2
d
ω
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=

p∑
g=0

p p g
[
e−zLLp−g − e−z

]
zg+1

where

L =
1

1− ρ2
d ω

(3.54)

where ω is defined in (3.39). Substituting (3.53) in (3.49), the final closed form for

pdf pϕ2(z) is given by

pϕ2(z)=
2Bn(1− ρ2

d)
n

ρ2n
d

n∑
l=0

(−1)l n c l z
n−l

Γ(n− l + 1)

2n−l−1∑
p=0

cp

(
p∑
g=0

p p g
[
e−zL Lp−g − e−z

]
zg+1

)

=
n∑
l=0

2n−l−1∑
p=0

δ∑
g=0

{
Kp1 f̃1(l, p, g,L, z) +Kp2 f̃2(l, p, g,L, z)

}
+Rn,z (3.55)

where

Rn,z =
n∑
l=0

2n−l−1∑
p=n−l

p∑
g=n−l

Kp3(−1)l n c l cp p p g
[
e−zL Lp−g − e−z

]
Γ(n− l + 1) zg−n+l+1

,(3.56)

δ =

 p if p ≤ n− l − 1

n− l − 1 if p ≥ n− l
, (3.57)

f̃2(l, p, g,L, z) =
Ln−l−g e−L z zn−l−g−1

Γ(n− l − g)
, (3.58)

f̃1(l, p, g,L, z) = f̃2(l, p, g, 1, z) , (3.59)

Kp1 =
cp 2B n (1− ρ2

d)
n (−1)l+1 n c l Γ(n− l − g) p p g
ρ2n
d Γ(n− l + 1)

, (3.60)

Kp2 = −Kp1Lp−n+l , (3.61)

Kp3 =
2Bn(1− ρ2

d)
n

ρ2n
d

, (3.62)

and cp’s can be calculated with the help of (3.51). L is defined in (3.54).

Simplification of pϕ2(z) :

Note that the form of pϕ2(z) given in (3.55) is separated into two parts,

terms with powers of z in the numerator and terms with powers of z in the de-

nominator. Rn,z defined in (3.56) captures the terms with powers of z in the
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denominator. The negative exponent of z in Rn,z will make the performance anal-

ysis intractable. We now take a closer look and analytically prove that Rn,z = 0.

Rn,z = Kp3

n∑
l=0

2n−l−1∑
p=n−l

p∑
g=n−l

(−1)l n c l cp p p g
[
e−zL Lp−g − e−z

]
Γ(n− l + 1) zg−n+l+1

.

Let

g − n+ l = e

and

p− n+ l = f .

Rn,z = Kp3

n∑
l=0

n−1∑
f=0

f∑
e=0

(−1)l n c l cf+n−l (n− l + f)!

(n− l)! (f − e)!
e−z LLf−e − e−z

ze+1
. (3.63)

From previous discussion

cp =
1

p!

p∑
q=0

 p

q

Lr Ls(−1)p−q ds−q

Lr =
r!

(r − h+ q)!
if r ≥ (h− q) else Lr = 0

Ls =
s!

(s− q)!
if s ≥ q else Ls = 0

s = n− l, r = n− 1, and d = 1
ρ2
d−1

. We now look at the co-efficient cn−l+f , which

are evaluated with the help of (3.51)

cn−l+f =
1

(n− l + f)!

n−l+f∑
q=0

 n− l + f

q

 Lr Ls (−1)n−l+f−q ds−q

Lr 6= 0 if n− 1 ≥ (n− l + f − q) else Lr = 0

Ls 6= 0 if n− l ≥ q else Ls = 0

The two in-equalities in Lr and Ls in the above equations are satisfied only if

q = n− l, then cn−l+f is

cn−l+f =
(n− 1)! (−1)f

f !(n− f − 1)!
. (3.64)



84

The important point in the above equation is that cn−l+f is independent of l. We

can now write Rn,z in (3.63) as

Rn,z = Kp3

n∑
l=0

(−1)l n c l

n−1∑
f=0

(n− l + f)!

(n− l)!
T (f)

= Kp3

n∑
l=0

(−1)l n c lW(f)

where

T (f) =

f∑
e=0

cf+n−l
[
e−zLLf−e − e−z

]
(f − e)! ze+1

,

W(f) =
n−1∑
f=0

(n− l + f)!

(n− l)!
T (f)

=
n−1∑
f=0

mf l
f

where mf ’s are constants that are independent of index l, as shown in the next

step we do not need to calculate them explicitly. Rn,z can now be written as

Rn,z = Kp3

n−1∑
f=0

mf

n∑
l=0

(−1)l n c l l
f

︸ ︷︷ ︸
Cf

.

By using the following property of binomial co-efficients

n∑
k=0

(−1)k n c k l
b−1 = 0, n ≥ b ≥ 1,

it is clear that

Cf = 0, n− 1 ≥ f ≥ 0,

and subsequently Rn,z = 0. This result is important because the presence of

negative exponents of z in the pdf make the performance analysis difficult. The

final simplified form of pdf pϕ2(z) can now be written as

pϕ2(z) =
n∑
l=0

2n−l−1∑
p=0

δ∑
g=0

{
Kp1f1(l, p, g,L, z) +Kp2f2(l, p, g,L, z)

}
(3.65)

where (variable - definition): n - (3.46), δ - (3.57), L - (3.54), Kp1 - (3.60), Kp2 -

(3.61), f1(, , , , ) - (3.59), and f2(, , , , ) - (3.58).
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pdf of ψ` :

Note that the random variable that is of interest to us ψ`. From ear-

lier discussion ψ` is related to ϕ as ψ` = ρe ϕ. (3.65) is the pdf of ϕ2. Using

transformation of random variables, pψ` , the pdf of ψ` can be shown to be given

by

pψ`(x) =
n∑
l=0

2n−l−1∑
p=0

δ∑
g=0

{
Kp1fa1(l, p, g,L, x) +Kp2fa2(l, p, g,L, x)

}
, x > 0 ,

(3.66)

fa2(l, p, g,L, x) =
2Ln−l−g e−

L x2

ρ2e x2(n−l−g)−1

ρ
2(n−l−g)
e Γ(n− l − g)

. (3.67)

fa1(l, p, g,L, x) = fa2(l, p, g, 1, x) (3.68)

where (variable - definition): n - (3.46), δ - (3.57), L - (3.54), Kp1 - (3.60), and

Kp2 - (3.61).

pdfs of z1 and z2 :

z1 and z2 are the random variables defined in Section 3.3.2, here we

present the expressions for the pdfs of z1 and z2.

pz1(z1) =
n∑
l=0

2n−l−1∑
p=0

δ∑
g=0

{
Kp1fs1(l, p, g,L, z1) +Kp2fs2(l, p, g,L, z1)

}
,

(3.69)

fs2(l, p, g,L, z1) =
H1

2Ap
z1
− 1

2 e−z1H2 D−2(n−l−g) (−
√
z1H3) ,

fs1(l, p, g,L, z1) = fs2(l, p, g, 1, z1) .

pz2(z2) =
n∑
l=0

2n−l−1∑
p=0

δ∑
g=0

{
Kp1fs3(l, p, g,L, z2) +Kp2fs4(l, p, g,L, z2)

}
,

(3.70)

fs4(l, p, g,L, z1) =
H1

2 (1− Ap)
z2
− 1

2 e−z2H2 D−2(n−l−g) (
√
z2H3) ,

fs3(l, p, g,L, z1) = fs4(l, p, g, 1, z1) .
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Figure 3.7 Verification of the pdf for the signal scaling term ψ` defined in (3.66),

number of transmit antennas t ∈ {3, 4}, delay correlation co-efficient ρd ∈

{0.97, 0.98}, and estimation error correlation co-efficient ρe ∈ {0.94, 0.95}, number

of feedback bits B ∈ {5, 6}.

where the variables and the corresponding defining equation are listed as pairs:

L - (3.54), Kp1 - (3.60), Kp2 - (3.61), H1 - (3.23), H2 - (3.24), and H3 - (3.25),

and Dp̃(l̃) is the parabolic cylinder function. Parabolic cylinder function has many

representations, for analytical simplicity we choose to work with the following

representation [35]:

Dp̃(l̃) = 2
p̃
2 e−

l̃2

4

{ √
π

Γ
(

1−p̃
2

) 1F1

(
− p̃

2
,
1

2
;
l̃2

2

)
−
√

2π l̃

Γ
(−p̃

2

) 1F1

(
1− p̃

2
,
3

2
;
l̃2

2

)}
(3.71)

where 1F1(·, ·; ·) is the confluent hypergeometric function of the first kind. Using

the representation in (3.71) for the parabolic cylinder function, (3.69) and (3.70)

can be written as

pz1(z1) =
p̂1(z1) + p̂2(z1)

Ap
, z1 > 0,

pz2(z2) =
p̂1(z2)− p̂2(z2)

(1− Ap)
, z2 > 0,
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p̂1(x) =
n∑
l=0

2n−l−1∑
p=0

δ∑
g=0

{
Kp1fŝ5(l, p, g,L, x) +Kp2fŝ6(l, p, g,L, x)

}
,

(3.72)

fŝ6(l, p, g,L, x) = R1 x
− 1

2 e−xRh 1F1

(
Rn,

1

2
;xRc

)
, x > 0, (3.73)

R1 =
H1

√
π

2n−l−g+1 Γ
(

1+2(n−l−g)
2

) , (3.74)

Rh =
(4H2 +H2

3)

4
, (3.75)

Rn = n− l − g , (3.76)

Rc =
H2

3

2
, (3.77)

fŝ5(l, p, g,L, x) = fŝ6(l, p, g, 1, x) . (3.78)

p̂2(x) =
n∑
l=0

2n−l−1∑
p=0

δ∑
g=0

{
Kp1fŝ7(l, p, g,L, x) +Kp2fŝ8(l, p, g,L, x)

}
,

(3.79)

fŝ8(l, p, g,L, x) = R2 e
−xRh

1F1

(
Rn2,

3

2
; xRc

)
, x > 0, (3.80)

R2 =
H1H3

√
2π

2n−l−g+1 Γ (n− l − g)
, (3.81)

Rn2 = n− l − g +
1

2
, (3.82)

fŝ7(l, p, g,L, x) = fŝ8(l, p, g, 1, x) . (3.83)

3.6.2 Closed Form Expressions for G1 (ϕ) and G2 (ϕ)

In this section of the Appendix we derive the analytical expressions for

G1(ϕ) and G2(ϕ), which are used in the evaluation of ApE
[
Qm

(√
2 γb z1

)]
and

(1− Ap)E
[
Qm

(√
2 γb z2

)]
, where m ∈ {1, 2}.

3.6.2.1 Derivation of G1(ϕ)

G1(ϕ) =

∞∫
ỹ=0

Q̃
(√

2 γb ỹ
)
p̂1(ỹ) dỹ, (3.84)
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=
n∑
l=0

2n−l−1∑
p=0

δ∑
g=0

{
Kp1fc1(l, p, g,L, ϕ) +Kp2fc2(l, p, g,L, ϕ)

}
(3.85)

where (variable - definition): n - (3.46), δ - (3.57), L - (3.54), Kp1 - (3.60), Kp2 -

(3.61), Q̃(x) - (3.34), and p̂1(x) - (3.72).

fc2(l, p, g,L, ϕ) =

∞∫
ỹ=0

Q̃
(√

2 γb ỹ
)
fŝ6(l, p, g,L, ỹ) dỹ

= R1

∞∫
ỹ=0

Q̃
(√

2 γb ỹ
)
ỹ−

1
2 e−ỹRh 1F1

(
Rn,

1

2
; ỹRc

)
dỹ

=
R1

π

ϕ∫
θ=0

dθ

∞∫
ỹ=0

ỹ−
1
2 e−ỹ ( γb

sin2 θ
+Rh)

1F1

(
Rn,

1

2
; ỹRc

)
dỹ

(3.86)

where (variable - definition): fŝ6(, , , , ) - (3.73), R1 - (3.74), Rh - (3.75), Rn -

(3.76), and Rc - (3.77). With ỹRc = x , (3.86) becomes

fc2(l, p, g,L, ϕ) =
R1

πR
3
2
c

ϕ∫
θ=0

dθ

∞∫
x=0

x−
1
2 e−xS 1F1

(
Rn,

1

2
;x

)
dx (3.87)

where

S =
γb

sin2 θRc

+
Rh

Rc

. (3.88)

Notice that S > 1 for ρe < 1. To evaluate the above equation, we use the identity

given below [35]:

∞∫
r=0

rc−1 e−r d 1F1 (a, c; r) dr = Γ(c) d−c
(
d− 1

d

)−a
= Γ(c) d−c

(
1− d−1

)q
,

Re c > 0, Re d > 1. (3.89)

In the present context, in (3.109),

c =
1

2
,

d = S,

q = −Rn.
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With the help of above identity, (3.87) becomes

fc2(l, p, g,L, ϕ) = M
ϕ∫

θ=0

d−c
(
1− d−1

)q
dθ

where

d−1 = Rd

(
sin2 θ

sin2 θ + c1

)
,

M =
R1 Γ

(
1
2

)
πR

3
2
c

,

Rd =
Rc

Rh

,

and

c1 =
γb
Rh

. (3.90)

By using the generalized binomial series expansion,

(1− x)q =
∞∑
ñ=0

(−1)ñ p̄k,ñ
ñ!

(x)ñ ,

p̄k,ñ = q (q − 1) · · · (q − ñ+ 1).

fc2(l, p, g,L, ϕ) can now be written in a series of steps as 4

fc2(l, p, g,L, ϕ) = M
ϕ∫

θ=0

∞∑
ñ=0

Rñ+ 1
2

d (−1)ñ p̄k,ñ
ñ!

d̃
ñ+c

dθ

= M
ϕ∫

θ=0

∞∑
ñ=0

Rñ+ 1
2

d (−1)ñ p̄k,ñ
ñ!

(
1− (1− d̃)

)ñ+c

dθ

= M
ϕ∫

θ=0

∞∑
ñ=0

Rñ+ 1
2

d (−1)ñ p̄k,ñ
ñ!

∞∑
n̄=0

(−1)n̄ b̄k,n̄
n̄!

(
1− d̃

)n̄
dθ

= M
ϕ∫

θ=0

∞∑
ñ=0

Rñ+ 1
2

d (−1)ñ p̄k,ñ
ñ!

∞∑
n̄=0

(−1)n̄ b̄k,n̄
n̄!

n̄∑
n̄1=0

(−1)n̄1

 n̄

n̄1

d̃ n̄1
dθ

= M
∞∑
ñ=0

Rñ+ 1
2

d (−1)ñ p̄k,ñ
ñ!

∞∑
n̄=0

(−1)n̄ b̄k,n̄
n̄!

n̄∑
n̄1=0

(−1)n̄1

 n̄

n̄1

D (ϕ, c1, n̄1)

(3.91)

4Note that the convergence of the above series is not a problem since d−1 < 1.
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where

b̄k,n̄ = (ñ+ c) (ñ+ c− 1) · · · (ñ+ c− n̄+ 1) ,

d̃ =
sin2 θ

sin2 θ + c1

,

D (ϕ, c1, n̄1) =

ϕ∫
θ=0

d̃ dθ =

ϕ∫
θ=0

(
sin2 θ

sin2 θ + c1

)n̄1

dθ (3.92)

= π

{
ϕ

π
− T

π

√
c1

1 + c1

n̄1−1∑
k=0

 2k

k

 1

[4(1 + c1)]k

− 2

π

√
c1

1 + c1

n̄1−1∑
k=0

k−1∑
j=0

 2k

j

 (−1)j+k

[4(1 + c1)]k
sin[(2k − 2j)T ]

2k − 2j

}
, 0 ≤ ϕ ≤ 2π

(3.93)

where

T =
1

2
tan−1

(
2
√
c1(1 + c1) sin 2ϕ

(1 + 2 c1) cos 2ϕ− 1

)
+

π

2

[
1− 2

√
c1(1 + c1) sin 2ϕ

(
(1 + 2 c1) cos 2ϕ

2

)]
.

