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EPIGRAPH 
 

 
The world is a construct of our sensations, perceptions, memories. It is convenient to regard it as 
existing objectively on its own. But it certainly does not become manifest by its mere existence. 

It becoming manifest is conditional on very special goings-on in very special parts of this very 
special world, namely on certain events that happen in a brain. 

 
Erwin Schrödinger 
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ABSTRACT OF THE DISSERTATION 
 

Regulation of Neuronal Network Dynamics through Ionic and Synaptic Homeostasis 

 

by 

 

Oscar Christian González 

Doctor of Philosophy in Neurosciences with a Specialization in Computational Neurosciences 

University of California San Diego, 2019 

Professor Maxim Bazhenov, Chair 

 

The regulation of transmembrane ionic and synaptic currents is crucial for maintaining 

physiological neural activity and allow brain networks to be resilient to external perturbations. 

To this effect, the brain implements many homeostatic mechanisms by which it can control 

neuronal excitability and communication by maintaining ionic concentration gradients and 

synaptic strengths within a physiological range. Indeed, there exist many membrane-bound 

transporter proteins which function to move ions across the plasma membrane to re-establish 

resting ionic gradients following changes in neuronal spiking. Similarly, the nervous system has 

developed homeostatic mechanisms by which it can regulate the strength of synaptic connections 

by augmenting the number of excitatory post-synaptic receptors present in an activity-dependent 
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manner. It is traditionally thought that a breakdown of these mechanisms may underlie various 

neurological and psychiatric disorders. Though much has been learned about ionic and synaptic 

regulation of single neuron activity, how these homeostatic mechanisms give rise to or influence 

physiological and pathological brain states remains to be fully understood. Here we explore the 

roles of ionic and synaptic homeostasis in the regulation of network dynamics. We begin by first 

demonstrating that in the pathological brain (i.e. one riddled with K-channelopathies or suffering 

traumatic brain injury) these network stabilizing mechanisms can overcompensate for the 

chronic network perturbations resulting in hyperexcitability and lowered thresholds for seizure 

generation. We then demonstrate that the regulation of ionic concentration gradients in the 

healthy brain can give rise to infra-slow network fluctuations, which may underlie various brain-

state transitions and cognitive states. Together these studies highlight the importance of proper 

ionic and synaptic regulation for the maintenance of physiological activity and transitions to 

pathological states and provides new insight into the development of interventions that can be 

used to treat epileptic seizures.
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Chapter 1: Introduction 

Ionic dynamics and seizures 

Transmembrane ion currents and neuronal resting potentials are maintained and regulated 

by ion concentration gradients between the intra- and extracellular space. As such, their relative 

concentration gradients influence neuronal and network-wide excitability. Because of this crucial 

role in the regulation of excitability, there exist many mechanisms for maintaining and re-

establishing the resting ion concentration gradients (Somjen, 2002; Frohlich et al., 2008b; Wei et 

al., 2014a). Breakdown in ion concentration homeostasis has been associated with various 

neurological disorders including epilepsy and seizure generation (Grisar et al., 1992; Frohlich et 

al., 2008b; Cressman et al., 2009; Ullah et al., 2009; Frohlich et al., 2010; Avoli and de Curtis, 

2011; Filatov et al., 2011; Krishnan and Bazhenov, 2011; Wei et al., 2014a; Hamidi and Avoli, 

2015; Krishnan et al., 2015; González et al., 2018). Much attention has been focused on the role 

of K+ concentration regulation in seizure onset due to its involvement in the repolarization phase 

of the action potential and, therefore, overall excitability (Mitterdorfer and Bean, 2002; Bean, 

2007; Pathak et al., 2016). Early hypotheses regarding the generation of seizure activity were 

centered around the idea that elevated extracellular K+ concentrations ([K+]o) resulted in network 

hyperexcitability (Fertziger and Ranck, 1970; Frohlich et al., 2008b). This so-called “K+ 

accumulation hypothesis” suggested that increases in [K+]o could cross a critical concentration 

threshold initiating a positive feedback loop and thereby increasing neuronal excitability, which 

in turn further increased [K+]o. An increase in [K+]o to 8–16 mM in vitro (Traynelis and 

Dingledine, 1988) has been shown to lead to the generation of paroxysmal activity in the 

hippocampal formation. In vivo experiments have shown that seizures develop when perfusion 

with high K+ medium occurs for at least 10 min (Zuckermann and Glaser, 1968). 
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This initial hypothesis was met with some skepticism because increased [K+]o by itself 

was not a sufficient factor in triggering seizures. In fact, there was a lack of evidence for the 

existence of a [K+]o threshold necessary for seizure generation, and the increase of [K+]o during 

seizure activity results in a depolarization block and seizure termination (Frohlich et al., 2008b; 

Seigneur and Timofeev, 2010).  

