
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Fast, Efficient, and Robust Learning with Brain-Inspired Hyperdimensional Computing

Permalink
https://escholarship.org/uc/item/4x35f8q8

Author
Morris, Justin

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4x35f8q8
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO
SAN DIEGO STATE UNIVERSITY

Fast, Efficient, and Robust Learning with Brain-Inspired Hyperdimensional Computing

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Engineering Science (Electrical & Computer Engineering)

by

Justin Morris

Committee in charge:

University of California San Diego
Professor Tajana Šimunić Rosing, Co-Chair
Professor Ryan Kastner
Professor Farinaz Koushanfar

San Diego State University
Professor Baris Aksanli, Co-Chair
Professor Shangping Ren

2022

Copyright

Justin Morris, 2022

All rights reserved.

The dissertation of Justin Morris is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

San Diego State University

2022

iii

DEDICATION

To my wife, Stephanie, and our family

For their endless support and encouragement to go on and complete this journey

iv

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Table of Contents . v

List of Figures . ix

List of Tables . xii

Acknowledgements . xiii

Vita . xv

Abstract of the Dissertation . xviii

Chapter 1 Introduction . 1
1.1 Hyperdimensional Computing . 2

1.1.1 Encoding . 2
1.1.2 Training . 4
1.1.3 Inference . 4
1.1.4 Algorithmic Improvements . 5
1.1.5 Hardware/Software Co-Design . 6
1.1.6 Extending Applications . 6
1.1.7 Exploiting Robustness . 6

1.2 Thesis Contributions . 7
1.2.1 Adaptive Model Quantization for Hyperdimensional Computing 7
1.2.2 A Rework of the Hyperdimensional Computing Pipeline and Accelera-

tion on FPGA . 8
1.2.3 Extending Hyperdimensional Computing Applications to Support Multi-

Label Classification . 8
1.2.4 Evaluating and Exploiting Robustness to Create a More Efficient Analog

Processing-in-Memory Accelerator for Hyperdimensional Computing . . 9

Chapter 2 Adaptive Model Quantization for Hyperdimensional Computing 10
2.1 Introduction . 10
2.2 Related Work . 11
2.3 AdaptBit-HD . 12

2.3.1 Training with AdaptBit-HD . 13
2.3.2 Inference with AdaptBit-HD . 16

2.4 FPGA Acceleration . 19
2.4.1 Encoding Implementation . 19
2.4.2 Training Implementation . 20

v

2.4.3 Inference Implementation . 22
2.5 Evaluation . 23

2.5.1 Experimental Setup . 23
2.5.2 Energy Efficiency, Execution Time, and Accuracy of AdaptBit-HD vs

State-of-the-Art . 23
2.5.3 AdaptBit-HD Area Comparison . 25

2.6 Conclusion . 27
2.7 Acknowledgements . 28

Chapter 3 A Rework of the Hyperdimensional Computing Pipeline and Acceleration on
FPGA . 29

3.1 Introduction . 29
3.2 Related Work & Motivation . 30
3.3 Encoding with ReHD . 32

3.3.1 Random Projection . 33
3.3.2 Sparse Random Encoding . 34
3.3.3 Locality-based Sparse Random Projection . 34

3.4 Training in ReHD . 37
3.4.1 Binary Model Quantization . 38
3.4.2 N-Bit Model Quantization . 38
3.4.3 Model Quantization Inference . 39

3.5 Online Dimension Reduction . 40
3.6 FPGA Acceleration . 41

3.6.1 Encoding Implementation . 42
3.6.2 Training Implementation . 44
3.6.3 Inference Implementation . 44

3.7 Evaluation . 45
3.7.1 Experimental Setup . 45
3.7.2 Comparison With Other State-of-the-Art Light-Weight Classifiers 46
3.7.3 ReHD Accuracy and Memory Requirement . 47
3.7.4 Hardware Efficiency . 48
3.7.5 Model Quantization Trade-off . 50
3.7.6 Online Dimension Reduction . 52

3.8 Conclusion . 54
3.9 Acknowledgements . 55

Chapter 4 Extending Hyperdimensional Computing Applications to Support Multi-
Label Classification . 56

4.1 Introduction . 56
4.2 Related Work . 57

4.2.1 Hyperdimensional Computing . 57
4.2.2 Multi-label Classification . 58
4.2.3 Hardware Acceleration . 58

4.3 Multi-label Classification with HD . 59

vi

4.3.1 Problem Transformation Methods . 59
4.3.2 Training . 60
4.3.3 Inference . 62

4.4 Acceleration with 3D NAND Flash . 63
4.4.1 Encoding in 3D Flash . 63
4.4.2 Training at Top-Level in Storage . 64

4.5 Experimental Results . 65
4.5.1 Experiment Setup . 65
4.5.2 Multi-label HD Comparison with State-of-the-Art 66
4.5.3 Multi-label HD in 3D Flash . 69

4.6 Conclusion . 70
4.7 Acknowledgements . 70

Chapter 5 Evaluating and Exploiting Robustness to Create a More Efficient Analog
Processing-in-Memory Accelerator for Hyperdimensional Computing Classi-
fication and Clustering . 71

5.1 Introduction . 71
5.1.1 Related Work . 73

5.2 HyDREA Analog PIM Architecture . 75
5.2.1 Architecture . 77
5.2.2 Challenges . 79
5.2.3 HyDREA: Analog PIM Architecture Optimiztions 79
5.2.4 HyDREA: Supporting HD Clustering . 83

5.3 Network Simulation . 84
5.4 Evaluation . 88

5.4.1 Experimental Setup . 88
5.4.2 HyDREA and Dimensionality . 90
5.4.3 HyDREA and the Impact of our Analog PIM Architecture on HD Classi-

fication . 91
5.4.4 HyDREA vs Processing in Storage and Digital Processing in Memory . . 93
5.4.5 HyDREA and the Impact of SNR on HD Classification 93
5.4.6 HD vs. Other Classifiers . 95
5.4.7 HyDREA vs State-of-the-Art PIM DNN Accelerator 95
5.4.8 HyDREA Architecture Impact on Clustering Energy Consumption and

Execution Time. 97
5.4.9 HD Clustering Accuracy and Robustness vs K-means 97
5.4.10 Impact of Bit Error Rates on Decoding . 99
5.4.11 HD Computing vs Error Correcting Codes (ECC) 100

5.5 Conclusion . 102
5.6 Acknowledgements . 103

Chapter 6 Summary and Future Work . 104
6.1 Thesis Summary . 104

6.1.1 Adaptive Model Quantization for Hyperdimensional Computing 105

vii

6.1.2 A Rework of the Hyperdimensional Computing Pipeline and Accelera-
tion on FPGA . 106

6.1.3 Extending Hyperdimensional Computing Applications to Support Multi-
Label Classification . 106

6.1.4 Evaluating and Exploiting Robustness to Create a More Efficient Analog
Processing-in-Memory Accelerator for Hyperdimensional Computing . . 107

6.2 Future Work . 107
6.2.1 Feature Extraction and HDC . 108
6.2.2 Exploiting and Evaluating HDC Robustness . 108

Bibliography . 110

viii

LIST OF FIGURES

Figure 1.1. Overview of creating an HD model and performing inference with an HD
model . 3

Figure 2.1. Difference in Accuracy with Various HD Bitwidth Representations for HD
Computing . 14

Figure 2.2. Overview of Creating a AdaptBit-HD Model During Retraining 14

Figure 2.3. Distributions of Hamming Distance Calculations Before (left) and After
(right) Retraining . 16

Figure 2.4. Effect of AdaptBit-HD Parameters on Accuracy . 17

Figure 2.5. FPGA implementation of the encoding and associative search block. 20

Figure 2.6. Comparison of the Accuracy of AdaptBit-HD to Static Model Quantization
Methods . 24

Figure 2.7. Energy Breakdown of AdaptBit-HD and Comparison with Static Quanti-
zation Methods. Energy Efficiency is Shown Relative to a 16-Bit Model.
Accuracy Difference is Compared to a Binary Model. The color cod-
ing of the different bits for AdaptBit-HD show the proportion of energy
consumption spent on each bit. 26

Figure 2.8. Speedup of AdaptBit-HD and Comparison with Static Quantization Meth-
ods. Speedup is Shown Relative to a 16-Bit Model. Accuracy Difference
is Compared to a Binary Model. 26

Figure 2.9. Area Comparison of AdaptBit-HD, Static Quantization Methods for HD,
and SVMs. Area Used is Shown Relative to a 16-bit Static HD Model. . . . 28

Figure 3.1. Energy consumption of HD encoding, training, and inference. 31

Figure 3.2. Overview of how ReHD is constructed and how ReHD performs inference. 32

Figure 3.3. Random projection encoding using dense, sparse, and locality-based pro-
jection matrix. 36

Figure 3.4. Locality-based random projection encoding. 36

Figure 3.5. Energy consumption of HD encoding, training, and inference after utilizing
the proposed encoding module. 37

Figure 3.6. Online dimension reduction with absolute value. 42

ix

Figure 3.7. Online dimension reduction with variance. 43

Figure 3.8. FPGA implementation of the encoding and associative search block. 43

Figure 3.9. Classification accuracy of ReHD and the baseline HD using binary and
integer models. 46

Figure 3.10. Energy consumption and execution time of ReHD and the baseline HD
during training. 46

Figure 3.11. Scalability of the encoding module in ReHD and the baseline HD with the
feature size. 48

Figure 3.12. Energy consumption and execution time of ReHD and the baseline HD
running (a) a single retraining iteration, and (b) a single query at inference. 50

Figure 3.13. Accuracy loss of ReHD utilizing n-bit model quantization. 51

Figure 3.14. Energy improvement of ReHD utilizing n-bit model quantization normal-
ized to a 32-bit integer model. 51

Figure 3.15. Visualization of ReHD face detection accuracy over different dimensionality. 54

Figure 4.1. An example of how the Multi-Model HD model is created 61

Figure 4.2. Overview of how Multi-Model HD is constructed and how Multi-Model
HD performs inference. 62

Figure 4.3. Overview of Multi-label HD in 3D flash-based storage. ISC enabling
components of the design are shown in green. 63

Figure 4.4. Classification accuracy of Multilabel HD and other multi-label classifica-
tion algorithms. 67

Figure 4.5. Energy consumption and execution time of Multi-label HD during Encod-
ing and Training. 67

Figure 5.1. Overview of the PIM architecture used by HyDREA. 75

Figure 5.2. Example of Inference in HyDREA. 78

Figure 5.3. Area savings (a) and energy consumption savings (b) as the bitwidth of the
ADC is dropped. 80

Figure 5.4. Impact of HyDREA using a 4 bit model on training compared to training a
naive bitwidth reduction 4 bit model and training a 8 bit model. 81

x

Figure 5.5. An Overview of our framework for communicating in the federated learning
enviroment. 85

Figure 5.6. SNR/BER vs distance for BPSK modulation with Friis prop. loss. 86

Figure 5.7. Model of a Downtown Topology Represented in NS-3, Where Buildings
buildings have higher signal attenuation compared to open-air and they
block the line-of-sight when they are placed between the transmitters (blue)
and the receiver (green). 87

Figure 5.8. Impact of bitwidth reduction on accuracy of HyDREA. 90

Figure 5.9. Energy consumption and execution time of HyDREA using different model
bitwidths during training and inference with an ADC bitwidth of 2. 90

Figure 5.10. Execution time comparison of HyDREA with THRIFTY, a processing in
storage architecture for HD Computing and the impact of higher bandwidth
memories such as NVME on HD Computing. 92

Figure 5.11. Accuracy of Design as the SNR varies with an ADC bitwidth of 2 and
varying model bitwidth. 92

Figure 5.12. Accuracy of HD Classification as the SNR varies with different encodings
and data representations. 94

Figure 5.13. Comparison of the Robustness of HD to other Classifiers 96

Figure 5.14. Energy consumption and execution time of HyDREA for one Clustering
iteration using different model bitwidths with an ADC bitwidth of 2. 96

Figure 5.15. Comparison of HD Clustering with K-means Accuracy With no Bit Errors 97

Figure 5.16. Accuracy of HD Clustering as the SNR varies with different encodings and
data representations vs K-means. 98

Figure 5.17. Impact of Dimensionality on Decoding Quality. 99

Figure 5.18. Simulated communication setups . 101

Figure 5.19. a) Comparison of HD encoding to channel coding (setup 1,2, and 3), b)
combined HD encoding and channel coding (setup 3 and 4), c) channel
coding performance at low SNRs, exact (dashed) and approximate (solid)
decoding algorithms. 102

xi

LIST OF TABLES

Table 3.1. CPU-based comparison of HD and other classifiers. 47

Table 3.2. Average change in classification accuracy due to online dimension reduction. 53

Table 4.1. Multi-label HD 3D Storage Parameters . 66

Table 5.1. Dataset Information . 89

Table 5.2. Impact of Dimensionality and Data Representation on the Robustness of
HD Computing Classification and Clustering Accuracy. 89

Table 5.3. Speedup of HyDREA over a digital PIM implementation with the same
bitwidth as HyDREA with the same area. 91

Table 5.4. Comparison of HyDREA with the State-of-the-art DNN PIM Accelerator
Q-PIM [1] . 96

xii

ACKNOWLEDGEMENTS

I would like to first thank my advisors, Professor Tajana S. Rosing and Professor Baris

Aksanli for their guidance and support during my Ph.D. I am truly grateful for their support

through the past years. Tajana’s enthusiasm to explore a wide range of research directions pushed

me to never leave a stone unturned, as well as, learn about different fields through collaboration.

I’d like to thank Baris for his support in all aspects of life throughout the years, giving me the

motivation I needed to continue on and for bringing new perspectives through his experience

to my research. I would also like to thank my dissertation committee members, Professors

Shangping Ren, Farinaz Koushanfar, and Ryan Kastner, for their feedback and discussions

related to my Ph.D. work. I would like to thank all my colleagues in SEELab for their active

collaboration and continuous support. I would like to give special thanks to Mohsen Imani,

Yeseong Kim, Saransh Gupta, Behnam Khaleghi, Anthony Thomas, Yilun Hao, Kazim Ergun,

Minxuan Zhou, and Onat Gungor. My research was made possible by funding from the National

Science Foundation (NSF) Grant 1527034, 1730158, 1826967, 1830331, 1911095, 2003279,

CRISP, one of six centers in JUMP, an SRC program sponsored by DARPA, and SRC-Global

Research Collaboration grant.

I owe so much to all my family for their understanding, patience, and encouragement

that helped me navigate through the difficult moments during the past few years. Finally, I would

like thank all my friends for their constant support.

The material in this dissertation is based on the following publications.

Chapter 2, in part, is a reprint of the material as it appears in J. Morris, S. Set, G.

Rosen, M. Imani, B. Aksanli, and T. Rosing, “AdaptBit-HD: Adaptive Model Bitwidth for

Hyperdimensional Computing” in IEEE International Conference on Computer Design (ICCD),

2021. The dissertation author was the primary investigator and author of this material.

Chapter 3, in part, is a reprint of the material as it appears in J. Morris, Y. Hao, R.

Fernando, M. Imani, B. Aksanli , T. Rosing, “Locality-based Encoder and Model Quantization

for Efficient Hyper-Dimensional Computing”. IEEE Transactions on Computer-Aided Design

xiii

of Integrated Circuits and Systems (TCAD), 2021. The dissertation author was the primary

investigator and author of this material.

Chapter 4, in part, is a reprint of material as it appears in J. Morris, Y. Hao, S. Gupta,

R. Ramkumar, J. Yu, M. Imani, B. Aksanli, T. Rosing, ”Multi-label HD Classification in 3D

Flash”. IEEE/IFIP International Conference on VLSI and System-on-Chip (VLSI-SoC), 2020.

The dissertation author was the primary investigator and author of this material.

Chapter 5, in part, is a reprint of material as may appear in J. Morris, K. Ergun, B.

Khaleghi, M. Imani, B. Aksanli , T. Rosing, ”HyDREA: Utilizing Hyperdimensional Computing

For A More Robust and Efficient Machine Learning System.” ACM Transactions on Embedded

Computing Systems (TECS), 2022. The dissertation author was the primary investigator and

author of this material.

My co-authors (Prof. Baris Aksanli, Kazim Ergun, Roshan Fernando, Sarnash Gupta,

Yilun Hao, Mohsen Imani, Behnam Khaleghi, Ranganathan Ramkumar, Gadi Rosen, Prof.

Tajana S. Rosing, Si Thu Kaung Set, and Jeffrey Yu listed in alphabetical order) have all kindly

approved the inclusion of the aforementioned publications in my dissertation.

xiv

VITA

2018 Bachelor of Science in Computer Science and Engineering (Computer Engineer-
ing), University of California, San Diego, USA

2022 Doctor of Philosophy in Engineering Science (Electrical & Computer Engineering),
University of California, San Diego, USA and San Diego State University, USA

PUBLICATIONS

Justin Morris, Yilun Hao, Saranash Gupta, Behnam Khaleghi, Baris Aksanli, Tajana Ros-
ing. ”Stochastic-HD: Leveraging Stochastic Computing on the Hyper-Dimensional Computing
Pipeline”, Frontiers in Neuroscience, 2022.

Behnam Khaleghi, Jaeyoung Kang, Hanyang Xu, Justin Morris, Tajana Rosing ”GENERIC:
Highly Efficient Learning Engine on Edge using Hyperdimensional Computing”, Design Au-
tomation Conference (DAC), 2022.

George Armstrong, Cameron Martino, Justin Morris, Behnam Khaleghi, Jaeyoung Kang, Jeff
DeReus, Qiyun Zhu et al. ”Swapping Metagenomics Preprocessing Pipeline Components Offers
Speed and Sensitivity Increases.” Msystems (2022): e01378-21.

Justin Morris, Kazim Ergun, Behnam Khaleghi, Mohsen Imani, Baris Aksanli, and Tajana
Rosing, ”HyDREA: Utilizing Hyperdimensional Computing For A More Robust and Efficient
Machine Learning System.” ACM Transactions on Embedded Computing Systems (TECS), 2022.

Justin Morris, Hin Wai Lui, Kenneth Stewart, Behnam Khaleghi, Anthony Thomas, Thiago
Marback, Baris Aksanli, Emre Neftci, and Tajana Rosing, ”HyperSpike: HyperDimensional
Computing for More Efficient and Robust Spiking Neural Networks,” in Design, Automation
Test in Europe Conference Exhibition (DATE), 2022.

Yilun Hao, Saransh Gupta, Justin Morris, Behnam Khaleghi, Baris Aksanli, and Tajana Rosing,
”Stochastic-HD: Leveraging Stochastic Computing on Hyper-Dimensional Computing,” in IEEE
39th International Conference on Computer Design (ICCD), 2021.

Justin Morris, Si Thu Kaung Set, Gadi Rosen, Mohsen Imani, Baris Aksanli, and Tajana Rosing,
”AdaptBit-HD: Adaptive Model Bitwidth for Hyperdimensional Computing,” in IEEE 39th
International Conference on Computer Design (ICCD), 2021.

Alice Sokolova, Mohsen Imani, Andrew Huang, Ricardo Garcia, Justin Morris, Tajana Rosing,
and Baris Aksanli, ”MACcelerator: Approximate Arithmetic Unit for Computational Accelera-
tion,” in 22nd International Symposium on Quality Electronic Design (ISQED) 2021.

xv

Justin Morris, Yilun Hao, Roshan Fernando, Mohsen Imani, Baris Aksanli, and Tajana Rosing,
”Locality-based Encoder and Model Quantization for Efficient Hyper-Dimensional Computing,”
in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
2021.

Behnam Khaleghi, Hanyang Xu, Justin Morris, and Tajana Šimunić Rosing, ”tiny-HD: Ultra-
Efficient Hyperdimensional Computing Engine for IoT Applications,” in Design, Automation
Test in Europe Conference Exhibition (DATE), 2021.

Justin Morris, Kazim Ergun, Behnam Khaleghi, Mohsen Imani, Baris Aksanli, and Tajana Rosing,
”Hydrea: Towards more robust and efficient machine learning systems with hyperdimensional
computing,” in Design, Automation Test in Europe Conference Exhibition (DATE), 2021.

Yunhui Guo, Mohsen Imani, Jaeyoung Kang, Sahand Salamat, Justin Morris, Baris Aksanli,
Yeseong Kim, and Tajana Rosing, ”HyperRec: Efficient Recommender Systems with Hy-
perdimensional Computing,” in 26th Asia and South Pacific Design Automation Conference
(ASP-DAC), 2021.

Rebecca K. Fielding-Miller, Smruthi Karthikeyan, Tommi Gaines, Richard S. Garfein, Rodolfo A.
Salido, Victor Cantu, Laura Kohn et al. ”Wastewater and surface monitoring to detect COVID-19
in elementary school settings: The Safer at School Early Alert project.” Medrxiv (2021).

Saransh Gupta, Justin Morris, Mohsen Imani, Ranganathan Ramkumar, Jeffrey Yu, Aniket
Tiwari, Baris Aksanli, and Tajana Simunic Rosing, ”THRIFTY: Training with Hyperdimensional
Computing across Flash Hierarchy,” in IEEE/ACM International Conference on Computer Aided
Design (ICCAD), 2020.

Justin Morris, Yilun Hao, Saransh Gupta, Ranganathan Ramkumar, Jeffrey Yu, Mohsen Imani,
Baris Aksanli, and Tajana Simunic Rosing, ”Multi-label HD Classification in 3D Flash,” in Pro-
ceedings of IFIP/IEEE International Conference on VLSI and System-on-Chip (VLSI-SoC), 2020.

Mohsen Imani, Justin Morris, Samuel Bosch, Helen Shu, Giovanni De Micheli, and Tajana
Rosing, ”Adapthd: Adaptive efficient training for brain-inspired hyperdimensional computing,”
in IEEE Biomedical Circuits and Systems Conference (BioCAS), 2019.

Justin Morris, Mohsen Imani, Samuel Bosch, Anthony Thomas, Helen Shu, and Tajana Rosing,
”CompHD: Efficient hyperdimensional computing using model compression,” in IEEE/ACM
International Symposium on Low Power Electronics and Design (ISLPED), 2019.

Mohsen Imani, Justin Morris, John Messerly, Helen Shu, Yaobang Deng, and Tajana Rosing,
”Bric: Locality-based encoding for energy-efficient brain-inspired hyperdimensional computing,”
in Proceedings of the 56th Annual Design Automation Conference (DAC), 2019.

xvi

Mohsen Imani, Justin Morris, Helen Shu, Shou Li, and Tajana Rosing, ”Efficient associative
search in brain-inspired hyperdimensional computing,” in IEEE Design Test 37, no. 1 2019
28-35.

Mohsen Imani, Tarek Nassar, Justin Morris, and Tajana Rosing, ”DNA Sequencing using Brain-
inspired Hyperdimensional Computing,” in GOMACTech Conference, 2019.

xvii

ABSTRACT OF THE DISSERTATION

Fast, Efficient, and Robust Learning with Brain-Inspired Hyperdimensional Computing

by

Justin Morris

Doctor of Philosophy in Engineering Science (Electrical & Computer Engineering)

University of California San Diego, 2022
San Diego State University, 2022

Professor Tajana Šimunić Rosing, Co-Chair
Professor Baris Aksanli, Co-Chair

With the emergence of the Internet of Things (IoT), devices will generate massive data

streams demanding services that pose huge technical challenges due to limited device resources.

Furthermore, IoT systems increasingly need to run complex and energy intensive Machine

Learning (ML) algorithms, but do not have the resources to run many state-of-the-art ML models,

instead opting to send their data to the cloud for computing. This results in insufficient security,

slower moving data, and energy intensive data centers. In order to achieve real-time learning in

IoT systems, we need to redesign the algorithms themselves using strategies that more closely

model the ultimate efficient learning machine: the human brain.

xviii

This dissertation focuses on increasing the computing efficiency of machine learning on

IoT devices with the application of Hyperdimensional Computing (HDC). HDC mimics several

desirable properties of the human brain, including: robustness to noise, robustness to hardware

failures, and single-pass learning where training happens in one-shot without storing the training

data points or using complex gradient-based algorithms. These features make HDC a promising

solution for today’s embedded devices with limited storage, battery, and resources, and the

potential for noise and variability. Research in the HDC field has targeted improving these key

features of HDC and expanding to include even more features. There are four main paths in

HDC research: (1) Algorithmic changes for faster and more energy efficient learning, (2) Novel

architectures to accelerate HDC, usually targeting lower power IoT devices, (3) Extending HDC

applications beyond classification, (4) Exploiting the robust property of HDC for more efficient

and faster inference, and (5) HDC Theory, its connection to neuroscience and mathematics. This

dissertation contributes to four of these research paths in HDC.

Our contributions include: (1) We introduce the first adaptive bitwidth model for HDC [2].

In this work we propose a new quantization method and during inference we iterate through

the bits along all dimensions taking the hamming distance. At each iteration, we check if the

current hamming distance passes a threshold similarity, if it does, we terminate execution early

to save energy and time. (2) We create a redesign of the entire HDC process with a locality-based

encoding, quantized retraining, and online dimension reduction during inference, all accelerated

by a new novel FPGA design [3]. In this work we our locality-based encoding removes random

memory accesses from HDC encoding as well as adds sparsity for more efficiency. We also

introduce a general method to quantize to any desired model bitwidth. Finally, we propose a

method to find any insignificant dimensions in the HDC model and remove them for more energy

efficiency during inference. (3) We extend HDC to support multi-label classification [4]. We

perform multi-label classification by creating a binary classification model for each label. Upon

inference, our models determine if each label exists independently. This is different than prior

work that took the power set of the labels to reduce the problem to a single label classification

xix

as HDC scales poorly with this method. (4) Finally, we experimentally evaluate the robustness

of HDC for the first time and create a new analog PIM architecture with reduced precision

Analog to Digital Converters (ADC), exploiting that robustness [5]. We test HDC robustness in

a federated learning environment where edge devices send encoded hypervectors to a central

server wirelessly. We evaluate the impact of any wireless transmission errors on this data and

show that HDC is 48× more robust than other classifiers. We then use this knowledge that HDC

is robust to create a more efficient analog PIM circuit by reducing the bitwidth of the ADCs.

xx

Chapter 1

Introduction

We live in a world where technological advances are continually creating more data

than what we can cope with. With the emergence of the Internet of Things (IoT), devices will

generate massive data streams demanding services that pose huge technical challenges due to

limited device resources [6, 7, 8, 9]. For example, IoT devices are increasingly supporting

many Machine Learning (ML) applications. However, these devices do not have the required

computing resources or even battery life to support state-of-the-art ML models such as DNNs.

Instead, these embedded devices send their data to a cloud server, where models are run at a data

center scale. This poses multiple problems as sending data to the cloud for processing is not

scalable, cannot guarantee the real-time response, and is often not desirable due to privacy and

security concerns. Much of IoT data processing will need to run at least partly on devices at the

edge of the Internet.