Equation (3.91) gives the final expression for fc2(l, p, g,L, ϕ). To complete the

calculation of G1(ϕ)in (3.85) we still need fc1(l, p, g,L, ϕ) which is given by

fc1(l, p, g,L, ϕ) = fc2(l, p, g, 1, ϕ) .

Derivation of G2(ϕ)

G2(ϕ) =

∞∫
ỹ=0

Q̃
(√

2 γb ỹ
)
p̂2(ỹ) dỹ, (3.94)

=
n∑
l=0

2n−l−1∑
p=0

δ∑
g=0

{
Kp1fd1(l, p, g,L, ϕ) +Kp2fd2(l, p, g,L, ϕ)

}
(3.95)
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where (variable - definition): n - (3.46), δ - (3.57), L - (3.54), Kp1 - (3.60), Kp2 -

(3.61), Q̃(x) - (3.34), and p̂2(x) - (3.79), and

fd2(l, p, g,L, ϕ) =

∞∫
ỹ=0

Q̃
(√

2 γb ỹ
)
fŝ8(l, p, g,L, ỹ) dỹ

= R2

∞∫
ỹ=0

Q̃
(√

2 γb ỹ
)
e−ỹRh 1F1

(
Rn2,

3

2
; ỹRc

)
dỹ

=
R2

π

ϕ∫
θ=0

dθ

∞∫
ỹ=0

e−ỹ ( γb
sin2 θ

+Rh)
1F1

(
Rn2,

3

2
; ỹRc

)
dỹ (3.96)

where (variable - definition): fŝ8(, , , , ) - (3.80), R2 - (3.81), Rh - (3.75), Rn2 -

(3.82), and Rc - (3.77). With ỹRc = x ,

fd2(l, p, g,L, ϕ) =
R2

πRc

ϕ∫
θ=0

dθ

∞∫
x=0

e−xS 1F1

(
Rn2,

3

2
;x

)
dx,

S is defined in (3.88). fd2(l, p, g,L, ϕ) can be evaluated using the following infinite

series expansion for the Gauss hypergeometric function

1F1 (a, b; r) dr =
∞∑
m̄=0

am̄ r
m̄

bm̄ m̄!
,

am̄ = 1. a1 (a1 + 1) · · · (a1 + m̄− 1), a1 = Rn2 ,

bm̄ = 1. b1 (b1 + 1) · · · (b1 + m̄− 1), b1 =
3

2
.

With the above series representation, fd2(l, p, g,L, ϕ) can now be written as

fd2(l, p, g,L, ϕ) =
R2

πRc

∞∑
m̄=0

am̄
bm̄

ϕ∫
θ=0

dθ

∞∫
x=0

e−xS xm̄

m̄!
dx,

=
R2

πRc

∞∑
m̄=0

am̄
bm̄

ϕ∫
θ=0

S−(m̄+1)dθ,

=
R2

πRc

∞∑
m̄=0

am̄
bm̄
Rm̄+1
d D (ϕ, c1, m̄+ 1) (3.97)

where D (ϕ, c1, m̄+ 1) is defined in (3.92) and c1 is defined in (3.90). Finally

fd1(l, p, g,L, ϕ) is given by

fd1(l, p, g,L, ϕ) = fd2(l, p, g, 1, ϕ).
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3.6.3 An Analytically Tractable Approximation for the Gaussian Q-

Function

In this section of the Appendix we propose an approximation for the

Gaussian Q-function that enables simpler evaluation of important communication

system performance metrics. The approximation enables derivation of closed-form

expressions for metrics such as average symbol, bit and packet error probabilities

which are known to be analytically involved as they require computation of the

expectation of Q-function and its integer powers, for any m of Nakagami-m fading.

The tightness of the approximation is verified by simulations. The usefulness of the

approximation is demonstrated by obtaining a simple closed-form expression for

the average symbol error probability of differentially encoded QPSK in Nakagami-

m fading. This result is used in Section 3.3.2 for the evaluation of packet error

probability.

3.6.3.1 Introduction

The Gaussian Q-function plays an important role in the performance

analysis of many communication problems [85]. Obtaining closed form expres-

sions for a number of wireless communication performance metrics, particularly

average symbol, bit and block error probabilities of various digital communica-

tion schemes typically involve taking the expectation of the Gaussian Q-function

and its integer powers with respect to a random variable that captures the fading

environment and is quite involved [12]. The analytical problems associated with

evaluating expectation of the Q-function spurred the interest in finding alternate

representations, as well as approximations that are both tight and analytically sim-

ple in form [12], [86]-[90] (and the references therein). The appeal of the alternate

representation of the Q-function,

Q(x) =
1

π

π/2∫
θ=0

e

(
− x2

2 sin2 θ

)
dθ, x ≥ 0,
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Q2(x) =
1

π

π/4∫
θ=0

e

(
− x2

2 sin2 θ

)
dθ, x ≥ 0,

presented in detail in [12], is limited to the first two powers of the Q-function

and it requires a double integration to get the expectation of the Q-function with

respect to a standard Nakagami-m distribution, m being the Nakagami fading pa-

rameter (m = 1 represents the popular Rayleigh fading environment). Among the

approximations, to the best of our knowledge, the one presented in [90] performs

well in terms of how accurately it resembles the actual Q-function combined with

its relatively simple form. As pointed out in [91], there are better approximations

for Q-function compared to that in [90]. However, the approximation in [90] is

sufficient for the purposes of this work.

Our interest in approximating the Q-function is two fold, one is the ac-

curacy and the second is the simplicity of the form that lets further performance

analysis of fading communication systems possible in an easy manner. The form

of approximation given in [90] is still not easy to integrate and is limited to a

restricted m of Nakagami-m distributions. In this section of the Appendix, build-

ing upon the approximation in [90], we suggest a modified approximation which

is simple and is easily integrable with respect to any m of a Nakagami-m fading

distribution in closed-form while preserving the tightness of the approximation.

3.6.3.2 Approximation for the Gaussian Q-Function

The approximation for Q-function given in [90] is

Q(x) ≈

(
1− e

−Ax√
2

)
e
−x2

2

B
√

2πx
, (3.98)

where A = 1.98 and B = 1.1355. The accuracy with which (3.98) represents

the actual Q-function is quite remarkable. However, the presence of x in the

denominator of (3.98) makes it difficult to evaluate E
[
QN(x)

]
in many scenarios.

Higher integer powers of the Q-function appear in the evaluation of average block

5Please refer to [90] for a discussion on the selection of A and B
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error probabilities. It is straightforward to show that if the maximum integer

power of the Gaussian Q-function in the performance metric6 is N , then with (3.98)

replacing the actual Q-function, closed-form expression for E[QN(x)] in Nakagami-

m fading is possible only for m > N
2

. For the performance metric of average

SEP (ASEP) for a differentially encoded QPSK in Nakagami-m studied in [90],

the maximum integer power of Q-function is 4 and so the analytical results are

limited to m > 2. Unfortunately this limitation implies that important cases such

as the popular Rayleigh fading (m = 1) are not covered.

Building on the approximation given in [90], we develop a slightly mod-

ified version of (3.98) that will avoid the presence of x in the denominator and is

easily integrable for any m. We begin with Taylor series expansion of e
−Ax√

2

e
−Ax√

2 =
∞∑
n=0

(−Ax)n√
2
n
n!

. (3.99)

Substituting (3.99) in (3.98) and truncating the series we arrive at

Q(x) ≈

(
1− e

−Ax√
2

)
e
−x2

2

B
√

2πx

≈ e
−x2

2

na∑
n=1

cn x
n−1 , (3.100)

cn =
(−1)n+1(A)n

B
√
π (
√

2)n+1 n!
.

In (3.100) we truncated the infinite series by taking the first na terms. The pres-

ence of (
√

2
n+1

n!) in the denominator of (3.100) ensures that as n increases cn

approaches zero quickly. So we can approximate the complete infinite series with a

relatively small na. Obtaining (3.100) requires only a minor modification to (3.98)

but is very important from a performance metric evaluation point of view. The

analytical simplicity of (3.100) is significant, (3.100) doesn’t have x in the denom-

inator, and the expression is a simple finite weighted summation of the terms of

the form xα e−
x2

2 , α ≥ 0 , which are easily integrable for any m of a Nakagami-m

distribution. This simplicity also extends to powers of the Q-function. Let N be

6with x appearing inside the square root of the Q-function’s argument (Q(
√
w x )) as is the case in [90].
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the maximum integer power of Q-function in the performance metric, then using

multinomial expansion, we can write QN(x) as

QN(x) ≈ e
−Nx2

2

(
c1 + c2 x+ · · ·+ cna x

na−1
)N

,

=
∑

k1,k2,...,kna

KM CM xfm e
−Nx2

2 , (3.101)

the summation is over all sequences of nonnegative integers k1, . . . , kna such that

k1 + · · ·+ kna = N . In (3.101)

KM =
N !

(k1)!(k2)! . . . (kna)!
, (3.102)

CM = (c1)k1(c2)k2 . . . (cna)
kna , (3.103)

fm = k2 + 2k3 + · · ·+ (na − 1)kna . (3.104)

Notice that the final form for the approximation of QN(x), given in (3.101), is

still a simple finite linear combination of terms of the form xαe−
N
2
x2
, α ≥ 0. So it

is relatively easy to evaluate E[QN(x)] for any m of a Nakagami-m distribution.

Also we believe that due to the nature of the term xαe−
N
2
x2

and the availability

of a vast number of integration tables [35], E[QN(x)] can be evaluated for a wide

range of other distributions as well. Note that with the help of generalized bino-

mial expansion, it is also possible to express the tighter Q-approximations given

in [86] (eq. 9 and 13) in a form that is suitable for integration w.r.t a Nakagami-m

distribution. However from the perspective of understanding the performance of

communication systems we find (3.101) to be both simple and close enough to the

results obtained by the actual Q-function.

We now examine how accurately (3.101) represents the actual Q-function.

ForN ∈ {3, 4, 5}, whereN is the exponent of the GaussianQ-function, Fig. 1 shows

that the approximation to the Gaussian Q-function given in (3.101) can be seen

to be quite tight. The approximation in (3.101) obviously depends on na. With

N = 4, Fig. 2 plots the additional loss incurred as we further approximated (3.98)

to arrive at (3.100). From Fig. 2 we observe that na = 8 is a reasonable choice as

the additional loss is almost zero.
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Figure 3.8 Verification of the accuracy of the Gaussian Q-function approximation

given in (3.101).

3.6.3.3 Average SEP of Differentially Encoded QPSK

To demonstrate the usefulness of the approximation developed, we de-

termine the expression for the Average SEP of Differentially Encoded QPSK.

Conditioned on the fading related parameter γ, the SEP of differentially encoded

QPSK (DE-QPSK) is given by [12]

Ps(γs,m, γ) = 4Q (
√
γ)− 8Q2 (

√
γ) + 8Q3 (

√
γ)− 4Q4 (

√
γ) . (3.105)

The pdf of γ is given by

pγ(γ) =
mm γm−1

γms Γ(m)
e−

mγ
γs , (3.106)

where γs is the SNR per symbol. Averaging over fading, with the help of (3.101)

and (3.106), the average SEP is given by

Ps(γs,m) = Eγ [Ps(γs,m, γ)]
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Figure 3.9 Additional loss due to further approximation of (3.98) to arrive at

(3.100), N = 4.

= Eγ
[
4Q (
√
γ)− 8Q2 (

√
γ) + 8Q3 (

√
γ)− 4Q4 (

√
γ)
]

= 4F (γs,m, 1)− 8F (γs,m, 2) + 8F (γs,m, 3)

−4F (γs,m, 4) (3.107)

where

F (γs,m,N) = Eγ
[
QN (
√
γ )
]

=
∑

k1,k2,...,kna

mmKMCM
γms Γ(m)

∞∫
0

γ
fm+2m−2

2 e−(N2 + m
γs

)γdγ,

=
∑

k1,k2,...,kna

mmKMCMΓ
(
fm
2

+m
)

2
fm
2

+mγ
fm
2
s

Γ(m) (N γs + 2m)
fm
2

+m
(3.108)

where KM , CM and fm are defined in (3.102), (3.103), and (3.104) respectively

and Γ(.) is the standard Gamma function. To simplify the above expression we
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used the identity [35]∫ ∞
0

xpe−ωx dx = Γ(p+ 1)ω−(p+1) , ω > 0 , p > −1 . (3.109)

Without approximating the Q-function, the single integral based expression given

for ASEP of DE-QPSK in [12] is only valid for integer values of m. With the

Q-approximation of [90], as pointed out earlier, the complicated ASEP expression

for DE-QPSK given in [90] is valid for m > 2, and it involves the confluent hy-

pergeometric function 1F1. The final ASEP expression derived in this section of

the Appendix (3.107) is valid for any m of Nakagami-m fading and is a simple

finite series. In Fig. 3 it can be seen that the analytical form of average SEP given

in (3.107) matches well with the simulated average SEP for different values of m.
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Figure 3.10 Comparison of simulated and analytical (3.107) average SEP of DE-

QPSK, m is the Nakagami-m fading parameter.

In conclusion, a principal reason for approximating the Gaussian Q-

function is to have a simple form for the Q-function that facilitates further mathe-
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matical analysis of communication system’s performance. Through a modification

to the approximation given in [90], the new approximation (3.101) proposed in

this Appendix preserves the tightness of the approximation in [90] yet allowing the

closed-form analytical expression for E[QN(x)] for any m of a Nakagami-m fading

distribution. Average SEP of DE-QPSK in Nakagami-m fading is evaluated using

the proposed approximation and its accuracy is validated by simulations.

3.6.4 Evaluation of 3.28 for m ≥ 3

In this section, for m ≥ 3, with the help of the analytically tractable

approximation of Q(x) given in (3.101), we derive closed-form expressions for

ApE
[
Qm

(√
2 γb z1

)]
and (1− Ap)E

[
Qm

(√
2 γb z2

)]
.

ApE
[
Qm

(√
2 γb z1

)]
= Ap

∞∫
z1=0

Qm
(√

2 γb z1

)
pz1(z1) dz1

=

∞∫
z1=0

Qm
(√

2 γb z1

)
p̂1(z1) dz1 +

∞∫
z1=0

Qm
(√

2 γb z1

)
p̂2(z1) dz1

= U1(γb) + U2(γb) (3.110)

where pz1(z1), p̂1(z1), and p̂2(z1) are defined in (3.69), (3.72), and (3.79) respectively

and

U1(γb) =
n∑
l=0

2n−l−1∑
p=0

δ∑
g=0

{
Kp1fe1(l, p, g,L) +Kp2fe2(l, p, g,L)

}
, (3.111)

fe2(l, p, g,L) = R1

∞∫
z1=0

Qm
(√

2 γb z1

)
z1
− 1

2 e−z1Rh 1F1

(
Rn,

1

2
; z1Rc

)
dz1

= R1

∞∫
z1=0

∞∑
k1=0

ck1 (2 γb)
k1
2 z

k1−1
2

1 e−z1(mγb+Rh)
1F1

(
Rn,

1

2
; z1Rc

)
dz1

= R1

∞∑
k1=0

ck1(2 γb)
k1
2 F

(
Rn,

1

2
, k1 +

1

2
,Rc, mγb +Rh

)
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where (variable - definition): n - (3.46), δ - (3.57), L - (3.54), Kp1 - (3.60), Kp2 -

(3.61), R1 - (3.74), Rh - (3.75), Rn - (3.76), and Rc - (3.77), and

F (a, b, α, k, s) =

∞∫
x=0

xα−1e−s x 1F1 (a, b; k x) dx

= Γ(α) s−α 2F1

(
a, α ; b ; ks−1

)
, [α > 0, |s| > |k|] .(3.112)

To complete the calculation of U1(γb) in (3.111) we still need fe1(l, p, g,L) which

is given by

fe1(l, p, g,L) = fe2(l, p, g, 1) .