Though this hypothesis quickly fell out of fashion it has since made a resurgence 

following the development of new technologies and methods to more precisely probe [K+]o 

dynamics both in vivo and in vitro, and the development of more detailed biophysical 

computational models (Kager et al., 2000; Somjen, 2002; Somjen et al., 2008). In vitro 

experiments in mouse hippocampal brain slices have demonstrated that increases in K+ 

concentration in bath applied artificial cerebrospinal fluid (ACSF) can result in epileptiform 

discharges and seizure-like activity resembling inter-ictal spiking and ictal events in epileptic 

patients (Filatov et al., 2011). The mechanism by which accumulation of [K+]o leads to 

depolarization and hyperexcitability is most likely through the change in the reversal potential of 

currents mediated by K+ ion, as predicted by the Nernst equation, which leads to a reduction of 

the hyperpolarizing outward going K+ currents. Therefore, increased [K+]o leads to neuronal 

depolarization likely through its direct effects on leak currents (Pedley et al., 1976; Seigneur and 

Timofeev, 2010). An increase in [K+]o also produces a depolarizing shift in the reversal potential 

of the hyperpolarization-activated depolarizing mixed cation (Na+/K+) current (Ih) that 

contributes to the generation of seizure activity (Timofeev et al., 2002b). As previously stated, 

K+ channel activation is associated with the repolarization phase of the action potential thereby 

regulating neuronal excitability. Increases in [K+]o would depolarize the reversal potential of 

these channels and render them ineffective. In doing so, the neurons will have prolonged periods 
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of Na+ and Ca2+ channel activation leading to prolonged depolarizations and increased 

excitability.  

Previous computational studies have shown that biophysical models of a cortical network 

with dynamic K+ concentrations resulted in a “multistability-mediated dynamic repertoire” in 

which the neuronal network could exist in a number of stable states including 

physiological/resting activity, asynchronous tonic firing, and synchronous bursting (Frohlich et 

al., 2010). These results suggest that brain networks could exist in at least two primary states, 

either a physiological or pathological activity state (figure 1.1). Both of these states could be 

represented as local minima of the network dynamics to which the network activity would 

converge depending on the initial state of the network (Frohlich et al., 2010).  

Under this framework, a stable state (like resting or seizure state) has a region called the 

“basin of attraction,” that represents the values of biophysical parameters (such as ion 

concentration, synaptic activity, etc.), in which network activity remains within the same state. 

Thus, a larger basin of attraction for the physiological state compared to the pathological state 

would represent a more resilient network activity state since a larger perturbation of parameter 

values (such as ion concentration changes due to external input) would be required to switch 

from physiological to pathological state (figure 1.1, bottom). In contrast, if the basin of attraction 

of physiological and pathological conditions are similar, then a smaller input can switch from a 

physiological to a pathological or seizure state. As such, in a normal “healthy” brain, this would 

produce a physiological activity state that would not easily transition to a pathological seizure 

state. The basin of attraction for the pathological activity state, in a healthy network, would be 

characterized by a relatively shallow and narrow basin of attraction (figure 1.1, bottom). It was 

suggested that in a pathological network, one with mis-regulated K+ concentrations for example, 
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the basin of attraction for the physiological state may be less broad and more shallow, while the 

pathological domain of attraction may become broader (Frohlich et al., 2010). As a result, the 

amount of perturbation necessary to transition network activity from the physiological to the 

pathological domain in the pathological network would be less than needed for the “healthy” 

network (figure 1.1, top). Therefore, it would facilitate transitions between the two states 

resulting in the occurrence of recurrent seizures. 

Spontaneous transitions between the physiological and pathological network states can also 

be thought of in terms of intermittency known from dynamical systems theory; that is, the irregular 

Figure 1.1 Bistability between physiological and pathological network states Illustration of the bistability between the 
physiological and pathological network states. Top panel shows the basin of attractions for both states in a network 
which can easily transition to a seizure state. Bottom shoe the basins of attraction for a “healthy” network in which 
network larger network perturbations are required for transitioning from physiological to pathological seizure states. 
Figure adapted from (Frohlich et al., 2010). 
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switching between semi-periodic and chaotic dynamics (Velazquez et al., 1999; Zalay et al., 2010). 

This idea was explored in a hippocampal network model of coupled cognitive rhythm generators 

(CRGs) and the results were further validated by in vitro experiments on acute mouse hippocampal 

brain slices under low Mg2+ / high K+ conditions (Zalay et al., 2010). Within a range of network 

parameters, the system remains in a high-complexity phase-space region characterized by irregular 

and interictal-like activity. Because of the presence of an unstable saddle-type fixed point, the 

network could intermittently escape the high-complexity region and approach the periodic-like 

ictal saddle. The decay constant of the network controls the occurrence of the intermittent 

spontaneous transitions between interictal periods and pathological ictal activity (Zalay et al., 

2010). Biologically, reduction of this constant could correspond to increased or prolonged post-

synaptic excitability, which can manifest as a result of impaired [K+]o regulation.  