In order to achieve real-time learning in IoT systems, we need to rethink the algorithms

we use for machine learning and redesign them using strategies that more closely model the

ultimate efficient learning machine: the human brain. Neuromorphic, or brain-inspired, models

aim to close this gap of available resources at the edge and required resources for ML applications.

Hyperdimensional Computing (HDC) is one of the Neuromorphic computing models that can

offer, brain-like efficiency [10]. HDC is based on a short-term human memory model, the sparse

distributed memory, that emerged from theoretical neuroscience. A key benefit of HDC is its

1

natural robustness to noise. This is of critical importance in IoT systems, where noise and high

error rates are common during communication. In the rest of this chapter, we discuss an overview

of the HDC algorithm, related work, and the contributions of this thesis in more detail.

1.1 Hyperdimensional Computing

Our research has been instrumental in developing practical implementations of HDC -

a computational technique modeled after the brain [10]. The HDC system enables large-scale

learning in real-time, including both training and inference. HDC is motivated by the observation

that the key aspects of human memory, perception, and cognition can be explained by the

mathematical properties of high-dimensional spaces. It models data using points of a high-

dimensional space, called hypervectors. These points can be manipulated with formal algebra

operations to represent semantic relationships between objects. HDC mimics several desirable

properties of the human brain, including: robustness to noise, robustness to hardware failures,

and single-pass learning where training happens in one-shot without storing the training data

points or using complex gradient-based algorithms. These features make HDC a promising

solution for today’s embedded devices with limited storage, battery, and resources, and the

potential for noise and variability.

HDC has 3 main parts, encoding, training, and inference. In the next subsections we

give an overview of each of these modules and the HDC algorithm for classification. Figure 1.1

shows an overview of HDC clssificaiton.

1.1.1 Encoding

The first step of HDC is to math the input feature vector to high dimensional space.

Consider a feature vector v = ⟨v1, . . .vn⟩. The encoding module takes this n-dimensional vector

and converts it into a D-dimensional hypervector (HV) (D >> n). We utilized the encoding

module proposed in [11]. The encoding is performed in three steps, which we describe below.

The first step is to create two sets of HVs, ID HVs and level HVs. Both ID HVs and level HVs

2

Similarity check

Training Data

Training Data
@ Class k

Training Data
@ Class 2

Training Data
@ Class 1 Encoding

Query

Class 1 (C1)

Class 2 (C2)

Class k (Ck)

In
fe

re
n

c
e

Encoding

Encoding

Encoding

Associative Memory

D
is

ta
n

ce
 S

im
il

a
r
it

y

T
r
a

in
in

g

Training

Module

Σ

Σ

Σ

Inference

Data

Figure 1.1. Overview of creating an HD model and performing inference with an HD model

are D dimensional HVs where each element is either −1 or 1. The encoding scheme assigns

a unique channel ID HV to each feature position. IDs are hypervectors which are randomly

generated such that all features will have orthogonal channel IDs, i.e., δ (IDi, ID j)< 5,000) for

D = 10,000 and i ̸= j; where the δ measures the element-wise similarity between the vectors.

The HD computing encoder also generates a set of level HVs to consider the impact of each

feature value. To create these level hypervectors, we compute the minimum and maximum

feature values among all data points, vmin and vmax, then quantize the range of [vmin,vmax] into

m levels. Each level is then assigned a corresponding level HV: LV = {LV1, · · · ,LVm}. To

encode a feature vector, the encoder looks at each position of the feature vector and element-wise

multiplies the channel ID (IDi) with the corresponding level hypervector (hvi). The following

equation shows how an n-length feature vector is mapped into the HD space with this encoding

scheme:

H = [hv1 ∗ ID1 + hv2 ∗ ID2 + . . . + hvn ∗ IDn]

3

hv j ∈ {LV1, LV2, . . . , LVm}, 1 ⩽ j ⩽ m

IDi ∈ {−1,1}D,LVj ∈ {−1,1}D

1.1.2 Training

The next step in HDC is to train the model. HDC supports efficient one-pass training. To

build a one-pass model, the encoder maps all training data to training HVs (H). For all training

HVs within a class ({H 1
i , H 2

i , . . . ,H j
i }), HD computing adds them together to create a single

class HV (Ci).

Ci = H 1
i + H 2

i + . . . + H j
i

Once this is done for every class, we have an HD model that can be used for inference.

However, we can significantly improve the accuracy of our HD model with retraining [11].

We retrain the HD model by inputting each training data point through the HD model as a

query hypervector (Q). We look at the similarity of the query hypervector to all stored class

hypervectors; (i) if the query is correctly classified by the current model, our design does not

change the model. (ii) If it is incorrectly matched with the ith class hypervector (Ci), when it

actually belongs to jth class (C j), our retraining procedure subtracts the query hypervector from

the ith class and adds it to jth class hypervector: Ci =Ci −Q and C j =C j +Q. Retraining can

run until a user-provided error threshold is met, or a maximum number of iterations is reached.

After training, class HVs are stored in the classifier.

1.1.3 Inference

Upon inference, the encoder first maps the input data into a query HV (Q), using the

same encoding that was used to train the HD model. A similarity metric is used to determine the

strength of a match between the query HV and each class HV. The most common metric used in

HD computing is cosine similarity, but note that other metrics (e.g. Hamming distance) could

4

be appropriate depending on the problem [12]. After the similarity is computed between the

query HV and each class HV in the classifier, the class with the highest similarity is chosen as

the output class.

Research on HDC has focused on five main topics: Algorithmic improvements, Hard-

ware/Software Co-Design, Extending Applications, Exploiting Robustness, and HDC Theory,

its connection to neuroscience and mathematics. In this dissertation, we focus on the first four

research paths.

1.1.4 Algorithmic Improvements

HDC is a relatively new topic of research in the machine learning field and has been

rapidly growing since 2017 [13]. One issue with HDC is data size due to encoding to high

dimensional space (D=10,000). To address this, model quantization has been proposed to reduce

the bitwidth of the hypervectors and therefore, reducing the overall data size [14, 15]. There have

been recent works to apply similar algorithmic techniques to improve HDC energy efficiency,

execution time, and accuracy that have previously been implemented on Neural Networks as well.

For instance, we proposed the first work to implement a learning rate to the HDC algorithm [16].

This work achieves an adaptive learning rate by finding the similarity difference between the

incorrectly selected class and the correct class with the query. Then, inputs that difference into a

lookup table to select the learning rate. Finally, the learning rate is multiplied to the query before

it is used to update the model. Lastly, work has been done to reduce the dimensionality of the

HDC model without significantly impacting accuracy [17]. This work proposes two methods to

reduce the dimensionality by finding insignificant dimensions. The first is class-wise eliminating

the dimensions with the lowest variances across the classes. The second is dimension-wise,

eliminating the dimensions in each class that are closest to 0.

5

1.1.5 Hardware/Software Co-Design

There has also been lots of work on creating new efficient architectures with the HDC

algorithm in mind. For instance, one of the main benefits of HDC is that it has highly parallel

simple operations. This property makes it a perfect match for Processing in Memory (PIM)

architectures. HDC has been accelerated by both analog and digital PIM [18, 5, 19]. Work

has also been done to remove the reduction operations in HDC on the algorithm side to further

improve the energy efficiency in PIM as PIM architectures struggle with reduction operations [20].

This work achieves this by mapping all HDC operations to the stochastic domain. In the stochastic

domain, all mathematical operations are approximated by bitwise operations. With this method,

the authors were able to eliminate the reduction part of the dot product, which was the main

bottleneck in digital PIM. There has also been work on creating more efficient FPGA or ASIC

designs for HDC [17, 21].

1.1.6 Extending Applications

Recent work has been done to extend HDC applications beyond classification. For

instance, HDC has recently been extended to support clustering [22]. Furthermore, HDC has

been extended to support recommender systems for the first time [23]. There is also work

on using HDC for DNA classification [24]. However, there are still multiple different ML

applications HDC has not been mapped to yet. For instance, in this dissertation, we introduce

the first work on utilizing HDC for multi-label classification.

1.1.7 Exploiting Robustness

One of the key properties of HDC is that it is robust to noise and other sources of errors

such as bitflips in hardware. Multiple previous works cite this property and utilize it indirectly to

create more efficient architectures [17, 15, 25]. For instance, work in [17] attempts to remove

a large portion of dimensions for more efficient inference. This can be viewed as introducing

errors into the inference operation, but because HDC is robust to these errors, the HDC model is

6

able to maintain accuracy. However, none of these previous works explicitly demonstrated the

robustness of HDC compared to other classifiers.

1.2 Thesis Contributions

Our contributions include: (1) The first adaptive model bitwidth for HDC [2], (2) a new

hardware friendly encoding that creates a sparse locality-based encoding with a fixed memory

access pattern, a general method for quantizing HDC, and a method to reduce the dimensionality

of the HDC model [3], (3) extending the HDC algorithm to support multi-label classification [4],

and (4) evaluating and exploiting the robustness of HDC for more efficient hardware [5]. .

1.2.1 Adaptive Model Quantization for Hyperdimensional Computing

As mentioned in Section 1.1.4, research on HDC algorithmic changes have extended

ideas from other ML algorithms to HDC, such as adding a learning rate, model quantization, and

sparsity. However, all previous work on model quantization for HDC has been static quantization.

For instance, work in [15] quantizes only to binary and work in [14] only supports ternary

quantization. This leads to two extremes in the energy and accuracy trade-off curve. Either,

highly accurate models with less aggressive quantization and more energy consumption. Or,

highly efficient models with aggressive quantization, such as binary models, but at the cost of

accuracy loss. In this dissertation, we propose a new model quantization method that adapatively

changes the effective bitwidth for every sample [2]. We do this by iterating over the bits of the

quantized numbers along all dimensions. At each iteration, we take the hamming distance and

check if the highest similarity passes a threshold. If it does, we can terminate execution early

saving energy and time. This enables our design to achieve energy efficiency and execution

time comparable to a binary model, while also achieving a similar accuracy to the full precision

model. This work is discussed in Chapter 2 of this dissertation.

7

1.2.2 A Rework of the Hyperdimensional Computing Pipeline and
Acceleration on FPGA

There are multiple different works on mapping HDC to different hardware platforms

and using hardware/software co-design to achieve more efficient solutions, as mentioned in

Section 1.1.5. However, previous designs to not solve the problem of encoding to HD space.

Previous encoding algorithms require random memory accesses and a massive amount of

element wise multiplications and additions in the dimensionality of 10,000. These encodings

are inefficient to map to hardware designs [11]. In this dissertation, we propose a new hardware

friendly encoding that removes random memory accesses and replaces them with a fixed memory

access pattern with sparsity and a subsequent FPGA architecture that takes advantage of the

changes [3]. We additionally propose a general quantization method to quantize HDC to any

bitwidth. Finally, we propose a dimension reduction method to remove insignificant dimensions

in the HDC model. Overall, our new architecture achieves 64× energy efficiency and 10× faster

execution time than the previous state of the art FPGA implementation of HDC. This work is

discussed in Chapter 3 of this dissertation.

1.2.3 Extending Hyperdimensional Computing Applications to Support
Multi-Label Classification

As mentioned in Section 1.1.6, HDC is a growing field of research and much work has

been done on extending HDC to other ML applications beyond classification. However, there

were no works on extending HDC to support multi-label classification. In this dissertation, we

present our work on extending HDC to support multilabel classification [4]. Prior work on other

classifiers map to multilabel by simply taking the power set of the possible labels and creating

new labels for each combination. This reduces the multilabel problem to a single label problem.

This works well for other classifiers as they don’t scale as poorly with an increase in classes.

However, HDC scales linearly with the number of classes, so it scales exponentially with the

number of labels in a multilabel problem. Therefore, instead of using the power set idea seen in

8

other models, we propose a binary classification model for each label. Overall, with this idea, we

achieve 47× faster execution time, 48× better energy efficiency, and 5% higher accuracy than

other multilabel classifiers. This work is discussed in Chapter 5 of this dissertation.

1.2.4 Evaluating and Exploiting Robustness to Create a More Efficient
Analog Processing-in-Memory Accelerator for Hyperdimensional
Computing

As mentioned in Section 1.1.7, multiple works in the HDC space cite that HDC is robust

to noise and hardware errors and often take advantage of that property in their designs. However,

before our work in [5] there were no empirical results to back up the claims of robustness or

comparisons with other ML models. We include this work in this dissertation and demonstrate

experimentally that HDC is 48× more robust to noise than other machine learning models. We

furthermore demonstrate how to exploit this property with more efficient hardware. Previous

analog PIM designs have a vital flaw where up to 90% of energy is used in the analog to digital

conversion (ADC) [26]. However, we alleviate this issue when mapping HDC to analog PIM

by reducing the ADC bitwidth. This reduces ADC energy consumption by half for every bit

dropped, but results in inaccurate conversions. However, because HDC is robust to these errors,

it is able to tolerate the inaccurate operations up to a point. Overall, our design is able to achieve

289× better energy efficiency than simply mapping HDC onto the existing architecture. This

work is discussed in Chapter 4 of this dissertation.

Finally, in Chapter 6, we summarize our work on HDC and discuss future directions of

research in HDC. We discuss two directions of future work: 1) utilizing feature extraction with

HDC and 2) further eploiting and evaluating the robustness of HDC.

9

Chapter 2

Adaptive Model Quantization for Hyperdi-
mensional Computing

2.1 Introduction

Existing HD computing quantization methods have two main challenges: (i) the trade-off

between accuracy and energy efficiency has to be decided before training the model, and the

model would have to be retrained from scratch to change bitwidths if the accuracy and energy

efficiency trade-off requirements change. (ii) Existing model quantization techniques ignore that

not all samples need to be quantized with the same value. Some samples can be classified with

simple binary representations, while others require higher bitwidths for accurate classification. In

other words, there exists no adaptive bitwidth quantization for HD computing. Adaptive bitwidth

quantization adds another level of fine tuning for systems balancing the accuracy and energy

efficiency trade-off.

In this chapter, we propose AdaptBit-HD, which, to the best of our knowledge, is the

the first Adaptive Model Bitwidth Architecture for accelerating HD computing. AdaptBit-HD

does not change the bitwidth of the representation of the data, but operates on the bits of the

quantized model in a bitserial way to save energy when fewer bits can be used to find the

correct class. AdaptBit-HD can achieve both high accuracy by utilizing all bits when necessary

and high energy efficiency and faster execution time by terminating execution at lower bits

when our design is confident in the output. AdaptBit-HD achieves this by performing a bitseial

10

hamming distance operation on the query HV and class HVs. We check after each bit if we

are confident enough in our current answer to terminate execution early. To achieve this, we

completely redesign the HD computing algorithm including training, retraining, and inference.

We accordingly design an end-to-end HD FPGA accelerator for AdaptBit-HD and compare with

a state-of-the-art binary quantization FPGA accelerator for HD [15] as well as a 16-bit static

quantization method. Compared to binary quantization AdaptBit-HD is 1.1% more accurate at

the cost of just 10% more energy consumption and 7% more execution time. Compared to 16-bit

models, AdaptBit-HD is 14× more energy efficient at the cost of 0.5% accuracy.

2.2 Related Work

Model quantization is a widely used technique in machine learning applications to

improve energy efficiency. For instance, Google’s TPU for performing inference on DNNs

utilizes reduced bit representations [27]. Furthermore, [28] proposes a quantization method for

SVMs. Model quantization has also been used to reduce the memory requirement for a more

efficient hardware design [29]. Other methods such as model compression have also been used to

improve the energy efficiency of neural networks [30]. Model quantization has also been widely

used to accelerate and improve the energy consumption of HD computing [14, 31]. Although

model quantization has improved other machine learning methods such as DNNs, light-weight

models such as HD computing continue to be more energy efficient and for applications where

energy efficiency is paramount, light-weight models should continue to be utilized.

Prior work applied high-dimensional computing to different classification problems such

as language recognition, speech recognition, face detection, EMG gesture detection, human-

computer interaction, and sensor fusion prediction [32, 33, 34, 22, 35]. Although HD computing

is more energy efficient than other traditional machine learning models such as DNNs and MLPs,

there has been a significant amount of work on pushing the limits of HD computing to achieve

even better energy efficiency. Prior work accelerated HD computing by removing dimensions of

11

the class hypervectors [17], or compressing the HD model [36]. Work in [37] also proposed a

dynamic dimensionality model to improve energy efficiency.

Prior work has also shown that quantizing the class hypervectors can provide significant

energy and speedup improvements at a small cost in accuracy [31, 38]. Work in [14] extended

the idea of binarizing the class HV weights to using a ternary model to achieve higher accuracies.

However, all of the existing work on HD computing for model quantization is static. This poses

a few problems. For instance, if accuracy and energy efficiency needs change, the model needs

to be completely retrained to change bitwidths. Additionally, by being static, one has to choose

where they land on the accuracy and energy trade-off curve at a macro level. This often leads to

leaning towards one end of the spectrum, either highly energy efficient with accuracy loss, or

highly accurate with high energy consumption. This problem is exaggerated for applications

with varying precision needs based on the incoming data. However, in this chapter, we propose

an adaptive bitwidth quantization method that chooses the best bitwidth per sample to achieve a

confident classification with minimal energy usage. This leads to an overall design that achieves

both high accuracy and high energy efficiency.

2.3 AdaptBit-HD

In this chapter, we propose AdaptBit-HD, the first Adaptive Model Bitwidth Architecture

for accelerating HD computing. HD computing consists of three main modules shown in

Figure 1.1: encoding, training, and inference. The encoding module maps each data point

to high-dimensional space. The HD model accumulates every encoded training hypervector

(HV) to create an integer model. This integer model is then used to create a quantized model.

During inference, HD computing then chooses the most similar class to the query HV as the

output class. AdaptBit-HD fundamentally changes the inference phase by operating on the bits

of the quantized model in a bitserial way to save energy when fewer bits can be used to find

the correct class. We check after each bit if we are confident enough in our current answer

12

to terminate execution early based on a threshold of similarity. By operating with this new

inference technique, AdaptBit-HD is able to achieve the energy efficiency of binary models,

while maintaining the accuracy of full precision models. To further support our proposed bitserial

inference design, AdaptBit-HD accordingly proposes a training approach that trains the model to

create quantized HVs and tunes the model to improve the confidence of the threshold we utilize

to determine if we can terminate execution early. In the following, we explain the details of both

the baseline HD functionality and AdaptBit-HD functionality.

2.3.1 Training with AdaptBit-HD

Existing model quantization techniques result in faster and more efficient machine

learning models. This quantization also leads to less area, because the model is represented

with values smaller than 32 bits. However, all prior techniques quantize all samples to the same

bitwidth. This leads to a non-optimal design as even binary quantizations have been shown to

provide high accuracy. Therefore, many samples can be correctly classified with lower bitwidth

representations and higher bitwidth quantizations should be reserved for samples that are more

difficult to separate them. In this section, we go over how we can achieve this adaptive model

quantization with HD computing.

Figure 2.1 demonstrates the idea that not all samples need the same bitwidth to be

accurately labeled. For instance, in the figure, we can see that HD computing is able to

achieve an average of 95.7% accuracy with binary values. Additionally, by moving to a 5−bit

representation, HD is able to improve in accuracy by 1.16% on average. Comparing the 5−bit

representations with full precision, we can see that the 16-bit precision model is only able to

achieve 0.42% more accuracy than the 5−bit models. This demonstrates that for most samples,

we can get away with aggressive model quantization. However, there are some samples that

require more bits to separate the data properly to maintain high accuracy. Rather then using high

precision for all of the samples to achieve high accuracy, we can adaptively select the bitwidth

we need for the sample during inference to balance both accuracy and energy efficiency. This

13

ISOLET UCIHAR CARDIO FACE IoT

Datasets

80

85

90

95

100
A

c
c

u
ra

c
y

 (
%

)
Binary 5-Bit 16-Bit

Figure 2.1. Difference in Accuracy with Various HD Bitwidth Representations for HD Comput-
ing

Figure 2.2. Overview of Creating a AdaptBit-HD Model During Retraining

balance is important for application where accuracy and energy efficiency are equally important

such as when performing a medical diagnosis with a mobile device running on a battery.

Initial Training: The initial training for model quantization is very similar to the initial

training for the baseline model without quantization, as we first build the full bitwidth model

by combining all samples as described in 2.3.1. The training process for model quantization

diverges from that of past work after the initial training. As Figure 2.2 shows, We first normalize

all of the class HVs such that all of the dimensions are in the range [-1,1], but we still keep the

non-normalized vectors around. We then quantize the normalized vectors to the nearest power of

2 in a list of quantized values.

The list of powers of two is defined by two parameters: n, the number of bits, and o, the

offset of the powers of two. The offset is to control where in the range of values (−1,1) we

want to have a higher resolution of representation. Higher offsets leads to better quantization

14

near 0. We first set aside one bit for representing 0. Then the rest of the 2(n−1) representations

are defined as follows: 2(r−o) where r = -1, -2, ..., −(2(n−2)) and o is the offset. The reason we

only iterate r 2(n−2) times is because we additionally represent the same powers of two on the

negative side. Each power of two representation is then assigned a unique n−bit binary string

representation. For example, if n = 3 and o = 0, we would be able to represent the following

powers of 2 in our model quantization: (−2−1, −2−2, 0, 2−1, 2−2), where each one of these

values is assigned a unique 3−bit sequence of 0s and 1s. Once we set each dimension to the

closest power of two we can represent, we then have an HD model where each dimension is an

n−bit value.

To encode our weights to unique n−bit values, we assign the first bit to indicate if the

value is negative or positive. This ensures that the first bit hamming distance is equivalent to how

binary models are created for HD. We reserve the second bit to indicate if the value is zero or

not. Thus, the calculation of the hamming distance for the second bit is equivalent to counting

the number of matching zeros. For the rest of the bits, because we use hamming distance as our

similarity metric (which is explained in Section 2.3.2) on the binary representation of our values

instead of the cosine similarity of the values themselves, it is important that values near each

other have a small hamming distance score between each other. To achieve this, we use a grey

code encoding to assign the last bits of the binary strings to each power of 2. This ensures that

any adjacent quantized value differs by only one bit.

Retraining: The retraining process for model quantization is also similar to the retraining

process for the baseline model without quantization. Throughout training, we store both a full

precision model and an n−bit representation model of the class hypervectors. We retrain the

quantized model by iterating through the training set. In a single iteration of model adjustment,

HD computing checks the similarity of all training data points, say H, with the class hypervectors

in the quantized binary model. The data point is assigned to the class with which it has the

closest similarity. If the datapoint is correctly classified, normally, no model update is needed.

However, in Section 2.3.2, we modify this to support adaptively stopping the similarity check in

15

Figure 2.3. Distributions of Hamming Distance Calculations Before (left) and After (right)
Retraining

a bit-serial manner. If a data point is incorrectly classified by the model, HD updates the model

by (i) adding the incorrectly classified hypervector to the class the input data point belongs to

(C̃correct = Ccorrect +H), and (ii) subtracting it from the class to which it is wrongly matched

(C̃wrong = Cwrong −H). These changes are made to the full precision model saved from training

because adding to and subtracting from the quantized model would drastically change the model.

To update the quantized model, the updated class hypervectors from the integer model are

quantized via the same process described in Section 2.3.1. Saving the full precision model does

incur an overhead, but after retaining is complete, we can discard the full precision model.

2.3.2 Inference with AdaptBit-HD

To support our bitserial hamming distance check, the query is quantized the same way

as the class HVs. Then, AdaptBit-HD calculates the hamming distance between the first bit of

the class HVs and the query HV across all the dimensions. We then check to see if the class

with the highest similarity passes a threshold value. If the similarity threshold is passed, then

execution can stop prematurely and output the current highest similarity class. However, if the

16

1 2 3 4 5 6 7 8

Offset

90

91

92

93

94

95
A

c
c
u

ra
c
y
 (

%
)

2-Bit 4-Bit 5-Bit

Figure 2.4. Effect of AdaptBit-HD Parameters on Accuracy

threshold is not passed, then computation continues to the next bit and the hamming distances

are accumulated. We then check the if the similarity threshold is met again and if it is not, we

continue the process. If the similarity threshold is not met and we are on the last bit, the most

similar class is the output.

Bitserial Thresholding In order to support the bitserial hamming distance, we need to

create a threshold for the termination condition. To do this, after the initial training, for the

first iteration of retraining, we collect the hamming distance for all samples and the class HVs.

Then, we get the mean and standard deviation of all samples where our model was correct as

well as the mean and standard deviation of all samples where our model was incorrect. We,

additionally, separate these distributions by each class, which allows us to set a threshold per

class, rather than one global threshold. We then set the threshold to be the average between the

mean - standard deviation of the incorrect distribution and the mean + standard deviation of

the correct distribution. This heuristic makes sense to use because the threshold should separate

the two distributions. As hamming distance calculates the number of mismatches, the incorrect

17

samples should be clustered with higher hamming distance values and the correct samples

should be clustered in a lower distribution. Therefore, averaging in this way gives us a good

initial threshold that separates the two distributions. We do this process on a per class basis as

the distribution of similarity values differs on a per class basis, therefore, we need a different

threshold for each class.

Figure 2.3 shows the distribution of hamming distances for all samples for a single class.

The graph on the left shows our initial threshold value. However, the graph shows that the initial

distributions are not completely separated by the threshold. To fix this, we modified the retraining

algorithm to actively create a greater separation in order to minimize outputting the incorrect

class when the threshold is met. To do this we made the following change: if the datapoint is

correctly classified, rather than doing nothing, because we are correct, we additionally check

if the similarity threshold was met. If the threshold is met with an additional 10% guard-band,

we do nothing. However if the threshold is not met with an additional 10% guard-band, we add

the query hypervector to the class the input data point belongs to (C̃correct = Ccorrect +H). As

Figure 2.3 shows on the graph to the right, after retraining the distribution of incorrectly classified

and correctly classified samples are further separated leading to more accurate classification

when we terminate the bitserial operation early. The 10% guard-band is to help ensure we push

the distribution of correct samples past the threshold value. This leads to a more accurate model

when terminating early based on the threshold. As Figure 2.3 shows, when the hamming distance

passes the threshold, we can be confident that it is the correct class.

Figure 2.4 shows the impact of using different offsets and bitwidths for AdaptBit-HD

on the ISOLET dataset, however, the results are similar for all datasets tested. As the figure

shows, there is a balance between having too high and too low of an offset. This is because

with too low of an offset, we have less quantization resolution near 0. However, with too high

of an offset, we again will not have enough resolution at the ends of our distribution ([−1,1]).

The figure shows that generally, an offset of 3 gives the best balance in quantizing the range

of values. The exception is when using 2 bits as with so few bits, we can only choose to have

18

good resolution at either the ends of the distribution or near 0. It turns out that having higher

resolution near 0 is more important leading to higher accuracies with higher offsets when only

using 2 bits. Additionally, we saw that accuracy becomes saturated at 5 bits, and is comparable

to a model with no quantization in Figure 2.1. This stayed consistent across all datasets tested.

Therefore, for the rest of our experiments, we use a total bitwidth of 5 and offset of 3.