We now focus on U2(γb) in (3.110):

U2(γb) =
n∑
l=0

2n−l−1∑
p=0

δ∑
g=0

{
Kp1fe3(l, p, g,L) +Kp2fe4(l, p, g,L)

}
, (3.113)

fe4(l, p, g,L) =

∞∫
z1=0

Qm
(√

2 γb z1

)
p̂2(z1) dz1

= R2

∞∫
z1=0

Qm
(√

2 γb z1

)
e−z1Rh 1F1

(
Rn2,

3

2
; z1Rc

)
dz1

= R2

∞∫
z1=0

∞∑
k1=0

ck1(2 γb)
k1
2 z

k1
2

1 e−z1(mγb+Rh)
1F1

(
Rn2,

3

2
; z1Rc

)
dz1

= R2

∞∑
k1=0

ck1(2 γb)
k1
2 F

(
Rn2,

3

2
,
k1

2
+ 1 ,Rc, mγb +Rh

)
(3.114)

where (variable - definition): R2 - (3.81), and Rn2 - (3.82). To complete U2(γb)

in (3.113), fe3(l, p, g,L) is given by

fe3(l, p, g,L) = fe4(l, p, g, 1) .

Substituting (3.111) and (3.113) in (3.110) gives the final closed form expression

for ApE
[
Qm

(√
2 γb z1

)]
. It is straightforward to show that

(1− Ap)E
[
Qm

(√
2 γb z2

)]
= U1(γb)− U2(γb) . (3.115)
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3.6.5 Average SEP- Delay Error Known at the Receiver

With appropriate changes to (3.15) the decision variable (DV), with N =

1, and assuming that the receiver does not know ρe, can be shown to be given by

r[k] = ρ̄e
√

Ωsm[k] + υ̃[k], (3.116)

where, conditioned on |sm[k]| and z, υ̃[k] is a zero-mean CSCG r.v with variance

σ2
n + |sm[k]|2(1− |ρe|2)Ω

z
.

Here z = |ϕ|2. Closed form expression for the pdf of z is given by (3.65). Note

that the DV in (3.116) is made to be consistent (notation wise) with the results

in Chapter 2, where we studied the issue of average BEP and SEP under the

assumption that both the delay and estimation related error terms are unknown

at the receiver. In this section the receiver knows the delay related error term.

3.6.5.1 Average Symbol Error Probability of M-QAM Constellation

The DV at the demodulator can be expressed in a parametric form as

r[k] = κsm[k] + ξ[k] = rI [k] + jrQ[k], (3.117)

where κ = ρ̄e
√

Ω , µI + jµQ, and ξ[k], conditioned on |sm[k]| and z, is a CSCG

r.v with variance F(|sm[k]|)/z, where F(x) = (σ2
n + (1− |ρe|2)x2Ω). Key steps in

the derivation of average SEP are given below.

Let sm[k] = sm,x[k] + jsm,y[k], m = 0, 1, . . . ,M − 1, x = 0, 1, . . . ,M1 − 1,

y = 0, 1, . . . ,M2 − 1, where sm,x[k] = am,x[k]d, and sm,y[k] = am,y[k]d, where

am,x[k] = −(M1 − 1) + 2x and am,y[k] = −(M2 − 1) + 2y. For simplicity, let us

define the parameter

γx,y ,
2d2

F(|sm[k]|)
=

2d2

σ2
n + Ω(1− |ρe|2)|sm[k]|2

.

Let Px,y(z) be the probability of correctly receiving sm,x[k] + jsm,y[k], conditioned

on z. For x = 1, 2 . . . ,M1 − 2, y = 1, 2, . . . ,M2 − 2, Px,y(z) can be expressed as
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Px,y(z) = Prob(sm,x[k] − d ≤ rI [k] < sm,x[k] + d|z) × Prob(sm,y[k] − d ≤ rQ[k] <

sm,y[k] + d|z),

Px,y(z) =
{
Q(t1(x, y)

√
z)−Q(t2(x, y)

√
z )
}
×{

Q(t3(x, y)
√
z)−Q(t4(x, y)

√
z )
}
, (3.118)

where

Q(x) =
1√
2π

∞∫
x

exp(−u2/2)du

and t1(x, y), t2(x, y), t3(x, y), and t4(x, y) are defined in (2.37)-(2.40).

As explained in Chapter 2, we can similarly define the probability of

correctly receiving for all x = 0, 1, . . . ,M1−1 and y = 0, 1, . . . ,M2−1. Notice that,

each of the Px,y(z) can be expressed as linear combinations of Q(a
√
z )×Q(b

√
z )

for real values of a and b. Let Px,y , E[Px,y(z)]. To derive Px,y, we must determine

E[Q(a
√
z )×Q(b

√
z )]. To this end, we define H(a, b, t, B, ρd) and R(a, t, B, ρd).

H(a, b, t, B, ρd) , E[Q(a
√
z)Q(b

√
z)] (3.119)

=



J (a, b, t, B, ρd) if a ≥ 0, b ≥ 0

2J (|a|, 0, t, B, ρd)− J (a, |b|, t, B, ρd) if a ≥ 0, b < 0

2J (0, |b|, t, B, ρd)− J (|a|, b, t, B, ρd) if a < 0, b ≥ 0

1− 2J (|a|, 0, t, B, ρd)− 2J (0, |b|, t, B, ρd)

+J (|a|, |b|, t, B, ρd) if a < 0, b < 0

R(a, t, B, ρd) , E[Q(a
√
z )] =

 2J (a, 0, t, B, ρd) if a ≥ 0

1− 2J (|a|, 0, t, B, ρd) if a < 0.

Closed form expression for J (a, b, t, B, ρd), derived in the next subsection, is given

in (3.121) (with the help of pdf of z given in (3.65)). For all other values x and y,

Px,y can be derived similarly. The average SEP can be written as

PS = 1− 1

M

M1−1∑
x=0

M2−1∑
y=0

Px,y. (3.120)

We now present a sample simulation to verify the accuracy of the derived analytical

expression. Fig.3.11 shows the average SEP performance of 4× 4 QAM with t = 4
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antennas, B = 4 feedback bits, the delay only correlation co-efficient ρd = 0.98,

estimation only correlation co-efficient ρe = 0.995 and Ω = 1. It can be seen that

the analytical expression accurate match the simulations.
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Quantization, Delay, Estimation Errors − Analytical
Delay and Estimation Errors Only
Perfect Feedback
Quantization, Delay, Estimation Errors − Analytical

Figure 3.11 Combined effects of channel estimation error, feedback delay and

channel quantization on average SEP of 4 × 4-QAM: t = 4 antennas, B = 4

feedback bits, delay only correlation co-efficient ρd = 0.98, and estimation only

correlation co-efficient ρe = 0.995.

3.6.5.2 Closed Form for J (a, b, t, B, ρd)

J (a, b, t, B, ρd) = E[Q(a
√
z)Q(b

√
z)] (3.121)

=
n∑
l=0

2n−l−1∑
p=0

δ∑
g=0

{
Kp1G(a, b, n, l + g, 1) +Kp2G(a, b, n, l + g, L)

}
,

G(a, b, n, l, L) =

∞∫
z=0

Q(a
√
z)Q(b

√
z)f2(l, g, z)dz (3.122)
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=
[
Q(a
√
z)Q(b

√
z)F2(l, L, z)

]∞
z=0

+

b

2
√

2π

∞∫
z=0

F2(l, L, z)Q(a
√
z)e−

b2z
2 z−

1
2dz +

a

2
√

2π

∞∫
z=0

F2(l, L, z)(z)Q(b
√
z)e−

a2z
2 z−

1
2dz

= X (a, b, n, l, L) + X (b, a, n, l, L), (3.123)

X (a, b, n, l, L) ,
b

2
√

2π

∞∫
z=0

F2(l, L, z)Q(a
√
z)e−

b2z
2 z−

1
2dz, (3.124)

F2(l, L, z) =

∫ z

0

f2(l, g, z) dz

= 1− e−zL
n−l−1∑
j=0

Lj

Γ(j + 1)
zj z ≥ 0.

Upon using

Q(z) = (1/π)

π/2∫
θ=0

exp

(
− z2

2 sin2 θ

)
dθ z ≥ 0,

X (a, b, n, l, L) can be simplified as

X (a, b, n, l, L) =
b

2
√

2π

∞∫
z=0

Q(a
√
z)e−

b2z
2 z−

1
2dz −

b

2
√

2π

n−l−1∑
j=0

Lj

j!

∞∫
z=0

Q(a
√
z)e−( b

2

2
+L)zzj−

1
2dz

=
b

2π
√

2π

π/2∫
0

dθ

∞∫
z=0

e
−
(
b2

2
+ a2

2 sin2 θ

)
z
z−

1
2dz −

b

2π
√

2π

n−l−1∑
j=0

Lj

j!

π/2∫
0

dθ

∞∫
z=0

e
−
(
b2

2
+ a2

2 sin2 θ
+L
)
z
zj−

1
2dz

=
1

2π

π/2∫
0

(
b2 sin2 θ

b2 sin2 θ + a2

) 1
2

dθ −

n−l−1∑
j=0

Lj

j!

bΓ
(
j + 1

2

)
2j+

1
2

2π
√

2π

π/2∫
0

(
sin2 θ

b2 sin2 θ + 2L sin2 θ + a2

)j+ 1
2

dθ
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=
ab

2π(a2 + b2)
2F1

(
1, 1;

3

2
;

b2

a2 + b2

)
−

n−l−1∑
j=0

Lj

j!

bΓ
(
j + 1

2

)
2j+

1
2

2π
√

2π

1

(a2 + b2 + 2L)j+1

×
√
π a

2

Γ(j + 1)

Γ(j + 3
2
)

2F1

(
1, j + 1; j +

3

2
;

b2 + 2L

a2 + b2 + 2L

)
. (3.125)
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4 Spatial Correlation: Codebook

Design and Performance Analysis

In this chapter we shift our focus to spatially correlated channels. In the

previous chapters modeling and analysis was carried out for spatially independent

channels. The spatially independent assumption is justified for rich-scattering

environment, otherwise there will be correlation across the antennas.

We present an optimum codebook design algorithm that minimizes the

loss in average symbol error probability (SEP) of a spatially correlated channels

under both perfect and imperfect channel estimate assumptions. Towards the goal

of designing an optimum codebook that minimizes average SEP (ASEP) loss due

to finite-rate channel quantization, we derive the distortion function as a first order

approximation of the instantaneous SEP loss. Utilizing high resolution quantiza-

tion theory and assuming perfect channel estimation at the receiver, we analyze the

loss in ASEP for spatially independent and correlated finite-rate feedback trans-

mit beamforming system with rectangular M1 ×M2-QAM constellation. We then

consider the high-SNR regime and show that the loss associated with quantizing

the spatially independent channels is related to the loss associated with quantizing

the spatially correlated channels by a scaling constant given by the determinant

of the correlation matrix. Simulation results illustrate the effectiveness of the new

codebook design and validate the derived analytical expressions for ASEP loss.

We also present a novel codebook design algorithm that minimizes the

loss in ergodic capacity. Simulation results show that the new codebook designed

106
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under the consideration of estimation errors and feedback delay clearly outperforms

the codebook designed under ideal conditions. Analysis for the loss in ergodic

capacity for spatially independent channels with channel estimation errors and

delay is presented and validated through simulations.

4.1 Introduction

Under ideal channel estimation and no feedback delay assumptions, the

effect of limited feedback on the ergodic capacity is a well studied concept. Average

Symbol Error Probability, another important communication system performance

metric, has received much less attention. For a limited set of constellations and

for independent and identically distributed (i.i.d.) fading channels it has been

analyzed utilizing an approximation to the statistical distribution of the key ran-

dom variable that characterizes the system performance. Specifically for spatially

i.i.d. channels both [25] and [26] characterized the absolute amplitude square of

the inner product between the channel direction and its quantized version as a

truncated beta distribution and used it to study effect of quantization on ASEP.

Similar to the capacity analysis, ASEP analysis for correlated channels using such

statistical methods have not met with much success. [92] discussed the importance

of using right metric for codebook design. However, [92] did not provide codebook

construction based on the average bit error probability (metric considered in [92])

criteria. The importance of the choice of performance metric and the effect of

mismatch in the channel statistics assumptions are the main focus of this chapter.

We first begin with the design of codebooks that are optimum for minimiz-

ing the average symbol error probability loss assuming perfect channel knowledge

at the receiver. For this scenario, we then make use of the source coding based

framework developed in [93] to analyze the ASEP loss in correlated Rayleigh fad-

ing channels with rectangular QAM constellation. The application of the theory

in [93] to this problem is quite involved because of the complicated dependency of



108

the objective function on the random variables involved as well as the nature of

the constellation (M1 ×M2-QAM). The impact of the performance metric on the

performance of the quantizer is highlighted by comparing the performance with

past quantizer designs which utilize capacity loss as a metric. The quantizer de-

sign problem in the presence of channel estimation errors is also addressed and

compared to the designs that assume perfect channel knowledge at the receiver.

The second component of this chapter is about the optimum codebook

design and loss analysis of ergodic capacity. Under ideal conditions an optimum

codebook design for ergodic capacity loss is presented in [26]. A grassmannian

codebook design for correlated channels with perfect channel estimation and no

delay is proposed in [94]. In the context of determining a transmit weighting

matrix that improves the performance of orthogonal space-time block codes, a

mean-squared error criteria is used to design codebook for channels with feedback

delay and feedback channel bit errors [95]. With randomized vector codebook, the

ergodic capacity for spatially i.i.d. channels with estimation errors and finite-rate

quantization is studied in [96] and [97].

In this part of our work we focus on optimum vector quantization (VQ)

algorithm that is directly related to the loss in ergodic capacity of a spatially and

temporally correlated channel with estimation errors and feedback delay. Following

the approach taken in [13] and [26], a new design criteria is developed and a Lloyd-

type VQ design algorithm is proposed to design the quantization codebook. The

codebook design for spatially i.i.d. channel with estimation errors and delay then

becomes a special case of the correlated case. With this codebook, analysis for loss

in ergodic capacity is presented for the spatially i.i.d. scenario with estimation

errors and delay. In this chapter the estimation and delay related error terms are

modeled similarly, i.e., both are unknown to the receiver.

The rest of this chapter is organized as follows. In Section 4.2 we intro-

duce the system model. Optimum transmit beamforming vector under both perfect

and imperfect channel estimate scenarios and optimum codebook design specific
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to minimizing the loss in average symbol error probability are developed in Sec-

tion 4.3. The average SEP loss expressions for spatially independent and correlated

channels are derived for rectangular M1×M2-QAM modulation in Section 4.4. Re-

sults related to the codebook design and performance analysis of ergodic capacity

are presented in Section 4.5. We conclude this chapter in Section 4.6.

Important variables: t -number of transmit antennas, B -number of feed-

back bits, ρ - Average signal-to-noise ratio per symbol.

4.2 System Model

We consider a multiple input single output (MISO) system with t an-

tennas at the transmitter and one antenna at the receiver. The wireless chan-

nel h ∈ Ct×1 between the transmitter and the receiver is modeled as a corre-

lated frequency-flat Rayleigh fading channel with spatial distribution given by

h ∼ NC
(
0,Σh

)
1. Let w ∈ Ct×1 be the unit norm beamforming vector (BV) at

the transmitter. Then, the received signal is given by

y = hHw sm + η , (4.1)

where η ∼ NC
(
0, 1
)
. For simplicity the time indices are ignored in the above

equation. The transmitted two dimensional modulation symbol is denoted by sm

with E[|sm|2] = ρ. Note that ρ represents the SNR. The channel is estimated

at the receiver and is partially available at the transmitter through a finite-rate

feedback link of B bits per CSI update. More specifically, a quantization codebook

W =
{
v̂1, · · · , v̂C

}
, composed of C = 2B unit-norm transmit BV’s is assumed to be

known to both the receiver and the transmitter. Based on the channel estimate, the

receiver selects the best code point v̂ from the codebook and sends the correspond-

ing index back to the transmitter through an error free link [22], [25], [26], [93], [94],

and [101].

1We normalize the channel covariance matrix such that the mean of the eigenvalues equals to one,
i.e., Trace(Σ h) = t.
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4.3 Optimum Transmit Beamforming Vector and Code-

book Design

In this section, under the assumption of perfect and imperfect estimates

of the channel at the receiver, we design the optimum codebook matched to the

distortion function, the average SEP loss.

4.3.1 Perfect Channel Estimation

Assuming perfect knowledge of the channel vector h, the optimum trans-

mit BV, a well-known result, is given by the channel direction vector

v =
h

‖h‖
.