In this model, the transitions from an interictal to an ictal orbit is accompanied by a 

reduction of the Lyapunov exponent, indicative of a reduction in the divergence of  nearby 

phase-space trajectories, a loss of chaotic behavior and an increase in periodicity (Zalay et al., 

2010). A similar reduction in high-complexity / chaotic dynamics was also observed at the 

transition from interictal to ictal periods in the acute brain slices (Zalay et al., 2010). This change 

in network behavior was suggested to be caused by attractor crisis-induced intermittency in 

which the boundary of the basin of chaotic attractor (interictal dynamics) crossed or came into 

contact with the stable manifold of the saddle (ictal dynamics) (Velazquez et al., 1999; Zalay et 

al., 2010). The state-space trajectory can, therefore, intermittently enter the area near the low-

complexity saddle resulting in transient periodic activity before returning to the higher-

complexity attractor. It should be noted that the duration of this transient periodic ictal activity in 

the model was on the order of a few seconds while biological seizures can vary from a few 
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seconds to minutes (Zalay et al., 2010). The authors suggest that the longer timescales of 

biological seizures may result from a time constant longer than most ion channel kinetics. It is 

possible that the infra-slow time scale of resting-state [K+]o fluctuations (Krishnan et al., 2018), 

which can be exacerbated by mis-regulation of [K+]o, may lead to the periods of increased post-

synaptic excitability resulting in an intermittency between the different dynamical states, thereby 

facilitating the transitions between physiological and pathological states of the network. 

Because of its role in regulating neuronal excitability, K+ concentration dynamics have 

been the focus of many seizure related studies. It should be noted that other ionic species have 

not been as well studied and most likely influence the properties and susceptibility of seizures. 

Previous work has shown changes to the various ion concentrations prior to and during seizure 

events (McCreery and Agnew, 1983; Somjen, 2002; Huberfeld et al., 2007; Viitanen et al., 

2010). Indeed, extracellular sodium concentrations ([Na+]o) have been shown to reduce during 

seizures (Somjen, 2002). This is presumably accompanied by increases in intracellular Na+ 

concentration ([Na+]i). Additionally, intracellular chloride concentration ([Cl-]i) has been shown 

to change in response to and influence seizure-like activity (Lillis et al., 2012). [Ca2+]o 

dramatically drops during seizure activity from about 1.2 mM to 0.6 mM (Heinemann and Lux, 

1977; Pumain et al., 1983). At such low levels of [Ca2+]o the synaptic transmission becomes 

greatly impaired (Somjen, 2002; Crochet et al., 2005; Seigneur and Timofeev, 2010). Therefore, 

synchronization via chemical synaptic mechanisms during seizures is dramatically reduced or 

absent within the population of neurons directly contributing to the seizure activity. At [Ca2+]o 

below 1.0 mM, hemichannels open (Thimm et al., 2005) creating conditions for paroxysmal 

synchronization of neuronal activities via electrical synapses (Timofeev et al., 2012). 
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The role of ionic concentration dynamics in seizure termination and postictal depression 

was explored in computational models in (Krishnan and Bazhenov, 2011). In this cortical 

network model, in addition to including [K+]o/i dynamics, the dynamics for [Na+]o/i, [Cl-]i, and 

[Ca2+]i were also represented as dynamic variables controlled by various biophysical 

mechanisms. A brief depolarizing direct current (DC) input was capable of inducing seizure-like 

activity which exhibited sustained transitions between periods of tonic firing and synchronized 

bursting which outlasted the stimulus input but eventually resulted in the termination of the 

seizure-like activity (figure 1.2) (Krishnan and Bazhenov, 2011). It was again proposed that 

these transitions in activity states resulted from a bistability in the network dynamics for a range 

of [K+]o (Frohlich and Bazhenov, 2006; Frohlich et al., 2010). During tonic firing, the efflux of 

K+ overwhelmed the K+ regulatory mechanisms allowing [K+]o to reach higher values. Once 

[K+]o reached a high enough value, the network activity transitioned to synchronized bursting. 

During the bursting periods, the [K+]o decreased due to lower overall firing (bursting includes 

higher frequency firing and quiescent periods, figure 1.2A). The [K+]o reduced until reaching a 

low enough value at which a return to the tonic spiking regime occurred (figure 1.2) (Krishnan 

and Bazhenov, 2011). As a consequence of the repeated tonic and bursting periods, within an 

episode of seizure, the [K+]o fluctuates as observed in experiments (Heinemann and Lux, 1977). 