2.4 FPGA Acceleration

AdaptBit-HD can be accelerated on different platforms such as CPU, GPU, FPGA, or

ASIC. FPGA is one of the best options as AdaptBit-HD computation involves bitwise operations

among long vector sizes. For example, encoding and associative search. Additionally, unlike

ASICs or PIM implementations, FPGAs offer reprogramability and faster design times. General

strategies of optimizing the performance of AdaptBit-HD are (i) using a pipeline and partial

unrolling on a low level (dimension level) to speed up each task and (ii) using dataflow design

on a high level (task level) to build a stream processing architecture that lets different tasks

run concurrently. In the following, we explain the functionality of AdaptBit-HD in encoding,

training, retraining, and inference phases.

2.4.1 Encoding Implementation

We used the locality-based random projection encoding to implement the encoding mod-

ule [15]. Due to the sequential and predictable memory access patterns as well as the abundance

of binary operations, this encoding approach can be implemented efficiently on an FPGA. In

the hardware implementation, we represent all {−1,+1} values with {0,1} respectively. This

enables us to represent each element of the projection vector using a single bit. Figure 3.8a shows

the hardware implementation of the AdaptBit-HD encoding module. The encoding process in-

cludes reading a feature vector from off-chip DDR memory and generating a binary hypervector

from them.

Calculating the inner product of a feature vector and a projection vector, P ∈ {1,−1}D,

19

Indexing

h1

fNf1

A
d

d
/s

u
b

+- +-

N-gram windows

p1 pN

+ +
+ T

re
e
-b

a
s
e
d

A
c
c
u

m
u

la
ti

o
n

hD

fn

+- +-

pD-N pD

+ +
+

Counter

Class k

Counter

Class 1

Counter

Class 2

T
re

e
-b

a
s
e

d
 C

o
m

p
a
ra

to
r

D bits

Pre-stored Class hypervectors

XOR Array

(b) Associative Search Module
E

n
c
o

d
e
d

 H
y

p
e

rv
e

c
to

r

Encoded Hypervector

fn-N

N-gram windows

(a) Encoding Module

Feature Vector

Projection Vector

Figure 2.5. FPGA implementation of the encoding and associative search block.

can be implemented with no multiplications. Each element of the projection vector decides the

sign of each dimension of the feature vector in the accumulation of the dot product. Thus, the

dot product can be simplified to the addition/subtraction of the feature vector elements. We

use Look Up Tables (LUTs) and Flip Flops (FFs) resources of the FPGA to implement the

encoding module, rather than DSPs for this this simple addition, which leads to better energy

efficiency. We additionally write back the resulting encoded HV to memory, only when the

encoding is performed independently. Right after the encoding, the hypervectors are used for

initial model training. The same encoded hypervectors needs to be accessed multiple times

during the retraining process. However, the FPGA does not have enough BRAM blocks to store

all encoded hypervectors, so, our design stores them into DDR memory.

2.4.2 Training Implementation

Initial Training: Like previously, initial training for AdaptBit-HD with model quanti-

zation is a single-pass process through the training dataset. The training module accesses the

encoded hypervectors and accumulates them in order to create a hypervector representing each

20

class. We exploit data-flow design implementing the encoding and initial training modules in a

pipeline structure. When the training module accumulates the encoded hypervector to one of the

class hypervectors, the encoding module maps the next training data into high-dimensional space,

improving data throughput by increasing resource utilization. This improves FPGA throughput

by maximizing resource utilization as well as hides the latency of the encoding.

After going through all of the training data, our implementation creates an n-bit quantized

representation of the model. We first normalize all of the class HVs such that all of the dimensions

are in the range [-1,1], but we still keep the non-normalized class HVs for use during retraining.

We then quantize the normalized vectors to the nearest power of 2 in a list of quantized values as

described in Section 2.3.1. Finally, the quantized n-bit model is stored in the BRAM blocks to

be used for inference or retraining. Since the generating and writing are done only once during

the entire training process, they do not impact the performance of the training phase. Thus, these

two parts are not fully optimized, allowing our design to saves some resources for the retraining

phase, which is more critical to the overall performance.

Retraining: Retraining is implemented separately from training, since the final result of

initial training, the n-bit model, will be used in retraining, so that they are performed sequentially.

The retraining phase first sequentially reads already encoded training hypervectors from the

off-chip memory in batches to help hide the latency of reading from the off-chip memory. This

is necessary as each read has a latency of about 15ns, which would slow down the retraining

process. Next, we check the hamming distance similarity of each data point with all trained class

hypervectors. As mentioned in Section 2.3.2, this is performed in a bit serial fashion. To support

this in hardware we split the hamming distance calculation into its own pipeline stage. If the

threshold is met, then the pipeline continues. However, if the threshold is not met and we need to

go to the next bit, the pipeline is stalled and the next bit is calculated. This process continues

until the threshold is met or we are out of bits to process. This may look like a large performance

impact by stalling the pipeline, however, as the experimental results section demonstrates, over

90% of all samples terminate at just one bit, so we do not need to stall the pipeline often. At the

21

end, each data point gets a tag of a class in which it has the highest Hamming distance.

The Hamming distance similarity check is implemented using an XOR array which

compares the bit similarity between two hypervectors. Counter blocks, shown in Figure 3.8b,

calculate the number of mismatches of each class hypervector with the query data point. Finally,

a tree-based comparator block finds the class with the lowest counter value. In the case of

misclassification, AdaptBit-HD needs to update the model by adding and subtracting a data

hypervector with two class hypervectors as defined before. Like encoding, all retraining processes

can be implemented using LUTs and FFs blocks.

The uniqueness of the retraining implementation in our design is that we have two

different models in similarity check and updating. This avoids the situation of similarity check

and updating access to the same model simultaneously, which makes the dataflow design in a

single iteration possible. After certain batch size iterations, the process stream is stopped for a

while and the model in similarity check will be refreshed by the model in updating. This design

will bring 2× better speed and little influence on the result of retraining.

2.4.3 Inference Implementation

After the retraining, the quantized AdaptBit-HD model has a stable model that can be

used in the inference phase. The encoding module is integrated with the similarity check module

as the entire inference part. Each test data point is first encoded to high-dimensional space using

the same encoding block explained in Section 3.6.1. Next, the quantized AdaptBit-HD model

checks the Hamming distance similarity of the data point with all pre-stored class HVs, in a

bit serial manner, in order to find a class with the highest similarity. One unique advantage

of our approach is its capability to enable online training during the inference phase. Our

implementation stores two HD models: one with integer values used for retraining and an n-bit

quantized model which is used to perform the classification task. AdaptBit-HD quantizes the

integer model to an n-bit model periodically to update the inference model. While the integer

model is updated each time the classification from the n-bit model is incorrect.

22

2.5 Evaluation

2.5.1 Experimental Setup

We implemented AdaptBit-HD training, retraining, and inference in both software and

hardware. In software, we implemented AdaptBit-HD with Python. In hardware, we fully

implemented AdaptBit-HD using Verilog. We verify the timing and the functionality of the

models by synthesizing them using Xilinx Vivado Design Suite [39]. The synthesis code has

been implemented on the Kintex-7 FPGA KC705 Evaluation Kit. We compare AdaptBit-HD

with baseline HD, an FPGA implementation of [15] using a binary model. We additionally

compare to a static 5 bit HD computing design.

We evaluated the efficiency of the proposed AdaptBit-HD on four practical classifica-

tion problems listed below: Speech Recognition (ISOLET) [40], Activity Recognition (UCI-

HAR) [41], Face Detection (FACE) [42], Cardiotocography (CARDIO) [43], and Attack Detec-

tion in IoT systems (IoT) [44].

2.5.2 Energy Efficiency, Execution Time, and Accuracy of AdaptBit-HD
vs State-of-the-Art

Figure 5.8 shows the impact of the bitserial operations of AdaptBit-HD on accuracy

and compares AdaptBit-HD with both a baseline of binary quantization and comparison with a

16-bits model. The graph clearly shows that AdaptBit-HD achieves comparable accuracy with

16-bit model. AdaptBit-HD loses only 0.1% accuracy when compared to a 16-bit models on

average and AdaptBit-HD is 1% more accurate than binary models on average.

Figure 2.7 compares the energy efficiency of AdaptBit-HD normalized to a 16-bit quan-

tized model as a 16-bit model is able to achieve the same accuracy as full precision models with

significantly less energy consumption. The figure also compares AdaptBit-HD with a binary

quantized design which is the current state-of-the-art quantization for HD computing to achieve

the best energy efficiency [15]. Figure 2.7 demonstrates that AdaptBit-HD is able to achieve

23

ISOLET UCIHAR CARDIO FACE IoT

Datasets

80

85

90

95

100
A

c
c

u
ra

c
y

 (
%

)
Binary 16-Bit AdaptBit-HD

Figure 2.6. Comparison of the Accuracy of AdaptBit-HD to Static Model Quantization Methods

energy efficiency close to that of the binary quantized model, where we define energy efficiency

as the relative amount of overall energy consumption over the entire dataset. AdaptBit-HD is

only 10% less energy efficient than the binary model. This is because AdaptBit-HD is able to

terminate the bitserial operation at the first bit the majority of the time, just like a binary model.

This is demonstrated by the color coding of the stacked bar. The color coding of the different bits

for AdaptBit-HD show the proportion of energy consumption spent on each bit. For example, the

proportion of the bar that is colored blue is the proportion of energy spent on the first bit, which

is approximately 90%. This is because, 90% of the time, only the first bit is used. This leads

to approximately the same energy consumption as a binary model 90% of the time. Figure 2.8

additionally compares the execution time of AdaptBit-HD with a binary model and 16-bit model.

The y-axis shows the speedup of AdaptBit-HD and binary models relative to a 16-bit model. As

the graph demonstrates, we see a similar comparison with execution time as energy efficiency.

This is because the two are closely related and we accordingly see a similar speedup as well as

24

energy efficiency improvement.

AdaptBit-HD is additionally, able to achieve 1.1% more accuracy than the binary model.

Overall, AdaptBit-HD is comparable in energy efficiency and execution time to the binary model,

but more accurate. Compared to the 16-bit model, AdaptBit-HD is 14.4× more energy efficient

at the cost of just 0.1% accuracy. This demonstrates that with an adaptive bitserial operation,

AdaptBit-HD is able to achieve energy efficiency and execution time close the the binary model

while maintaining accuracy comparable to 5-bit models and full precision models. Therefore,

AdaptBit-HD offers another point to the accuracy and energy efficiency trade-off curve that aims

to suit application where energy efficiency and accuracy are more equally important. Additionally,

by designing an FPGA accelerator for AdaptBit-HD, FPGAs can be reconfigured based on user

application needs and changes. If a user needs highly efficient energy consumption and accuracy

loss is not as important, they can use the binary model we compare with. For applications on the

other side of the spectrum, they can use a higher bitwdith static model, for instance, a 5-bit model.

Then, for applications that need to balance accuracy and energy efficiency such as running a

medical diagnosis application, similar to our CARDIO dataset, on a mobile device with a battery,

then AdaptBit-HD would be the best suited quantization method to use.

One downside to AdaptBit-HD is that even though not all bits are used for each sample,

we still store 5-bit quantized vectors. Therefore, binary models are approximately 5× more area

efficient than AdaptBit-HD, if the design only performs inference.

2.5.3 AdaptBit-HD Area Comparison

Although our design is able to achieve similar accuracy to a non-quantized model with

similar execution time and energy consumption to a highly quantized binary model, there is

still overhead. At a glance, the most apparent drawback with our implementation of a bit-serial

operation is that our design needs to store the full 5-bit class HVs all the time. This results in

the area of our design being comparable to a 5-bit quantized model rather than the more space

efficient binary model. Figure 2.9 shows the area comparison of a binary model with AdaptBit-

25

Figure 2.7. Energy Breakdown of AdaptBit-HD and Comparison with Static Quantization
Methods. Energy Efficiency is Shown Relative to a 16-Bit Model. Accuracy Difference is
Compared to a Binary Model. The color coding of the different bits for AdaptBit-HD show the
proportion of energy consumption spent on each bit.

ISOLET UCIHAR CARDIO FACE IoT
Dataset

0

5

10

15

20

S
p

e
e

d
u

p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A
c

c
u

ra
c

y
 D

if
f

(%
)

Binary AdaptBit-HD Accuracy Diff

Figure 2.8. Speedup of AdaptBit-HD and Comparison with Static Quantization Methods.
Speedup is Shown Relative to a 16-Bit Model. Accuracy Difference is Compared to a Binary
Model.

26

HD relative to a 16-bit model. There are two comparisons, the first is during just inference and

the other is an end-to-end implementation of HD, which includes encoding, training, retraining,

and inference. As the figure shows, a binary design that performs inference only uses roughly 6%

of the area of a 16-bit model as most of the area usage comes from storing the large class HVs.

On the other hand, AdaptBit-HD uses close to 33% of the area of a 16-bit model. This is because

AdaptBit-HD stores 5-bit HVs. However, if we look at an end-to-end implementation, the area

usage converges. This is because both quantization methods need to store 16-bit precision class

HVs during retraining, which takes a bulk of the total area.

Additionally, HD as a classification method is significantly more area efficient than other

light-weight learning models such as SVMs. We compare with SVMs, because they offer similar

accuracy to HD computing in most datasets and are also relatively light-weight compared to

neural networks, just like HD computing. Here we show that SVMs use 110× (3.24×) more

area during inference (end-to-end). This is because during inference, SVMs need to store all

support vectors in their original data representation (32-bit). Similar to HD, SVMs also need

access to all training data during training. However, SVMs take 3.24× more space due to HD

mapping the data to high dimensional binary vectors.

2.6 Conclusion

In this chapter we propose AdaptBit-HD, an Adaptive Model Bitwidth Architecture

for accelerating HD computing. AdaptBit-HD operates on the bits of the quantized model

in a bitserial way to save energy when fewer bits can be used to find the correct class. With

AdaptBit-HD, we achieve both high accuracy by utilizing all the bits when necessary and high

energy efficiency by terminating execution at lower bits when our design is confident in the

output. Compared to binary quantization AdaptBit-HD is 1.1% more accurate at the cost of just

10% more energy consumption. Compared to a 16-bit static model, AdaptBit-HD is 14.4× more

energy efficient and 15.1× faster at the cost of just 0.1% accuracy. This demonstrates that with

27

Inference End-To-End
10-2

100

102

104
A

re
a

 (
%

)
Binary AdaptBit-HD SVM

Figure 2.9. Area Comparison of AdaptBit-HD, Static Quantization Methods for HD, and SVMs.
Area Used is Shown Relative to a 16-bit Static HD Model.

an adaptive bitserial operation, AdaptBit-HD is able to achieve energy efficiency and execution

time close the the binary model while maintaining accuracy comparable to a 16-bit model. In the

next chapter we discuss our work on ReHD, which is a complete rework of HDC Classification

utilizing hardware/software co-design principles to create a more efficient FPGA accelerator.

2.7 Acknowledgements

This work was supported in part by CRISP, one of six centers in JUMP, an SRC program

sponsored by DARPA, in part by SRC-Global Research Collaboration grant Task No. 2988.001,

and also NSF grants 1527034, 1730158, 1826967, 1830331, 1911095, and 2003277.

Chapter 2, in part, is a reprint of the material as it appears in J. Morris, S. Set, G.

Rosen, M. Imani, B. Aksanli, and T. Rosing, “AdaptBit-HD: Adaptive Model Bitwidth for

Hyperdimensional Computing” in IEEE International Conference on Computer Design (ICCD),

2021. The dissertation author was the primary investigator and author of this material.

28

Chapter 3

A Rework of the Hyperdimensional Com-
puting Pipeline and Acceleration on FPGA

3.1 Introduction

The existing HD computing algorithms [33] have two main challenges: (i) the encoding

is computationally expensive, as it requires the computation of thousands (e.g., 10,000) of

operations to map each element of data from the original domain to high-dimensional space [45,

46]. For example, our experiments on five practical applications (described in Section 3.7)

show that in HD computing the encoding module takes about 79% and 74% of the training

and inference time respectively. (ii) In addition, HD computing using binary encoded vectors

provides significantly lower classification accuracy. In other words, HD computing requires

non-binary (integer) vectors in order to provide acceptable accuracy. However, working with non-

binary vectors significantly increases the memory requirement, and the computation complexity

of training and inference.

In this chapter, we propose ReHD, a full rework of Brain-Inspired HD computing to

make it more hardware friendly and achieve energy-efficient and high-accuracy classification.

ReHD introduces a novel encoding module based on random projection with a predictable

memory access pattern that can be efficiently implemented in hardware. In contrast to existing

HD computing algorithms that increase the size of encoded data by 20× [33], ReHD is the

first HD-based approach which provides data projection with a 1:1 ratio to the original data. In

29

addition, ReHD encodes all data to binary hypervectors, simplifying computation in training and

inference. The low memory requirement and computation cost makes ReHD a suitable candidate

for embedded devices with limited resources. To address systems that need more control over the

trade-off between computational efficiency and classification accuracy, we propose n-bit model

quantization. With our new model quantization method, we represent hypervector elements with

n-bit integers. To further improve ReHD efficiency, we improve online dimension reduction by

intelligently choosing insignificant dimensions to remove.

3.2 Related Work & Motivation

Prior work tried to apply the idea of high-dimensional computing to different classifica-

tion problems such as language recognition, speech recognition, face detection, EMG gesture

detection, human-computer interaction, and sensor fusion prediction [32, 33, 45, 34, 22, 24, 35].

For example, work in [46] proposed a simple and scalable alternative to latent semantic analysis.

Additionally, work in [45] proposed a new HD encoding based on random indexing for recogniz-

ing a text’s language by generating and comparing text hypervectors. Work in [47] proposed an

encoding method to map and classify biosignal sensory data in high dimensional space. Work

in [11, 33] proposed a general encoding module that maps feature vectors into high-dimensional

space while keeping most of the original data. Prior work also accelerated HD computing by

binarizing the class hypervectors [31, 38], removing dimensions of the class hypervectors [17],

or compressing the HD model [36]. [14] extended the idea of binarizing to instead use a ternary

model to achieve higher accuracies. Work in [37] also proposed a dynamic dimensionality model

to improve energy efficiency.

Prior work also tried to design hardware acceleration for HD computing by mapping

its operations into hardware, e.g., in-memory architecture [48, 49, 18, 50, 51, 12, 52, 53], and

tried to accelerate HD computing in hardware by binarizing the class hypervectors [31, 38]

or removing dimensions of the class hypervectors [17, 17]. Work in [54] designed an FPGA

30

E
n

e
rg

y
 C

o
n

s
u

m
.(
μ

J
)

Figure 3.1. Energy consumption of HD encoding, training, and inference.

implementation to accelerate HD computation in the binary domain. However, the application of

these approaches is limited to simple classification problems such as language recognition [45].

To provide acceptable classification accuracy, all of these approaches have to train the model

using non-binary (integer) vectors. However, using non-binary vectors requires a large memory

footprint and computation cost in both training and inference.

Model quantization is a widely used technique in machine learning applications to

improve energy efficiency. For instance, Google’s TPU for performing inference on DNNs

utilizes reduced bit representations [27]. Furthermore, [28] proposes a quantization method for

SVMs. Model quantization has also been used to reduce the memory requirement for a more

efficient hardware design [29, 55]. Work has also been done to adaptively change the precision

of the model to reduce the accuracy loss online [56]. [57] proposes a method to use multiple

precision levels during inference to achieve a balance between efficiency and accuracy loss.

[58] tries to alleviate accuracy loss from quantization by compensating for computational errors.

Other methods such as model compression have also been used to improve the energy efficiency

of neural networks [30].

In this work, we observe that the existing encoding modules are algorithmically and

computationally inefficient. In addition, to get high accuracy, the encoding needs to map data into

vectors with integer values which significantly increases the data size [33, 34]. This large memory

31

Similarity check

Test
 Data

hD Query

Class 1

Class 2

Class k

h2 h1

c
1
D c

1
2 c

1
1

c
2
D

c
k
D c

k
2 c

k
1

c
2
2 c

2
1

T
r
a

in
in

g
 &

R
e
tr

a
in

in
g

E
n

c
o

d
in

g

M
in

im
u

m
 D

is
ta

n
ce

Encoded
Train
Data

Train
Data

Error<ε

A

B

C

D

Figure 3.2. Overview of how ReHD is constructed and how ReHD performs inference.

requirement is often not available on embedded devices with limited resources. Figure 3.1 shows

the energy consumption of encoding, training, and inference (associative search) when running a

single data point on five practical applications. Our evaluation shows that the encoding module

on average takes 4.7× and 3.8× higher energy than HD training and inference. In this work, we

propose a novel encoding approach that (i) significantly reduces the encoding computation cost

by introducing computation locality and (ii) provides high classification accuracy while mapping

data into binary vectors with much lower dimensionality than existing algorithms.

3.3 Encoding with ReHD

In this chapter, we propose ReHD, a novel hardware friendly framework for efficient

classification. ReHD consists of three main modules shown in Figure 3.2: encoding, training,

and inference. The encoding module maps each data point to binary high-dimensional space. Our

encoding has been designed to map the maximum amount of information to high dimensional

32

space with the minimum computation cost. ReHD accumulates every encoded binary training

hypervector to create an integer model. This integer model is then used to create a quantized

model. ReHD accordingly proposes a training approach that enables the values to stay quantized

during training. During inference, cosine similarity has been used as the similarity metric in prior

work to achieve the best accuracy in HD computing applications [12]. Quantizing the model

enables ReHD inference to be supported using a more efficient n-bit cosine similarity rather than

full 32-bit precision. In the following, we explain the details of ReHD functionality.

Figure 3.2A shows where ReHD performs the encoding task. Previous encoding schemes

are inefficient due to consistent random memory accesses to find the corresponding level hyper-

vector for each feature value. In addition, the amount of computations needed is large and does

not take advantage of hardware optimizations like data sparsity[13].

3.3.1 Random Projection

We desire a fast and hardware-friendly algorithm that can take a vector of real-valued

data and generate a binary code such that the encoding preserves the cosine similarity. Let us

assume A,B ∈ Rn are two feature vectors in the original domain with real values. We wish to

define an encoding operation λ (∗) such that:

{X = λ (A),Y = λ (B) , X,Y ∈ {1,−1}D}

δ (A,B) = δ (X,Y)

where δ (∗) is the cosine similarity. Since the cosine angle of binary vectors is determined by how

many bits match, the cosine angle and Hamming distance are proportional. This type of encoding

can be performed using Locality Sensitive Hash algorithms, such as Random Projection [59].

Let us assume a feature vector F = { f1, f2, . . . , fn}, with n features (fi ∈ N) in original domain.

The goal of random projection is to map this feature vector to a D dimensional space vector:

H = {h1, h2, . . . , hD}. As Figure 3.3a shows, random projection generates D dense bipolar

33

vectors with the same dimensionality as original domain, {P1,P2, . . . ,PD}, where Pi ∈ {−1,1}n.

The inner product of a feature vector with each randomly generated vector gives us a single

dimension of a hypervector in high-dimensional space. For example, we can compute the i− th

dimension of the encoded data as:

hi = sign(Pi ·F)

where sign is a sign function which maps the result of the dot product to +1 or -1 values. This

type of hashing involves a large amount of multiplications/additions which is inefficient in

hardware. For example, to map a feature vector from n to D dimensions, this encoding involves

n×D multiplication and addition operations.

3.3.2 Sparse Random Encoding

The efficiency of random projection can be improved by sparsifying each projection

vector. Instead of generating dense projection vectors, we can generate sparse projection

vectors(Figure 3.3b). Consider s as a sparsity of each projection vector. Then, for each sparse

projection vector, only s% of the vector’s elements are randomly generated and the rest are set

to zero. For example, if s = 5%, each projection vector only has 0.05×n non-zero elements.

Therefore, each dimension of the encoded hypervector can be computed with only 0.05× n

multiplication/addition operations. Therefore, encoding a single hypervector takes s× n×D

multiplication/addition operations, compared to n×D multiplication/addition operations with

dense projection vectors. Although the sparsity significantly reduces the number of arithmetic

operations, it introduces random accesses to the algorithm, which is hard on the cache and slows

down the computation.

3.3.3 Locality-based Sparse Random Projection

Here we propose a novel approach that keeps the advantages of a sparse projection matrix,

i.e., fewer operations while removing random accesses to make the algorithm more hardware

friendly. We propose a locality-based random projection encoding that uses a predictable

34

access pattern. Instead of selecting s% random indices of the projection matrix to be non-

zero, we approximate sparse random projection by selecting pre-defined indices to be non-zero.

Figure 3.3c shows the structure of the locality-based matrix. Our approach selects the first s×n

of the P1 vector to be non-zero (indices [1...s×n]). Similarly, P2 projection vector only has s×n

non-zero elements on indices [2...s×n−1]. Finally, PD contains non-zero elements on the last

s×n dimensions. This creates a clear spacial locality pattern that hardware accelerators can take

advantage of.

Figure 3.4 shows the overview of ReHD encoding mapping each n dimensional feature

vector to a D dimensional binary hypervector. ReHD simplifies the projection matrix to a single

dense random projection vector with D bipolar values. Our approach first replicates the feature

vector, F, such that it extends to D dimensions, the same as our desired high-dimensional vector.

For example, to encode a feature vector with n = 500 features to D = 4,000 dimensions, we need

to concatenate 8 copies of a feature vector together. Then, it generates a random D dimensional

projection vector, P, next to the extended feature vector (as shown in Figure 3.4). To compute the

dimensions of the high-dimensional vector, ReHD takes the dot product of the extended feature

vector with each projection vector in an N-gram window. The first N-gram calculates the dot

product of the first N features and N projection vector elements:

h1 = sign(f1 ∗ p1 + f2 ∗ p2 + ...+ fN ∗ pN)

Similarly, the N-gram window shifts by a single position to generate the next feature

values. So, we can compute the ith dimension of an encoded hypervector using:

hi = sign(fi ∗ pi + fi+1 ∗ pi+1 + ...+ fi+N ∗ pi+N)

Each step of the N-gram window corresponds to a multiplication with a sparse projection

vector in the projection matrix. Although this encoding has the same number of computations as

35

-1 +1 -1 -1 +1 -1

-1 +1 -1 -1 +1 -1

-1 +1 -1 -1 +1 -1

-1 +1 -1 -1 +1 -1

 0 +1 0 0 -1 0

 -1 0 0 -1 0 0

 0 0 0 -1 0 +1

 0 +1 -1 0 0 0

 -1 +1 0 0 0 0

 0 +1 -1 0 0 0

 0 0 -1 -1 0 0

 0 0 0 0 -1 +1

Random Projection
Matrix

Sparse Random
Projection Matrix

Locality-based Sparse
Projection Matrix

D
:

P
ro

je
c
te

d

D
im

e
n
s
io

n

n: feature size

f1

f2

f3

fn

h1

h2

h3

hD

=

P1

P2

P3

PD

(a) (b) (c)

Figure 3.3. Random projection encoding using dense, sparse, and locality-based projection
matrix.

f3f2 fnf4f1 f3f2 fnf4f1

+1+1 -1-1-1 +1 -1+1 -1+1-1 -1 +1+1

f1f2f1

+1+1-1

f1f2f1

-1+1+1

f1f2f1

+1+1-1

Sign(x) Sign(x) Sign(x)

Extended Feature Vector

h1 h2 hD

Encoded Hypervector

N=3

D

Projection Vector

D
o
t

P
r
o
d

u
c
t

Figure 3.4. Locality-based random projection encoding.

sparse random projection, it provides the following advantages: (i) it removes random accesses

from the feature selection by introducing spacial locality, which significantly reduces the cost

of hardware implementation. (ii) There is an opportunity for computation reuse, as every

neighboring dimension shares N −1 terms.