In a low rate feedback link based system, the receiver selects the code point v̂ that

is closest to v. Assuming no errors in the feedback link, the unit-norm vector v̂ is

employed as the BV at the transmitter. The received signal can now be written as

y = 〈h, v̂〉 sm + η

=
√
α 〈v, v̂〉 sm + η (4.2)

where

α = ‖h‖2

and

〈x,y〉 = xHy.

4.3.1.1 Distortion Function - Average SEP of Rectangular QAM

In this subsection, we derive the non-mean-squared distortion function,

the average SEP loss for a rectangular M1 ×M2-QAM constellation of size M =

M1M2. The transmitting symbol sm = sx + jsy, m = 0, 1, . . . ,M − 1, x =

0, 1, . . . ,M1 − 1, y = 0, 1, . . . ,M2 − 1. Here sx = axd, and sy = ayd, where

ax = −(M1 − 1) + 2x (i.e., axd is the in-phase M1-PAM constellation symbol)
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and ay = −(M2− 1) + 2y (i.e., ayd is the quadrature-phase M2-PAM constellation

symbol). Average symbol error probability without channel quantization for the

in-phase M1-PAM is given by [12]

P
PM1

= 2

(
1− 1

M1

)
E
[
Q
(√

λα
)]

(4.3)

where

Q(x) =
1√
2π

∞∫
x

exp(−u2/2) du ,

λ = ρ φ ,

and

φ =
6

M2
1 +M2

2 − 2
.

The ASEP for Quadrature M2-PAM is given by (4.3), with M1 replaced by M2.

P
PM2

= 2

(
1− 1

M2

)
E
[
Q
(√

λα
)]

The ASEP of M1 ×M2-QAM with perfect feedback is given by

P
P−QAM = P

PM1
+ P

PM2
− P

PM1
P
PM2

.

The ASEP with finite-rate channel quantization for M1-PAM is given by,

P
QM1

= 2

(
1− 1

M1

)
E
[
Q
(√

λα |〈v, v̂〉|2
)]
. (4.4)

The ASEP for M2-PAM with channel quantization is given by (4.4), with M1

replaced by M2.

P
QM2

= 2

(
1− 1

M2

)
E
[
Q
(√

λα |〈v, v̂〉|2
)]
.

The ASEP of M1 ×M2-QAM with finite-rate quantization is given by

P
Q−QAM = P

QM1
+ P

QM2
− P

QM1
P
QM2

.

The finite-rate quantization results in an increase in the average symbol error

probability, which is given by

P
Loss

= P
Q−QAM − PP−QAM .
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The instantaneous SEP loss due to finite-rate CSI quantization is taken to be the

system distortion function DQ(v, v̂ ; α). Removing the expectation in PLoss gives

the instantaneous loss in average SEP and it can be expanded as

DQ(v, v̂ ; α) =
[
Q
(√

λα|〈v, v̂〉|2
)
−Q

(√
λα
)]

2

(
2− 1

M1

− 1

M2

)
−[{

Q
(√

λα|〈v, v̂〉|2
)}2

−
{
Q
(√

λα
)}2

]
×

4

(
1− 1

M1

− 1

M2

+
1

M1M2

)
.

After some simplification DQ(v, v̂ ; α) can now be written as

DQ(v, v̂ ; α)
4
=

[
Q
(√

λα|〈v, v̂〉|2
)
−Q

(√
λα
)]
×[

A+ C
(
Q
(√

λα
)

+Q
(√

λα|〈v, v̂〉|2
))]

(4.5)

where

A = 2

(
2− 1

M1

− 1

M2

)
, (4.6)

and

C = −4

(
1− 1

M1

− 1

M2

+
1

M1M2

)
. (4.7)

Under high resolution assumption, the quantized beamforming vector v̂

is close to v, and the inner product |〈v, v̂〉| is close to one. In this case, the

distortion function DQ

(
v, v̂ ; α

)
can be approximated using a first order Taylor

series expansion w.r.t. the random variable |〈v, v̂〉|2. After some manipulations,

the distortion function can be written as

DQ(v, v̂ ; α) ≈ exp

(
−λα

2

)
·
√
λα

8π
×[

A+ 2C Q
(√

λα
)] (

1− |〈v, v̂〉|2
)
. (4.8)

In this thesis, we only consider the case with same distance d in both in-phase

and quadrature-phase. The analysis can be easily extended to the case where the

distances are not the same.
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4.3.1.2 Optimum Codebook Design for Rectangular QAM with Perfect

Channel Estimate

The codebook is designed to minimize the average SEP loss. The cost

function for SEP loss given in (4.8) is different compared to the ergodic capacity

loss function employed in [26]. However, the general vector quantization (VQ)

framework can still be used with appropriate modification. The criteria in this

case is given by

max
Q(.)

E|〈α̃v, Q(h)〉|2,

Q(h) = v̂ (4.9)

where

α̃2 = exp

(
−λα

2

) √
λα

8π

[
A+ 2C Q

(√
λα
)]
.

With this new design criterion, the codebook is designed by iterating

the two conditions of Lloyd algorithm, the nearest neighbor-hood condition and

centroid condition, until convergence. More details on the algorithm design can be

found in [26]. It should be noted that similar to the case of capacity loss, because

of the form of the SEP loss function, the codebook designed for spatially i.i.d.

channel for the SEP distortion is also optimum for the capacity loss function. A

drawback with the new codebook is that the codebook has to be designed for each

operating SNR, constellation and correlation matrix.

Fig. 4.1 shows the ASEP resulting from using codebooks optimized for

ergodic capacity loss and average SEP loss when evaluated using the ASEP metric.

Note that optimum codebook implies that there is a separate codebook for each

SNR point. The gains with the optimum codebook designed for SEP loss are evi-

dent in Fig. 4.1. As seen in Fig. 4.1 there is a gain of 1.2dB at an SNR of 15dB, with

number of transmit antennas t = 3 and the feedback bits B = 4, between using

the codebook optimized for ASEP loss and the codebook optimized for average ca-

pacity loss. The gain is increasing with SNR indicating that at medium-high SNR

it is important to use the optimum codebook designed specifically for minimizing
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Optimum Codebook Design Specific to Minimizing the ASEP Loss

 

 

Codebook Optimized for Minimizing the SEP Loss
Codebook Optimized for Minimizing the Capacity Loss
Unquantized Feedback

Figure 4.1 Comparison between the codebook optimized to minimize the average

capacity loss and ASEP loss with BPSK constellation, number of transmit antennas

t = 3, and the number of feedback bits B = 4.

ASEP loss. The spatial correlation matrix in Fig. 4.1 is assumed to have a Toeplitz

structure with the first row being [1, 0.9, 0.81]. In Section 4.4 we quantify the loss

due to quantization under i.i.d. and correlated scenarios assuming perfect channel

estimation at the receiver and the optimum codebook designed in this section.

4.3.2 Erroneous Channel Estimation

With channel estimation errors, the optimum transmit beamforming vec-

tor is no longer given by the channel direction vector. We consider design of a

codebook that takes into account the statistics of the channel estimate. The ef-

fect of estimation errors are abstracted using the modeling approach as in [100].

This modeling results in the channel estimate, h̃ and the actual channel, h, being

related in the following manner:

h = h̃ + n (4.10)
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where

h̃ ∼ NC (0,Σim) ,

Σim = ΣceΣ
−1
ee Σec

and the uncorrelated error term

n ∼ NC (0,Σn) ,

Σn = Σh −ΣceΣ
−1
ee Σec.

Σh and Σee are the autocorrelation matrices of h and h̃ respectively, Σce and

Σec are the cross-correlation matrices. The correlation between the two processes

indicates the quality of the channel estimate. This modeling can be justified for

pilot based channel estimation schemes.

With estimation errors, the received signal with an arbitrary unit norm

beamforming vector w is given by

y =
(
h̃ + n

)H
w sm + η

= h̃
H

w sm + ζ (4.11)

where conditioned on w and assuming that sm belongs to PSK constellation,

ζ ∼ NC
(
0, 1 + ρwHΣnw

)
.

The appearance of signal term in the noise is due to the fact that only the channel

estimate h̃ is available at the receiver instead of actual channel h. Selection of

wopt, the optimum BV, is based on maximizing the following received SNR

wopt = arg max
‖w‖=1

(
ρwHh̃ h̃

H
w

1 + ρwHΣnw

)

= arg max
‖w‖=1

(
wH h̃ h̃

H
w

wH Σd w

)

where

Σd = ρΣn + I.
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The solution to the above maximization problem is given by

wopt =
Σ−1

d h̃

‖Σ−1
d h̃‖

. (4.12)

With this selection of the beamforming vector, the received SNR ρe is given by

ρe = ρω ,

ω = h̃
H

Σ−1
d h̃ . (4.13)

4.3.2.1 Distortion Function - Average SEP of BPSK Constellation

In this section, to illustrate how the codebook design changes because

of estimation errors, we focus on BPSK constellation. The extension of codebook

design for rectangular QAM constellation is relatively straightforward. The aver-

age symbol error probability with un-quantized version of optimum beamforming

vector given in (4.12) is

P
P

= E
[
Q
(√

2ρω
)]
, (4.14)

The ASEP with quantized feedback (i.e., w = v̂ ) is given by,

P
Q

= E
[
Q
(√

2ρ τ
)]

(4.15)

where

τ =
v̂H h̃ h̃

H
v̂

v̂H Σd v̂
.

Under high resolution assumption, the instantaneous loss in SEP due to quanti-

zation can be approximated by taking the first order Taylor series expansion of

P
P
− P

Q
( (4.14)-(4.15)) w.r.t. the variable τ around ω as

DQ-BPSK(v, v̂; ω) =
[
Q
(√

2ρ τ
)
−Q

(√
2ρω

)]
≈ exp (−ρω)

√
ρω

4π
(ω − τ) .
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4.3.2.2 Optimum Codebook Design for BPSK with Estimation Errors

The design criteria is to minimize the average symbol error probability

loss

min
Q(.)

E

(
v̂HΣvv̂

v̂HΣdv̂

)
where

Σv = exp (−ρω)
√
ω
{
ωΣd − h̃ h̃

H
}
.

We now briefly discuss the two conditions of Lloyd algorithm.

Nearest Neighborhood Condition: Beginning with an arbitrary set of unit vectors

v̂i, i = 1, · · · , C forming the codebook W , the optimum Voronoi Regions Ri, i =

1, · · · , C are found from the following condition

Ri =

{
v ∈ Ct :

v̂Hi Σvv̂i

v̂Hi Σdv̂i
≤

v̂Hj Σvv̂j

v̂Hj Σdv̂j
,∀j 6= i

}
.

Centroid Condition: The codebookW is updated in this step. For a given partition

Ri obtained from the previous step, the new set of beamforming vectors satisfy

v̂i = arg min
‖v̂‖=1,v̂∈Ri

E

{
v̂HΣvv̂

v̂HΣdv̂

}

= arg min
‖v̂‖=1,v̂∈Ri

{
v̂HΣmv̂

v̂HΣdv̂

∣∣∣∣v ∈ Ri

}
, i = 1, · · · , C

where

Σm = E(Σv).

In the implementation of the algorithm Σm has to be estimated from the training

unit norm vectors belonging to Ri. The generalized eigenvalue equation for Σd

and Σm is

ΣmF = ΛΣdF

where

Λ = diag (λ1, · · · , λt) ,

and

F = (f1, · · · , ft) .
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Figure 4.2 Effectiveness of codebook design that takes channel estimation errors

into account as compared to codebook designed specific to ASEP loss but ignoring

estimation errors - BPSK constellation, number of transmit antennas t = 3, and

the number of feedback bits B = 4.

Assuming that λ1 > λ2 · · · > λt, the solution to minimization function is given by

ft suitably normalized as

v̂i =
ft
‖ft‖

.

The above two conditions are iterated until convergence. Note that com-

pared to the perfect channel estimation scenario, the encoding process is also dif-

ferent. Fig. 4.2 shows the effectiveness of designing the codebook (for each SNR

point) taking estimation errors into account. For the results shown in Fig. 4.2, Σh

is simulated following the correlation model in [104]: A linear antenna array with

antenna spacing of half wavelength, angle of arrival φ = 0◦ and an uniform angu-

lar spread of [−π/5, π/5]. Σim is simulated in a similar fashion with an uniform

angular spread of [−π/5.5, π/5.5] and the resulting correlation matrix is scaled by

0.7582. Note that the various auto and cross correlation matrices are included in

Σim, so they are not specified separately. The noise correlation matrix is given by
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Σn = Σh −Σim.

4.4 Average SEP Loss Analysis

To obtain insights into the performance of quantized feedback schemes

developed, we make use of the analytical results based on high resolution theory

developed in [93]. Though the optimum codebook under both perfect and imperfect

channel estimates were developed above, due to analytical tractability reasons, the

ASEP loss analysis is carried out only under the assumption that perfect channel

estimate is available at the receiver. In the last subsection, we consider the high-

SNR regime for an insight into the effect of quantization on a correlated channel.

We only present the end results and the details are relegated to the Appendices. For

the purpose of completeness, in Section 4.7.1 of the Appendix we briefly summarize

the asymptotic distortion analysis of the generalized vector quantizer results that

are relevant for the analysis of average SEP loss of M1 ×M2-QAM constellation.

The distortion analysis results presented are really lower bounds that become more

accurate as the number of feedback bits increase.

4.4.1 Distortion Analysis for Spatially i.i.d. Channels

The final expression for the loss in ASEP of a spatially i.i.d. MISO system

with rectangular QAM is given by

DQ-iid =

(√
λ(t− 1)A 2t−1Γ

(
t+ 1

2

)
√
π t! (λ+ 2)(t+

1
2)

)
· 2−

B
t−1 +[

λ(t− 1)C Γ
(
t+ 1

2

)
4π (1 + λ)t+1 Γ

(
t+ 3

2

)] ·
2F1

(
1, t+ 1; t+

3

2
;

1

1 + κ

)
· 2−

B
t−1 , (4.16)

A and C are defined in (4.6) and (4.7), 2F1(·, ·; ·; ·) is the hypergeometric func-

tion [103], and

κ =
λ

λ+ 2
.
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Important steps in the derivation of above equation are given in Section 4.7.2 of

the Appendix.

4.4.2 Distortion Analysis for Spatially Correlated Channels

Assuming that the optimum codebook is used, the ASEP loss of a spa-

tially correlated MISO system is given by

DQ-cor =

[
β1

(
t, λ,Σh

)
TD + β2

(
t, λ,Σh

)√λ

2
TE

]
·

γ−1
t · |Σh|−1 · 2−

B
t−1 (4.17)

where

β1

(
t, λ,Σh

)
=

(∫
v: g(v)=0

(λ
2

+ vHΣ−1
h v

) (1−t)(t+ 1
2 )

t
dv

) t
t−1

,

and

β2

(
t, λ,Σh

)
=

(∫
v: g(v)=0

(
λ+ vHΣ−1

h v
) (1−t)(t+1)

t ·

2F1

(
1, t+ 1; t+

3

2
;

1

1 + ν

) t−1
t
dv

) t
t−1

.

TD, TE , and ν are defined in (4.48), (4.49), and (4.50) respectively. The derivation

details of the above equation can be found in Section 4.7.3 of the Appendix.

4.4.3 Mismatched Distortion Analysis for Correlated Channels

As pointed out in Section 4.3.1.2, if the codebook designed for capacity

is used for average symbol error probability analysis there will be a loss due to the

mismatch in codebook design. From the results in [98], the loss due to mismatch

can be calculated as

DLow-mm = 2−
B
t−1

∫
Q
Iw,mm

c,opt (v) [λcap(v)]
1
t−1 p

(
v
)
dv, (4.18)

Iw,mm
c,opt is the constrained, weighted, and mismatched inertial profile. Due to the

nature of mismatch2, using the results in [98, 99], it is easy to show that Iw,mm
c,opt is

2The mismatched distortion function is a scaled version of the true optimal distortion function, hence
the optimal Voronoi shapes remains same.
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same as Iw
c, opt

(
v
)

given by (4.47). λcap, the point density function of the capacity

loss metric (clearly sub-optimal for ASEP metric), is given by (eq.(30) in [99]) and

p
(
v
)

is given by (4.45). Even if the codebook is designed specific to minimizing

the average SEP loss, a mismatch (e.g. by using codebook designed for a different

SNR) is still possible. By selecting different system parameters (SNR, correlation

matrix, constellation type) for point density function and the constrained and

weighted inertial profile, (4.18) can also be used to analytically characterize the

loss due to the usage of a wrong codebook.