During these seizure-like events, [Na+]i and [Cl-]i increased gradually due to the higher 

firing rates of excitatory and inhibitory neurons, respectively. [Na+]i progressively increased 

during the seizure-like event, while [Cl-]i showed a fast increase during seizure initiation and 

then remained relatively elevated (Krishnan and Bazhenov, 2011), which is in agreement with 

several experimental paradigms (Somjen, 2002; Lillis et al., 2012). These modeling studies 

suggested that progressive accumulation of [Na+]i would lead to stronger activation of the Na+/K+  
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ATPase; this in turn would lead to an increase of the Na+/K+ ATPase outward current (at each 

cycle Na+/K+ ATPase removes 3 Na+ ions and brings in 2 K+ ions, thus creating an outward 

current). The resulting hyperpolarization of membrane voltage would trigger termination of 

seizure and initiate the postictal depression state (figure 1.2) (Krishnan and Bazhenov, 2011). 

Postictal depression following most seizure events was suggested to be a result of the prolonged 

elevation of [Na+]i and continued Na+/K+ ATPase activity, which would lead to the progressive 

decrease in [K+]o past its baseline level, a finding that has been previously reported 

experimentally (Jensen and Yaari, 1997). The role of the Na+/K+ ATPase in the generation of 

Figure 1.2 Tonic-clonic seizure transitions and spontaneous termination. A, Membrane potential of a single 
excitatory pyramidal neuron from the network B. A transient DC input (green line) resulted in a depolarization of 
the neurons and generation of seizure-like activity which continued past the stimulation offset. The resulting seizure-
like discharge exhibited several state transitions between tonic (asynchronous firing) and clonic (bursting) periods 
before spontaneous termination. The bottom plots show activity during bursting (left) and tonic (right) periods. B, 
Heatmap showing membrane voltage of all pyramidal neurons in the network. Shows highly synchronized firing 
during bursting episodes. Figure adapted from (Krishnan and Bazhenov, 2011). 
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seizure activity has been explored in previous work (Grisar et al., 1992; Krishnan et al., 2015; 

Wei et al., 2014b). Recent computational and experimental studies have also linked oxygen 

dynamics to impairments in Na+/K+ ATPase activity leading to the onset of seizures and cortical 

spreading depression (Ingram et al., 2014; Wei et al., 2014a). 

Astrocytes play a major role in the regulation of the extracellular milieu. Indeed, 

astrocytes have been shown to contribute to the tight regulation of the extracellular ion 

concentrations and neurotransmitters at the synapse (Coulter and Steinhauser, 2015; de Lanerolle 

et al., 2010; Kjaerby et al., 2017; Patel et al., 2019; Poskanzer and Yuste, 2016; Tian et al., 

2005). Two primary mechanisms by which astrocytes regulate [K+]o include: 1) K+ uptake and 2) 

spatial buffering through the astrocytic syncytium. [K+]o uptake has been suggested to involve 

the Na+/K+ ATPase, sodium-potassium-chloride co-transporter isoform 1 (NKCC1), and 

inwardly rectifying K+ (Kir) channels (Coulter and Steinhauser, 2015; de Lanerolle et al., 2010; 

Patel et al., 2019; Somjen, 2002). The most predominant mechanism for astrocytic K+ uptake 

seems to be through Kir channels (Olsen and Sontheimer, 2008; Patel et al., 2019; Steinhauser et 

al., 2012). As such, many studies have focused on altered expression or impaired Kir channels as 

a key factor in impaired [K+]o regulation and seizure generation (Olsen and Sontheimer, 2008; 

Patel et al., 2019; Steinhauser et al., 2012). Kir4.1 is the main Kir subunit expressed in astrocytes 

and has been shown to be down-regulated in patients suffering mesial temporal lobe epilepsy 

(mTLE) (Heuser et al., 2012). Additionally, deletion of the astrocytic specific Kir4.1 channel 

results in spontaneous recurrent seizures in mice (Chever et al., 2010; Djukic et al., 2007; Haj-

Yasein et al., 2011). Down-regulation of Kir4.1 channels has also been observed following 

traumatic brain injury (TBI) (D'Ambrosio et al., 2005; D'Ambrosio et al., 1999). TBI commonly 

presents with increased blood-brain-barrier (BBB) permeability. Dysfunction of the BBB results 
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in extravasation of serum albumin which can directly activate transforming growth factor-b 

receptor 1 (TGFbR1) leading to the down-regulation of Kir4.1 channels, excitatory amino acid 

transporter 2 (EAAT2), and gap junction protein connexin 43 (CX43), and alters the expression 

and trafficking of aquaporin-4 (AQP4) channels all of which have been shown to contribute to 

the regulation of [K+]o and extracellular glutamate concentrations (Braganza et al., 2012; Coulter 

and Steinhauser, 2015; Friedman et al., 2009; Seiffert et al., 2004; Stewart et al., 2010; van Vliet 

et al., 2007).  