36

FACE

CARDIO IOT

UCIHAR

ISOLET
10

-2

10
0

10
2

E
n

e
rg

y
 C

o
n

s
u

m
p

.
(

J
)

Encoding Training Inference

Figure 3.5. Energy consumption of HD encoding, training, and inference after utilizing the
proposed encoding module.

3.4 Training in ReHD

After utilizing our new hardware-friendly encoding, we observe that training and infer-

ence are now the energy-intensive parts of the HD algorithm. Figure 3.5 shows the updated

energy consumption of encoding, training, and inference (associative search) when running

a single data point on five practical applications when utilizing the proposed encoding. Our

evaluation shows that training and inference on average take 43% and 55% of the total energy

when using the new proposed encoding. This is mainly due to the usage of full precision 32-bit

HD models. In this work, we propose a novel approach which (i) allows the HD computing

model hypervectors to be represented with n-bit integers, where n ranges from 1 to 32, and (ii)

allows for fine-grained control between accuracy and energy efficiency compared to the previous

approach of utilizing full 32-bit precision or 1-bit binary models.

.

37

3.4.1 Binary Model Quantization

Figure 3.2B shows the functionality of HD Computing during training. Previous work

proposed quantization to a binary model for improved speed and efficiency [15].

Initial Training: An integer model is first initialized through element-wise addition of

all encoded hypervectors in each existing class. Like in Baseline HD Computing, the result is k

hypervectors, each with D dimensions, where k is the number of classes. For example, ith class

hypervector can be computed as Ci = ∑∀ j∈classi Hj. We then binarize each class hypervector

from the integer model to create the binary model. We perform this binarization operation by

taking the sign bit of each dimension from the accumulated class HVs.

Retraining: We train the binarized model by iterating through the training set. Through-

out training, we maintain both a binary model and an integer model of the class hypervectors.

In a single iteration of model adjustment, HD computing checks the similarity of all training

data points, say H, with the class hypervectors in the trained binary model. The data point is

assigned to the class with which it has the closest Hamming distance. If a data point is incorrectly

classified by the model, HD updates the model by (i) adding the incorrectly classified hypervector

to the class the input data point belongs to (C̃correct = Ccorrect +H), and (ii) subtracting it from

the class to which it is wrongly matched (C̃wrong = Cwrong −H). These changes are made to

the integer model saved from training because adding to and subtracting from the binary model

would drastically change the model. To update the binary model, the updated class hypervectors

from the integer model are binarized via the same process described in training.

3.4.2 N-Bit Model Quantization

The Binary Model results in faster and more efficient training because the model is

represented with integers smaller than 32 bits, but a sharp decline in accuracy often accompanies

the increase in speed and efficiency. The binary model quantization, where we represent the

dimensions of model hypervectors with 1 bit, maximizes efficiency but also yields the lowest

38

classification accuracy. This forces us to choose between two extremes: low accuracy but high

efficiency (binary), and high efficiency but low accuracy (32-bit). To solve the problem of having

to choose between two extremes, we can achieve more granular control over this trade-off by

representing dimensions with n bits, where n ranges from 1 to 32. Hence, we no longer have to

choose between 1-bit and 32-bits. As we represent dimensions with more bits, we increase the

accuracy but make classification less efficient.

Initial Training: The initial training for model quantization is very similar to the initial training

for the binary model, as the integer model is created through the same process. The training

process for model quantization diverges from that of past work after the initial addition, as rather

than an adjacent binary model, we create an adjacent n-bit model. To represent the dimensions

with n-bits, we utilize the integer model and clip all dimensions that fall outside of the range of

integer values we can represent with n bits. For an n-bit model quantization, we can represent the

range [−2n,2n −1]. Therefore, for all elements of class hypervectors, we discard any overflow

beyond this range.

Retraining: The retraining process for model quantization is also similar to the retraining

process for the binary model. Throughout training, we store both an integer model and an n-bit

representation model of the class hypervectors. Model quantization performs model adjustment

by iterating through the training dataset, making changes to the integer model, and reflecting

those changes to the n-bit representation model similar to the initial training process.

3.4.3 Model Quantization Inference

After training and retraining, the HD model can now be used for inference (Figure 3.2D).

The input data is encoded as a binary query hypervector. Model quantization then computes the

similarity between the binary query hypervector and each n-bit class hypervector. 1-bit model

quantization computes similarity using Hamming distance and n-bit model quantization using

cosine similarity over n bits. The input data is classified into the class whose hypervector it

is most similar to. As the number of bits used to represent dimensions increases, so does the

39

inference accuracy, but the training, retraining, and inference processes become more complex.

3.5 Online Dimension Reduction

The gradient descent during retraining gives equal weight to all features when the data

is binarized. This includes noisy, low strength features as well as features with high intra-class

differences. In fact, gradient descent moves the hyperplane in the direction of these features with

equal strength as the important features, which results in possible overfitting. The challenge is to

amplify the learning rate of ”significant” dimensions, while not amplifying the learning rate of

”insignificant” or ”noisy” features. Online dimension reduction attempts to remove insignificant

”noisy” dimensions from the model to improve energy efficiency. We can define insignificant

dimensions using either high absolute values or low variance as a metric. We define s as the

sparsity level denoting what percentage of the dimensions will be removed, regardless of which

metric is used, dropping the s% most insignificant dimensions from the model, results in an

efficiency improvement of approximately s%.

We drop the s% most insignificant dimensions from the model rather than using a

thresholding technique because the range of values varies between datasets, as it depends on how

many samples there are. Datasets with larger amounts of samples result in significantly larger

accumulated dimensions compared to those with fewer samples. This is because of how the

initial model is created by accumulating all the encoded samples. Therefore, with more samples,

the dimensions that agree across all samples will accumulate much higher values. However,

we can account for this difference in datasets by removing a proportion rather than an absolute

threshold.

To use high absolute values as a metric of insignificance, we first compute the element-

wise addition of all binarized sample hypervectors and examine the sum of each dimension.

Because all training hypervectors are initially binary with +1 or -1, dimensions with a very

high sum indicate that most training instances have a +1 for that dimension, and dimensions

40

with a very low sum indicate that most training instances have a -1 for that dimension. Such

dimensions have low differentiation between training instance data points and low differentiation

between classes, so we declare dimensions with high absolute value sums to be ”insignificant”,

as Figure 3.6 shows. This is because to distinguish the classes from each other, we want to

emphasize their differences and not their similarities.

We can choose insignificant dimensions more intelligently by using low variance as

a metric of noise and low-strength. Before the encoded hypervectors are binarized by taking

the sign bit, we calculate the variance of each dimension. The dimensions with low variances

indicate that those dimensions contain mutual information among all the samples, and thus do

not help the model differentiate between classes. Dimensions with high variance are declared

”significant’, while dimensions with low variances are ”insignificant”. As stated above, we must

emphasize inter-class differences rather than similarities. This method drops the dimensions with

the lowest variances from the model as shown in Figure 3.7. Comparing the distributions of the

variances shown in Figure 3.7 and the distributions of absolute values in Figure 3.6, we can see

that the variance metric can cluster and identify more insignificant dimensions compared to the

absolute value metric. Thus, using variance as the metric to determine insignificant dimensions

is able to reduce dimensionality further with less accuracy loss than using high absolute values.

3.6 FPGA Acceleration

ReHD can be accelerated on different platforms such as CPU, GPU, FPGA, or ASIC.

FPGA is one of the best options as ReHD computation involves bitwise operations among long

vector sizes. General strategies of optimizing the performance of ReHD are (i) using a pipeline

and partial unrolling on low levels (dimension levels) to speed up each task and (ii) using dataflow

design on a high level (task level) to build a stream processing architecture that lets different

tasks run concurrently. In the following, we explain the functionality of ReHD in encoding,

training, retraining, and inference phases.

41

Figure 3.6. Online dimension reduction with absolute value.

3.6.1 Encoding Implementation

As we explained in Section 3.3.2, we used the locality-based random projection encoding

to implement the encoding module. Due to the sequential and predictable memory access patterns

as well as the abundance of binary operations, this encoding approach can be implemented

efficiently on an FPGA. In the hardware implementation, we represent all {−1,+1} values with

{0,1} respectively. This enables us to represent each element of the projection vector using a

single bit. Figure 3.8a shows the hardware implementation of the ReHD encoding module. The

encoding process includes reading a feature vector from off-chip DDR memory and generating a

binary hypervector from them.

Calculating the inner product of a feature vector and a projection vector, P ∈ {1,−1}D,

can be implemented with no multiplications. Each element of the projection vector decides the

sign of each dimension of the feature vector in the accumulation of the dot product. Thus, the

dot product can be simplified to the addition/subtraction of the feature vector elements. Right

after the encoding, the hypervectors are used for initial model training. We also need to store the

encoded hypervectors for retraining. However, the FPGA does not have enough BRAM blocks

42

Figure 3.7. Online dimension reduction with variance.

Indexing

h1

fNf1

A
d

d
/s

u
b

+- +-

N-gram windows

p1 pN

+ +
+ T

re
e
-b

a
s
e
d

A
c
c
u

m
u

la
ti

o
n

hD

fn

+- +-

pD-N pD

+ +
+

Counter

Class k

Counter

Class 1

Counter

Class 2

T
re

e
-b

a
s
e

d
 C

o
m

p
a
ra

to
r

D bits

Pre-stored Class hypervectors

XOR Array

(b) Associative Search Module

E
n

c
o

d
e
d

 H
y

p
e

rv
e

c
to

r

Encoded Hypervector

fn-N

N-gram windows

(a) Encoding Module

Feature Vector

Projection Vector

Figure 3.8. FPGA implementation of the encoding and associative search block.

to store all encoded hypervectors, so, our design stores them into DDR memory.

43

3.6.2 Training Implementation

Initial Training: Like previously, initial training for ReHD with model quantization is a

single-pass process. The training module accesses the encoded hypervectors and accumulates

them in order to create a hypervector representing each class. When the training module

accumulates the encoded hypervector to one of the class hypervectors, the encoding module

maps the next training data into high-dimensional space, improving data throughput by increasing

resource utilization. After going through all of the training data, our implementation creates an

n-bit quantized representation of the model. We iterate through all hypervectors in the training

and test datasets, and clip values greater than 2n-1 to 2n-1 and values less than −2n to −2n.

Finally, the quantized n-bit model is stored in the BRAM blocks to be used for inference or

retraining.

Retraining: The retraining phase first sequentially reads already encoded training

hypervectors from the off-chip memory in batches to help hide the latency of reading from the

off-chip memory. This is necessary as each read has a latency of about 15ns, which would slow

down the retraining process. Next, we check the similarity of each data point with all trained

class hypervectors. Each data point gets a tag of a class in which it has the highest Hamming

distance (1-bit quantized model) or cosine similarity (n-bit quantized models with n ̸= 1). In

the case of misclassification, ReHD needs to update the model by adding and subtracting a data

hypervector with two class hypervectors as defined before.

3.6.3 Inference Implementation

After the retraining, the quantized ReHD model has a stable model that can be used in

the inference phase. The encoding module is integrated with the similarity check module as the

entire inference part. Each test data point is first encoded to high-dimensional space using the

same encoding block explained in Section 3.6.1. Next, the quantized ReHD model checks the

cosine similarity of the data point with all pre-stored class hypervectors, in order to find a class

44

with the highest similarity. One unique advantage of our approach is its capability to enable

online training during the inference phase. Our implementation stores two HD models: one with

integer values used for retraining and an n-bit quantized model which is used to perform the

classification task. ReHD quantizes the integer model to an n-bit model periodically to update

the inference model. While the previous model computes similarity with Hamming distance,

the updated quantized ReHD model computes cosine similarity. cosine similarity with n-bit

quantized models may seem much more energy intensive than utilizing Hamming distance for

binary models because cosine similarity involves multiplications. However, we can use the same

optimization in encoding that removed the multiplications between the feature vector and a

projection vector to remove the multiplications between the encoded query hypervector and n-bit

quantized class hypervector. This is because each element of the encoded query hypervector is

binary. Each element of the query hypervector decides the sign of each dimension of the feature

vector in the accumulation of the dot product step of cosine similarity. Although Hamming

distance is still faster and more computationally efficient, cosine similarity results in higher

accuracy when we represent the dimensions of class and instance with hypervectors with n bits

rather than 1-bit.

3.7 Evaluation

3.7.1 Experimental Setup

We implemented ReHD training, retraining, and inference in both software and hardware.

In software, we implemented ReHD with Python. In hardware, we fully implemented ReHD

using Verilog. We verify the timing and the functionality of the models by synthesizing them

using Xilinx Vivado Design Suite [39]. The synthesis code has been implemented on the Kintex-

7 FPGA KC705 Evaluation Kit. We evaluated the efficiency of the proposed ReHD on four

practical classification problems listed below: Speech Recognition (ISOLET) [40], Activity

Recognition (UCIHAR) [41], Face Detection (FACE) [42], Cardiotocography (CARDIO) [43],

45

Figure 3.9. Classification accuracy of ReHD and the baseline HD using binary and integer
models.

Figure 3.10. Energy consumption and execution time of ReHD and the baseline HD during
training.

and Attack Detection in IoT systems (IoT) [44]. We compare ReHD with, baseline HD, an FPGA

implementation of [11].

3.7.2 Comparison With Other State-of-the-Art Light-Weight Classifiers

Table 3.1 compares HD computing with other light-weight classifiers including support

vector machines (SVM), gradient boosting classifiers (Boosting), perceptrons, and multi-layer

perceptrons (MLP) in terms of accuracy and training/inference efficiency. All results are reported

46

Table 3.1. CPU-based comparison of HD and other classifiers.

SVM Perceptron MLP HD

Training Exe.(ms) 480.3 320.2 1,229.2 168.3
Testing Exe.(µs) 813.7 102.4 286.2 59.4

when applications are running on an embedded device (Raspberry Pi 3) using an ARM Cortex

A53 CPU. Our evaluation shows that HD computing can provide comparable accuracy to

algorithms such as SVM and MLP. In terms of efficiency, HD computing can provide much

faster computation in both training and testing. For example, in a CPU implementation, HD

computing is 7.3× and 4.8× (2.9× and 13.6×) faster than MLP (SVM) during training and

testing respectively. These results demonstrate that HD computing is the clear choice among

light-weight classifiers for low-powered energy efficient machine learning.

3.7.3 ReHD Accuracy and Memory Requirement

Figure 3.9 compares the impact of hypervector dimensions on the classification accuracy

of ReHD and the baseline HD computing encoding [33]. As we explained, ReHD always encodes

data points into D binary dimensions. However, for the baseline HD computing encoding, we

consider two cases when HD encodes data points to binary and integer domains. Our results

in Figure 3.9 indicate that ReHD requires significantly fewer dimensions to provide the same

accuracy as the baseline. For example, ReHD using D = 4,000 binary dimensions provides the

same accuracy as the baseline with D = 10,000 integer dimensions. In addition, the baseline

with a binarized model provides significantly lower accuracy than ReHD and the baseline with

an integer model. ReHD is on average 11.5% more accurate than the baseline using a binary

encoding and binary model. However, as we explore in Section 3.7.5, ReHD is able to achieve

even higher accuracies when utilizing n-bit quantization compared to binary quantization.

Here we compare ReHD and the baseline in terms of the training memory requirement.

47

of Features

10 20 100 300 600

E
n

e
rg

y
 C

o
n

s
u

m
p

.
(µ

J
)

10
-2

10
0

10
2

of Features

10 20 100 300 600

E
x

e
c

u
ti

o
n

 T
im

e
 (
µ

s
)

10
-2

10
-1

10
0

10
1

Figure 3.11. Scalability of the encoding module in ReHD and the baseline HD with the feature
size.

As we explained in Section 3.4.1, the baseline/ReHD store all encoded training data in memory.

Going into high dimensional space intuitively means increasing the data size, since we map each

feature vector from n into D dimensional space, where D >> n. Let us assume a feature vector

with n = 500 integer features. For the baseline with integer values, the data size increases by

approximately 20×. Even the baseline with a binary encoding (D = 10,000) increases the data

size by 2.5×, while it provides much lower accuracy. In contrast, the proposed ReHD encodes

data points to a much lower dimensionality, e.g., D = 4000, in order to provide the same accuracy

as the baseline. Our evaluation shows that ReHD can ensure 1:1 ratio of high-dimensional data

to original data, while providing the same accuracy as baseline HD [33], proving that ReHD is

more capable to run on embedded devices with limited memory.

3.7.4 Hardware Efficiency

We compare the efficiency of ReHD with the state-of-the-art HD computation algorithms

on a Kintex-7 FPGA. To have a fair comparison, we consider an optimized implementation of

the baseline [33], running on the same architecture as ReHD (explained in Section 3.6).

Encoding & Training: Due to the predictable memory access pattern and lower ReHD

dimensionality, ReHD encoding can process with higher efficiency as compared to the baseline.

48

For instance, to get maximum accuracy, the baseline needs to work with D = 10,000 dimen-

sionality while ReHD can provide the same accuracy with D = 4,000. Figure 3.11 shows the

scalability of ReHD and the baseline efficiency in terms of the feature size. Our evaluation shows

that the execution time of the baseline increases with the number of features, while it takes the

same time for ReHD to encode any size feature vector. For applications with 600 features, ReHD

provides 282× more energy efficiency and a 22.7× speed up as compared to the baseline.

In training, to create class hypervectors, the baseline accumulates integer hypervectors,

while ReHD training accumulates binary hypervectors. Figure 3.10 compares the energy con-

sumption and execution time of ReHD and the baseline during initial training. The results are

reported when both designs encode and train the model in a pipeline structure. For the baseline,

encoding dominates the execution time, thus the training execution hides under the encoding

module. However, in ReHD, the encoding can process faster than the training, thus the training

is the bottleneck of the execution time (as it is shown in Figure 3.10). Our evaluation shows

that ReHD can provide 64.1× more energy efficiency and a 9.8× speed up as compared to the

baseline during training.

Retraining/Inference Efficiency: ReHD stores all encoded hypervectors in order to

perform iterative retraining. The existing HD computing algorithms map data points to integer

values, where each encoded data is around 20 times larger than the data in the original domain.

During retraining, the FPGA needs to sequentially access the encoded values which are pre-

stored on off-chip memory. The limited memory bandwidth between the off-chip memory and

the FPGA BRAM blocks significantly slows down the baseline computation during retraining.

In contrast, ReHD maps the training data to lower dimensions, where each dimension can be

represented using a binary value. This enables ReHD to speed up the retraining by loading

hypervectors faster than the baseline.

During inference and retraining, HD checks the similarity of each encoded hypervector

with all existing class hypervectors. To achieve a high classification accuracy, the existing HD

computing algorithms generate an integer model. Therefore, they require the use of an expensive

49

Figure 3.12. Energy consumption and execution time of ReHD and the baseline HD running (a)
a single retraining iteration, and (b) a single query at inference.

similarity metric such as cosine to find the most similar class. In contrast, ReHD performs

the similarity check with Hamming distance. Figure 3.12 shows the energy consumption and

execution time of the FPGA accelerating a single retraining iteration and a single query during

inference. The results show that ReHD can achieve on average a 61.6× energy efficiency

improvement and a 7.9× speed up as compared to the existing HD computation algorithms.

Similarly, in inference, the FPGA implementation of ReHD can achieve on average a 43.8×

energy efficiency improvement and a 6.1× speed up running a single query (Figure 3.12b).

3.7.5 Model Quantization Trade-off

In Figure 3.13, we explore the impact of representing the HD Computing model with bit

lengths ranging from 1 to 32 on quality loss. Due to significant information loss when converting

to a binary hypervector, 1-bit model quantization, which computes with binary hypervectors,

50

1 2 3 4 5 32
Bitwidth

0

0.5

1

1.5

2

A
c
c
u

ra
c
y
 L

o
s
s
 (

%
) ISOLET UCIHAR CARDIO FACE IoT

Figure 3.13. Accuracy loss of ReHD utilizing n-bit model quantization.

FACE

CARDIO IOT

UCIHAR

ISOLET

20

50
100
200

E
n

g
.
Im

p
ro

v
.
(x

)

1-bit 2-bit 3-bit 4-bit 5-bit

Figure 3.14. Energy improvement of ReHD utilizing n-bit model quantization normalized to a
32-bit integer model.

yielded the lowest inference accuracy. 1-bit quantization leads to an accuracy loss of up to 1.7%.

However, because the 1-bit model quantization enables using Hamming distance as the similarity

function, it is the most efficient quantized model. Figure 3.14, shows the energy improvement of

n-bit model quantization over a 32-bit model. The 32-bit model uses the same encoding method

as the n-bit models proposed in ReHD. The only difference is that there is no quantization during

training and retraining. 1-bit model quantization results in 150× less energy consumption as

compared to a 32-bit model. Therefore, 1-bit model quantization is most useful in scenarios

when we primarily prioritize computational efficiency, such as on very low-resource devices. We

51

also primarily prioritize computational efficiency when the classification task is trivial, as is the

case with the IoT and UCIHAR datasets.

In scenarios where resources are constrained, but high accuracy is still required, larger

bitwidth model quantization is required. By allowing for less efficiency in training and inference,

higher bit models allot higher inference accuracy. Using larger bit widths, hypervector dimensions

take on an exponentially larger range of values, allowing for more information to be preserved.

Larger bit widths yield better inference accuracy, but at the cost of less efficiently than 1-bit

model quantization. This is because we have to use cosine similarity as our similarity metric,

which is much more expensive than Hamming distance. Larger bitwidth model quantization

is useful for datasets that are sufficiently complex that a certain number of information needs

be preserved, such as for ISOLET and FACE. On ISOLET, 1-bit model quantization achieves

1.8% lower accuracy than the full 32-bit model. However, but just increasing to a 2-bit model,

we are able to reduce the quality loss to 0.25% and use 93× less energy. In our experiment,

models which represented hypervectors with 5 or more bits performed with comparable accuracy

to models which represented hypervectors with 32 bits. Representing hypervectors with more

than 5 bits is more computationally expensive, but yields no accuracy increase. Therefore, by

utilizing 5-bit model quantization, we can achieve on average, 15× less energy consumption at

no accuracy loss.

3.7.6 Online Dimension Reduction

Table 3.2 compares the online dimension reduction techniques of (i) computing the

element-wise sum of training hypervectors and removing dimensions with high absolute value

sums (ABS) and (ii) computing the variance across all dimensions and removing dimensions

with low variance (VARIANCE). The values compute the average quality loss(accuracy drop)

over the five datasets described in Section 3.7.1. More directly, Table 3.2 shows the impact of

each dimension reduction technique on classification accuracy. When using ABS as a metric

of insignificance, our results indicate that dropping 20% of ”insignificant” dimensions slightly

52

Table 3.2. Average change in classification accuracy due to online dimension reduction.

Dimension Reduction 20% 40% 60% 70% 80% 90% 95%

ABS +0.38% 0% -0.54% -4.1% -5.64% -9.6% -14.2%
VARIANCE +0.4% 0% 0% 0% -0.3% -0.8% -4.4%

improves accuracy because we remove noisy features. As listed in Table 3.2, dropping up to 60%

of ”insignificant” dimensions almost no impact on accuracy, but dropping further dimensions

will lead to a decline in accuracy because we begin to drop significant dimensions.

Dropping dimensions with low intra-class differences allow for a more intelligent se-

lection of ”insignificant” dimensions than summing all training hypervectors and dropping

dimensions with high absolute values. With ABS, we were able to drop 70% dimensions before

we started losing significant dimensions. But since VARIANCE selects dimensions to drop more

intelligently, we can drop the 90% most insignificant dimensions with only a 0.3% average loss

in accuracy as a result, meaning we improve training efficiency by 90% with only a negligible

decline in accuracy. The energy efficiency improves proportionally with the dropped dimensions

because operations in HD are done with hypervectors. Therefore, by reducing the dimension-

ality of all hypervectors, all operations reduce in complexity. When we drop more than 90%

dimensions, we begin to drop too many significant dimensions and lose a significant amount of

accuracy.

Figure 3.15b shows the classification probability over an image, where yellow and

blue colors indicate low and high face probability respectively. The results show that ReHD

working with D = 4,000 dimensions can perfectly detect the faces in the image. ReHD in

lower dimensionality after online dimension reduction has lower quality and detects ”non-face”

regions. Online dimension reduction improves ReHD efficiency linearly during both retraining

and inference. For example, an 80% dimension reduction results in approximately 80% energy

efficiency improvement and a 5× speed up while providing less than 0.3% quality loss as

compared to ReHD with full dimensionality.

53

D=500

(a) Face Detection (b) Windows probability over
dimensionality

D=2,000D=4,000

D=1000

Figure 3.15. Visualization of ReHD face detection accuracy over different dimensionality.

3.8 Conclusion

In this chapter, we propose ReHD, a novel HD computing framework that significantly

improves the computation efficiency of HD computing. ReHD exploits the predictable memory

access of our proposed encoding to design an efficient encoding approach that maps data

into binary hypervectors. ReHD enables quantized training and retraining on the encoded

hypervectors and simplifies the inference similarity metric. N-bit model quantization, allows us

to represent our model hypervectors with n-bits where n ranges from 1 to 32, whereas previously

designs chose between 1-bit or 32-bit representations. This enables more granular control over

the trade-off between model classification accuracy and efficiency. We additionally implemented

a dimension reduction technique that removes unnecessary dimensions to further improve the

efficiency of ReHD. We also designed a fully pipelined FPGA implementation to accelerate

ReHD. Our evaluations show that ReHD can achieve 64.1× and 9.8× (43.8× and 6.1×) energy

efficiency and speed up as compared to the baseline during training (inference) while providing

the same classification accuracy. In the next chapter, we focus on extending HDC to support

multi-label classification.

54

3.9 Acknowledgements

This work was supported in part by CRISP, one of six centers in JUMP, an SRC program

sponsored by DARPA, in part by SRC-Global Research Collaboration grant Task No. 2988.001,

and also NSF grants 1527034, 1730158, 1826967, 1830331, 1911095, 2003277, and 2003279.

Chapter 3, in part, is a reprint of the material as it appears in J. Morris, Y. Hao, R.