4.4.4 Distortion Analysis in High-SNR Regime

The analytical expressions for SEP loss ofM1×M2-ary QAM constellation

for transmit beamforming of a MISO system are given by (4.16) and by (4.17)

for spatially i.i.d. and correlated cases. The equations are lengthy and complex

providing limited insight into the system behavior. In high-SNR regime it is easy

to see that κ ≈ 1. For spatially i.i.d. MISO fading channels, the average distortion,

DQ-H-SNR-iid, under high-SNR assumption can be simplified as

DQ-H-SNR-iid =

(
2t−1 (t− 1)AΓ

(
t+ 1

2

)
√
π t!φt

)
· 2−

B
t−1ρ−t +[

(t− 1)C Γ
(
t+ 1

2

)
4π Γ

(
t+ 3

2

)
φt

]
·

2F1

(
1, t+ 1; t+

3

2
;
1

2

)
2−

B
t−1 ρ−t . (4.19)

From the above equation it is clear that the diversity order is ‘t’ and increasing

the number of feedback bits has an exponential impact on the system distortion

function, notice that this fact is true even without the high-SNR assumption. The

rest of the terms in (4.19) depend on the number of transmitting antennas and the

size of the rectangular QAM constellation. For spatially correlated channel, the

functions β1

(
t, λ,Σh

)
and β2

(
t, λ,Σh

)
are difficult to evaluate. However, we can

evaluate them in closed-form under high SNR assumption as follows:

β1−H−SNR
(
t, λ,Σh

)
= λ−(t+ 1

2) 2(t+ 1
2) γ

t
t−1

t ,
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and

β2−H−SNR
(
t, λ,Σh

)
= 2λ−(t+1) γ

t
t−1

t

where β1−H−SNR and β2−H−SNR are high-SNR versions of β1 and β2. After some

manipulations we arrive at an interesting simple relation between the ASEP loss

associated with spatially correlated and i.i.d. channel scenarios as

DQ-H-SNR-iid = |Σh|DQ-H-SNR-cor. (4.20)

In the correlated case the loss is a simple scaling of the loss associated with i.i.d.

case, the scaling factor being the determinant of the correlation matrix. Note that

this analysis is quite general in the sense that we can have an arbitrary correlation

structure across the antennas. The quantization parameter B, and number of

antennas, t, both appear in the exponent for the correlated scenario under general

and high-SNR regimes. In the correlated scenario, the additional loss in ASEP due

to quantization is independent of the constellation size. The diversity order is also

not effected as a result of quantization. For both i.i.d. and correlated channels,

in high-SNR regime, the ASEP without quantization can be written in terms of

ASEP with quantization and ASEP loss due to quantization as follows:

P
P−QAM ≈ c1 ρ

−t
(

1 + c2 2−
B
t−1

)
= c1 (ρ−∆ρ)−t

where

∆ρ =

[
1−

(
1 + c2 2−

B
t−1

)− 1
t

]
ρ .

∆ρ can be viewed as the SNR penalty caused by the finite-rate quantization of the

CSI, c1 and c2 are constants. Note that exact values of c1 and c2 can be calculated

but are not relevant for the present discussion. The insights from the above equa-

tion are as follows: The system performance in terms of SEP is more sensitive to

the finite-rate channel quantization in the high-SNR regime and in order to main-

tain the same SNR penalty due to finite-rate feedback, the quantization resolution
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B has to increase as the system average SNR increases. Since ∆ρ/ρ � 1, after

some manipulation, we can obtain a relation for number of feedback bits B as

B

t− 1
= − log2

[(
1−∆ρ/ρ)−t − 1

)
/c2

]
≈ − log2(∆ρ) + log2(ρ)− log2(t) + log2(c2),

which means for a fixed number of antennas t, in order to maintain a fixed SNR

loss ∆ρ,

B ≈ (t− 1) log2(ρ) + c .

4.4.5 Simulation Results

A sample simulation in Fig. 4.3 plots the average SEP loss due to the

finite-rate quantization of the channel direction versus feedback rate B, for a 3× 1

MISO system over perfectly estimated spatially i.i.d. and correlated Rayleigh

fading channels with different rectangular M1×M2-QAM constellations at system

SNRs ρ = 10dB, and 24dB, respectively. Codebooks are designed by using optimal

criterion, suitable for minimizing ASEP loss, as explained in Section 4.3.1.2. The

spatially correlated channel is simulated by the correlation model in [104]: A linear

antenna array with antenna spacing of half wavelength, angle of arrival φ = 0◦ and

uniform angular-spread in [−30◦, 30◦].

Fig. 4.3 shows the analytical and simulation plots for both spatially i.i.d.

and correlated channels. The analytical expression for i.i.d. is closed-form, and

for correlated channel the expression is closed-form under high SNR assumption.

The simulation and analytical results match well as the number of feedback bits

increase. The distortion function we have is a first order approximation and this

approximation becomes accurate as the number of feedback bits increase. Also note

that the analytical expression for distortion is not optimum but a lower bound on

the optimum, which becomes more tight as the number of feedback bits increases.
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Figure 4.3 ASEP loss due to finite-rate quantization with M1×M2-QAM constella-

tion for both spatially i.i.d. and spatially correlated channels, number of transmit

antennas t = 3.

4.5 Results on Ergodic Capacity

In this section we present the contributions of the thesis in our study of

ergodic capacity under imperfect feedback constraints. The system model and the

optimum beamforming vector given in (4.12) are applicable for ergodic capacity

also. However, the system distortion function and the codebook design algorithm

have to be adapted for ergodic capacity. We begin with the distortion function

relevant for ergodic capacity analysis.

4.5.1 Distortion Function

To minimize the effect of quantization errors, one is naturally led to a

vector quantization framework and finding an optimum codebook of C = 2B beam-

forming vectors (please note the notation here, C represents number of codepoints

in the codebook). We now discuss the design of such a codebook. The beamform-
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ing vector after quantization is given by

w = v̂ = Q (wopt) , (4.21)

where Q is the quantization function to be described in the next subsection. The

lower bound on the ergodic capacity with optimum beamforming vector wopt is

given by

CW = E

log2

1 +
ρwH

opth̃ h̃
H

wopt

1 + ρwH
optΣnwopt

 . (4.22)

With v̂ (note that v̂ is the quantized version of optimum beamforming vector)

from (4.21) plugged into (4.22),

CQ = E

[
log2

(
1 +

ρ ‖h̃‖2|ϑ|2

1 + ρ v̂HΣnv̂

)]
, (4.23)

where

ϑ = v̂Hv

and

v =
h̃

‖h̃‖
.

The additional loss in ergodic capacity (there is already some loss because of esti-

mation errors and delay) due to channel quantization, is given by

CL = CW − CQ

= E

 log2

 ω + ρω V̂

1 + ρ ·
(
V̂ + α · |ϑ|2

)
 , (4.24)

where

α = ‖h̃‖2

and

V̂ = v̂HΣnv̂.

Note that CL quantifies the loss due to quantization alone precisely, and unlike

CW and CQ, CL is not a bound.
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4.5.2 Optimum Codebook Design

The criteria for designing the codebook is to minimize the loss in ergodic

capacity CL (4.24). However, CL in the above form is not very convenient because

it complicates the centroid finding step in the VQ design and some modification is

necessary. After some manipulation, the loss term CL can be written as

CL = −E log2

1−

1−

1 + ρ ·
(
V̂ + α · |ϑ|2

)
ω + ρω V̂

 .
After taking the first order approximation using

− log(1− x) w x,

the approximated loss, CLA, can be written as

CLA =
1

ln 2
E

ω − 1 + ρ
(
V̂(ω − 1)− α|ϑ|2

)
ω + ρω V̂


=

1

ln 2
E

(
v̂HΣvv̂

v̂HΣdv̂

)
, (4.25)

where

Σv =

{
(ω − 1)I + ρ(ω − 1)Σn − ραvvH

ω

}
, (4.26)

Σd = ρΣn + I.

It will be shown that this form CLA results in a convenient VQ design. The above

approximation is important as the codebook design will be developed using CLA.

The approximation is well justified in the high SNR and high resolution (higher

C) regime.

Codebook Design Criterion: Design a quantizer Q ( Q : Ct →W) to minimize

CLA, which can be written as

min
Q(.)

E

(
v̂HΣvv̂

v̂HΣdv̂

)
where v̂ = Q(v), ‖v̂‖ = 1 and v̂ ∈ W . The above vector quantization problem (a

modified form of Lloyd algorithm) has a monotonic convergence property.
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Codebook Design Algorithm: Lloyd algorithm has two conditions, the Nearest

Neighborhood Condition and Centroid Condition. The details of these two condi-

tions are discussed below. Generate a large sample set of vectors v, which are the

normalized vectors of the delayed channel estimates.

Nearest Neighborhood Condition: Beginning with an arbitrary set of unit vec-

tors v̂i, i = 1, · · · , C forming the codebook W , the optimum Voronoi Regions

Ri, i = 1, · · · , C are found from the following condition

Ri =

{
v ∈ Ct :

v̂Hi Σvv̂i

v̂Hi Σdv̂i
≤

v̂Hj Σvv̂j

v̂Hj Σdv̂j
, ∀j 6= i

}
Ri contains all the training unit norm vectors v satisfying the above condition.

In the above condition, Σv as defined in (4.26) contains v (as indicated earlier,

v = h̃/‖h̃‖).

Centroid Condition: The codebookW is updated in this step. For a given partition

Ri obtained from the previous step, the new set of beamforming vectors satisfy

v̂i = arg min
‖v̂‖=1,v̂∈Ri

E

{
v̂HΣvv̂

v̂HΣdv̂

}
, i = 1, · · · , C

= arg min
‖v̂‖=1,v̂∈Ri

{
v̂HΣmv̂

v̂HΣdv̂

∣∣∣∣v ∈ Ri

}
, i = 1, · · · , C,

where Σm = E(Σv). In the implementation of the algorithm Σm has to be esti-

mated from the training unit norm vectors belonging to Ri. To solve the above

minimization problem consider the generalized eigenvalue equation for Σd and Σm

ΣmF = ΛΣdF,

where

FHΣdF = I,

FHΣmF = Λ = diag (λ1, · · · , λt) ,

F = (f1, · · · , ft) .

Assuming that λ1 > λ2 · · · > λt, the solution to minimization function is given by

ft. In the above form, ft may not be a unit vector, while running the algorithm, ft
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can be normalized to make it a unit vector and it has no effect on the minimization.

The ith new codeword is given by

v̂i =
ft
‖ft‖

.

The above two conditions are iterated until the convergence.

Compared to the optimum codebook design presented in [26], apart from

some changes in additive and multiplicative factors, the primary change due to

the presence of estimation error and delay is that, in the centroid condition, the

new codebook design depends on the joint eigen decomposition of both signal

and noise correlation matrices. In contrast, the centroid condition in [26] requires

eigen decomposition of only the signal correlation matrix. Similar to [26] a new

codebook has to be designed for each SNR point. However, the codebook design

is an off-line process so it is not a computational burden on MS. Ideally speaking,

even minor changes in the noise or signal correlation matrices require a completely

new codebook.

4.5.3 Encoding: Beamforming Vector Selection

The optimum encoding process (selection of the code point index to be

sent to the transmitter) is defined as follows

v̂ = arg max
v̂i∈W

|〈v̂i,v〉|2

v̂Hi Σdv̂i

By this encoding process, the unit norm sphere St = {v ∈ Ct}, is partitioned into

C regions Ri, i = 1, ..., C, where

Ri =

{
v ∈ St :

v̂Hi Σvv̂i

v̂Hi Σdv̂i
≤

v̂Hj Σvv̂j

v̂Hj Σdv̂j
,∀j 6= i

}

The above encoding process is optimum in the sense that it maximizes the received

SNR. Compared to [26] the encoding process is also different. Since estimation

errors and delay were not considered, in [26] only the numerator part is used in

the encoding.
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4.5.4 Spatially i.i.d. Channel - Loss Analysis

Analyzing the loss for correlated channels with estimation errors, de-

lay (EED) and quantization is a complicated problem and analytic tractability

remains elusive at this time. However, we have had success with the loss in er-

godic capacity for the less general but still important spatially i.i.d. channel with

EED and channel quantization. A closed-form analytical expression for the com-

bined loss due to the three forms of feedback imperfection (estimation errors, delay

and channel quantization) is derived in this section for the spatial i.i.d. channel.

Notation : In this subsection, γs denotes the SNR and ρ denotes the

correlation coefficient.

Without EED and channel quantization (i.e., transmitter has h/‖h‖), the

ergodic capacity is given by

Cideal = E
[
log2

(
1 + ‖h‖2γs

)]
.

It can be shown that for the spatially i.i.d. channel, Σhh = I and Σim = |ρ|2I,

0 < |ρ| < 1. More specifically ρ can be shown as the product of estimation related

correlation coefficient ρe, and delay related correlation co-efficient ρd (Chapter 2).

With these values the lower bound on ergodic capacity as given in (4.23) becomes

Cquant = E
[
log2

(
1 + ‖h‖2γfs θ

)]
, (4.27)

where

γfs =
|ρ|2γs

1 + (1− |ρ|2)γs
,

and

θ = |ϑ|2.

The loss in ergodic capacity with un-quantized channel without EED and

the quantized channel with EED is given by (4.28). Note that this loss formulation

is different (but more general) from the one in spatially correlated with EED

scenario. The loss function in correlated channel case is defined as the further loss
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due to quantization. Where as for i.i.d., CL−iid implies the overall loss due to EED

and quantization.

Cideal − Cquant = E
[
log2

(
1 + ‖h‖2γs

)]
− E

[
log2

(
1 + ‖h‖2γfs ϑ

)]
CL−iid = −E

[
log2

(
1 + ‖h‖2γfs ϑ

1 + ‖h‖2γs

)]
= −E

[
log2

(
1− ‖h‖

2(γs − γfs ϑ)

1 + ‖h‖2γs

)]
. (4.28)

By using the Taylor series expansion

− log(1− x) =
∞∑
k=1

xk

k
,

(4.28) can be written as

CL−iid =
1

ln 2

∞∑
k=1

1

k
E

[
‖h‖2(γs − γfs ϑ)

1 + ‖h‖2γs

]k
=

1

ln 2

∞∑
k=1

1

k
E

([
‖h‖2γs

1 + ‖h‖2γs

]k)
E(βk), (4.29)

where

β = 1− ξθ,

ξ =
γfs
γs
.

It is easy to see that ξ < 1 and ξ = 1 if and only if there is no delay and no

estimation error. In (4.29), the independence of the quantization related term and

channel norm related term is due to the fact that the channel is spatially i.i.d.

The codebook design for this scenario is a special case of the previously considered

spatially correlated case. Note that optimum codebook design specific to the loss

in ergodic capacity is studied in [26]. An approximate pdf for θ, is given as

fθ(x) = 2B(t− 1)(1− x)t−2, 1− ψ < x < 1, (4.30)

where ψ = 2−B/(t−1). The first expectation in (4.29) can be evaluated as [102]

E

([
‖h‖2γs

1 + ‖h‖2γs

]k)
=

Γ(k + t)

Γ(t)
γks 2F0 (t+ k, k; ;−γs) , (4.31)
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where 2F0(, , ; ; ) is the generalized hypergeometric function. Using change of vari-

ables the pdf of β can be shown to be

fβ(x) =
2B(t− 1)

ξt−1
(ξ − 1 + x)t−2 , 1− ξ < x < 1− ξ + ξψ.

E
(
βk
)

can be evaluated as follows:

E
(
βk
)

=
2B(t− 1)

ξt−1

∫ 1−ξ+ξψ

1−ξ
xk (ξ − 1 + x)t−2 dx (4.32)

=
2B(t− 1)(ξ − 1)t−2

ξt−1(k + 1)

[
(τ)k+1

2F0

(
−t+ 2, k + 1; 2 + k; 1 +

ξψ

1− ξ

)
−

(1− ξ)k+1
2F0 (−t+ 2, k + 1; 2 + k; 1)

]
, (4.33)

where

τ = 1− ξ + ξψ.