 Altered spatial buffering through the astrocytic syncytium has been suggested to 

influence seizure initiation (Coulter and Steinhauser, 2015; Giaume et al., 2010; Steinhauser et 

al., 2012). Once K+ enters astrocytes through Kir4.1 channels, K+ is redistributed via gap 

junctions throughout the astrocytic syncytium (Coulter and Steinhauser, 2015). As previously 

mentioned, serum albumin activation of TGFbR1 has been shown to result in reduced CX43 

expression. CX43, along with CX30, are the two primary connexin protein subunits comprising 

the gap junctions which form the astrocytic syncytium (Coulter and Steinhauser, 2015; Wallraff 

et al., 2006). Altered CX43 expression may result in impaired intracellular ionic coupling 

between astrocytes, thereby affecting K+ spatial buffering, extracellular glutamate uptake, 

transport of important metabolites, and impair Ca2+ wave propagation (Coulter and Steinhauser, 

2015; Wallraff et al., 2006). It should be noted that both increases and decreases in CX43/30 

expression have been observed in human patients and animal models of epilepsy (Coulter and 

Steinhauser, 2015; Giaume et al., 2010; Steinhauser et al., 2012). As such, how the differential 

expression of CXs affects hyperexcitability and seizure generation remains to be fully 

understood. 
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The movements of the charges associated with the high neuronal activity (particularly 

during seizures) result in the generation of weak electric fields which may play a role in the 

modulation of neuronal excitability and synchrony (Anastassiou and Koch, 2015; Frohlich and 

McCormick, 2010; Qiu et al., 2015; Shivacharan et al., 2019; Zhang et al., 2014). It has been 

shown that these weak endogenous electric fields can cause changes in the resting membrane 

potential of the closely located neurons (Anastassiou and Koch, 2015; Frohlich and McCormick, 

2010). Recent studies have demonstrated that the propagation speed (~ 0.1m/s) of 

pharmacologically-induced seizure-like activity in hippocampal tissue is strongly influenced by 

the weak endogenous electric field coupling (Qiu et al., 2015; Shivacharan et al., 2019; Zhang et 

al., 2014). Indeed, the speed of seizure propagation, as measured both in animal models and in 

epileptic patients, could not be explained by the ionic diffusion alone, as diffusion rates are much 

slower (Shivacharan et al., 2019). Furthermore, propagation speed of seizure-like activity was 

unaffected in conditions of reduced synaptic transmission suggesting that it is mediated by non-

synaptic mechanisms (Qiu et al., 2015; Shivacharan et al., 2019; Zhang et al., 2014). In a recent 

study, it was shown that cutting the hippocampus and separating the two halves by 400µm 

prevented the propagation of seizure-like activity between the two halves (Shivacharan et al., 

2019). Interestingly, when the two sides were put back together, the spontaneous seizure-like 

activity was able to propagate between the two cut sections with a propagation speed of (~ 

0.09m/s). Application of an external electric field, that was calibrated to negate the endogenous 

electric field generated during seizure-like activity, prevented the propagation of the seizure-like 

activity (Shivacharan et al., 2019). These data suggest that weak endogenous electric fields 

generated during epileptic seizures can aid in the recruitment of the neighboring neuron 

populations and thereby propagation of the seizure-like activity. 
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Thus, the intricate interactions between various ionic species in the brain may underlie 

the transitions and maintenance of seizure onset, progression, and termination. These interactions 

are summarized in figure 1.3. As the maintenance of the relative ionic concentration gradients is 

a critical component in the resilience of a network against transitions to pathological seizure 

states, it is not surprising that there are exist many homeostatic mechanisms implemented in the 

brain to maintain ion concentrations within a physiological range. Therefore, impairments in 

these homeostatic mechanisms, such as the Na+/K+ ATPase and the KCC2 co-transporter, would 

increase seizure susceptibility and development of epilepsy.  

[K+]o UP

Reduced hyperpolarization

Change in firing rate

Intrinsic excitability UP

Initiation
Sustained oscillations

[K+]o Down

Tonic firing

[K+]o UP

Clonic bursting

Increases firing rate Depolarization

Depolarization blockRemoval of
depolarization block

Sustained depolarization

[Na+]i UP

Clonic bursting DepolarizationLoss of bistability

[K+]o Down Increase pump current

Depolarization
block

Activation of Na+/K+ pump

Seizure Termination Termination

Gradual

[K+]o accum.