Fernando, M. Imani, B. Aksanli , T. Rosing, “Locality-based Encoder and Model Quantization

for Efficient Hyper-Dimensional Computing”. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems (TCAD), 2021. The dissertation author was the primary

investigator and author of this material.

55

Chapter 4

Extending Hyperdimensional Comput-
ing Applications to Support Multi-Label
Classification

4.1 Introduction

Recent work has been done to extend HDC applications beyond classification. For

instance, HDC has recently been extended to support clustering [22]. Furthermore, HDC has

been extended to support recommender systems for the first time [23]. There is also work on

using HDC for DNA classification [24]. However, there has been no work yet on mapping HD

computing to multi-label classification tasks.

While HD provides improvements in performance and energy consumption over con-

ventional machine learning algorithms, it still involves fetching each and every data from

memory/disk and processing it on CPUs/GPUs. This is exaserbated by the fact that HD expands

the dimensionality of the input data into high dimensional space. This massive amount of data

needed for HD cannot always fit into the memory. Recent work has introduced computing

capabilities to solid-state disks (SSDs) to process data in storage [60, 61, 62, 63, 64]. This

not only reduces the computation load from the processing cores but also processes raw data

where it is stored. HD computing has compelling properties for efficient hardware acceleration

in flash. For instance, HD is highly parallelizable with D = 10,000 dimensions where each

56

dimension is independent. Furthermore, HD is comprised of simple operations such as addition,

multiplication, and comparisons. With these two properties, HD computing is a prime candidate

for acceleration in flash.

In this chapter, we design a new Multi-label HD computing in storage system. Our system

efficiently accelerates the data-intensive steps of HD, encoding and training, in 3D storage, thus,

making it possible to run multi-label classification with HD in the IoT domain. We propose

two different mappings of HD to multi-label classification, Power Set HD and Multi-Model

HD. Power Set HD, transforms the multi-label problem into classical classification by creating

a new class for each label combination. Multi-Model HD that creates a binary classification

model for each possible label. Our evaluation shows that Multi-Model HD achieves, on average,

47.8× higher energy efficiency and 47.1× faster execution time while achieving 5% higher

classification accuracy as state-of-the-art light-weight multi-label classifiers such as multi-label

kNNs. Power Set HD achieves 13% higher accuracy than Multi-Model HD, but is 2× slower.

Using our in-3D-flash acceleration, we further improve the energy efficiency of Multi-label HD

training by 228× and reduce the latency by 610×.

4.2 Related Work

4.2.1 Hyperdimensional Computing

Prior work tried to apply the idea of high-dimensional computing to different classifica-

tion problems such as language recognition, speech recognition, face detection, EMG gesture

detection, human-computer interaction, and sensor fusion prediction [32, 34, 22, 24]. Addi-

tionally, work in [45] proposed a new HD encoding based on random indexing for recognizing

a text’s language by generating and comparing text hypervectors. Work in [47] proposed an

encoding method to map and classify biosignal sensory data in high dimensional space. Work

in [11] proposed a general encoding module that maps feature vectors into high-dimensional

space while keeping most of the original data. There is no work to date that handles multi-label

57

classification in HD.

4.2.2 Multi-label Classification

Prior work applied problem transformation methods to transform multi-label classification

problems into multiple single-label classification problems [65, 66]. The most widely used

transformation method is PT3. PT3 combines each different set of labels into a single label

so that the new label set L
′

is the power set of the old label set L. For a dataset with three

binary labels, the new label set would be 000, 001, 010, 011, 100, 101, 110, 111. This causes

an exponential increase in the number of labels in the dataset. This transformation method is

popular for other light-weight classifiers as their complexities mostly scale with the number

of features and not with the number of labels. However, in HD computing, the complexity of

inference does scale with the number of labels. Therefore, in this chapter we propose a new

Multi-Model transformation method that is designed for scalable HD computing.

4.2.3 Hardware Acceleration

HD Acceleration on other Platforms: Prior work tried to design different hardware

accelerators for HD computing. This includes accelerating HD computing on existing FPGA,

ASIC, and processing in-memory platforms [67]. However, these solutions do not scale well

with the number of classes and dimensions, primarily due to the data movement issue. Therefore,

a new solution is needed that can scale with the dimensionality and number of classes. ISC is

a promising acceleration architecture in this aspect. Computing in 3D Flash: The current 3D

flash-based storage systems suffer from slow flash array read latency and storage to host I/O

latency. To alleviate these issues prior work introduced in-storage computing (ISC) architectures

[62]. These works exploit the embedded cores present in the SSD controller to implement ISC.

Another set of work in [61, 68] used ASIC accelerators in SSDs. The work in [63] proposed a

full-stack storage system to reduce the host-side I/O stack latency. While these works propose

single-level computing in storage, [64] on the other hand exploited computing at flash die and

58

in top level accelerator to provide multi-layer computing. It also allows for high parallelism in

computation. In this work, we adapt the ISC design in [64] to enable multi-label HD in 3D flash.

4.3 Multi-label Classification with HD

Multi-label classification is the problem of finding a model that maps inputs x to binary

vectors y, and each element in y is a label that is assigned a value either 0 or 1. This is in

contrast to single-label classification, where y is a single value, not a vector of labels. Although

HD computing performs well for single-label classification tasks, we can’t directly apply it to

solve multi-label classification problems, as only one label output is chosen. Therefore, we

transform the multi-label problem into a single-label problem and then modify the HD computing

algorithm to solve the multi-label classification problem. We propose two different mappings

of HD to Multi-label HD. The first, Power Set HD, transforms the multi-label problem into

single-label classification by creating a new class for each observed label combination. We

additionally propose Multi-Model HD that creates a binary classification model for each possible

label. By doing this, we can leverage the efficiency of HD computing to complete the multi-label

classification task faster and with less energy consumption.

4.3.1 Problem Transformation Methods

Power Set: Prior work[65] mapped multi-label classification to single label classification

by creating a new label set that was the power set of the multi-labels. For instance, if a multi-

label problem had 3 possible labels for every sample, then prior work would transform the 3

multi-labels into 8 single labels. Where each single label represents each possible combination

of the 3 individual labels. This exponential increase in the number of labels does not cause

challenges for classifiers that do not scale in complexity with the number of labels. However,

HD computing complexity does scale with the number of labels. We address this issue with a

binary classification transformation for HD computing explained below.

59

Multi-Model: We propose Multi-Model HD, a method of building a binary classification

model for each label as the problem transformation method. Suppose [l1...lh] are the labels of

the dataset, then after mapping each data point into hypervectors [v1...vn], we build h binary

classification models, since each label only has a true or false value, i.e., 0 or 1. For example, if

a dataset has h = 3, we create 3 different HD models, one for each label. Then upon inference,

we feed the input data into all 3 of the models, independently checking for the existence of

each label. This transformation method is better for HD in multiple ways: 1) HD model size,

execution time, and energy scale with the number of classes, so when using Power Set HD, if

there is a large number of possible label combinations, Power Set HD will not be as efficient as

Multi-Model HD. 2) If a new label is introduced, in Multi-Model HD, we simply need to train a

newly added binary classification HD model. However, with Power Set HD, or other models that

use the power set transformation method, the entire model needs to be retrained to accommodate

the new label combinations. The rest of Section 4.3 is mainly focused on Multi-Model HD,

while we additionally provide a comparison with Power Set HD in Section 4.5. Now that the

problem has been transformed into k binary classification problems, we describe the algorithmic

changes to HD computing blow.

4.3.2 Training

As stated in Section 4.3.1, since the multi-label classification problem is transformed

into multiple binary classification problems with Multi-Model HD, we build two classes for

each label (one for value 0 and one for value 1). As shown in Figure 4.1, after the encoding

process, where we utilize the encoding proposed in [15], each data point is classified into either

Classlabeli=0 or Classlabeli=1 for each label i according to the values of its labels [l1...lh]. As

shown in Figure 4.2A, for a dataset that has h labels, the binary model of this dataset would

contain 2h class HVs in total, one binary classification model for each label where each model

contains 2 class HVs.

Unlike in single label classification, in Multi-Model HD, each data point is element wise

60

Figure 4.1. An example of how the Multi-Model HD model is created

added to multiple class HVs. For instance, in Figure 4.1, after the sample is encoded, it is added

to the Classlabel1=0 class HV for the first label, as the first label is 0. It is then additionally added

to the Classlabel2=0 class HV for the second label, as the second label is 0. This is continued for

all the labels until it is added to the Classlabelh=1 class HV for the last label, as the last label is 1.

After this procedure is repeated for the entire training set, we are left with k classification models

for each label.

This training procedure also results in integer values for the dimensions of the class HVs,

requiring the use of a costly cosine similarity during inference to find the best matching class

HV to the query HV. We can reduce this computation to a binary operation of Hamming distance

by binarizing the model, which is done by changing the class hypervector elements to +1 if they

are positive and -1 if they are negative or 0. Hamming distance is desirable because it reduces

each multiplication and addition in cosine similarity to a simple bitwise XOR and accumulation,

which is significantly more efficient in acceleration circuits. The class with the least mismatching

bits to the query is then chosen as the output.

61

Figure 4.2. Overview of how Multi-Model HD is constructed and how Multi-Model HD performs
inference.

4.3.3 Inference

After training, the HD model for single-label classification can now be used for inference.

Upon inference, an input data is encoded to a query hypervector using the same encoding module

used for training. HD Computing then computes the similarity between the query hypervector

and each class hypervector. It then uses consine similarity to find a class hypervector with the

most similarity with the query hypervector.

Multi-Model HD performs inference in a similar way, however, we need to output h

labels instead of just 1. Figure 4.2C shows how inference is performed in Muti-Model HD. Upon

inference, an input data is encoded to a query hypervector using the same encoding module

used for training, just like baseline HD. However, since Multi-Model HD contains h different

classification models, the query HV is input into each classification model independently. For

each model, if the query HV is more similar to the 0 label HV, then that label output is chosen as 0,

and vice versa if the query is more similar to the 1 label HV. This generates our h different labels

for output in a multi-label classification problem. In Multi-label HD, inference is performed on

62

BUFFER BUFFER

PLANE PLANE

BLOCK BLOCK

PAGE PAGE

DIE ACCEL. DIE ACCEL.

W
O

R
D

L
IN

E

FLASH
CHIP

FLASH
CHIP

FLASH
CHIP

CTRL.

FLASH
CHIP

FLASH
CHIP

FLASH
CHIP

FLASH
CHIP

CTRL.

FLASH
CHIP

FLASH
CHIP

FLASH
CHIP

FLASH
CHIP

CTRL.

FLASH
CHIP

FLASH
CHIP

FLASH
CHIP

FLASH
CHIP

CTRL.

FLASH
CHIP

FLASH
CHIP

FLASH
CHIP

FLASH
CHIP

CTRL.

CHANNEL

DIE

DMA STORAGE
UNIT

FIRMWARE

SCRATCHPAD

TOP ACCEL.

CONTROLLER

Figure 4.3. Overview of Multi-label HD in 3D flash-based storage. ISC enabling components of
the design are shown in green.

the host CPU.

4.4 Acceleration with 3D NAND Flash

Here, we present an ISC design that performs Multi-label HD encoding and training

completely in 3D flash. Figure 4.3 shows an overview of the SSD architecture we adopt from

THRIFTY [64]. It uses a die-level accelerator (green on the right in Figure 4.3), in each plane

to encode every read page into a hypervector. These hypervectors are then sent to a SSD-level

FPGA, which accumulates the hypervectors in the top-level accelerator (green on bottom left in

Figure 4.3) to perform training. The scratchpad (green on top left in Figure 4.3) in the controller

stores the encoding projection matrix, which it receives as an application parameter from the

host. The top-level accelerator is an FPGA which uses INSIDER acceleration cluster [63]

to implement HDC accumulation and other operations. We utilize THRIFTY’s adaptation of

INSIDER’s software stack to connect our ISC architecture to the rest of the system.

4.4.1 Encoding in 3D Flash

As shown in Figure 4.3, the flash chip may consist of several flash dies which are further

divided into flash planes, each plane consisting of a group of blocks, each of which store

multiple pages. Each plane has a page buffer to write the data to. Operations in SSD happen in

63

page granularity where the size of the pages usually ranges from 2KB-16KB. Hence, we use

accelerators for each flash plane to exploit the flash hierarchy. These accelerators are multiplexed

to the page read path.

The die-accelerator in [64] encodes an entire page with raw data to generate a D di-

mensional hypervector. We assume that the feature vectors are page-aligned, with each page

storing one full feature vector. Multi-label HD encoding multiplies an n-size feature vector with

a projection matrix containing D×n 1-bit elements. The accelerator calculates the dot product

between the two vectors, one read from the flash array and another being a row-vector of the

projection matrix. This involves element-wise multiplication of the two vectors and adding

together all the elements in the product. Since the weights in the projection matrix ∈ {1,−1},

we map them to {0,1} respectively. We use 2’s complement to break the multiplication into an

inversion using XOR gates and then add the total number of inverted inputs to the accumulated

sum of XOR outputs. With the assumption that each page consists of a maximum 1K feature

elements, the accelerator consists of an array of 32K XOR gates followed by a 1024 input tree

adder. It reduces 1024 inputs to 2, which is followed by a carry look ahead addition to get the

final dot product. The sign bit (MSB) of the output is the value of one dimension of the encoded

hypervector. Complementary to the projection matrix, the output 0 −→ 1 and 1 −→ (−1). The

accelerator is iteratively run D times to generate D dimensions. Each encoded hypervector is

appended with the corresponding label vector. We write the output of the accelerator to the page

buffer of the plane, which serves as the response to the original read request.

4.4.2 Training at Top-Level in Storage

The encoded hypervectors from flash chips are input into the top-level accelerator, which

is implemented on an FPGA present in the SSD. During training, they are accumulated into the

corresponding label hypervectors. At the end of training we obtain two output hypervector for

every label (labeli), one each for Classlabeli=0 and Classlabeli=1.

The design in [64] utilized input queues for each class to increase parallelism between

64

different classes. However in Multi-label HD, each encoded hypervector is added to one of the

two classes of each label, i.e. 50% of the classes. Moreover, ideally an encoded hypervector has

just one label as ’1’ while rest are ’0’s. Hence, all but one classes corresponding to labeli = 0

would receive an incoming hypervector. There is negligible parallelism in training between

multiple encoded hypervectors. In this case, the input queues of [64] are an overkill. Hence, we

remove input queues from the FPGA design of [64]. The label vector of an incoming hypervector

is used to input it to the corresponding class (Classlabeli=0 or Classlabeli=1) of each label. The

inputs to the remaining classes are set to zero. An accumulator is present for each class, which

simply needs to read the input and operate on the corresponding data. The accumulators for each

class operates in parallel to add an input hypervector to the corresponding class hypervector.

While the computation can also be fully parallelized over all dimensions, the large size of

hypervectors and the limited read ports of the memory make it impractical. Hence, we utilize the

partition-based approach used in [64] to allow partial parallelism. The final class hypervectors

are sent to the host.

4.5 Experimental Results

4.5.1 Experiment Setup

We tested Multi-label HD training and inference using an optimized C++ implementation.

For comparison, we utilized the open source Mulan multi-label package, which is implemented in

Java [69]. We compare Multi-label HD with multi-label versions of k-nearest neighbors (kNN),

Sequential minimal optimization (SMO), C4.5, and Naive Bayes (NB). We also developed a

simulator for Multi-label HD in flash which supports parallel read and write accesses to the

flash chips. We utilized Verilog and Synopsys Design Compiler to implement and synthesize

the die-level accelerator at 45nm and scale it down to 22nm. The top-level FPGA accelerator

has been synthesized and simulated in Xilinx Vivado. For drive simulation, we assume the

characteristics similar to 1TB Intel DC P4500 PCIe-3.1 SSD connected to an Intel(R) Xeon(R)

65

Table 4.1. Multi-label HD 3D Storage Parameters

Capacity 1T B Channels 32
Page Size 16KB Chips/Channel 4

External BW 3.2GBps Planes/Chip 8
BW/Channel 800MBps Blocks/Plane 512
Flash Latency 53us Pages/Block 128

FPGA XCKU025 Scratchpad Size 4MB
Avg Power/DA 8mW DA Latency 1.02ns

*DA: Die-accelerator

CPU E5-2640 v3 host. The parameters for our 3D flash implementation are shown in Table 4.1.

We compare flash implementation with 6th Gen 3.2GHz Sky Lake Intel Core i5-6300HQ CPU

with 8GB of RAM and a 256 GB SSD.

We tested our proposed approach on three applications:

Genbase (Genbase) [70]: The protein classes considered are the 27 most important protein

families. The training and testing datasets are taken from the Genbase dataset. This dataset

consists of 662 samples, each with 1186 attributes.

Scene (Scene) [71]: This dataset contains characteristics about images and their classes. One

image can belong to one or more classes. The training and testing datasets are taken from the

Scene dataset. This dataset contains 2407 samples, each with 294 attributes.

Yeast (Yeast) [72]: This database contains information about a set of Yeast cells. The task is to

determine the localization site of each cell. The training and testing datasets are taken from the

Yeast dataset. This dataset consists of 2417 samples, each with 103 attributes.

4.5.2 Multi-label HD Comparison with State-of-the-Art

Accuracy

66

genbase scene yeast
0

20

40

60

80

100

A
c

c
u

ra
c

y
 (

%
)

SMO C4.5 kNN NB Multi-Model HD Power Set HD

Figure 4.4. Classification accuracy of Multilabel HD and other multi-label classification algo-
rithms.

genbase scene yeast
10

-2

10
0

10
2

10
4

10
6

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

)

Execution Time during training

genbase scene yeast

10
0

10
2

10
4

10
6

10
8

E
n

e
rg

y
 C

o
n

s
u

m
p

.
(m

J
)

Energy Consumption during training

genbase scene yeast
10

-2

10
0

10
2

10
4

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

)

Execution Time during inference

(a) Execution Time

genbase scene yeast
10

-2

10
0

10
2

10
4

E
n

e
rg

y
 C

o
n

s
u

m
p

.
(m

J
)

Energy Consumption during inference

(b) Energy

Figure 4.5. Energy consumption and execution time of Multi-label HD during Encoding and
Training.

Figure 5.8 compares the multi-label classification accuracy of current state-of-the-art

multi-label classifiers with Multi-label HD. The accuracy for multi-label is calculated by first

67

getting the accuracy of the model on each label individually. Then to aggregate them, we average

each label’s accuracy together to get one overall accuracy number for each dataset. As the figure

shows, Multi-label HD (Multi-Model HD and Power Set HD) are comparable in accuracy to

state-of-the-art multi-label classifiers. In fact, Power Set HD is always better than the state-of-

the-art on these three datasets. On the other hand, Multi-model is slightly less accurate than

other multi-label classifiers on the genbase dataset by 10%. However, Multi-Model HD is able

to achieve higher accuracy on the scene and yeast datasets. This could be attributed to mapping

the data into HD space, offering better separability than in the low dimensional data. However,

more theoretical analysis on HD Computing is necessary in order to understand why Multi-label

HD is more accurate. Overall, on average, Multi-Model HD is 5% more accurate and Power Set

HD is 14% more accurate than the highest accuracy state-of-the-art multi-label classifier.

Although Power Set HD achieves higher accuracy than Multi-Model HD, Figure 5.9,

demonstrates that the improvement in accuracy comes at a significant cost in execution time and

energy. This is because of the exponential increase in class HVs as discussed in Section 4.3.1.

As mentioned before, the exception is the genbase dataset because there is only a small subset

of possible combinations that appear in the dataset. On the other hand, when there is a large

portion of possible combinations in the dataset, Power Set HD is 3.6× slower than Multi-Model

HD. This offers a trade-off between execution time and energy efficiency vs accuracy. If an

application requires the highest accuracy, Power Set HD should be used. However, if the key

metric is execution time and energy efficiency, for a loss in accuracy compared to Power Set HD,

but still comparable with other state-of-the-art multilabel classifiers, Multi-Model HD is the clear

choice. If the dataset does not have a diverse combination of labels, such as in genbase, Power

Set HD can potentially be more accurate and energy efficient compared to Multi-Model HD.

Figure 5.9 compares the execution time and energy consumption of state-of-the-art multi-

label classifiers with Multi-label HD on CPU. The data demonstrates that both Multi-Model HD

and Power Set HD training are significantly faster than most other multi-label classifiers. On

average, Multi-label HD is 60.8× faster and 61.8× more energy efficient than other multi-label

68

classifiers during training. The one exception is Naive Bayes on the yeast dataset, however,

although Naive Bayes trains significantly faster than Multi-Model HD on the yeast dataset, Multi-

Model HD is 8.6× faster and 8.7× more energy efficient than Naive Bayes during inference.

Additionally, Power Set HD is only 3.5× slower than Multi-Model HD on datasets with a large

portion of label combinations.

Figure 5.9 also demonstrates that Multi-Model HD is also significantly faster than kNNs

and Naive Bayes multi-label models during inference. Although Multi-Model HD is comparable

in execution time and energy efficiency to SMO and C4.5 during inference, Multi-Model HD

is 174.4×(42.8×) faster and 178.1×(43.1×) more energy efficient than SMO(C4.5) during

training. Overall, combining training and one iteration of inference, Multi-Model HD is 47.1×

faster and 47.8× more energy efficient than state-of-the-art multi-label classifiers on average,

while providing 5% higher classification accuracy. On the other hand, Power Set HD is 24×

faster than state-of-the-art multi-label classifiers on average or approximately 2× slower than

Multi-Model HD for 13% higher accuracy.

4.5.3 Multi-label HD in 3D Flash

Figure 5.9 also shows the latency and energy consumption of Multi-label HD when

accelerated in flash. We implement Multi-label HD encoding and training in flash over the three

datasets. We observe that our 3D-flash implementation of Multi-label HD is on average 610×

faster and 228× more energy-efficient than CPU. Our evaluations show that the performance

and energy consumption of Multi-label HD in 3D-flash increases linearly with an increase in

the number of training samples. This happens because more data samples result in more huge

hypervectors to generate and process. In conventional systems, this translates to a huge amount of

data transfers between the core and memory. In contrast, our 3D-flash implementation generates

hypervectors (encoding) while reading data out of the slow flash arrays and processes (training)

them on the disk itself, reducing data movement.

69

4.6 Conclusion

In this chapter, we design the first accelerator for multi-label HD classification in 3D stor-

age. We also propose two different transformation methods to map HD single label classification

to multi-label classification: Power Set HD and Multi-Model HD. Overall, combining training

and one iteration of inference, Multi-Model HD is 47.1× faster and 47.8× more energy efficient

than state-of-the-art multi-label classifiers, while also achieving 5% higher accuracy on average.

Power Set HD can achieve 13% higher accuracy than Multi-Model HD, but is 2× slower. We

additionally propose in-3D-flash acceleration that further improves the energy efficiency of

Muilti-Model HD training by 228× and speedup by 610×. In the next chapter, we discuss how

we experimentally evaluate the robust property of HDC in a federated learning enviroment. We

then exploit the robustness of HDC to create a more efficient Analog Processing-in-Memory

accelerator.

4.7 Acknowledgements

This work was supported by NSF grants #1527034, #1730158, #1826967, and #1911095.

Chapter 4, in part, is a reprint of material as it appears in J. Morris, Y. Hao, S. Gupta,

R. Ramkumar, J. Yu, M. Imani, B. Aksanli, T. Rosing, ”Multi-label HD Classification in 3D

Flash”. IEEE/IFIP International Conference on VLSI and System-on-Chip (VLSI-SoC), 2020.

The dissertation author was the primary investigator and author of this material.

70

Chapter 5

Evaluating and Exploiting Robustness to
Create a More Efficient Analog Processing-
in-Memory Accelerator for Hyperdimen-
sional Computing Classification and Clus-
tering

5.1 Introduction

In this Chapter of the dissertation we evaluate and exploit the robustness of HDC for

more efficient hardware. To evaluate the robustness of HDC, we utilize a Federated learning

environment where wireless communication is used and can incur errors when transmitting

data. “Federated learning” [73] is a popular model for distributed model training in which a

centralized model stored on a server is “cloned” to some set of devices which all collect the same

features. Each device then updates its local copy of the model and periodically transmits weights

to the server, which are used to update the global model via an averaging operation. Intuitively,

federated learning reduces communication costs by transmitting only model weights instead of

raw training data.

In “Federated learning”, Hyperdimensional (HD) computing offers three benefits [10].

First, an HD “model” is simply a collection of bitvectors which may be less burdensome for

communication than other state-of-the-art methods (especially deep neural networks) where the

71

weights are typically floating point values and are non-negligible in size [74, 33]. While a line of

deep neural networks research tries to reduce the parameters of these models [75], the number of

parameters are still higher than HD. Second, local training of the HD model is extremely simple

and more energy efficient than many existing ML techniques [12]. Third, transmitting faulty

model weights in classical ML algorithms may lead to slower training or convergence to a worse

local optimum compared to HD.

The third point is particularly helpful for “Federated learning”. Transmitting model

parameters to the central learning system is done mostly through wireless communication. The

noise in a wireless channel can incur bit-level errors in the transmitted signal and without error

correction, could lead to faulty models due to the noisy data. This is especially true in urban

areas where distance is not the only factor adding noise to the wireless channel, but also large

buildings and multiple obstacles in the way that degrade the wireless signal.

We additionally take advantage of the simple and highly parallelizable operations in

HD to create an analog PIM accelerator with adaptable model bitwidths to achieve the best

energy and execution time, while maintaining high accuracy based on the SNR of the wireless

channel. This characteristic has made HD the target of various hardware acceleration frameworks,

particularly FPGAs [51], and PIM architectures [18, 12, 76]. Although GPUs and FPGAs provide

a suitable degree of parallelism that makes them amenable to machine learning algorithms such

as deep neural network [77], the complexity of their resources, e.g., floating point units or DSP

blocks, is far beyond the HD requirements, making such devices inefficient for HD. Analog

PIM architectures tackle this problem as they comprise memresistive arrays with intrinsically

non-complex computational capability, which is sufficient for HD operations. Besides block-level

parallelism, another remarkable feature of PIM is eliminating the high cost data movement in the

traditional von Neumann architectures as, in PIM, data resides where computation is performed.

Adding a PIM accelerator for HD computing to perform cognitive tasks provides significant

speed up over utilizing the on-board CPU and saves energy with analog computations and less

data movement. Our contributions in this chapter are as follows:

72

• We propose a PIM architecture that adaptively changes the bitwidth of the model based on

the SNR of the incoming sample to maintain the accuracy of the HD model while achieving

high speedup and energy efficiency. Our PIM architecture is able to achieve 255× better

energy efficiency and speed up execution time by 28× compared to the baseline PIM

architecture.

• We take advantage of HD Computing’s robustness to errors and relax the precision of

ADCs in ISAAC [78]., which introduces errors, but improves area and energy efficiency.

Our architecture also utilizes quantized values to different bitwidths.