Substituting (4.31) and (4.33) in (4.29) gives the final closed-form expression for

CL−iid.

4.5.5 Simulation Results

The effectiveness of the new codebook design algorithm can be seen in

Fig. 4.4. It plots the (simulated) lower bound on ergodic capacity due to the finite

rate quantization of the CSI with estimation errors and feedback delay. Simulation

parameters: t = 3, B ∈ {4, 6}, the spatially correlated channel, Σhh, is simulated

by the correlation model in [104]: A linear antenna array with antenna spacing

of half wavelength, angle of arrival φ = 0◦ and an uniform angular spread of

[−π/5, π/5]. Σim is simulated in a similar fashion with an uniform angular spread

of [−π/5.5, π/5.5] and the resulting correlation matrix is scaled by 0.7582. Note

that the various auto and cross correlation matrices are included in Σim, so they

are not specified separately. The noise correlation is given by Σn = Σhh −Σim.

The new codebook clearly outperforms the codebook designed without

taking the EED into account [26]. The difference between the two codebooks is

not much in the low SNR regime. However, there is a considerable gap in the high
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SNR regime. Since the signal part leaks into the noise, all the curves flatten out

at high SNRs. Increasing the number of feedback bits improves the performance.

Though the loss analysis for correlated channels with EED is not presented, based

on the source coding perspective provided in [93], it can be shown that the loss is

proportional to 2−B/(t−1). The calculation of the constant before this exponent is

a non-trivial problem.

In Fig. 4.5 both the analytical and simulated curves are plotted for the loss

in ergodic capacity due to estimation errors, delay and finite rate quantization. The

analytical curves are in agreement with the simulations. Simulation parameters:

t = 3, |ρ|2 = 0.989, and B = 4. In the evaluation of analytical expression for

loss (4.29) only the first 40 terms in the series were considered. The penalty of

having the three forms of imperfection (solid green line) is quite severe on the

system performance. The figure also shows loss due to quantization alone and

EED alone. The loss due to quantization alone is seen to be much less compared

to the loss due to EED alone.

4.6 Conclusion

In this chapter we considered the problem of designing an optimum code-

book that minimizes the loss in average SEP and analyzing the effect of finite-rate

feedback on the ASEP of a transmit beamforming MISO system with rectangular

QAM utilizing a high-resolution source coding perspective. We derived the distor-

tion function as a first order approximation of the instantaneous SEP loss and used

it to design optimum codebook under both perfect and imperfect channel estimate

assumptions. Assuming perfect channel estimation at the receiver, no feedback

delay and under high resolution assumptions, we provided analytical expressions

for loss in ASEP due to finite-rate channel quantization for spatially independent

and correlated channels. We then considered the high-SNR regime and showed

that the loss associated with the spatially i.i.d. case is the loss associated with the
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spatially correlated case scaled by the determinant of the correlation matrix. The

simulation results are in agreement with the analytical expressions. The presented

framework of analysis can be extended to analyze the loss in SEP or BEP of other

two dimensional linear modulation schemes.

In the presence of estimation errors and delay, for the optimum trans-

mit beamforming, a new codebook design algorithm minimizing the ergodic loss

is also proposed. Simulations clearly show that the new codebook (designed for

ergodic capacity) outperforms the optimum codebook designed for perfect channel

estimation and no-delay case. For spatially i.i.d. scenario, a closed-form analyt-

ical expression for the loss in ergodic capacity is derived and validated through

simulations.

4.7 Appendix

4.7.1 High Resolution Theory

It is assumed that the source variable h is a two-vector tuple, (v, α),

where vector v ∈ Q represents the actual quantization variable of dimension 2t

and α ∈ Z is the additional side information of dimension 1. The side information

α is available at the receiver but not at the transmitter. The encoding or the

quantization process is denoted as v̂ = Q(v, α). The distortion introduced by a

finite-rate quantizer is defined as

D = E
[
DQ

(
v, v̂ ; α

)]
where DQ

(
v, v̂ ; α

)
is a general non-mean-squared distortion function between v

and v̂ that is parameterized by α. It is further assumed that function DQ has a

continuous second order derivative Wα(v), the sensitivity matrix, with the (i, j)th

element given by

wi,j =
1

2

∂2

∂ vi∂ vj
DQ

(
v , v̂ ; α

) ∣∣∣∣
v=v̂

. (4.34)

Wα(v) represents sensitivity matrix of an unconstrained source. However, the

beamforming vector has a norm constraint ‖v‖ = 1, and a phase constraint
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]〈v, v̂〉 = 0. We denote the constrained space as g(v) = 0. Since we are op-

erating in the constrained space, the degrees of freedom in v reduce from 2t to

2t− 2. The sensitivity matrix is replaced by its constrained version Wc, α(v) given

by

Wc, α

(
v
)

= VT
n Wα

(
v
)

Vn , (4.35)

where Vn ∈ R2t×2t−2 is an orthonormal matrix with its columns constituting an

orthonormal basis for the null space N
(
∂
∂ v

g(v)
)
. Under high resolution assump-

tion, the asymptotic distortion of the generalized finite-rate quantization system

can be lower bounded by the following form

DLow = 2−
B
t−1

(∫
Q

(
Iw

c,opt(v) p
(
v
)) t−1

t dv

) t
t−1

, (4.36)

where Iw
c,opt

(
v
)

is the constrained average optimal inertial profile defined as [93]

Iw
c,opt

(
v
)

=

∫
Z
Ic,opt

(
v ; α

)
p
(
α
∣∣v) dα . (4.37)

The normalized inertial profile of an optimal quantizer is defined as the minimum

inertia of all admissible Voronoi regions. The inertial profile of any Voronoi shape,

including the constrained optimal inertial profile, Ic,opt

(
v ; α

)
, can be tightly lower

bounded by that of an M-shaped hyper-ellipsoid

Ic,opt

(
v ; α

)
'
t− 1

t

(∣∣Wc,α(v)
∣∣

κ2
2t−2

) 1
2t−2

(4.38)

where | · | represents determinant and κn is the volume of an n-dimensional unit

sphere.

4.7.2 Spatially i.i.d. Channel: Average SEP Loss Analysis

In this section of the Appendix, we make use of the asymptotic distortion

bounds presented in Section 4.7.3 and show the main steps in arriving at the loss in

average symbol error probability for the M1×M2-QAM constellation. The relevant

distortion function DQ

(
v, v̂ ; α

)
is given in (4.8). Due to space limitations, we only

outline the important steps and present the final results.
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The lower bound on asymptotic distortion given by (4.36), requires the

computation of constrained sensitivity matrix (4.35), lower bound on constrained

normalized inertial profile of an optimal quantizer (4.38) and the weighted con-

strained inertial profile (4.37). After some simplification the constrained sensitiv-

ity matrix for the distortion function of SEP loss (instantaneous) can be shown to

be given by

Wc, α

(
v
)

= exp

(
−λα

2

) √
λα

8π

[
A+ 2C Q

(√
λα
)]
· I2t−2. (4.39)

For spatially independent and correlated channels, the optimal inertial profile is

obtained by substituting (4.39), the constrained sensitivity matrix, into the hyper-

ellipsoidal approximation given by (4.38). The optimal constrained inertial profile

is given by

Ic, opt (v ; α) =

(
(t− 1)

t
exp

(
−λα

2

)
γ
− 1
t−1

t

√
λα

8π

)
·[

A+ 2C Q
(√

λα
)]

(4.40)

where

γt =
πt−1

(t− 1)!
.

For spatially i.i.d. channel, h ∼ NC(0, It), the random variable α (α =

‖h‖2) has a pdf

pα(x) = pα|v (x)

=
exp(−x)xt−1

(t− 1)!
, x ≥ 0 . (4.41)

Since the channel is spatially independent α does not depend on the channel di-

rection v. Using (4.41) and (4.40) in (4.37), Ic,opt

(
v ; α

)
, the weighted constrained

inertial profile coefficient can be obtained.

After some simplification an intermediate step in the derivation, with a

change in variable using

y = x

(
λ

2
+ 1

)
,
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is given by

Iw
opt

(
v
)

= DAAΓ

(
t+

1

2

)
+DA 2C

∫ ∞
0

Q (
√
µy) exp (−y) yt−

1
2 dy (4.42)

where

DA =

√
λ(t− 1) γ

− 1
t−1

t
√

8π t!
(
λ
2

+ 1
)(t+ 1

2)
,

and

µ =
2λ

λ+ 2
,

and Γ(n) is the standard Gamma function [103]

Γ(n) =

∞∫
0

e−uun−1du.

We use

Q(x) =
1

π

π/2∫
θ=0

exp

(
− x2

2 sin2 θ

)
dθ, x ≥ 0,

an alternative definition of Q function [12], to simplify the second term with inte-

gral in (4.42) and arrive at∫ ∞
0

Q (
√
µy) exp (−y) yt−

1
2 dy =

Γ
(
t+ 1

2

)
π

π/2∫
θ=0

(
sin2 θ

κ+ sin2 θ

)t+ 1
2

dθ (4.43)

where

κ =
µ

2
.

We make use of [12, Eqn. (5.17)] to arrive at a closed-form expression

π/2∫
θ=0

(
sin2 θ

κ+ sin2 θ

)t+ 1
2

dθ =

√
κπ Γ (t+ 1)

2 (1 + κ)t+1 Γ
(
t+ 3

2

) 2F1

(
1, t+ 1; t+

3

2
;

1

1 + κ

)
. (4.44)

for the finite integral in (4.43). By substituting the weighted constrained inertial

profile coefficient (4.42) and

p(v) =
1

γt
,

into the distortion integral (4.36), the ASEP loss of an i.i.d. MISO system can be

shown to be given by (4.16).
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4.7.3 Spatially Correlated Channel: Average SEP Loss Analysis

In this section of the Appendix, loss in average symbol error proba-

bility is evaluated for the spatially correlated scenario. All the steps until the

derivation of constrained normalized inertial profile (4.40) are same for both spa-

tially independent and correlated channels. For correlated MISO fading channels

h ∼ NC
(
0, Σh

)
with channel correlation matrix Σh having distinct eigen-values,

i.e., 3 λh,1 > · · · > λh, t > 0. The marginal pdf of v and conditional distribution of

α|v can be shown to be [102]:

pv (x) = γ−1
t |Σh|−1 (xHΣ−1

h x
)−t

, (4.45)

pα|v (x) =
xt−1

(
vHΣ−1

h v
)t

exp
(
−xvHΣ−1

h v
)

(t− 1)!
. (4.46)

By substituting the conditional pdf pα|v (x) given by (4.46) and the con-

strained normalized inertial profile (4.40) into equation (4.37), the average inertial

profile can be obtained as

Iw
c, opt

(
v
)

=

 (
vHΣ−1

h v
)t(

vHΣ−1
h v + λ

2

)t+ 1
2

 ·
[
TD +

TE
√
ν

(1 + ν)t+1 2F1

(
1, t+ 1; t+

3

2
;

1

1 + ν

)]
(4.47)

where

TD =

√
λ(t− 1)γ

− 1
t−1

t AΓ
(
t+ 1

2

)
√

8π t!
, (4.48)

TE =

√
λ(t− 1) γ

− 1
t−1

t C Γ
(
t+ 1

2

)
Γ
(
t+ 3

2

)√
8π

, (4.49)

and

ν =
λ(

2 vHΣ−1
h v + λ

) . (4.50)

3In this chapter, we assume that the channel covariance matrix Σ h has distinct positive eigen-values.
The result can be extended to any covariance matrix that is positive definite. If the channel covariance
matrix is singular, the quantization should be carried out in a space with reduced dimension.
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Using (4.45) and Iw
c, opt

(
v
)

in (4.47), with the help of the alternative repre-

sentation of Q function, the average symbol error probability loss of a spatially cor-

related transmit beamforing multiple input single output system is given by (4.17).
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5 Modeling and Prediction of

Wireless Channel

Now we turn our attention to the issue of minimizing the negative impact

of feedback delay on the performance of the system. An obvious solution to the

problem of feedback delay is to predict the channel and then quantize the predicted

channel. In this chapter we study the role of ergodicity in wireless channel predic-

tion. With an eye on developing a better wireless channel simulator we first begin

with a general, but non-linear and non-tractable, form of wireless channel model.

Under certain assumptions we then consider a simplified and well accepted linear

sinusoidal channel model. Following the sinusoidal channel model, conditions un-

der which the ergodic assumption is valid are presented. This sheds insight into

when statistical channel models that employ ensemble averaging are appropriate.

Due to the lack of ergodicity in a typical real world wireless channel, Least

Squares prediction, an approach based on time averages is motivated as opposed

to linear minimum mean squared error channel prediction, an approach based on

ensemble averaging. We then study methods such as Forward-Backward and rank

reduction for high quality channel prediction. Simulation results are presented

to complement the analytical expressions. Simulation results also illustrate the

improvement in channel prediction quality.

140
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5.1 Introduction

The demand for high data rates with high reliability has intensified the

research efforts in wireless systems with channel state information (CSI) at the

transmitter. In frequency division duplexing systems the receiver has to feed back

the CSI to the transmitter. As seen from the previous chapters, depending on the

temporal correlation, the effect of delay between channel estimation and its actual

use can degrade the performance of a communication system. Typical communi-

cation problems sensitive to the feedback delay include, power control, adaptive

modulation, antenna switching schemes, transmit beamforming (the main theme

of this thesis) and opportunistic beamforming. Channel prediction can be useful in

these scenarios. Channel prediction algorithms can be classified into two broad cat-

egories, data driven and statistics driven. Data driven approaches include various

Least Squares (LS) based methods and sub-space based modeling methods (MU-

SIC, ESPRIT, and their variations) [3]. The popular statistical method is the

linear minimum mean squared error (LMMSE) method. The LMMSE method

uses apriori statistical knowledge and so its performance can be inferior to alter-

nate approaches in the absence of ergodicity. The ergodicity of the underlying

model has to be evaluated carefully before employing LMMSE and this chapter

addresses the validity of this assumption.

We first begin with a general but non-linear and non-tractable form of

wireless channel model. This channel model can be useful to generate realistic

channel data. However, for the general channel model any statistical analysis is

difficult to carry out. Hence we consider a simplified sinusoidal channel model and

with limited scattering, we show that time average is not in general equal to the

ensemble average. This gives an insight into the utility of statistical methods for

channel prediction that are based on ensemble averaging. LMMSE prediction [4],

an algorithm designed under the assumption of ergodicity gives a pessimistic pic-

ture about the prediction possibilities and motivate LS prediction, a time-averaging
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method which depends only on the temporal properties of the channel. For sim-

plicity we focus on a Single Input and Single Output (SISO) system.

The rest of this chapter is organized as follows. In Section 5.2 we present

a general channel model. The main theme of the chapter is prediction and the

role of ergodicity of the channel model in prediction, is studied in Section 5.3.

Convergence analysis between time average and ensemble average approaches is

carried out in Section 5.4. In Section 5.5 we show that the Forward-Backward (FB)

prediction reduces the prediction error compared to the Forward-only prediction

and rank-reduction is shown to improve prediction when the effective number of

multipath is less than the filter order and we conclude this chapter in Section 5.6.

Important variables: N - number of clusters (also number of point sources

in Section 5.3), ωmax- Maximum Doppler frequency, v- velocity of the receiver,

Re(τ)- Ensemble autocorrelation, Rt(τ)- Time average autocorrelation, ρ- SNR of

channel estimate.

5.2 A General Multipath Model

As mentioned in the introduction chapter, wireless channel is typically

classified into three parts. Path loss or slow fading, shadow fading and fast fading.

Slow and shadow fadings generally happen at a much higher time scale than fast

fading and hence the focus of system designer is typically more on the fast fading.

In this chapter our modeling approach concerns only fast fading. The motivation

behind this section is the simulation of a realistic wireless channel.