Gradual
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Figure 1.3 Interaction between seizure initiation, propagation, and termination. This figure shows the 
interaction between the different stages of seizure initiation, propagation and termination and the interactions 
between ion concentrations and network states. Orange panel shows the positive feedback loop between [K+]o and 
network excitability initiating seizures. The gradual accumulation of [K+]o caused by the feedback loop (orange) 
allows the network to progressively depolarize until the network enters a state of sustained oscillations between 
tonic firing and clonic bursting. Purple panel shows how [K+]o fluctuations give rise to the bistability between tonic 
firing and clonic bursting during the progression of a seizure. As the network cycles through these two bistable 
states, there is a gradual accumulation of [Na+]i. This accumulation results in the loss of the bistability between the 
tonic/clonic states and triggers seizure termination. Green panel outlines how accumulation of [Na+]i results in the 
loss of the tonic/clonic bistability and activation of the Na+/K+ ATPase leading to the termination of the seizure and 
postictal depression. 
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Epilepsy 

Epilepsy remains one of the most common neurological disorders worldwide (Lukawski 

et al., 2018). Epilepsy is used to describe a number of neurological disorders characterized by 

spontaneous, recurrent seizures. These seizures manifest as either convulsive or non-convulsive 

events with varied effects on the level of consciousness during an attack. Seizures are associated 

with large increases in neuronal firing, and exhibit periods of synchronous bursting and 

asynchronous firing (Bazhenov et al., 2004; Timofeev and Steriade, 2004; Frohlich et al., 2008b; 

Frohlich et al., 2010; Krishnan and Bazhenov, 2011; González et al., 2015; Hamidi and Avoli, 

2015; González et al., 2018; Lukawski et al., 2018). Roughly 70% of patients suffering from 

epilepsy have seizures, which are well controlled through pharmacological interventions 

(Timofeev et al., 2013; Lukawski et al., 2018). For the remaining 30% of patients, their seizures 

are categorized as pharmaco-resistant or intractable and require more extreme interventions such 

as resection of epileptic foci to find relief. Additionally, patients who respond well to 

medications can develop a resistance to chronic use of specific medications and require new 

cocktails of pharmacological agents or higher doses which can manifest other neurological 

deficits including memory issues, migraines, and other cognitive impairments (Brodie and 

French, 2000; Brodie and Kwan, 2001; Ortinski and Meador, 2004; Perucca and Tomson, 2011; 

Perucca and Gilliam, 2012). In light of the advancements in the treatment of epilepsy and seizure 

prevention, the underlying mechanisms that give way to epilepsy and seizure generation remain 

poorly understood. 

Determining the underlying mechanisms of epileptogenesis and seizure generation is 

complicated by the diverse etiologies involved in epilepsy (D'Adamo et al., 2013; Lukawski et 

al., 2018). Epileptogenesis is a set of processes taking place in acquired epilepsies between the 
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initial insult and the onset of epilepsy (Timofeev et al., 2013). Epilepsy can be divided into two 

main categories: acquired and genetic epilepsies. Many different insults to the brain can lead to 

the immediate (hours to days) or delayed (months to years) generation of seizures and potential 

development of epilepsy (Topolnik et al., 2003b; Houweling et al., 2005; Nita et al., 2006; 

Timofeev et al., 2010; Timofeev et al., 2013). TBI, stroke, infections, and tumors are commonly 

associated with the development of acquired epilepsy (Timofeev et al., 2013; Lukawski et al., 

2018). TBI remains one of the most common factors leading to epileptogenesis. Penetrating 

brain wounds commonly result in epileptogenesis with a delay period of months to years 

following the initial insult (Kollevold, 1976; Dinner, 1993; Temkin et al., 1995; Annegers et al., 

1998; Topolnik et al., 2003a; Jin et al., 2006; Nita et al., 2007; Avramescu and Timofeev, 2008; 

Chauvette et al., 2016). Indeed, 80% of patients suffering severe TBI exhibit paroxysmal activity 

within 24 hours of injury (Kollevold, 1976; Dinner, 1993). The severity of the trauma has been 

suggested to play an important role in the susceptibility to the development of paroxysmal 

activity (Houweling et al., 2005; Frohlich et al., 2008a; Volman et al., 2011a; Volman et al., 

2011b; González et al., 2015). Post-traumatic seizures are a risk factor in adults, but it may be 

less likely for infants (Angeleri et al., 1999). Young children display mainly early seizures, but 

adolescents and adults become epileptic after some latent period (Asikainen et al., 1999). In a 

more recent study (Christensen et al., 2009) assessed the risk of developing epilepsy in children 

and young adults suffering from TBI. It was found that the risk of epilepsy was dependent on the 

severity of the trauma and the age of patient at the time of injury with patients who were older at 

the time of trauma were more likely to develop chronic epilepsy. Though the exact mechanism 

leading to the development of TBI-induced epilepsy remains poorly understood, it has been 

suggested that homeostatic synaptic plasticity may be a key culprit in this form of 
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epileptogenesis. Understanding the molecular, cellular and network processes accompanying 

epileptogenesis will lead to an understanding of the development of epilepsy characterized by 

unprovoked seizures. Prevention of epileptogenesis will therefore prevent epilepsy. 