• We additionally evaluate utilizing our accelerator in a federated learning environment, by

utilizing a popular network simulator – NS-3 [79] – to model the communication between

devices and simulate wireless noise. We compared HyDREA with other light-weight ML

algorithms in the same noisy environment. Our results demonstrate that HyDREA is 48×

more robust to noise than other comparable ML algorithms. Our results indicate that our

proposed system loses less than 1% Classification accuracy, even in scenarios with an

SNR under 7dB.

• We additionally evaluate HD Clustering to the same wireless communication errors and

found that our proposed system also looses less than 1% in the mutual information score,

even in scenarios with an SNR under 7dB, which is 57× more robust to noise than

K-means.

• Finally, we extend our architecture to support HD Clustering and our results show that our

PIM architecture achieves 289× higher energy efficiency and 32× speed up compared to

the baseline architecture during Clustering.

5.1.1 Related Work

HD computing is light-weight enough to run with acceptable performance on CPUs [31].

However, utilizing a parallel architecture can significantly speed up HD execution time. Imani

73

et al. showed two orders of magnitude speed up when HD runs on GPU [12]. Salamat et al.

proposed a framework that facilitates fast implementation of HD algorithms on FPGA [51]. Due

to the bit-level operations in HD, which is more suitable for FPGAs than GPUs, they claimed up

to 12× energy and 1.7× speed up over GPUs. HD requires much less memory than DNNs, but

the required memory capacity is still beyond the local cache of many devices. Thus, an excessive

amount of energy and time is spent moving data between these devices and their main memory

(off-chip memory in the case of FPGAs).

To resolve this, prior work used PIM architectures, where processing occurs in memory,

eliminating the time and energy of data movement [80, 19, 81]. In FELIX [18], a digital

PIM architecture was proposed. However, digital PIM operations are significantly slower than

equivalent analog PIM operations. Prior work accelerated the inference phase of HD computing

in analog PIM with an associative memory [12]. However, the associative memory only stored

the trained class hypervectors, so the input data needed to be encoded elsewhere and then moved

into the associative memory, negating the benefit of less data movement. Also, the associative

memory only supports inference in HD. In this chapter, we implement HD Computing in an

analog PIM ReRAM architecture based on ISAAC [78]. This architecture allows us to fully

implement HD Computing operations end-to-end from encoding to inference unlike prior work.

Our architecture differs in that we further take advantage of HD Computing’s robustness to noise

and relax the precision of the ADCs. We target the ADCs as they are the highest energy overhead

in the architecture [78, 26].

Several works claimed that HD signal representations are inherently robust to various

forms of noise [82, 83, 13, 14]. Work in [83] investigated the robustness of HD to RTL level

errors (e.g. bit-flips) during computation and found an HD-based approach tolerating an 8.8×

higher probability of bit-level errors. Similar results are reported in [49].

Work in [83] presented preliminary evidence showing that HD delivered superior perfor-

mance to conventional data representations in the presence of bit-level errors during processing.

Similarly, bit-level errors occur during data transmission as a result of channel noise and interfer-

74

Figure 5.1. Overview of the PIM architecture used by HyDREA.

ence from multiple users. To the best of our knowledge, there has been no systematic empirical

(or theoretical) evaluation of HD as an avenue for achieving robust learning when data must be

communicated over noisy channels. This chapter compares HD computing with a “Federated

learning” approach for training other ML models and proposes a new analog PIM architecture to

accelerate the whole HD computing algorithm from training to inference.

5.2 HyDREA Analog PIM Architecture

Combining the energy savings by eliminating data movement and a parallel architecture

suitable for dimension-wise parallelism of HD algorithms, analog PIM, with its simple arithmetic

support, appears as a promising solution for HD computing. A PIM architecture needs to support

three classes of in-memory operations; (1) dot-product for the matrix multiplication in encoding

and the similarity metric in inference, i.e., the H⃗ · C⃗ j part in of the cosine similarity in which

each dimension of H and C j is fixed-point (results of binary vector additions), (2) addition and

subtraction for training and retraining where, we add H j
i s to produce C j which denotes the final

class hypervector of inputs with label j, and (3) search operation to find the best matched class

in inference, by finding the maximum of cosine similarity scores between the encoded query

H and all class hypervectors. The baseline architecture provided by ISAAC [78] is perfect for

mapping HD Computing to an analog PIM architecture because it supports all 3 of the above

operations. This can be seen in Figure 5.1 C.

75

(1) Dot Product: The top half shows how the dot product operation is implemented in

our analog PIM crossbar. Assume each resistive cell in the first (i.e., the shown one) column

is programmed to resistances R11 and R21 where Ri j belongs to row i and column j. Voltages

V1 and V2 are applied to the first and second rows. The corresponding generated current flows

through the column is I1, which shows the result of dot-product. A larger I shows larger number

and since I =V R, the resistance of memristive cells need to be proportional to the inverse of the

value they represent. For 2D vectors, A and B, the first set of inputs, A, is programmed into the

resistances R11 and R21 having the conductances of (A11 = 1R11 =C11 and A21 = 1R21 =C21).

Afterwards, the second set of inputs, B, is applied as the voltages at each row (B11 = V1 and

B21 =V21). As the figure shows, by applying input values as the voltages to the rows and storing

values as conductances, Ohm’s law dictates that the current flowing through each resistor is

the product of the conductance and applied voltage. Following Kirchhoff’s law, the current

accumulated at each column is equal to the sum of all the currents flowing through resistors of

the column. That is, the total current is I1 =C11 ·V1 +C21 ·V2. For our design, we store the class

hypervectors as the conductances of the ReRam matrix and the query HV is sent as the DAC

input voltages.

(2) Addition: The bottom half of Fig. 5.1(c) shows how the addition is implemented in a

crossbar analog PIM architecture. Addition works analogous to the dot product, except all the

input voltages are set to logical 1 (i.e., Vhigh). This, the aggregate current of passing through the

first column is I1 =C11 +C21.

(3) Search: Upon performing dot-product between the query hypervector with all class

hypervectors, the search operation needs to find the class with the maximum similarity score. In

analog PIM, search is implemented using nearest distance search, which finds the most similar

value for a given reference. However, we desire a search for the maximum value (so the reference

is unknown). But we know the maximum value of the cosine similarity metric is 1, hence we

can implement our maximum value search with the already supported nearest distance search by

searching for the value that has the highest similarity to reference 1. Hence the returned value

76

will be maximum score. Note that similarity check returns the closest value (absolute difference)

by prioritizing MSB bits.

HyDREA takes advantage of HD computing’s robustness to noise to reduce computational

complexity without losing a significant amount of accuracy. By reducing the bitwidth of the

ADCs in analog PIM, HyDREA is able to achieve significant energy savings. However, it comes

at a cost of inaccurate computations. However, HD computing is robust to hardware failures and

inaccurate computations, making it a perfect candidate to be accelerated by our design. With our

bitwidth reduction optimization, HyDREA is able to achieve the energy efficiency of digital PIM

with the speed of analog PIM.

5.2.1 Architecture

Fig. 5.1(a) shows the architecture HyDREA constituting of multiple In-Situ Multiply

Accumulate (IMA) blocks. In our implementation, HyDREA comprises of 24 IMA blocks. The

design choice of using 24 IMA blocks was to ensure that our architecture can fit the largest

dataset tested. This is critical because if all the data does not fit, data would need to be offloaded

and stored off chip. The load and store operations in our ReRAM array are very costly and

would incur a significant amount of latency to our design. IMA blocks are memory crossbars

with the capability of performing analog addition and dot-product operations. Each IMA block

consists of 8 crossbar arrays, each of which contains 128 rows and 128 columns of memory

cells. There are 8×128 Digital-to-Analog (DAC) blocks per IMA, i.e., 128 per each crossbar

arrays, allocated to the rows to convert the incoming digital signal (voltage) to analog (current)

in order to perform computation. There is also a shared Sample and Hold (S+H) block, and

shared Analog-to-Digital (ADC) blocks in each IMA. Fig. 5.1(b) shows an example of a crossbar

memory array. Each bitline is connected to all the wordlines through memresistive cells, which

have stored the information (e.g., values of class dimensions) by changing the resistance level of

each cell. Each memresistive cell in our configuration is a 2 bit MLC, i.e., it has four resistance

states to be able to represent 2 bits. Storing the HD model, i.e., the values of classes dimensions,

77

Figure 5.2. Example of Inference in HyDREA.

needs to program the NVMs, which is a slow write operation. However, it is only done one

time before beginning the inference step, so the overhead is amortized in the entire course of

inference.

Figure 5.2 shows an example of how inference is performed in HyDREA. The first step

is to encode the input. The input is stored in the eDRAM buffer of the encoder tile. When a new

input shows up, it allows the current input to proceed with its next operation. This operation is

itself pipelined (shown in Figure 5.2). In the first cycle, an eDRAM read is performed to read the

input. These values are sent over the shared bus to the IMA for the encoder and recorded in the

input register (IR). After the input values have been moved, the IMA will perform the matrix

multiplication during the next 16 cycles.

In the next 16 cycles, the eDRAM is ready to receive other inputs and deal with other

IMAs. Over the next 16 cycles, the IR feeds 1 bit at a time for each of the input values to the

crossbar arrays. The first 128 bits are sent to crossbars 0 and 1, and the next 128 bits are sent to

crossbars 2 and 3. At the end of each cycle, the outputs are latched in the Sample Hold circuits.

In the next cycle, these outputs are fed to the ADC units. The results of the ADCs are then fed to

the shift-and-add units, where the results are merged with the output register (OR) in the IMA.

As shown in Figure 5.2, at the end of cycle 19, the OR in the IMA has its final output

value. This is sent over the shared bus to the central units in the tile. The central OR contains the

78

final results for encoding at the end of cycle 20. During this time, the IMA for the next input has

already begun processing to maintain utilization. Finally, in cycle 21, contents of the central OR

are written to the eDRAM that will provide the inputs for the similarity check. The similarity

check is then performed with the same pipeline as it too is a matrix multiplication.

5.2.2 Challenges

To perform the computation in analog, PIM needs to convert the signals into analog

domain. For this, it requires to employ DAC and ADC converters at the inputs and outputs, re-

spectively. As shown in previous work, these signal domain converters contribute to a significant

overhead in the residing architecture [78, 26], which reaches up to 89% of the system power

consumption. However, the overhead of these converters can be significantly alleviated as it is

exponentially tied in the precision of converters. This, obviously, increases the error as the signal

levels are quantized. Fortunately, it is less problematic in the context of HD computing thanks to

its remarkable tolerance to error, as information is spread over all the independent and identically

distributed dimensions of vectors, so failing the computation on a certain portion of dimensions

(bits) should not affect the overall result noticeably.

Furthermore, the addition of ADCs for conversion is the largest overhead of using analog

PIM for computation. The ADCs take up a huge amount of area as with each bit of resolution

added, their area doubles. Prior work tried to alleviate this by sharing the large ADC across

multiple blocks [78]. This approach can slow down computation. However, in this chapter we

significantly reduce this overhead by using extremely low precision ADCs (as low as 2-bits),

which our application, HD Computing, can handle.

5.2.3 HyDREA: Analog PIM Architecture Optimiztions

ADC Reduction: As in Section 5.2.2, the energy overhead of conversion from the digital

domain to the analog domain and back dominates the energy usage of analog PIM, and this is

handled by the ADC blocks. Thus, our task to improve the energy efficiency of analog PIM

79

12345678

ADC Bitwidth

0

20

40

60

80

100

A
re

a
 S

a
v
in

g
s
 (

%
)

(a)

12345678

ADC Bitwidth

0

20

40

60

80

100

E
n

e
rg

y
 S

a
v
in

g
s
 (

%
)

(b)

Figure 5.3. Area savings (a) and energy consumption savings (b) as the bitwidth of the ADC is
dropped.

focuses on improving the energy efficiency of the ADC blocks. We achieve this by reducing the

precision of the ADC blocks. Figure 5.3 shows the expected energy and area savings of reducing

the bitwidth of an ADC. The results from the energy breakdown of ISAAC shows 89% of energy

is used on ADC conversion. Then, knowing that each bit we drop from the ADC reduces ADC

energy by approximately half, we can extrapolate the expected savings. As the figure shows, for

each reduction in the bitwidth of an ADC, we expect the area and energy consumption to halve.

This is because in order to add support for each additional bit, the amount of circuit area doubles

and therefore, the energy usage approximately doubles. Instead of using 8-bit ADC blocks in

analog PIM that achieve full precision conversion to the digital domain, if we reduce the bitwidth

of the ADCs we can reduce the energy usage by half for every bit of the ADC we drop. This

will save a significant amount of energy during the analog to digital conversion step in analog

PIM. However, as mentioned our computations will lose accuracy and as we drop more bits, our

computations will become more inaccurate as we sacrifice precision for energy efficiency.

We can reduce our ADC blocks from 8 bits to n bits. By doing this, we will convert the

first n most significant bits and omit the 8− n least significant bits. For example if we use a

6 bit ADC block to convert 167 we would lose the last two bits and output 164 instead. This

leads to good approximate conversions with large numbers, but very poor approximation with

smaller numbers. If we use a 6 bit ADC block to convert 7 we would get 4 which is almost

50% off. Furthermore, we do not produce inaccurate conversions every time. If we convert 172

with a 6 bit ADC block, we wold get 172 because the last two bits of 172 are both 0. Therefore,

80

0 2 4 6 8 10 12 14

Training Iterations

50

60

70

80

90

A
c

c
u

ra
c

y
 (

%
)

8 Bit Naive HyDREA

Figure 5.4. Impact of HyDREA using a 4 bit model on training compared to training a naive
bitwidth reduction 4 bit model and training a 8 bit model.

we produce exact computations when the bits we would drop are all zero. Our ADC block

conversions fall into three categories: exact conversions, slightly inaccurate conversions, and

highly inaccurate conversions. Since HD computing utilizes dot product as the similarity check,

the larger computations dominate the dot product operation and therefore, the highly inaccurate

conversions of smaller operations do not effect the accuracy of the HD model. Therefore, we are

able to take advantage of reducing the bitwidth of ADCs to create an analog PIM architecture for

accelerating HD computing that does not incur a significant loss in accuracy.

DAC Reduction: We additionally reduce the energy and execution time overhead of

analog PIM by reducing the number of DACs and IMA blocks needed. We achieve this by

reducing the precision of the HD model bitwidth.

Due to HD computing’s robustness to noise, we could simply reduce the bitwidth of the

HD model and achieve efficiency gains without a significant drop in accuracy. When reducing

the bitwidth further, training the HD model becomes unstable and the accuracy does not converge.

Figure 5.4 compares training an HD model with 4 bits of precision and training the same model

with a full 8 bits of precision. The details of the setup and software used to obtain these results

can be found in Section 5.4. The top line shows that training an 8 bit model is much smoother and

clearly improves in each iteration compared to training with reduced bitwidth. This is because,

as HVs are added up and adjusted with retraining, some dimensions may saturate the available

bitwidth. Any additional change to dimensions with saturated bitwidths that attempt to change

81

the dimension in the direction of the bitwidth saturation does not improve the model further. For

instance, when using a bitwidth of 4, the maximum positive value a dimension can represent is

7. If during retraining, the dimension would be increased further, it would instead stay at 7. In

contrast, if the dimension is adjusted with subtraction, it would decrease normally despite any

previous attempts to increase the dimension further. This causes over-adjustments in the HD

model during retraining when an abnormal change is applied. This is why the accuracy does not

converge during retraining with greatly reduced bitwidths. HyDREA is able to improve upon the

naive design of simply reducing the bitwidths by additionally modifying the HD algorithm to

complement the bitwidth reduction.

The HD model is initially trained by adding up all of encoded data points into one class

HV for each class. When reducing the bitwidth of the HD model from 8 bits to 4 bits, 4 bits may

not provide enough precision for model convergence during retraining, preventing the HD model

from performing effectively at lower bitwidths. To subvert this problem, we propose to analyze

the initial HD model to identify key dimensions that need to utilize the full bitwidth available.

HyDREA then locks these dimensions to either the maximum or minimum value to ensure the

the HD model does not drastically change during retraining.

We propose that the largest dimensions in both the positive and negative directions that

saturate the desired bitwidth are key dimensions, as dot product is used as the similarity metric.

Hence, the largest dimensions in both positive or negative direction contribute the most to the

resulting dot product. Dimensions with the largest values in either direction show that most

data points from that class agree in that dimension, i.e. a class HV that represents the class well

should ensure these dimensions are not over-adjusted.

To support bitwidth reduction, we propose to modify the initial training algorithm of HD.

To identify key dimensions in the HD model to lock, our design first performs the initial training

with a full 8 bit representation. HyDREA copies the initial class HV and takes the absolute value

of all the dimensions in the class HV and finds the indices of the largest α dimensions that would

saturate the desired bitwidth. They are set to the maximum (minimum) value if they saturated in

82

the positive (negative) direction. The other dimensions are scaled down to the desired bitwidth.

This is done for all k class HVs. The initial model is then loaded into our PIM architecture.

The dimensions that were previously set to the maximum or minimum value are locked from

changes during retraining to prevent the HD model from over adjustments. HyDREA only locks

dimensions that would saturate the desired bitwidth. If the dimensions do not saturate the desired

bitwidth, the bitwidth is sufficient and no change is needed. This lock is achieved by not enabling

the write bits at locked dimensions.

Figure 5.4 compares training an HD model with the naive approach of simply reducing

the bitwidth to 4 and training the same model with HyDREA using the same bitwidth. The graph

shows how HyDREA improves upon the naive design, as during retraining the model is clearly

improving and increasing in accuracy like the full 8 bit model. Meanwhile, the naive design’s

accuracy fluctuates greatly and does not converge.

5.2.4 HyDREA: Supporting HD Clustering

The HD Clustering algorithm is very similar to the popular K-means algorithm [22]. The

first step of HD Clustering, like Classification is to first encode the data into high-dimensional

space. HD Clustering then operates on the encoded HVs as the main datatype. HD Clustering,

like K-means, then selects random centers to start. HD Clustering then iterates through all

of the encoded data points while comparing them with the cluster centers using a similarity

metric and assigning each point to the center it is most similar to. In K-means, that similarity

metric is the Euclidean distance. In HD, we utilize cosine similarity for non-binary values, but

Euclidean distance could also be used. However, HD maps data into high dimensional space,

D = 10,000, so calculating cosine similarity is much more efficient. After all the points are

labeled, the new centers are chosen and the process is repeated until convergence or the maximum

number of iterations is reached. Convergence occurs when no point is assigned to a different

cluster compared to the previous iteration. The main difference is that HD Clustering adds a

pre-processing step to the Clustering algorithm that maps the data into high dimensional space,

83

or hypervectors.

Here we discuss how we can use HyDREA to support HD Clustering. For HD Clustering,

instead of using Euclidean distance, we use cosine similarity to measure the distance between

the samples and the cluster centers. This makes mapping HD Clustering onto our existing

architecture relatively simple as for Classification, HyDREA already accelerates the similarity

checking part of HD inference. Additionally, we use the same encodings for Clustering and

Classification, so that accelerator can be reused as well. Therefore, to map HD Clustering to

HyDREA, we feed the samples in the original feature domain into our encoding block. Then, to

update the distances between the samples and the cluster centers, we feed the cluster centers into

the inference accelerator as the class HVs and the samples as the query HVs. This then gives us

both the distance in cosine similarity between each sample and all the cluster centers as well as

the cluster that each sample is most similar to. The next step of the HD Clustering algorithm,

which is to chose the next cluster centers is too complex to accelerate in PIM. However, 98% of

the time is spent on encoding and similarity checking. Therefore, offloading updating the cluster

centers to the host CPU does not incur a significant amount of overhead.

5.3 Network Simulation

Figure 5.5 shows an overview of our federated learning framework and how devices

communicate. There are two kinds of devices in our network edge devices and the central node.

Edge devices are where local samples are generated. During training, they use a cut down

version of our accelerator for HyDREA that just implements encoding to map the data into HD

space. The sample is then sent to the central node, where on its way there, the encoded sample is

subject to wireless communication noise. The central node’s purpose is to collect all encoded

samples from all of the edge nodes, train a global model, and perform inference. It too uses

our accelerator, except it has full training and inference functionality. Once the global model is

sufficiently trained, it can be used for inference. Upon inference, the edge device again encodes

84

Figure 5.5. An Overview of our framework for communicating in the federated learning
enviroment.

the input sample to HD space. The sample is then sent to the central node wirelessly incurring a

varying degree of noise. The central node then performs inference on the trained HD model and

sends the resulting label back to the edge device.

We evaluate the feasibility of HyDREA in a “Federated learning” environment, by utiliz-

ing a popular network simulator – ns-3 [79] – to model the communication between devices and

simulate wireless noise. In the results section, we compare HyDREA with other ML algorithms

in the same noisy environment. The ns-3 physical layer model calculates bit error rates (BER)

taking into account the Forward Error Correction (FEC) present in WiFi standards such as

IEEE 802.11a/g/n. The model first calculates the received signal–to–noise ratio (SNR) based on

parameters used in the simulation model and then calculates a packet error rate (PER) based on

the mode of operation (e.g. modulation, coding rate) to determine the probability of successfully

receiving a frame (packet success rate - PSR). The received signal SNR depends on the following

parameters:

• Transmission powers of devices: Since noise power is usually constant, increasing the

transmission power results in a higher SNR, thus lower BER. However, since energy

efficiency is crucial in many applications, IoT devices usually operate in low power modes,

85

Figure 5.6. SNR/BER vs distance for BPSK modulation with Friis prop. loss.

resulting in low SNR.

• Distance between communicating nodes: As two communicating nodes get further away,

the received signal strength decreases, resulting in low SNR.

• Propagation loss: The loss in the communication channel is different for different topolo-

gies. For example, if two devices are in the line-of-sight of each other, this scenario

would incur much less loss compared to them communicating in a dense downtown with

buildings blocking the view.

• Interference: When many devices communicate at the same time, each other’s signals act

as an interfering signal, which degrades the demodulation and decoding performance at

the receiving end. In this case, we have to calculate signal-to-interference-plus-noise ratio

(SINR).

We study how HD Classification and Clustering performance changes with varying

transmission power levels, distance, different propagation loss scenarios, and under different

number of interfering devices. Additionally, the error rate depends on the modulation, coding and

error correction mechanism adopted by the WiFi technology. Ns-3 allows us to study the error

rates for modulation schemes such as BPSK, QPSK, 16to1024 QAM, under binary convolutional

coding for rates 1
2 , 2

3 , 3
4 , and 5

6 . We can both enable or disable forward error correction (FEC)

86

Figure 5.7. Model of a Downtown Topology Represented in NS-3, Where Buildings buildings
have higher signal attenuation compared to open-air and they block the line-of-sight when they
are placed between the transmitters (blue) and the receiver (green).

in all of these cases. Our experiments use the WiFi protocol stack (802.11n), which is the

most matured communication standard implementation in ns-3. There are efforts on modeling

low-rate and low-power standards for IoT, but they are not fully developed yet. Hence, we

modify the 802.11 PHY and MAC layer parameters and scale data rate and power values to

imitate communication in an IoT environment. The modulation techniques and coding schemes

of 802.11n, namely BPSK, M-ary QAM, and Direct-Sequence Spread Spectrum (DSSS), are

common with many low-power wireless protocols [84]. Different techniques have different SNR

vs BER (Bit error rates) curves, but these curves are the same across protocols [85, 86, 87].

Since we adjust the parameters of 802.11n, we can simulate the characteristics of low power IoT

protocols by operating at the low SNR regions of the SNR-BER curve. We vary the distance

between the transmitter and the receiver to collect data at various SNRs. We evaluate with

the Friis propagation loss model. Figure 5.6 shows the BER versus distance curve between

transmitter and receiver. We additionally test error rates from other sources of noise. Such

as a downtown scenario with buildings in between the nodes shown in Figure 5.7 or a highly

congested network. We use the hybrid building propagation loss model consisting of Okumura-

Hata [88], ITU-R 1411 and ITU-R 1238 [89] loss models. The model includes the multi-path

fading loss through building walls for both line-of-sight (LoS) and no LoS cases. There are also

random communication attempts between other nodes in the network resulting in dynamic BER

87

and packet losses.

We compare HD with two baseline approaches. In the first, we assume that corrupted

data packets are discarded and must be re-transmitted. This ensures the accuracy of the resulting

model, but increases latency and energy consumption – especially in congested networks. Second,

we train on the corrupted data. This eliminates the need to re-transmit packets but may slow

model convergence or cause the model to converge to a worse local optimum (recall that Neural

Networks are a non-convex optimization problem). Due to the robustness of HD Computing

to noise, the HD model is able to learn more effectively from corrupted packets than other ML

models, eliminating the need to re-transmit data while ensuring a high-quality result. Low-power

networks such as LoRaWAN and LPWAN usually operate at very low SNRs [90] which can result

in error rates ranging from 10−5 to 10−1. Many applications require perfect data reconstruction

at the receiver, so it is often aimed for networks by design to have an error rate at upper levels of

this range. We show that HD is very resilient to errors, such that one can deliberately use very

low-power for communication and operate at extremely low SNRs, going beyond the error rates

that of standard network configurations, while still getting acceptable accuracy for the learning

tasks. This comes with large energy savings that is crucial for resource-constrained IoT devices.

We additionally compare HD Computing robustness to Error Correction Codes (ECC) in wireless

communication in Section 5.10.

5.4 Evaluation

5.4.1 Experimental Setup

We verified the functionality of HyDREA using both software and hardware implemen-

tations. In software, we implemented HD Classification and Clustering on an Intel Core i7

7600 CPU using an optimized C++ implementation. For the hardware implementation, we

used an analog-based PIM architecture proposed in [78]. We modify the ISAAC architecture to

more efficiently run for HD Computing by relaxing the bitwidth resolution of the ADCs. Our

88

Table 5.1. Dataset Information

Dataset Type # Classes # Train Data # Test Data # Features
UCIHAR [41] Classification 6 6,213 1,554 561

CARDIO [43] Classification 2 1,913 213 21

FACE [42] Classification 2 22,441 2,494 608

ISOLET [40] Classification and Clustering 26 6,238 1,559 617

Hepta [91] Clustering 7 N/A 212 3

Tetra [91] Clustering 4 N/A 400 3

Two Diamonds [91] Clustering 2 N/A 800 2

Wingnut [91] Clustering 2 N/A 1016 2

Iris [91] Clustering 3 N/A 135 3

Table 5.2. Impact of Dimensionality and Data Representation on the Robustness of HD Comput-
ing Classification and Clustering Accuracy.