As shown in Fig. 5.1 a total of U number of multipath are assumed to be

arriving at a moving receiver. In the present section we do not consider the fact

that the U multipath arrive in groups where each group might follow a particular

spatial distribution. The resulting baseband version of the wireless channel can be

modeled as

h(t) =
U∑
n=1

αn(t)

dn(t)
Pn(t) ej{ωn(t) t+φn(t)}, (5.1)
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Figure 5.1 A general multipath arrival model.

• αn(t)- Time-varying amplitude: Assuming that the multipath appear as clus-

ters in Section 5.2.1 we present an analytical characterization for the ampli-

tude variation. Assuming equal amplitude for each of the multipath compo-

nent is a standard assumption. However, in some measurement campaigns

it has been noticed that Weibull distribution is a better fit for amplitude

of the multipath. In studying the role of ergodicity we assume a Weibull

distribution for multipath amplitude.

• dn(t)- Assuming that the vehicle is moving with a velocity of v and an accel-

eration of a, with distance, the power decays as

1

sn + vt+ at2

2

.

Large scale fading and shadowing are generally parameterized by the dis-

tance between the mobile and the base station. Assuming that the small

scale fading measurement starts at distance sn, we write the above equation

as (5.2) (shown below) to make the distance sn as part of (along with v and
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a) fast fading phenomena.

1

sn

(
1 +

vt+ at2

2

sn

)
︸ ︷︷ ︸

dn(t)

, (5.2)

dn(t) captures the remaining effect from shadowing and slow fading as a

parameter of time t, v, and a. For small x, with the help of the following

approximation
1

1 + x
≈ e−x,

one can have a simpler exponential form for 1/dn(t). i.e.,

1

dn(t)
≈ e

−
(
v+at

2
sn

)
t
. (5.3)

• φn(t)- Time-varying phase: In a recent paper [105], it is formulated that the

phase should be treated as time-varying. Autocorrelation of φn(t) is given

as [105]

Rφ(τ) = e−B|τ |/2 (5.4)

where B, a receiver related physical parameter, is a positive constant with

the dimension of frequency and τ is the lag.

• P (t)- Captures the effect of pulse shaping.

• ωn(t)- Time-varying Doppler: In the channel modeling literature, it is a com-

mon practice to treat the doppler frequency to be tine-invariant in channel

modeling literature. However time-varying Doppler makes sense in situa-

tions where the plane wave assumption breaks down. It is easy to go back

to the time-invariant Doppler from a time-varying Doppler by setting an ap-

propriate parameter to zero. The below equation represents the variation of

Doppler when the plane wave assumption breaks down.

ωn(t) = ωmax cos θn −
v t ωmax sin2 θn

sn
(5.5)
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where sn is the distance of the object causing scattering and the mobile. As

seen in the above equation as the distance between the mobile and source

of scattering (SS) increases the second term can be ignored. However, when

the mobile is in acceleration then even if the mobile is away from SS then

there will be a time dependent Doppler.

Instead of assuming constant velocity, in this chapter we assume an accel-

erating vehicle. Closeness to the scatterers and the accelerating vehicle as-

sumptions are valid for modern city environment. With these assumptions

the time-varying Doppler frequency is given by the following expression.

ωn(t) = (ωmax + ωa(t)) cos θn −
π t
(
v + a t

2

)2
sin2 θn

sn λ
, (5.6)

ωa(t) =
π a t

λ
.

After incorporating the parameters in (5.1) as defined above, clearly the

channel model in (5.1) represents the most general nature of what is popularly

known as Clark’s model in literature. A recent publication [105] extended the

Clark’s model for time-varying phase. In this chapter we considered a more gen-

eral, but highly complex and non-linear, form for the wireless channel. Though

analytically intractable, the main motivation for using the channel model in (5.1)

is for simulation of wireless communication process in software. We now examine

under what assumptions (5.1) can be reduced into an analytically tractable form

proposed by the famous Clark model.

• Assuming that the time scale of channel validity is small (of the order of

milliseconds) and the distance between the scatterer and the moving receiver

is large (of the order of tens of meters) dn(t) ≈ 1.

• A constant pulse assumption leads to Pn(t) = 1.

• A constant velocity receiver implies that a = 0

• sn is large, i.e., the scattering source is far away from the moving receiver.
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• Phase variation is small with in the time scale of operation, leading to φn(t) =

φn.

Under the above mentioned assumptions the wireless channel takes a simple linear

form of sum-of-sinusoids. In the next subsection we consider a popular multipath

arrival scenario and propose a simpler way to simulate the wireless channel and

develop a model based on stochastic sinusoidal processes.

5.2.1 Multipath in Clusters

Simulation of wireless channel has two different domains. One is the

software simulation and the other is simulating the wireless channel in hardware.

The goal of hardware simulators is to be able to replicate a realistic wireless channel

scenario with as minimum number of sinusoids. Hence, there has been considerable

amount of research in reproducing the Clark model’s statistical properties with as

minimum sinusoids as possible [2], [107].

Jakes in his seminal work exploited the symmetrical properties and was

able to reproduce the Clark’s statistical properties with as few as eight sinusoids.

However, Jakes model went through some corrections as it had some statistical

inconsistencies [108] and [109]. Recently Grolleau et al. [106] published stochastic

sinusoidal model where in they accurately reproduced the Clark model’s statistical

properties with just one sinusoid. In this section we extend the stochastic sinusoidal

model to explain the cluster phenomena. We also derive the statistical properties

of the amplitude variation of the stochastic sinusoids. An additional advantage of

the modeling shown below is simulation of multipath phenomena in hard ware with

much fewer sinusoids than the total number of multipath. The model presented

here is quite general in nature and it can be shown that Clark’s model is a special

case of the model presented.

In this section we assume a linearized model, i.e., plane wave, no acceler-

ation at the mobile and constant phase for each multipath. As shown in Fig. 5.1

in various channel measurement campaigns it is observed that the multipath gen-
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erally appear in clusters as opposed to point sources. The channel model in (5.1)

can now be written as (5.7).

h(t) =
N∑
n=1

M∑
m=1

βnm e
jωnmt (5.7)

where N -number of clusters, M -number of multipath components in each clus-

ter, i.e., U = NM , βnm and ωnm are amplitude and doppler frequencies of mth

multipath in the nth cluster:

ωnm = ωmax cos θnm

ωmax = 2πv/λ;

θnm = θn + ψnm

cos θnm = cos θn cosψnm − sin θn sinψnm

Assuming smaller angular spread (cosψnm ≈ 1 and sinψnm ≈ ψnm) we approxi-

mate the above equation as

cos θnm ≈ cos θn − ψnm sin θn. (5.8)

With the above approximation h(t) can now be simplified as

h(t) =
N∑
n=1

M∑
m=1

βnm e
jωmax[cos θn−ψnm sin θn]t,

=
N∑
n=1

βn(t) ejωnt, (5.9)

βn(t) =
M∑
m=1

βnm e
−jωmax sin θn ψnmt (5.10)

where,

• βnm is the amplitude of the mth multipath of the nth cluster. Note that the

phase is absorbed into the constant amplitude of 1/
√
NM , βnm = φnm√

NM
.

• φnm is the phase of the mth multipath of the nth cluster.
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• ωnm is the Doppler frequency of the mth multipath of the nth cluster.

ωnm = ωmax cos θnm

where ωmax is the maximum Doppler frequency.

From (5.9) it can be observed that it is exactly same as Clark’s model except that

the amplitude is also time varying with a specific structure as given in (5.10).

By making the amplitude constant one can easily go back to the Clark’s model.

Equation (5.9) can also be treated as a generalized form of the stochastic sinusoidal

model considered in [106] and this model explains a much richer class of multipath

arrival scenarios. There is also an obvious benefit of reduction in the number of

sinusoids needed in simulating the channel variation process in hardware.

5.2.1.1 Ensemble Autocorrelation of βn(t)- Amplitude Random Process

We now look at the ensemble autocorrelation of the random amplitude

variations captured in βn(t).

βn(t) =
M∑
m=1

βnm e
−jωmax sin θn ψnmt

Rβ(τ) = E[β∗n(t)βn(t+ τ)]

= E

 M∑
m=1

β∗nm e
jωmax sin θn ψnmt

M̃∑
m̃=1

βnm̃ e
−jωmax sin θn ψnm̃(t+τ)


=

M∑
m=1

E[e−jωmax sin θn ψnmτ ]/M

=

∫ π

−π
e−jωc ψnmτ p(ψ) dψ

As reported in some measurement campaigns, in this chapter we consider the

truncated laplacian pdf (it is straightforward to extend the results to some other

distributions)

p(ψ) =
e−|
√

2ψ/σ|

A
, −σ ≤ ψ ≤ σ

where

A =
√

2σ
(

1− e−
√

2
)
.
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Rβ(τ) =
1

A

∫ σ

−σ
e−jωc ψτe−|

√
2ψ/σ| dψ

=
2

A

∫ σ

0

cos(ωc ψτ)e−
√

2ψ/σ dψ

Making use of ∫
eaθ cos bθ =

eaθ (a cos bθ + b sin bθ)

a2 + b2
,

Rβ(τ) =
2σ2e−

√
2

A(2 + ω2
cτ

2σ2)

[
ωc τ sin(ωc στ)−

√
2

σ
cos(ωc στ)

]
+

2
√

2σ

A(2 + ω2
cτ

2σ2)
.

(5.11)

5.2.1.2 Power Spectral Density

The amplitude random process, βn(t), is a wide sense stationary process

and hence the power spectral density is obtained by taking the Fourier transform

of the autocorrelation function. Let F{f(x)} represent the Fourier transform of

f(x).

Sβ(f) = F {Rβ(τ)} . (5.12)

F

{
2
√

2σ

A(2 + ω2
cτ

2σ2)

}
=

1

Aωc
e−

√
2

ωc σ
|f |, (5.13)

F
{

1

a2 + τ 2

}
=

1

2a
e−a|f |, (5.14)

F
{

τ

a2 + τ 2

}
=

i

2
e−a|f |, (5.15)

F {cos(ωcστ)} =
1

2

[
δ
(
f − ωcσ

2π

)
+ δ

(
f +

ωcσ

2π

)]
, (5.16)

F {sin(ωcστ)} =
1

2j

[
δ
(
f − ωcσ

2π

)
− δ

(
f +

ωcσ

2π

)]
. (5.17)

With the help of Fourier transform properties and (5.13)- (5.17), the final expres-

sion (5.12) for the power spectral density can be obtained. The autocorrelation and

power spectral densities are useful in generating the amplitude of the stochastic

sinusoidal channel model. As shown in [106] one needs the second order statistical

properties to generate the channel and [106] uses the circular pattern of arrival.
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The autocorrelation and power spectral densities from this chapter can be helpful

in generalizing the results in [106] for multipath arriving in a variety of spatial

pattern. To summarize the advantage of mathematical simplification of multipath

arrival in clusters is primarily useful in building a simpler hardware based wireless

simulator. In the next section we study a crucial statistical link between channel

prediction based on data driven approaches and the approaches driven by statistics.

5.3 Ergodicity of Wireless Channels

In this section we assume a simple, but well accepted, linearized channel

model with N number of point sources. We examine the assumption of ergodicity

as this is the key to conclusions drawn on impact of delay in feedback based

communication systems and channel prediction. The multiplicative complex flat

and fast fading process is modeled as [2], [3], and [4] (and references therein).

h(t) =
N∑
n=1

αne
jωnt, (5.18)

where, αn = βne
j(φn) is the time-varying amplitude, φn is the phase and ωn is

the Doppler frequency of the nth multipath. ωn = ωmax cos θn, where ωmax is the

maximum Doppler frequency and θn is the angle of arrival (AOA) of nth multipath.

ωmax = 2πv/λ, where v is the velocity of mobile and λ is the carrier wavelength.

We refer to this model as sinusoidal channel model.

With the help of pilot symbol sequence, the discrete channel is assumed

to be estimated by the LS method. Let ĥ represent the estimate of channel h,

assuming E[|ĥ|2] = ρ and the noise power to be 1, the signal-to-noise ratio (SNR)

of the estimated channel will be ρ. The channel is predicted from the estimate ĥ

and ρ has considerable impact on the channel prediction.

The coherence time, which plays a crucial role in the conclusions drawn

about the effect of the delay between channel estimation and its actual use, is based

on the autocorrelation property (an ensemble average) of the channel [16], [62].
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Often ergodicity is assumed and ensemble averages are used in lieu of temporal

averages. We now look at the ensemble average, Re(τ), for the sinusoidal channel

model given in (5.18).

h(t) =
N∑
n=1

αne
jωnt

Re(τ) = E[h∗(t)h(t+ τ)]

= E

[
N∑
n=1

α∗ne
−jωnt

N∑
m=1

αme
jωm(t+τ)

]

=
N∑
n=1

E[|αn|2]E[ejωnτ ] (∵ E[α∗nαm] = 0)

=
N∑
n=1

E[ejωnτ ]/N

=

∫ π

−π
ejωmaxτ cos θ p(θ) dθ

In the above equation it is assumed that E[|αn|2] = 1/N , this effectively removes

the amplitude distribution from the ensemble average, Re(τ). As we will see below,

this is not true for time averages. To carry out the integration shown in the above

equation we use the following expression [110, page. 331].

ejωmaxτ cos θ = J0(ωmaxτ) + 2
∞∑
k=1

jkJk(ωmaxτ) cos kθ, (5.19)

where Jk() is the kth order Bessel function of the first kind and j =
√
−1. Note

that if we assume a uniform distribution for the angle of arrival, θ ∈ (0, 2π], then

there is no need for (5.19), the ensemble average is the well known Bessel function.

However, in practical scenarios, the angle of arrival can assume different probability

density function (pdf)s depending on the environment, (5.19) is helpful in finding

the ensemble average in these practical scenarios.

Re(τ) =

∫ π

−π

(
J0(ωmaxτ) + 2

∞∑
k=1

jkJk(ωmaxτ) cos kθ

)
p(θ) dθ

= J0(ωmaxτ) + 2
∞∑
k=1

jkJk(ωmaxτ)

∫ π

−π
cos kθ p(θ)dθ︸ ︷︷ ︸
J (k)
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It has been reported in the channel measurement papers [114] and in some stan-

dard documents that Laplacian distribution is the best fit for the angle of arrival.

Substituting Laplacian pdf in J (k) gives

J (k) =
1√
2σ

∫ π

−π
cos kθ e−|

√
2θ/σ|dθ,

where σ is the standard deviation of the angular spread. Making use of∫
eaθ cos bθ =

eaθ (a cos bθ + b sin bθ)

a2 + b2
,

and after some simplification we arrive at

J (k) =
2

2 + σ2k2

(
1 + e−

√
2π/σ(−1)k+1

)
The final form for the ensemble average is given by

Re(τ) = J0(ωmaxτ) +
∞∑
k=1

jk
4

2 + σ2k2
Jk(ωmaxτ)

(
1 + e−

√
2π/σ(−1)k+1

)
. (5.20)

In Fig. 5.1 we plot the absolute value (unlike real valued correlation of

Jakes scenario, correlation of Laplacian AOA scenario given by (5.20) is a complex

number) of the temporal correlation for different values of standard deviation of

AOA. As expected, if the angular spread is small, the correlation is high. For

comparison, we also plotted the correlation obtained from the Jakes model (Bessel

function). The correlation from Jakes scenario is quite low compared to the cor-

relation of a Laplacian AOA scenario. Number of paths, N = 10, and maximum

Doppler frequency, ωmax = 100Hz are the parameters assumed in Fig. 5.1. For

clarity, the simulated curves are not shown in the Fig. 5.1. We verified that the

simulations agree accurately with the analysis. Note that the ensemble average

is independent of number of multipath, meaning that ensemble average of even a

single path would have resulted in the same correlation as (5.20).

The time average, Rt(τ), for the sinusoidal channel model, for large sam-

ple set, can be shown to be given by

Rt(τ) = lim
T→∞

1

2T

∫ T

−T
h(t)h∗(t− τ)dt

=
N∑
n=1

|αn|2ejωnτ . (5.21)



153

Assuming a uniform distribution for AOA, ensemble average of even a single multi-

path resembles a Bessel curve, but not the time average. Note that unlike, ensemble

average, time average is not independent of N . If the number of multipath present

in a single realization is large (100s) then the ergodic assumption is a valid one. It

has been noted in literature that typical number of sinusoids present in an outdoor

wireless channel do not exceed more than ten [6]. This means that the real world

channel is almost never ergodic, except in a highly rich indoor scattering.