Idiopathic epilepsies have been associated with various genetic mutations (D'Adamo et 

al., 2013; Lukawski et al., 2018). Many studies have shown that genetic mutations leading to 

impaired ion channel expression and regulatory proteins lead to hyperexcitability and epileptic 

seizures (Ottman et al., 2004; Singh et al., 2006; Nobile et al., 2009; D'Adamo et al., 2013; 

Dazzo et al., 2015; Lascano et al., 2016). Indeed, studies on excised tissue from epileptic patients 

have shown impaired Na+/K+ ATPase activity, potassium-chloride co-transporter isoform 2 

(KCC2) expression, K+ channel activity, and nicotinic acetylcholine (nACh) channel activity 

(Huberfeld et al., 2007; Buchin et al., 2016; Lukawski et al., 2018). Specifically, K+-

channelopathies have been linked to many forms of intractable epilepsy (D'Adamo et al., 2013). 

As K+ channels are a key regulator of intrinsic neuronal excitability, disruption or impairment of 

these channels can lead to hyperexcitability and reduce the threshold for seizure initiation. In 

addition to mutations causing impairments of specific K+ currents, genetic mutations affecting 

proteins which regulate or influence K+ channel kinetics have also been shown to cause 

increased propensity for seizure onset (Ottman et al., 2004; Nobile et al., 2009; Dazzo et al., 

2015). Similar to TBI-induced epilepsy, the exact biophysical mechanisms leading to seizure 

generation and potential development of epilepsy in these forms of genetic epilepsies remains to 

be fully understood. 

K-channelopathy-related epilepsy and KCC2 co-transporter 

Various channelopathies have been associated with increased seizure susceptibility and 

epileptogenesis (D'Adamo et al., 2013; Lascano et al., 2016). K+-channelopathies are 
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characterized by mutated or misregulated K+ channels resulting in network hyperexcitability. 

The term K+-channelepsy has been coined to describe a number of neurological disorders which 

exhibit increased propensity for epileptogenesis due to underlying K+ channel impairments 

(D'Adamo et al., 2013). K+ channels represent one of the most diverse and largest family of ion 

channels, and as such, we will focus here on impairment of the K+ channels which mediate the 

outward going A-current (IA).  

The outward going IA has been shown to influence action potential firing by modulating 

the inter-spike interval in response to prolonged subthreshold current injections (Mitterdorfer and 

Bean, 2002; Bean, 2007; Pathak et al., 2016). The IA, along with the dendrotoxin sensitive K+-

type D-current (ID), have been shown to account for much of the hyperpolarizing K+-currents 

present during the repolarization phase of mammalian action potentials within regions of the 

cortex and hippocampus (Bean, 2007). IA is mediated by multimeric channels, which are 

comprised of voltage-gated K+ (KV) channel KV1 and KV4 α-subunits in combination with 

modulatory β-subunits (Singh et al., 2006; D'Adamo et al., 2013). Mutations in these α-subunit 

families have been shown to exist in a population of patients exhibiting pharmaco-resistant 

epilepsy (Singh et al., 2006; D'Adamo et al., 2013). Attenuation of IA, as a result of these 

mutations, has been shown to increase the likelihood for seizure generation (Singh et al., 2006). 

Furthermore, mutations resulting in impaired expression of IA regulating proteins, such as the 

leucine-rich glioma-inactivated 1 (LGI1) gene, have been shown to result in the rapid 

inactivation of IA and the development of paroxysmal activity (Ottman et al., 2004; Nobile et al., 

2009; Dazzo et al., 2015). 

The robust convulsive compound 4-aminopryidine (4AP) is a strong IA antagonist (Avoli 

and de Curtis, 2011). Indeed, application of 4AP leads to the transition from 
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physiological/resting activity to pathological seizure-like discharges both in vitro and in vivo 

(Fragoso-Veloz et al., 1990; Avoli et al., 1996; Lopantsev and Avoli, 1998; Levesque et al., 

2013). It should be noted that the direct knockout of the KV4.2 α-subunit was unable to generate 

spontaneous recurrent seizures, though it did increase the susceptibility for seizure onset in 

response to additional convulsive pharmacological compounds (Barnwell et al., 2009). In light of 

these findings, the previously proposed mechanism for 4AP-induced ictogenesis in which 

reduction of IA promotes seizure by directly increasing neuronal excitability has come into 

question (Galvan et al., 1982; Gustafsson et al., 1982; Yamaguchi and Rogawski, 1992). As 

such, the exact mechanism by which altered IA activity leads to the development of spontaneous 

seizures and epileptogenesis remains to be fully understood. 

The balance between excitatory and inhibitory activity is required for the maintenance of 

stable physiological network activity. Seizures have been traditionally believed to be caused by a 

breakdown of this balance favoring the reduction of inhibition and subsequent run-away 

excitability (Ben-Ari et al., 1979; Dingledine and Gjerstad, 1980; Schwartzkroin and Prince, 

1980). Recent work has shown that increase in inhibitory GABAA receptor signaling may 

underlie seizure generation (Sessolo et al., 2015; Yekhlef et al., 2015; Shiri et al., 2016). 