Dimensionality 10,000 8,000 6,000 4,000 2,000

RP Binary (Classification) 0.58% 0.82% 1.44% 1.89% 2.39%

ID-Level Binary (Classification) 0.56% 0.79% 1.52% 1.78% 2.42%

RP (Clustering) 0.58% 2.31% 2.65% 2.86% 3.24%

ID-Level Binary (Clustering) 0.66% 2.48% 2.52% 2.79% 3.13%

ID-Level Int (Clustering) 44.89% 46.60% 64.71% 72.82% 72.13%

ID-Level Float (Clustering) 85.17% 85.19% 85.23% 85.43% 85.55%

PIM design works at 1.2GHz and uses n bit ADCs, 1 bit DACs, and 128×128 arrays, where

each memresistor cell stores 2 bits. To estimate the energy consumption and execution time of

HyDREA, we utilize the detailed energy and execution time breakdown of an ISAAC tile found

in the original ISAAC paper [78]. We then calculate the estimated execution time and energy

by summing up the required operations for HD Computing. We tested our approach for HD

Classification on four practical Classification applications and for HD Clustering on six datasets

from the Fundamental Clustering Problem Suite [91], shown in Table 5.1.

89

02468

ADC Bitwidth

90

91

92

93

A
c

c
u

ra
c

y
 (

%
)

(a) ISOLET

02468

ADC Bitwidth

94.5

95

95.5

96

96.5

A
c

c
u

ra
c

y
 (

%
)

(b) UCIHAR

02468

ADC Bitwidth

92

93

94

95

96

A
c

c
u

ra
c

y
 (

%
)

(c) FACE

02468

ADC Bitwidth

99.4

99.6

99.8

100

A
c

c
u

ra
c

y
 (

%
)

(d) CARDIO

Figure 5.8. Impact of bitwidth reduction on accuracy of HyDREA.

(a) Retraining (b) Inference

Figure 5.9. Energy consumption and execution time of HyDREA using different model bitwidths
during training and inference with an ADC bitwidth of 2.

5.4.2 HyDREA and Dimensionality

To test the impact of dimensionality on HD Classification and Clustering robustness,

we utilized the 6.64 SNR test with all datasets. Table 5.2 summarizes the results, where each

entry in the table is the average accuracy for all datasets at that dimensionality. There is a clear

relationship between HD robustness to errors and dimensionality. One may think that we can

achieve faster execution and lower energy consumption with lower dimensionality; but due to

our PIM’s highly parallel nature, as long as the HD model fits into the PIM arrays, execution

90

Table 5.3. Speedup of HyDREA over a digital PIM implementation with the same bitwidth as
HyDREA with the same area.

Dataset ISOLET UCIHAR CARDIO FACE

Retraining 110.4× 111.8× 105.6× 115.2×

Inference Same Bit Digital 128.9× 137.3× 139.9× 136.1×

time and energy does not change. Since our design requires a highly robust HD model, the

rest of our tests utilize a dimensionality of D = 10,000. Additionally, the table shows that the

data representation highly impacts the robustness of HD. Binary values are the most robust

because each individual bit flip impact the correctness of the end result the same. However, with

other representations such as floating point, depending on the bit flipped, the error can increase

significantly. For instance, if an exponent bit is flipped, that would incur significantly more

error than if a mantissa bit was flipped. For the most robust models, one should transmit binary

encoded HVs.

5.4.3 HyDREA and the Impact of our Analog PIM Architecture on HD
Classification

Figure 5.8 shows the impact of ADC bitwidth reduction on HD model accuracy for

four practical applications. The accuracy of each model reduces as the bitwidth drops, but not

significantly. When the ADC bitwidth is 4, the average accuracy drop across all applications is

1.5%. This is because our ADC blocks provide highly accurate approximations for high value

conversions, and the high value numbers dominate the dot product output. Thus, the resulting

dot product closely approximates the exact version. Also, the resulting dot product does not need

to be exact, owing to HD’s robustness to hardware inaccuracies. Despite inaccurate results, the

classes are separated enough that slight variations still result in the HD model selecting the same

output class. Overall, HyDREA reduces bitwidth to 2 while only losing 1.8% in accuracy.

Figure 5.9 shows the impact of our analog PIM architecture with 2 bit ADCs and varying

91

(a) Comparison With THRIFTY [64] (b) Impact of NVME on HD

Figure 5.10. Execution time comparison of HyDREA with THRIFTY, a processing in storage
architecture for HD Computing and the impact of higher bandwidth memories such as NVME
on HD Computing.

Figure 5.11. Accuracy of Design as the SNR varies with an ADC bitwidth of 2 and varying
model bitwidth.

model bitwidths on energy consumption and execution time. Our proposed architectural changes

drastically improve the energy efficiency and execution time of HD. Our proposed architecture

uses 2 bit ADCs and 1 bit models, and achieves 32× (29×) speed up and 232× (267×) higher

energy efficiency than the baseline architecture during inference (retraining). Also, in high SNR

cases, these models achieve comparable accuracy to full precision models.

92

5.4.4 HyDREA vs Processing in Storage and Digital Processing in
Memory

Figure 5.10 compares HyDREA execution time during training to THRIFTY [64]. The

results show that due to the slower digital operations in THRIFTY, as well as the higher latency of

computing near flash storage, HyDREA is on average 180× faster during training than in storage

computing. Furthermore, Figure 5.10 also compares the impact of high bandwidth memory,

or specifically NVME storage, on HD Computing latency. We perform this test on the same

machine where the only difference is for HDD, we store all data on a slow spinning hard drive

and for NVME, we use a PCIe generation 4.0 NVME storage drive. The results clearly show

that the higher bandwidth does not impact the overall latency of HD Computing. Therefore, in

storage computing solutions such as THRIFTY do not have much to gain from utilizing NVME

technologies. Thus, analog processing in memory architectures such as HyDREA are more

capable of delivering faster execution times than digital processing in memory architectures.

In Table 5.3 we also compare HyDREA with a FELIX [18] digital PIM based implemen-

tation of HD Computing. We compare using the same model bitwidths and memory area. Our

results show that HyDREA is 111× faster than the digital PIM design during retraining and 136×

faster than the digital PIM design during inference on average. because the individual operations

in analog PIM are much faster than they are in digital PIM. HyDREA achieves better speed up

during inference than retraining when compared to digital PIM because inference only involves

the dot product operation while retraining includes addition operations to adjust the HD model.

Due to relying on nor based operations in digital PIM, execution time scales quadratically for

multiplications. Therefore, because analog PIM directly implements multiply and accumulate,

HyDREA achieves better speed up during inference and retraining.

5.4.5 HyDREA and the Impact of SNR on HD Classification

Figure 5.11 shows the impact of SNR on model accuracy in our analog PIM architecture.

We can load in low bitwidth models when the channel has a high SNR to achieve the best energy

93

Figure 5.12. Accuracy of HD Classification as the SNR varies with different encodings and data
representations.

consumption and execution time. However, during high network traffic, longer communication

distance, or other factors that incur a high amount of noise on the wireless channel, we need to

load in the higher bitwidth models to maintain accuracy. This is because our highly quantized

models are taking advantage of HD’s robustness to noise by effectively adding more noise to

the computation. Therefore, if the environment, in this case wireless communication, is also

adding noise, the robust property of HD does not hold up. However, if we adaptively switch

which model is loaded based on the SNR, we can maintain high accuracy and achieve significant

energy and execution time savings when possible.

Figure 5.12 shows the impact of SNR on model accuracy for two different encodings as

well as different datatype representations. Results from all datasets show a similar pattern with

increasing bit error rate. HD using integer and binary hypervectors is much more robust to noise

as compared to floating-point representations. Since floating-point numbers are represented with

mantissa and exponent, if the exponent bits are flipped because of an error, the number itself

94

changes significantly. We additionally compare to a DNN for the ISOLET dataset [92]. The

DNN model uses a 16bit floating point representation for its weights, so we can observe the same

problem with robustness in DNNs. The data also demonstrates that the random projection (RP)

encoding offers similar robustness to noise as the ID-level encoding with binary values. This is

likely because our implementation of random projection also encodes hypervectors to binary

values (through a final sign function), so both the random projection and quantized ID-level

encodings lead to similarly robust binary hypervectors. Lastly, random projection achieves on

average, the same accuracy as ID-level, but beats ID-level in some datasets, such as ISOLET,

while loses in accuracy to others, such as CARDIO and EMG, as both of them are time-series

signals, which random projection does not classify well.

5.4.6 HD vs. Other Classifiers

We also compared HD to state-of-the-art classifiers (Linear Regression (LR), MultiLayer

Perceptron (MLP), Perceptron, Support Vector Classification (SVC)) and evaluated its robustness

to noise on our 4 datasets. Figure 5.13 shows the results for 1) data with no noise, and 2)

data corrupted with SNR of 2.21. We choose an SNR or 2.21 because it is the worst practical

scenario in our ns-3 setup. All classifiers have comparable accuracy with no noise. While HD

stays robust with a significant amount of noise, the other classifiers become very inaccurate.

The high-dimensional nature of the hypervectors used in HD leads to significant redundancy in

representation which improves its robustness to noise by 48× compared to other classifiers at

2.21 SNR. In other words, HD loses 48× less accuracy compared to the other classifiers. This

gives us a metric where noise robustness is defined by how well the model maintains accuracy

with the added wireless noise.

5.4.7 HyDREA vs State-of-the-Art PIM DNN Accelerator

In Table 5.4 we compare HyDREA with a State-of-the-Art DNN PIM accelerator Q-

95

Figure 5.13. Comparison of the Robustness of HD to other Classifiers

Table 5.4. Comparison of HyDREA with the State-of-the-art DNN PIM Accelerator Q-PIM [1]

Design Exact Accuracy 2.21 SNR Accuracy Latency(s) Energy(J)

HyDREA 93.4% 92.1% 9.98×10−6s 8.02×10−7J

Q-PIM [1] 98.5% 10% 4.1×10−3s 4×10−4J

Baseline 8 4 2 1

Bitwidth

10-8

10-6

10-4

10-2

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

n
J

)

(a) Energy

Baseline 8 4 2 1

Bitwidth

10
-8

10
-6

10
-4

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

(b) Execution Time

Figure 5.14. Energy consumption and execution time of HyDREA for one Clustering iteration
using different model bitwidths with an ADC bitwidth of 2.

PIM [1]. The results show that State-of-the-Art DNNs are able to achieve higher accuracy on

more complex datasets such as MNIST. However, in the presence of wireless communication

errors, HD Computing is able to maintain its accuracy, while traditional DNNs become unreliable

and return random classification results. Furthermore, due to HD Computing’s light weight

operation, HyDREA achieves a 411× speedup and 498× energy efficiency improvement over

96

Figure 5.15. Comparison of HD Clustering with K-means Accuracy With no Bit Errors

Q-PIM.
5.4.8 HyDREA Architecture Impact on Clustering Energy Consumption

and Execution Time

Figure 5.14 shows the impact of our analog PIM architecture with 2 bit ADCs and

varying model bitwidths on energy consumption and execution time for HD Clustering. Our

proposed architectural changes drastically improve the energy efficiency and execution time of

HD Clustering. Our proposed architecture uses 2 bit ADCs and 1 bit models, and achieves 32×

speed up and 289× higher energy efficiency than the baseline architecture during Clustering.

Also, in high SNR cases, just like for Classification, these models achieve comparable accuracy

to full precision models.

5.4.9 HD Clustering Accuracy and Robustness vs K-means

We also compared HD to a state of the art Clustering algorithm, K-means, and evaluated

its robustness to noise. As can be seen from Figure 5.15, K-means has a comparable accuracy to

HD when there are no bit errors in the dataset. To measure Clustering accuracy, we use a metric

based on the mutual information between the cluster assignments returned by our algorithm and

ground truth cluster labels. The metric is one when the predicted labels are perfectly correlated

with the ground truth and zero when they are totally uncorrelated. Although accuracy is similar

without errors, when we introduce errors HD Clustering is significantly more robust. Our

proposed system also looses less than 1% in the mutual information score, even in scenarios

97

Figure 5.16. Accuracy of HD Clustering as the SNR varies with different encodings and data
representations vs K-means.

with an SNR under 7dB, which is 57× more robust to noise than K-means.

Figure 5.16 compares HD Clustering vs K-means Robustness to bit error rates. K-means

has similar robustness to bit error rates as HD using integer and floating point representations,

until a breaking point around 10−3 bit error rate for most datasets. This is especially clear with

the Isolet dataset, which is the biggest dataset we use. HD Clustering is able to maintain accuracy

for much larger bit error rates than K-means when running Isolet. HD gains this additional robust

property from the high-dimensional nature of the hypervectors used in HD computing leading to

significant redundancy in the representation which improves robustness to noise similar to our

Classification results.

98

Figure 5.17. Impact of Dimensionality on Decoding Quality.

Additionally, similar to our Classification results, the results from all datasets show a

similar pattern where HD using integer and binary hypervectors is much more robust to noise

as compared to floating-point. Since floating-point numbers are represented with mantissa

bits and exponent bits, if the exponent bits are flipped because of an error, the number itself

changes significantly, thus incurring more noise. Integer representation performs closer to

binary. Random projection provides similar accuracy to binarized ID-Level as random projection

encodes hypervectors to binary values as well. Binary representation is the most robust as each

individual bit flip incurs the same proportion of noise.

5.4.10 Impact of Bit Error Rates on Decoding

Some HD Computing encoding methods have the property where the encoded HV can

be decoded back into the original feature vector. For instance, with access to the ID and LV HV

banks used to encode the HV in ID-Level, one can decode the encoded HV to get back the original

feature vector with some errors [35]. In Figure 5.17, we show the impact of dimensionality

on the quality of the recovered feature vector using the ID-Level encoding. The y-axis shows

the mean-squared-error of the original feature vector with the decoded one. We test against a

range of bit error rates that could be seen in wireless communication as well as across different

dimensions. The results indicate that with higher dimensionality, we are able to recover a better

99

quality sample in the original feature space. Additionally, as the bit error rate increases, our

decoding quality decreases. The decoded feature vectors become drastically different after bit

error rates of around 0.001 for both 5,000 and 10,000 dimensions.

5.4.11 HD Computing vs Error Correcting Codes (ECC)

In conventional systems, the transmitter performs three steps to generate the wireless

signal from data: source coding, channel coding, and modulation. First, a source encoder removes

the redundancies and compresses the data. Then, to protect the compressed bitstream against

the impairments introduced by the channel, a channel code is applied. The coded bitstream is

finally modulated with a modulation scheme which maps the bits to complex-valued samples

(symbols), transmitted over the communication link. The receiver inverts the above operations,

but in the reverse order. A demodulator first maps the received complex-valued channel output to

a sequence of bits. This bitstream is then decoded with a channel decoder to obtain the original

compressed data; however, it might be possibly corrupted due to the channel impairments. Lastly,

the source decoder provides a (usually inexact) reconstruction of the transmitted data by applying

a decompression algorithm.

In this work we deal with robust learning over unreliable communication channels, so

we focus only on the channel coding techniques from this pipeline for our comparison. Error

correcting codes (ECC) are used in channel coding for controlling errors in data over unreliable

and noisy communication channels. The central idea is the sender encodes the message with

redundant information in the form of an ECC. This redundancy allows the receiver to detect a

limited number of errors that may occur anywhere in the message, and often to correct these

errors without retransmission. We implement the setups depicted in Fig. 5.18 and compare

channel codes to our method. We refer to the framework shown in Fig. 5.5 with the evaluation

setup described in Section 4, and evaluate the inference robustness of the different communcation

systems. For all experiments we have an Additive White Gaussian Noise (AWGN) channel, over

a range of SNR values, and the modulation type is QAM. In the first setup, there is no channel

100

1) Transmitting raw data

Data Sample

2) Transmitting raw data w/ channel coding

Data Sample

3) HD encoding at the transmitter

Data Sample

HD Classifier

4) HD encoding at the transmitter w/ channel coding

Data Sample

Modulate / Channel /
Demodulate

Modulate / Channel /
Demodulate

Modulate / Channel /
Demodulate

Modulate / Channel /
Demodulate

Channel
Encoder

Channel
Encoder

Channel
Decoder

Channel
Decoder

HD
Encoding

HD
Encoding

HD
Inference

HD
Inference

HD
Encoding +
Inference

HD
Encoding +
Inference

HD Classifier

Figure 5.18. Simulated communication setups

coding and raw data samples are transmitted over the channel. The HD classifier at the receiver

side uses these raw data samples corrupted by bit errors to do inference. In the second setup, we

add channel coding to the configuration. In the third setup, we apply HD encoding to data at

the transmitter side and transmit hypervectors. In this case we don’t need to do encoding at the

receiver, only a simple similarity check for HD Inference on the corrupted hypervectors suffices.

In the fourth setup, we add channel coding on top of HD encoded hypervectors to further add

redundancy.

In Fig. 5.19a, we compare a rate 1
2 convolutional channel code with HD encoding. Viterbi

decoder is used to decode the transmitted bitstreams at the centralized receiver. Both channel

codes and HD encoding are applied directly to raw data samples, as illustrated in 2nd and 3rd

communication setups respectively. The results show that HD encoding has better performance

at similar coding rates than convolutional codes. At 35% BER, HD still has around 90%

accuracy with 10k dimension hypervectors whereas convolutional code quickly loses accuracy

then completely fails. In Fig. 5.19b, we compare HD encoding with high dimension hypervectors

to using channel codes combined with lower dimension hypervectors. HD encoding alone

performs better at the same overall coding rate, meaning that channel codes do not provide extra

protection to the hypervectors. The above results can be explained by Fig. 5.19c, for which

101

10

10

10

10

10

10

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0 0.5 1 1.5 2 2.5 3 3.5 4-0.5

-6
10

Figure 5.19. a) Comparison of HD encoding to channel coding (setup 1,2, and 3), b) combined
HD encoding and channel coding (setup 3 and 4), c) channel coding performance at low SNRs,
exact (dashed) and approximate (solid) decoding algorithms.

we refer to [93]. All the plotted coding methods are rate 1
2 as the convolutional code used in

the previous experiments. We show the SNR vs BER curves for both the exact (dashed) and

approximate (solid) decoding algorithms of the considered methods. As implied by the plots,

channel coding gains are significant at moderate to high SNRs. However, BER performance of

channel coding converges to that of uncoded communication at low SNRs, for which we perform

our experiments. In such cases, particularly where BER is greater than 10%, HD encoding is

more robust. Moreover, channel codes aim at correcting the errors and reconstructing the original

data. Since we are only interested in using the received data for classification or clustering,

the exact reconstructions are not necessarily needed. HD encodings are more suitable for this

purpose, as the holographic representation property allows to maintain as much information as

possible when part of the data is lost.

5.5 Conclusion

In this chapter, we proposed HyDREA, an HD computing system that is Robust, Efficient,

and Accurate. We proposed a PIM architecture that adaptively changes the bitwidth of the model

based on the SNR of the incoming sample to maintain the robustness of the HD model while

achieving high accuracy and energy efficiency. Our results indicate that our proposed system

loses less than 1% Classification accuracy even in scenarios with an SNR under 7dB. Our PIM

architecture is also able to achieve 255× better energy efficiency and speed up execution time

102

by 28× compared to the baseline PIM architecture. We evaluated the feasibility of HyDREA in

a “Federated learning” environment, by utilizing a popular network simulator, NS-3, to model

the communication between devices and simulate wireless noise. We compared HyDREA with

other light-weight ML algorithms in the same noisy environment. Our results demonstrated that

HyDREA is 48× more robust to noise than other comparable ML algorithms. We additionally

tested the robustness of HD Clustering in the same network simulation scenarios and found that

our proposed system also looses less than 1% in the mutual information score, even in scenarios

with an SNR under 7dB, which is 57× more robust to noise than K-means. Finally, we extended

our PIM architecture to support Clustering and our results show that we are able to achieves

289× higher energy efficiency and 32× speed up compared to the baseline architecture during

Clustering. In the next Chapter, we summarize the contributions of this dissertation and go over

projects for future work.

5.6 Acknowledgements

This work was supported in part by CRISP, one of six centers in JUMP (an SRC program

sponsored by DARPA), SRC Global Research Collaboration (GRC) grant, and NSF grants

#1911095, #2003279, #2003277, #2100237, and #2120019.

Chapter 5, in part, is a reprint of material as may appear in J. Morris, K. Ergun, B.

Khaleghi, M. Imani, B. Aksanli , T. Rosing, ”HyDREA: Utilizing Hyperdimensional Computing

For A More Robust and Efficient Machine Learning System.” ACM Transactions on Embedded

Computing Systems (TECS), 2022. The dissertation author was the primary investigator and

author of this material.

103

Chapter 6

Summary and Future Work

The Internet of Things (IoT), created a network of billions of devices that are generating

massive data streams demanding services that pose huge technical challenges due to limited

device resources. One of those services is Machine Learning (ML). However, the power and

computation capability of many of these IoT or embedded devices do not match the requirements

of running ML models. Therefore, instead of running the ML models on these devices, they send

their data to the cloud and the ML models are deployed at a data center level. However, sending

data to the cloud for processing is not scalable, cannot guarantee the real-time response, uses

megawatts of power, and is often not desirable due to privacy and security concerns. To alleviate

these concerns, much of IoT data processing will need to run at least partly on devices at the

edge of the internet.

6.1 Thesis Summary

In order to achieve real-time learning in IoT systems, we need to rethink the algorithms

we use for machine learning. We need to redesign the algorithms themselves using strategies

that more closely model the ultimate efficient learning machine: the human brain. To address

the issue, we propose utilizing Hyperdimensional Computing (HDC) [10]. HDC mimics several

desirable properties of the human brain, including: robustness to noise and hardware failure

and single-pass learning where training happens in one-shot without storing the training data

104

points or using complex gradient-based algorithms. These features make HDC a promising

solution for today’s embedded devices with limited storage, battery, and resources, and the

potential for noise and variability. Due to these properties, HDC has been demonstrated to be

orders of magnitude more efficient than other ML models such as DNNs [18]. HDC research

has continued to push the boundaries of efficient machine learning focusing on four main topics:

Algorithmic improvements, Hardware/Software Co-Design, Exploiting Robustness, Extending

Applications, and HDC Theory, its connection to neuroscience and mathematics. In this thesis,

our contributions covered 4 of these 5 topics: (1) the first adaptive model quantization for

HDC [2], (2) a hardware-friendly locaclity based encoding for HDC [3], (3) extending the

HDC algorithm to support multi-label classification [4], and (4) evaluating and exploiting the

robustness of HDC for more efficient hardware [5].

6.1.1 Adaptive Model Quantization for Hyperdimensional Computing

Research on HDC algorithmic changes has extended ideas from other ML algorithms

to HDC by adding a learning rate, utilizing model quantization, and introducing sparsity. All

previous work on model quantization for HDC has been static quantization. This lead to two

extremes in the energy and accuracy trade-off curve. Works focused on highly accurate models

with less aggressive quantization and more energy consumption, or highly efficient models

with aggressive quantization, such as binary models, but at the cost of accuracy loss. In this

dissertation, we proposed a new model quantization method that adapatively changes the effective

bitwidth for every sample [2]. This enables our design to achieve the energy efficiency and

execution time comparable a binary model, while also achieving a similar accuracy to the full

precision model.

105

6.1.2 A Rework of the Hyperdimensional Computing Pipeline and
Acceleration on FPGA

There is a multitude of works on mapping HDC to different hardware platforms and

using hardware/software co-design to achieve more efficient solutions. One problem previous

work does not solve though is encoding to HD space. Previous encoding algorithms require

random memory accesses and a massive amount of element wise multiplications and additions.

All of these operations occurring on hypervectors with 10,000 dimensions. These encodings are

inefficient to map to hardware designs. In this dissertation, we propose a new hardware friendly

encoding that removes random memory accesses and replaces them with a fixed memory access

pattern with sparsity and a subsequent FPGA architecture that takes advantage of the changes [3].

Overall, our new architecture achieves 64× energy efficiency and 10× faster execution time than

the previous state of the art FPGA implementation of HDC.

6.1.3 Extending Hyperdimensional Computing Applications to Support
Multi-Label Classification

Prior work has implemented HDC to support other ML applications beyond classification.

However, there were no works on extending HDC to support multi-label classification. In this

dissertation, we presented our work on extending HDC to support multi-label classification [4].

Prior work on other classifiers map to multi-label by simply taking the power set of the possible

labels and creating new labels for each combination. This reduces the multi-label problem to

a single label problem. This works well for other classifiers as they don’t scale as poorly with

an increase in classes. However, HDC scales linearly with the number of classes, so it scales

exponentially with the number of labels in a multi-label problem, when using the power set idea.

Therefore, instead of using the power set to reduce the problem to a single label classification

problem. We propose a binary classification model for each label. Overall, with this idea, we

achieve 47× faster execution time, 48× better energy efficiency, and 5% higher accuracy than

other multi-label classifiers.

106

6.1.4 Evaluating and Exploiting Robustness to Create a More Efficient
Analog Processing-in-Memory Accelerator for Hyperdimensional
Computing

Works in the HDC space often cite that HDC is robust to noise and hardware errors. They

also often take advantage of that property in their designs. However, before our work in [5]

there were no empirical results to back up the claims of robustness or comparisons with other

ML models. We demonstrate experimentally that HDC is 48× more robust to noise than other

machine learning models. We furthermore show how to exploit this property with more efficient

hardware. Previous analog PIM designs have a vital flaw where up to 90% of energy is used in

the analog to digital conversion (ADC) [26]. However, we alleviate this issue when mapping

HDC to analog PIM by reducing the ADC bitwidth. This reduces ADC energy consumption

by half for every bit dropped, but results in inaccurate conversions. However, HDC is robust to

these errors, and is able to tolerate the inaccurate operations up to a point. Overall, our design

achieves 289× better energy efficiency than simply mapping HDC onto the existing architecture.

6.2 Future Work

There are multiple paths for future work on HDC on algorithms, architectures, extending

applications, and theory. Our future plan is to continue our work making HDC a compelling light-

weight classifier for devices on the edge. One current disadvantage of HDC is that it does not

have the same separability capabilities of state-of-the-art Deep Neural Networks. Additionally,

although approximate computing has been widely explored in related fields such as DNNs, we

demonstrated that HDC is significantly more robust to errors than DNNS. With this knowledge,

we can take approximation further in HDC than previously done on DNNs for more efficient

hardware solutions.

107

6.2.1 Feature Extraction and HDC

HDC does not currently achieve the same accuracy on more complex datasets such as

images. However, DNNs have employed online feature extraction with convolutions layers in

order to achieve high accuracies on image based datasets. Future work on HDC should focus

on combining HDC with convolutional feature extraction to extend the applications that HDC

can accuratly classify. For example, our work in [4] uses simpler feature based datasets for

evaluation. We plan to extend this work to support more complex datasets such as text-based

or image-based datasets by adding convolutional layers for feature extraction. Furthermore, we

previously combined HDC with a single random SNN layer to enable efficient HDC classification

on event-based datasets [94]. We plan to extend this work by creating a novel ASIC design that

supports the convolutional SNN layer and HDC encoding, training, and inference on the same

chip. Furthermore, we can evaluate if HDC is able to maintain it’s robust property with errors

occurring on the feature extraction model.