5.4 Convergence of Time-Average and Ensemble-Average

To quantify the difference between the ensemble average (5.20) and time

average (5.21), we look at the mean-square error (MSE) between them as a func-

tion of number of multipath, N , maximum Doppler frequency, ωmax, the lag, τ , and

the parameters describing the angular spread and amplitude distribution of the

multipath. As we saw earlier, once we constrain the power of a single multipath

E[|αn|2] = 1/N , then ensemble average is effectively free from the pdf associated

with amplitude distribution. As seen in (5.21) the power constraint doesn’t elim-

inate the randomness associated with amplitude in time average. As shown later

in this section, the MSE between ensemble and time averages also depends on the

pdf of the amplitude of multipath.

Channel measurement papers [114] reported Rayleigh distribution to be

a better fit for the amplitude distribution. However, in this chapter we choose to

work with Weibull distribution, as it has a flexibility to control the tail proper-

ties (can be useful for describing a variety of possible wireless channel scenarios)

and the mean by the selection of its parameters and it is mathematically tractable.

The pdf of Weibull random variable, |αn| = βn, is given by

p(x) = c b−cxc−1e−(x
b

)c (5.22)

The parameters b and c control the moments of the distribution. Note that for

c = 2, the Weibull pdf becomes a Rayleigh pdf and for b = 0 and c = 1, Weibull
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Figure 5.2 Weibull pdf with different b’s.

pdf becomes an exponential pdf. Since the power of each multipath has to be

equal, E[|αn|2] = 1/N , b and c have to satisfy

b2Γ

[
2 + c

c

]
=

1

N
, (5.23)

where

Γ(n) =

∞∫
0

e−uun−1du

is the standard Gamma function [110]. In Fig. 5.2 we plot the Weibull pdf for

different values of b, the value of c is determined by (5.23). The important point

to note from Fig. 5.2 is that higher b results in a strong tail. We later connect this

tail property of b to the MSE between the ensemble and time averages. The MSE,

L(N, σ, b, ωmax, τ), between ensemble and time averages for the realistic channel

scenario (Laplacian AOA and Weibull amplitude) is given by

L(N, σ, b, ωmax, τ) = E

∣∣∣∣∣Re(τ)−
N∑
n=1

|αn|2ejωnτ
∣∣∣∣∣
2
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Figure 5.3 Effect of number of paths on mean squared error: the standard deviation

of AOA σ = 30, maximum Doppler frequency, ωmax = 100Hz, and the Weibull

parameter b = 0.8.

= E

[
N∑
n=1

|αn|2e−jωnτ
N∑
n=1

|αn|2ejωnτ
]
− |Re(τ)|2

=

(
N2 −N
N2

)
|Re(τ)|2 + E

[
N∑
n=1

|αn|4
]
− |Re(τ)|2

= E

[
N∑
n=1

|αn|4
]
− |Re(τ)|2

N

= Nb4Γ

[
4 + c

c

]
− |Re(τ)|2

N

L(N, σ, b, ωmax, τ) =
1

N

[
Γ[4/c+ 1]

Γ[2/c+ 1]2
− |Re(τ)|2

]
. (5.24)

For the widely considered Jakes scenario (uniform AOA and equal power |αn|2 =

1/N), the MSE can be shown to be given by

L(N,ωmax, τ) =
1

N

[
1− J2

0 (ωmaxτ)
]
. (5.25)

From (5.24) it can be seen that the MSE is inversely proportional to the

number of paths, which makes the convergence process relatively slower. In Fig. 5.3
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Figure 5.4 Effect of Weibull’s b and ωmax on MSE: number of paths N = 10, and

σ = 30.

we plot the MSE between the ensemble and time averages. The standard deviation

of AOA, σ = 30, the maximum Doppler frequency, ωmax = 100Hz and the Weibull

parameter b = 0.8 are assumed in the plot. As the number of paths increase the

MSE decreases. For comparison we also plotted the MSE curves for the widely

popular Jakes scenario (5.25). It is clear that ergodicity doesn’t hold for Jakes

scenario also. However, compared to the realistic channel scenario (5.24), Jakes

scenario has very low MSE, as seen in Fig. 5.3, the MSE of 20 paths in realistic

channel scenario is close to the MSE of a 2 paths Jakes scenario. Which means the

MSE convergence of the realistic scenario (Laplacian AOA and Weibull amplitude)

is much slower than the Jakes scenario (uniform AOA and |αn|2 = 1/N). Another

interesting observation is that for very small lag, τ , Jakes scenario’s MSE is almost

zero, while the MSE of realistic channel is a near constant non-zero value for any

amount of lag.

In Fig. 5.4 we look at the effect of tail of amplitude on the convergence.
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Figure 5.5 Effect of Laplacian’s σ on MSE: number of paths, N = 10, maximum

Doppler frequency ωmax = 100Hz and b = 1.0.

The MSE increases as b increases. As indicated earlier a higher b indicates a

stronger tail, so a higher tail translates into a slower convergence between ensemble

and time averages. We also looked at the effect of ωmax on MSE and a smaller

ωmax has a lower MSE but its contribution to MSE is seen to be not significant.

Number of paths, N = 10, and σ = 30 are assumed in Fig. 5.4. In Fig. 5.5 we look

at the effect of the standard deviation of AOA on MSE. A smaller angular spread

translates into a smaller MSE. Number of paths, N = 10, maximum Doppler

frequency ωmax = 100Hz and b = 1.0 are assumed in In Fig. 5.5. In all the plots

the channel is generated by (5.18).

In summary, though the dominant role in the convergence is played by

the number of paths, N , other system parameters like standard deviation of angle

of arrival, σ, and the Weibull parameter, b, also have a significant effect on the

rate of convergence.
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5.5 Linear Prediction

Assuming that the sinusoidal model is valid for a given scenario and if the

resolubility of doppler frequencies is not a problem, then, through prediction the

impact of delay can be significantly ameliorated in feedback based communication

systems. However, the real-world channel may not remain stationary for long and

so the prediction approach can only work within the time-span of stationarity. In

the following discussion, except for the fact that the channel is generated by sum

of sinusoids (not by Jakes or other models which generate the channel with ergodic

properties), no other assumptions are made about the behavior of the channel.

5.5.1 Forward-Only Prediction

For a SISO channel, let ĥn−1 = [ĥ(n−1), ĥ(n−2), · · · , ĥ(n−m)]T be the

‘m’ previous channel samples (‘m’ is the filter order). The next channel sample,

ĥ(n), is given by,

ĥ(n) =
m∑
l=1

(−ki)ĥ[n− l] + e(n), (5.26)

where −ki are the filter coefficients and e(n) is the Forward prediction error. Ob-

viously the prediction error is going to depend on the selection of the filter coeffi-

cients. The two possible non-adaptive methods for estimating the filter co-efficients

are LMMSE and Least Squares. The ensemble correlation characteristics are as-

sumed to be known completely in the derivation of LMMSE, so the ergodicity

assumption becomes critical. As we pointed out in the previous section, a typical

real-world channel is not ergodic and hence predicting the wireless channel by using

an LMMSE filter may not be the right choice. Filter co-efficients calculated from

Least Squares are data driven, data being the past channel observations. Though

some of the previous channel prediction work applied to real world data mentioned

that they use the data driven approach instead of statistical approach, the lack of

ergodicity is not pointed out as the main reason for using actual data instead of

statistics. We now look at obtaining filter coefficients by LS method. Assuming
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that we have M total previous channel estimates available, equation (5.26) can be

written as

Hw + e = h, (5.27)

By using the orthogonality principle [111] and [112], we can obtain the LS coeffi-

cient vector w as

w =
(
HHH

)−1
HHh (5.28)

In contrast, if the linear LMMSE method is used, the co-efficient vector w is given

by [4]

wm = R−1r, (5.29)

where R is the correlation matrix and r is the cross-correlation matrix. The

elements of R and r are given by (5.20) with appropriate lag and maximum doppler

frequency. The linear minimum mean squared prediction error is given by

Jmin = σ2
h − rHR−1r, (5.30)

where σ2
h is the power of the actual channel. The above equation indicates that,

even with perfect past channel estimates, LMMSE method will have a non-zero

error, while with an appropriate choice of filter order we can achieve zero-error

with Least Squares method.

5.5.2 Forward-Backward Prediction

The prediction error can be further reduced by a more effective utiliza-

tion of available data such as the Forward-Backward method [113]. This method

reduces the variance of the estimate (filter co-efficients) as well as the condition

number of the data matrix. Co-efficient vector w is given by

w =
(
H̃HH̃

)−1

H̃Hh̃, (5.31)

H̃ is the Forward-Backward data matrix [113].
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5.5.3 Rank Reduction

The performance of Forward-Backward algorithm depends on the condi-

tion number of the data matrix H̃. The rank of FB data matrix is equal to the

number of sinusoids present in the data [113]. The rank can be even less if some

sinusoids are close enough in frequency (as Doppler frequencies are selected ran-

domly), or if they have negligible amplitude. It should be noted that due to the

noisy estimates the rank of the channel can be full but the condition number will

be high, and this plays a very important role in the quality of the prediction.

To reduce the condition number, there are two possible choices, we can

have the model order equal to the number of multipath or we can have a reduced

rank approximation of a higher order filter. Fig. 5.8 shows that it is better to use a

higher order filter than number of multipath with a low-rank approximation [112]

of the FB matrix, this is due to the fact that with higher filter order we have more

data available. However, having higher filter order also implies a longer training

sequence. Another source of higher condition number is the sampling rate. With

a higher sampling rate, the condition number will be high, so in the construction

of channel matrix the spacing between channel samples can be increased such that

the condition number is smaller. The over sampling of channel can also be utilized

to estimate filter coefficients with lower variance, thus reducing the prediction

error. Finally, we note that there are other sophisticated data driven approaches

that could potentially result in better prediction like Total LS, Structural LS and

various sub-space methods. However, they are computationally intensive and so

have not been considered in this work.

5.5.4 Simulation Results

Fig. 5.6 shows that the LS prediction with Forward-only method out-

performs the LMMSE. Simulation parameters for Fig. 5.6: Channel is generated

by (5.18) with uniform distribution for AOA and equal amplitude for all the mul-

tipath, |αn|2 = 1/N . 100 iterations, number of paths N = 6, filter order m = 10,
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Figure 5.6 LS based forward prediction vs LMMSE prediction: 100 iterations,

number of paths N = 6, filter order m = 10, maximum Doppler frequency ωmax =

100Hz, sampling frequency= 300 Hz, training length M = 40, number of predicted

samples, P = 180.

maximum Doppler frequency ωmax = 100Hz, sampling frequency=300 Hz, training

length M = 40, number of predicted samples, P = 180. Prediction error for all

figures is defined as

Perror =

∑P
l=1

∣∣∣ĥ(l)− ĥp(l)
∣∣∣2

P
, (5.32)

where ĥp(n) is the predicted channel and ĥ(n) is the actual channel. In Fig. 5.7,

as expected the prediction error using the Forward-Backward method is seen to be

less compared to the error in Forward-only approach. Simulation parameters for

Fig. 5.7: iterations=100, N = 10, m = 10, ωmax = 100Hz, sampling frequency=300

Hz, M = 25, and P = 160. Fig. 5.8 shows that it is better to use a filter of order

higher than number of multipath and then taking low rank approximation to the
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Figure 5.7 Forward-Backward vs forward only prediction, 100 iterations, N = 10,

m = 10, ωmax = 100Hz, sampling frequency= 300 Hz, M = 25, and P = 160.

data matrix of FB. Simulation parameters for Fig. 5.8: Iterations=100, N = 4,

m = 10, ωmax = 100Hz, Sampling frequency=300 Hz, M = 25, and P = 160 and

ρ = 25 dB.

5.6 Conclusion

In this chapter we are first concerned with an accurate and simple way to

simulate the wireless channel. However, the non-linear and complex channel model

is not amenable to analytical studies. Under certain conditions one can reduce the

complicated non-linear model to a simple linear sum-of-sinusoids model. We then

take a close look at the crucial link between the prediction of channel based on

data driven approaches and statistics driven approach. Given that there will be

usually only a few dominant multipath present in a typical wireless channel, the

ergodic assumption is shown to be invalid for the sinusoidal channel model. As

a consequence of non-ergodicity, Least Squares based approach is proposed to

reduce the prediction error instead of the LMMSE approach. Forward-Backward
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Figure 5.8 Rank reduction and order reduction, 100 iterations, N = 4, m = 10,

ωmax = 100Hz, sampling frequency=300 Hz, M = 25, and P = 160 and ρ = 25 dB.

approach reduces the prediction error compared to the Forward-only approach.

Rank-reduction along with the correct choice of filter order for a given number of

multipath is also shown be an important factor in reducing the prediction error.
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6 Conclusion

In this Chapter we summarize the important contributions of the thesis

and also discuss about future work. In this thesis we comprehensively studied

the modeling of imperfect feedback and analytical evaluation of performance with

imperfect feedback. The three main sources of feedback imperfection considered

are channel estimation errors, feedback delay, and channel quantization.

Contributions of the Thesis

1. A general framework, capturing the three forms of feedback imperfection, is

developed for spatially independent channels and spatially correlated chan-

nels. An extended framework for the packet fading context is also presented.

2. Feedback delay related error term is modeled in two ways. Depending on the

system model, the delay related error term can be known or unknown at the

receiver. However, estimation related error term is always unknown at the

receiver.

3. With channel estimation errors and feedback delay, optimum codebook de-

sign algorithm, specific to the modulation format being used, is proposed for

minimizing the average symbol error probability loss. Optimum codebook

design that minimizes ergodic capacity loss is also proposed.

4. Performance analysis: Closed form analytical expressions are derived for the

following scenarios.
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(a) Spatially independent channel, delay error term unknown at the re-

ceiver: Average symbol and bit error probability expressions for both

M -PSK and rectangular M -QAM constellations with Gray code map-

ping.

(b) Spatially independent channel, delay error term unknown at the re-

ceiver: Ergodic capacity loss.

(c) Spatially independent channel, delay error term known at the receiver:

Average symbol error probability (SEP) of M1×M2-QAM constellation.

(d) Spatially independent channel, delay error term known at the receiver:

Average packet error probability of BPSK constellation.

(e) Spatially correlated channel, no channel estimation errors and no delay:

Loss in average SEP of M1 ×M2-QAM due to finite rate quantization

alone.

5. Channel modeling and prediction: For simulation purposes an accurate chan-

nel model is developed. the role of ergodicity in wireless channel prediction

is studied. Following the sinusoidal channel model, conditions under which

the ergodic assumption is valid are presented.

Future Work

Most of the wireless communication system performance related theoret-

ical studies assume ideal channel estimation and feedback based communication

systems generally ignore the effect of delay and channel quantization. The accurate

modeling of channel estimation errors in the packet fading context, an important

contribution of this thesis, combined with delay along with channel quantization

can be useful to study the performance of a number of popular communication

systems under realistic assumptions.

We note that though the imperfect feedback modeling presented here

is limited to transmit beamforming based MISO systems, it is relatively easy to
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adapt the model to other popular MIMO scenarios as well as for multiuser commu-

nication setting. Some areas of application include: OFDM, adaptive modulation,

opportunistic communication, and an extension of these systems to a multiuser

context.

On the analytical front, in the thesis we went through a lot of complicated

derivations and some of the ideas used in the derivations can make the analysis

of standard wireless communication performance metrics relatively easy. Develop-

ing robust feedback schemes can be an interesting future research topic. In this

thesis we are beamforming with the available direction. Sometimes space-time

codes might perform better if the mismatch between the actual channel and the

beamforming vector is significantly higher. So based on the better channel model,

and with proper prediction, if the receiver can decide when to use beamforming

and when to use space time coding, it can help in significantly improving the

performance of the system.

In this thesis we assumed that the index of the codepoint is conveyed

to the transmitter without any error, in reality there is a chance that the index

itself can be decoded wrongly. Including this form of error along with estimation

errors, delay and channel quantization, can make the study of imperfect feedback

relatively complete.
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