6.2.2 Exploiting and Evaluating HDC Robustness

We plan to further exploit the robustness of HDC by creating computing architectures

that incur errors on the computation, in order to achieve better efficiency. We showed in

this dissertation that HDC is significantly more robust (48× more robust to errors than other

classifiers) and can take these architectural changes further than other classifiers [5]. Therefore,

we can exploit the robustness of HDC to create even more efficient architectures than previously

done with DNNs. For example, one concern with digital processing in memory is the longevity

of the cells. Eventually, cells can get stuck in a state permanently holding its last value or 0 or 1.

We plan on demonstrating that because HDC is robust to errors, it can still accurately classify

even with a significant amount of dead memory cells. This would result in HDC digital PIM

architectures having a significantly larger effective number of re-write cycles compared to a

DNN solution.

108

We additionally plan to further evaluate our results in [5]. In the current paper, we

perform all of our experiments with network simulations utilizing Ns-3. We plan on validating

our experiments with real world examples. We will set up a network of IoT devices to encode

data and send them to a central server over wireless communication with no error correction

protocols. Then evaluate the model that is created on the central server. We will perform this

experiment in multiple different challenging scenarios, such as downtown with buildings in the

way, a crowded public area with wireless interference from other devices, and varying distances.

109

Bibliography

[1] Y. Long, E. Lee, D. Kim, and S. Mukhopadhyay, “Q-pim: A genetic algorithm based
flexible dnn quantization method and application to processing-in-memory platform,” in
2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1–6, IEEE, 2020.

[2] J. Morris, S. T. K. Set, G. Rosen, M. Imani, B. Aksanli, and T. Rosing, “Adaptbit-hd: Adap-
tive model bitwidth for hyperdimensional computing,” in 2021 IEEE 39th International
Conference on Computer Design (ICCD), pp. 93–100, IEEE, 2021.

[3] J. Morris, Y. Hao, R. Fernando, M. Imani, B. Aksanli, and T. Rosing, “Locality-based
encoder and model quantization for efficient hyper-dimensional computing,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 2021.

[4] J. Morris, Y. Hao, S. Gupta, R. Ramkumar, J. Yu, M. Imani, B. Aksanli, and T. Rosing,
“Multi-label hd classification in 3d flash,” in 2020 IFIP/IEEE 28th International Conference
on Very Large Scale Integration (VLSI-SOC), pp. 10–15, IEEE, 2020.

[5] J. Morris, K. Ergun, B. Khaleghi, M. Imani, B. Aksanli, and T. Rosing, “Hydrea: Towards
more robust and efficient machine learning systems with hyperdimensional computing,” in
2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 723–728,
IEEE, 2021.

[6] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. De Freitas, “Predicting parameters in
deep learning,” Advances in neural information processing systems, vol. 26, 2013.

[7] A. Zaslavsky, C. Perera, and D. Georgakopoulos, “Sensing as a service and big data,” arXiv
preprint arXiv:1301.0159, 2013.

[8] Y. Sun, H. Song, A. J. Jara, and R. Bie, “Internet of things and big data analytics for smart
and connected communities,” IEEE Access, vol. 4, pp. 766–773, 2016.

[9] R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future internet: the internet of things archi-
tecture, possible applications and key challenges,” in Frontiers of Information Technology
(FIT), 2012 10th International Conference on, pp. 257–260, IEEE, 2012.

[10] P. Kanerva, “Hyperdimensional computing: An introduction to computing in distributed
representation with high-dimensional random vectors,” Cognitive Computation, vol. 1,
no. 2, pp. 139–159, 2009.

110

[11] M. Imani, D. Kong, A. Rahimi, and T. Rosing, “Voicehd: Hyperdimensional computing
for efficient speech recognition,” in International Conference on Rebooting Computing
(ICRC), pp. 1–6, IEEE, 2017.

[12] M. Imani, A. Rahimi, D. Kong, T. Rosing, and J. M. Rabaey, “Exploring hyperdimen-
sional associative memory,” in 2017 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pp. 445–456, IEEE, 2017.

[13] M. Imani, D. Kong, A. Rahimi, and T. Rosing, “Voicehd: Hyperdimensional computing
for efficient speech recognition,” in 2017 IEEE International Conference on Rebooting
Computing (ICRC), pp. 1–8, IEEE, 2017.

[14] M. Imani, S. Bosch, S. Datta, S. Ramakrishna, S. Salamat, J. M. Rabaey, and T. Rosing,
“Quanthd: A quantization framework for hyperdimensional computing,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2019.

[15] M. Imani, J. Morris, J. Messerly, H. Shu, Y. Deng, and T. Rosing, “Bric: Locality-based
encoding for energy-efficient brain-inspired hyperdimensional computing,” in Proceedings
of the 56th Annual Design Automation Conference 2019, pp. 1–6, 2019.

[16] M. Imani, J. Morris, S. Bosch, H. Shu, G. De Micheli, and T. Rosing, “Adapthd: Adaptive
efficient training for brain-inspired hyperdimensional computing,” in 2019 IEEE Biomedical
Circuits and Systems Conference (BioCAS), pp. 1–4, IEEE, 2019.

[17] M. Imani, S. Salamat, B. Khaleghi, M. Samragh, F. Koushanfar, and T. Rosing, “Sparsehd:
Algorithm-hardware co-optimization for efficient high-dimensional computing,” in 2019
IEEE 27th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pp. 190–198, IEEE, 2019.

[18] S. Gupta, M. Imani, and T. Rosing, “Felix: Fast and energy-efficient logic in memory,” in
2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1–7,
IEEE, 2018.

[19] M. Imani, S. Gupta, Y. Kim, and T. Rosing, “Floatpim: In-memory acceleration of deep
neural network training with high precision,” in 2019 ACM/IEEE 46th Annual International
Symposium on Computer Architecture (ISCA), pp. 802–815, IEEE, 2019.

[20] Y. Hao, S. Gupta, J. Morris, B. Khaleghi, B. Aksanli, and T. Rosing, “Stochastic-hd:
Leveraging stochastic computing on hyper-dimensional computing,” in 2021 IEEE 39th
International Conference on Computer Design (ICCD), pp. 321–325, IEEE, 2021.

[21] B. Khaleghi, H. Xu, J. Morris, and T. Š. Rosing, “tiny-hd: Ultra-efficient hyperdimensional
computing engine for iot applications,” in 2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 408–413, IEEE, 2021.

[22] M. Imani, Y. Kim, T. Worley, S. Gupta, and T. Rosing, “Hdcluster: An accurate clustering
using brain-inspired high-dimensional computing,” in 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 1591–1594, IEEE, 2019.

111

[23] Y. Guo, M. Imani, J. Kang, S. Salamat, J. Morris, B. Aksanli, Y. Kim, and T. Rosing,
“Hyperrec: Efficient recommender systems with hyperdimensional computing,” in 2021
26th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 384–389,
IEEE, 2021.

[24] M. Imani, T. Nassar, A. Rahimi, and T. Rosing, “Hdna: Energy-efficient dna sequencing
using hyperdimensional computing,” in 2018 IEEE EMBS International Conference on
Biomedical & Health Informatics (BHI), pp. 271–274, IEEE, 2018.

[25] J. Morris, M. Imani, S. Bosch, A. Thomas, H. Shu, and T. Rosing, “Comphd: Efficient
hyperdimensional computing using model compression,” in 2019 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED), pp. 1–6, IEEE, 2019.

[26] S. Ghodrati, H. Sharma, S. Kinzer, A. Yazdanbakhsh, K. Samadi, N. S. Kim, D. Burger,
and H. Esmaeilzadeh, “Mixed-signal charge-domain acceleration of deep neural networks
through interleaved bit-partitioned arithmetic,” arXiv preprint arXiv:1906.11915, 2019.

[27] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia,
N. Boden, A. Borchers, et al., “In-datacenter performance analysis of a tensor processing
unit,” in Proceedings of the 44th Annual International Symposium on Computer Architec-
ture, pp. 1–12, 2017.

[28] B. Lesser, M. Mücke, and W. N. Gansterer, “Effects of reduced precision on floating-point
svm classification accuracy,” Procedia Computer Science, vol. 4, pp. 508–517, 2011.

[29] M. Wess, S. M. P. Dinakarrao, and A. Jantsch, “Weighted quantization-regularization in
dnns for weight memory minimization toward hw implementation,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 11, pp. 2929–2939,
2018.

[30] S. Ye, T. Zhang, K. Zhang, J. Li, J. Xie, Y. Liang, S. Liu, X. Lin, and Y. Wang, “A unified
framework of dnn weight pruning and weight clustering/quantization using admm,” arXiv
preprint arXiv:1811.01907, 2018.

[31] M. Imani, J. Messerly, F. Wu, W. Pi, and T. Rosing, “A binary learning framework for
hyperdimensional computing,” in 2019 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 126–131, IEEE, 2019.

[32] O. Rasanen and J. Saarinen, “Sequence prediction with sparse distributed hyperdimensional
coding applied to the analysis of mobile phone use patterns,” IEEE Transactions on Neural
Networks and Learning Systems, vol. PP, no. 99, pp. 1–12, 2015.

[33] M. Imani, C. Huang, D. Kong, and T. Rosing, “Hierarchical hyperdimensional computing
for energy efficient classification,” in 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), pp. 1–6, IEEE, 2018.

112

[34] Y. Kim, M. Imani, and T. S. Rosing, “Efficient human activity recognition using hyperdi-
mensional computing,” in Proceedings of the 8th International Conference on the Internet
of Things, pp. 1–6, 2018.

[35] M. Imani, Y. Kim, S. Riazi, J. Messerly, P. Liu, F. Koushanfar, and T. Rosing, “A frame-
work for collaborative learning in secure high-dimensional space,” in 2019 IEEE 12th
International Conference on Cloud Computing (CLOUD), pp. 435–446, IEEE, 2019.

[36] J. Morris, M. Imani, S. Bosch, A. Thomas, H. Shu, and T. Rosing, “Comphd: Efficient
hyperdimensional computing using model compression,” in 2019 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED), pp. 1–6, IEEE, 2019.

[37] Y.-C. Chuang, C.-Y. Chang, and A.-Y. A. Wu, “Dynamic hyperdimensional computing
for improving accuracy-energy efficiency trade-offs,” in 2020 IEEE Workshop on Signal
Processing Systems (SiPS), pp. 1–5, IEEE, 2020.

[38] M. Imani, X. Yin, J. Messerly, S. Gupta, M. Niemier, X. S. Hu, and T. Rosing, “Searchd: A
memory-centric hyperdimensional computing with stochastic training,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2019.

[39] T. Feist, “Vivado design suite,” White Paper, vol. 5, 2012.

[40] “Uci machine learning repository: Isolet dataset.” http://archive.ics.uci.edu/ml/datasets/
ISOLET, 1994.

[41] “Uci machine learning repository: Har dataset.” https://archive.ics.uci.edu/ml/datasets/
Daily+and+Sports+Activities, 2012.

[42] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category dataset,” 2007.

[43] “Uci machine learning repository: Cardiotocography dataset,” 2010.

[44] “Uci machine learning repository.” https://archive.ics.uci.edu/ml/datasets/detection of IoT
botnet attacks N BaIoT.

[45] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-efficient classifier using
brain-inspired hyperdimensional computing,” in Proceedings of the 2016 International
Symposium on Low Power Electronics and Design, pp. 64–69, ACM, 2016.

[46] P. Kanerva, J. Kristofersson, and A. Holst, “Random indexing of text samples for latent
semantic analysis,” in Proceedings of the 22nd annual conference of the cognitive science
society, vol. 1036, Citeseer, 2000.

[47] A. Rahimi, S. Benatti, P. Kanerva, L. Benini, and J. M. Rabaey, “Hyperdimensional
biosignal processing: A case study for emg-based hand gesture recognition,” in 2016 IEEE
International Conference on Rebooting Computing (ICRC), pp. 1–8, IEEE, 2016.

113

http://archive.ics.uci.edu/ml/datasets/ISOLET
http://archive.ics.uci.edu/ml/datasets/ISOLET
https://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities
https://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities
https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT
https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT

[48] T. F. Wu, H. Li, P.-C. Huang, A. Rahimi, J. M. Rabaey, H.-S. P. Wong, M. M. Shulaker,
and S. Mitra, “Brain-inspired computing exploiting carbon nanotube fets and resistive ram:
Hyperdimensional computing case study,” in 2018 IEEE International Solid-State Circuits
Conference-(ISSCC), pp. 492–494, IEEE, 2018.

[49] H. Li, T. F. Wu, A. Rahimi, K.-S. Li, M. Rusch, C.-H. Lin, J.-L. Hsu, M. M. Sabry, S. B.
Eryilmaz, J. Sohn, W.-C. Chiu, M.-C. Chen, T.-T. Wu, J.-M. Shieh, W.-K. Yeh, J. M.
Rabaey, S. Mitra, and H.-S. P. Wong, “Hyperdimensional computing with 3D VRRAM
in-memory kernels: Device-architecture co-design for energy-efficient, error-resilient
language recognition,” in 2016 IEEE International Electron Devices Meeting (IEDM),
pp. 16–1, IEEE, 2016.

[50] M. Imani, S. Salamat, S. Gupta, J. Huang, and T. Rosing, “Fach: Fpga-based acceleration
of hyperdimensional computing by reducing computational complexity,” in Proceedings of
the 24th Asia and South Pacific Design Automation Conference, pp. 493–498, 2019.

[51] S. Salamat, M. Imani, B. Khaleghi, and T. Rosing, “F5-hd: Fast flexible fpga-based frame-
work for refreshing hyperdimensional computing,” in Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pp. 53–62, 2019.

[52] G. Karunaratne, M. Le Gallo, G. Cherubini, L. Benini, A. Rahimi, and A. Sebastian,
“In-memory hyperdimensional computing,” Nature Electronics, vol. 3, no. 6, pp. 327–337,
2020.

[53] S. Salamat, M. Imani, and T. Rosing, “Accelerating hyperdimensional computing on fpgas
by exploiting computational reuse,” IEEE Transactions on Computers, 2020.

[54] M. Schmuck, L. Benini, and A. Rahimi, “Hardware optimizations of dense binary hy-
perdimensional computing: Rematerialization of hypervectors, binarized bundling, and
combinational associative memory,” ACM Journal on Emerging Technologies in Computing
Systems (JETC), vol. 15, no. 4, pp. 1–25, 2019.

[55] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M. Hernández-Lobato,
G.-Y. Wei, and D. Brooks, “Minerva: Enabling low-power, highly-accurate deep neural
network accelerators,” in Proceedings of the 43rd International Symposium on Computer
Architecture, pp. 267–278, IEEE Press, 2016.

[56] Y. Zhou, S.-M. Moosavi-Dezfooli, N.-M. Cheung, and P. Frossard, “Adaptive quantization
for deep neural network,” in Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

[57] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware automated quantization
with mixed precision,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8612–8620, 2019.

[58] S. Jain, S. Venkataramani, V. Srinivasan, J. Choi, P. Chuang, and L. Chang, “Compensated-
dnn: Energy efficient low-precision deep neural networks by compensating quantization

114

errors,” in 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), pp. 1–6,
IEEE, 2018.

[59] T. I. Cannings and R. J. Samworth, “Random-projection ensemble classification,” Journal
of the Royal Statistical Society: Series B (Statistical Methodology), vol. 79, no. 4, pp. 959–
1035, 2017.

[60] I. Jo, D.-H. Bae, A. S. Yoon, J.-U. Kang, S. Cho, D. D. Lee, and J. Jeong, “Yoursql: a
high-performance database system leveraging in-storage computing,” Proceedings of the
VLDB Endowment, vol. 9, no. 12, pp. 924–935, 2016.

[61] B. Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon, J.-U. Kang, M. Kwon, C. Yoon,
S. Cho, J. Jeong, and D. Chang, “Biscuit: A framework for near-data processing of big data
workloads,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 153–165,
2016.

[62] G. Koo, K. K. Matam, I. Te, H. K. G. Narra, J. Li, H.-W. Tseng, S. Swanson, and
M. Annavaram, “Summarizer: trading communication with computing near storage,” in
2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pp. 219–231, IEEE, 2017.

[63] Z. Ruan, T. He, and J. Cong, “Insider: designing in-storage computing system for emerging
high-performance drive,” in Proceedings of the 2019 USENIX Conference on Usenix Annual
Technical Conference, pp. 379–394, 2019.

[64] S. Gupta, J. Morris, M. Imani, R. Ramkumar, J. Yu, A. Tiwari, B. Aksanli, and T. Š.
Rosing, “Thrifty: training with hyperdimensional computing across flash hierarchy,” in
2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD), pp. 1–9,
IEEE, 2020.

[65] G. Tsoumakas and I. Katakis, “Multi-label classification: An overview,” International
Journal of Data Warehousing and Mining (IJDWM), vol. 3, no. 3, pp. 1–13, 2007.

[66] T. Durand, N. Mehrasa, and G. Mori, “Learning a deep convnet for multi-label classification
with partial labels,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 647–657, 2019.

[67] M. Schmuck, L. Benini, and A. Rahimi, “Hardware optimizations of dense binary hy-
perdimensional computing: Rematerialization of hypervectors, binarized bundling, and
combinational associative memory,” ACM Journal on Emerging Technologies in Computing
Systems (JETC), vol. 15, no. 4, pp. 1–25, 2019.

[68] V. S. Mailthody, Z. Qureshi, W. Liang, Z. Feng, S. G. De Gonzalo, Y. Li, H. Franke,
J. Xiong, J. Huang, and W.-m. Hwu, “Deepstore: In-storage acceleration for intelligent
queries,” in Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 224–238, 2019.

115

[69] G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and I. Vlahavas, “Mulan: A java library
for multi-label learning,” Journal of Machine Learning Research, vol. 12, pp. 2411–2414,
2011.

[70] S. Diplaris, G. Tsoumakas, P. A. Mitkas, and I. Vlahavas, “Protein classification with
multiple algorithms,” in Panhellenic Conference on Informatics, pp. 448–456, Springer,
2005.

[71] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, “Learning multi-label scene classification,”
Pattern recognition, vol. 37, no. 9, pp. 1757–1771, 2004.

[72] A. Elisseeff and J. Weston, “A kernel method for multi-labelled classification,” in Advances
in neural information processing systems, pp. 681–687, 2002.

[73] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon, “Fed-
erated learning: Strategies for improving communication efficiency,” arXiv preprint
arXiv:1610.05492, 2016.

[74] M. Imani, Z. Zou, S. Bosch, S. A. Rao, S. Salamat, V. Kumar, Y. Kim, and T. Rosing,
“Revisiting hyperdimensional learning for fpga and low-power architectures,” in 2021
IEEE International Symposium on High-Performance Computer Architecture (HPCA),
pp. 221–234, IEEE, 2021.

[75] M. Javaheripi, M. Samragh, T. Javidi, and F. Koushanfar, “Genecai: Genetic evolution for
acquiring compact ai,” in Proceedings of the 2020 Genetic and Evolutionary Computation
Conference, GECCO ’20, p. 350–358, Association for Computing Machinery, 2020.

[76] M. Imani, S. Pampana, S. Gupta, M. Zhou, , Y. Kim, and T. Rosing, “Dual: Acceleration
of clustering algorithms using digital-based processing in-memory,” in Proceedings of the
International Symposium on Microarchitecture, IEE/ACM, 2020.

[77] M. Samragh, M. Javaheripi, and F. Koushanfar, “Encodeep: Realizing bit-flexible encoding
for deep neural networks,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 19, no. 6, pp. 1–29, 2020.

[78] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu, R. S.
Williams, and V. Srikumar, “Isaac: A convolutional neural network accelerator with in-situ
analog arithmetic in crossbars,” ACM SIGARCH Computer Architecture News, vol. 44,
no. 3, pp. 14–26, 2016.

[79] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena, “Network simulations
with the ns-3 simulator,” SIGCOMM demonstration, vol. 14, no. 14, p. 527, 2008.

[80] C. Li, F. Müller, T. Ali, R. Olivo, M. Imani, S. Deng, C. Zhuo, T. Kämpfe, X. Yin, and K. Ni,
“A scalable design of multi-bit ferroelectric content addressable memory for data-centric
computing,” in 2020 IEEE International Electron Devices Meeting (IEDM), pp. 29–3,
IEEE, 2020.

116

[81] M. Imani, M. S. Razlighi, Y. Kim, S. Gupta, F. Koushanfar, and T. Rosing, “Deep learn-
ing acceleration with neuron-to-memory transformation,” in 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pp. 1–14, IEEE, 2020.

[82] A. Rahimi, P. Kanerva, L. Benini, and J. M. Rabaey, “Efficient biosignal processing using
hyperdimensional computing: Network templates for combined learning and classification
of exg signals,” Proceedings of the IEEE, vol. 107, no. 1, pp. 123–143, 2018.

[83] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-efficient classifier using
brain-inspired hyperdimensional computing,” in Proceedings of the 2016 International
Symposium on Low Power Electronics and Design, pp. 64–69, ACM, 2016.

[84] U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low power wide area networks: An
overview,” ieee communications surveys & tutorials, vol. 19, no. 2, pp. 855–873, 2017.

[85] “IEEE 802.11n-2009 - IEEE Standard for Information technology– Local and metropolitan
area networks.” https://standards.ieee.org/standard/802 11n-2009.html.

[86] “IEEE 802.15.4-2020 - IEEE Standard for Low-Rate Wireless Networks.” https://standards.
ieee.org/standard/802 15 4-2020.html.

[87] T. S. Rappaport, Wireless communications: principles and practice, vol. 2. prentice hall
PTR New Jersey, 1996.

[88] A. Medeisis and A. Kajackas, “On the use of the universal okumura-hata propagation
prediction model in rural areas,” in VTC2000-Spring. 2000 IEEE 51st Vehicular Technology
Conference Proceedings (Cat. No. 00CH37026), vol. 3, pp. 1815–1818, IEEE, 2000.

[89] “International Telecommunication Union.” https://www.itu.int//.

[90] O. Afisiadis, M. Cotting, A. Burg, and A. Balatsoukas-Stimming, “On the error rate of
the lora modulation with interference,” IEEE Transactions on Wireless Communications,
vol. 19, no. 2, pp. 1292–1304, 2019.

[91] A. Ultsch, “U* c: Self-organized clustering with emergent feature maps.,” in LWA, pp. 240–
244, Citeseer, 2005.

[92] M. Samragh, M. Ghasemzadeh, and F. Koushanfar, “Customizing neural networks for
efficient fpga implementation,” in 2017 IEEE 25th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pp. 85–92, IEEE, 2017.

[93] B. Tahir, S. Schwarz, and M. Rupp, “Ber comparison between convolutional, turbo, ldpc,
and polar codes,” in 2017 24th international conference on telecommunications (ICT),
pp. 1–7, IEEE, 2017.

[94] J. Morris, H. W. Lui, K. Stewart, B. Khaleghi, A. Thomas, T. Marback, B. Aksanli, E. Neftci,
and T. Rosing, “Hyperspike: Hyperdimensional computing for more efficient and robust
spiking neural networks,” in 2022 Design, Automation & Test in Europe Conference &
Exhibition (DATE), IEEE, 2022.

117

https://standards.ieee.org/standard/802_11n-2009.html
https://standards.ieee.org/standard/802_15_4-2020.html
https://standards.ieee.org/standard/802_15_4-2020.html
https://www.itu.int//

	Dissertation Approval Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Hyperdimensional Computing
	Encoding
	Training
	Inference
	Algorithmic Improvements
	Hardware/Software Co-Design
	Extending Applications
	Exploiting Robustness

	Thesis Contributions
	Adaptive Model Quantization for Hyperdimensional Computing
	A Rework of the Hyperdimensional Computing Pipeline and Acceleration on FPGA
	Extending Hyperdimensional Computing Applications to Support Multi-Label Classification
	Evaluating and Exploiting Robustness to Create a More Efficient Analog Processing-in-Memory Accelerator for Hyperdimensional Computing

	Adaptive Model Quantization for Hyperdimensional Computing
	Introduction
	Related Work
	AdaptBit-HD
	Training with AdaptBit-HD
	Inference with AdaptBit-HD

	FPGA Acceleration
	Encoding Implementation
	Training Implementation
	Inference Implementation

	Evaluation
	Experimental Setup
	Energy Efficiency, Execution Time, and Accuracy of AdaptBit-HD vs State-of-the-Art
	AdaptBit-HD Area Comparison

	Conclusion
	Acknowledgements

	A Rework of the Hyperdimensional Computing Pipeline and Acceleration on FPGA
	Introduction
	Related Work & Motivation
	Encoding with ReHD
	Random Projection
	Sparse Random Encoding
	Locality-based Sparse Random Projection

	Training in ReHD
	Binary Model Quantization
	N-Bit Model Quantization
	Model Quantization Inference

	Online Dimension Reduction
	FPGA Acceleration
	Encoding Implementation
	Training Implementation
	Inference Implementation

	Evaluation
	Experimental Setup
	Comparison With Other State-of-the-Art Light-Weight Classifiers
	ReHD Accuracy and Memory Requirement
	Hardware Efficiency
	Model Quantization Trade-off
	Online Dimension Reduction

	Conclusion
	Acknowledgements

	Extending Hyperdimensional Computing Applications to Support Multi-Label Classification
	Introduction
	Related Work
	Hyperdimensional Computing
	Multi-label Classification
	Hardware Acceleration

	Multi-label Classification with HD
	Problem Transformation Methods
	Training
	Inference

	Acceleration with 3D NAND Flash
	Encoding in 3D Flash
	Training at Top-Level in Storage

	Experimental Results
	Experiment Setup
	Multi-label HD Comparison with State-of-the-Art
	Multi-label HD in 3D Flash

	Conclusion
	Acknowledgements

	Evaluating and Exploiting Robustness to Create a More Efficient Analog Processing-in-Memory Accelerator for Hyperdimensional Computing Classification and Clustering
	Introduction
	Related Work

	HyDREA Analog PIM Architecture
	Architecture
	Challenges
	HyDREA: Analog PIM Architecture Optimiztions
	HyDREA: Supporting HD Clustering

	Network Simulation
	Evaluation
	Experimental Setup
	HyDREA and Dimensionality
	HyDREA and the Impact of our Analog PIM Architecture on HD Classification
	HyDREA vs Processing in Storage and Digital Processing in Memory
	HyDREA and the Impact of SNR on HD Classification
	HD vs. Other Classifiers
	HyDREA vs State-of-the-Art PIM DNN Accelerator
	HyDREA Architecture Impact on Clustering Energy Consumption and Execution Time
	HD Clustering Accuracy and Robustness vs K-means
	Impact of Bit Error Rates on Decoding
	HD Computing vs Error Correcting Codes (ECC)

	Conclusion
	Acknowledgements

	Summary and Future Work
	Thesis Summary
	Adaptive Model Quantization for Hyperdimensional Computing
	A Rework of the Hyperdimensional Computing Pipeline and Acceleration on FPGA
	Extending Hyperdimensional Computing Applications to Support Multi-Label Classification
	Evaluating and Exploiting Robustness to Create a More Efficient Analog Processing-in-Memory Accelerator for Hyperdimensional Computing

	Future Work
	Feature Extraction and HDC
	Exploiting and Evaluating HDC Robustness

	Bibliography