Typically, during seizures most pyramidal neurons are depolarized and, due to depolarization 

block, their firing is dramatically reduced, but the interneuron firing and therefore overall 

GABAA-dependent Cl- influx is increased which may result in Cl- currents becoming 

depolarizing (Cohen et al., 2002; Timofeev et al., 2002a; Timofeev and Steriade, 2004). 

However, following 4AP treatment, increases in [Cl-]i in excitatory neurons, and increases in 

inhibitory interneuron firing at the onset of seizure-like discharges have been reported both in 

vivo (Grasse et al., 2013; Toyoda et al., 2015) and in vitro (Lillis et al., 2012; Uva et al., 2015; 
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Levesque et al., 2016). Additionally, intense stimulation of GABAergic interneurons has been 

demonstrated to increase [K+]o and generate long-lasting depolarizations (Rivera et al., 2005; 

Viitanen et al., 2010). These transient GABAergic excitatory [K+]o signals elicit prolonged 

depolarizations in rat temporal lobe, and may contribute to seizure generation (Lopantsev and 

Avoli, 1998; Viitanen et al., 2010).  

The potassium-chloride co-transporter isoform 2 (KCC2) has recently been suggested to 

play a crucial role in the development of 4AP-induced seizures (Hamidi and Avoli, 2015; 

Levesque et al., 2016; González et al., 2018). The KCC2 co-transporter is one of the primary 

membrane-bound proteins responsible for maintaining the Cl- concentration gradient (Payne et 

al., 2003). Unlike the Na+/K+ ATPase, the KCC2 is a passive ion transporter, relying on the K+ 

concentration gradient to transport both Cl- and K+ out of the cell. Increases in [Cl-]i lead to 

KCC2 activation and the efflux of one Cl- and one K+ ion, while elevations of [K+]o halt its 

activity (Payne et al., 2003). Due to this activation paradigm, it has been proposed that the 

synchronized activation of GABAergic interneurons may cause a gradual accumulation of [Cl-]i, 

activating the KCC2 co-transporter. This activation would initiate the efflux of both Cl- and K+, 

elevating the [K+]o and triggering the positive feedback loop between increases in [K+]o and 

neuronal excitability described above. 4AP-induced ictal events and high-frequency stimulation-

induced increases in [K+]o could be prevented through the reduction of KCC2 activity (Hamidi 

and Avoli, 2015). It is therefore likely that the KCC2 co-transporter is involved in the generation 

of seizure-like discharges in a network plagued with impaired K+ channel kinetics. 

The brain has developed a number of homeostatic mechanisms by which it is capable of 

maintaining and re-establishing ionic concentration gradients. In the healthy brain, these 

mechanisms serve the purpose of maintaining normal physiological activity. However, in the 
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pathological brain, such as brains afflicted by K+-channelopathies, these homeostatic 

mechanisms may actually exacerbate existing network hyperexcitability shifting the network to 

pathological seizure activity states. 

Homeostatic synaptic scaling and TBI-induced epilepsy 

Patients suffering from penetrating brain wounds after returning from the Vietnam war 

showed increased likelihood for epileptogenesis up to 15 years after the initial trauma (Salazar et 

al., 1985). As mentioned earlier, severe brain trauma, including penetrating brain wounds, are 

commonly associated with the development of epilepsy (Frohlich et al., 2008a; Timofeev et al., 

2010; Timofeev et al., 2013). Experimentally, partial cortical deafferentation in cats has been 

used as a model of penetrating brain wounds to study post-traumatic epilepsy (PTE) (Topolnik et 

al., 2003a, b; Nita et al., 2006, 2007; Avramescu and Timofeev, 2008). A similar type of 

paroxysmal activity was also found in undercut model of epileptogenesis in mice (Chauvette et 

al., 2016; Ping and Jin, 2016). Similarly, slices from isolated cortical slabs show increased 

sensitivity to convulsive pharmacological compounds, and readily exhibit epileptiform 

discharges (Prince and Tseng, 1993). Partial cortical deafferentation presents with reduced 

neuronal excitability and firing rates immediately following trauma (Topolnik et al., 2003a, b; 

Nita et al., 2006; Avramescu and Timofeev, 2008). This perturbation of network activity has 

been shown to result in the modification of synaptic strengths through homeostatic synaptic 

plasticity (HSP) (Avramescu and Timofeev, 2008). Though severe penetrating brain wounds 

remain a common factor leading to acquired epilepsy, the exact underlying mechanism by which 

such wounds lead to the transition of the healthy brain to a pathological state over a prolonged 

delay period remains to be understood but may involve homeostatic regulation of synaptic 

strength. 
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HSP is a slow negative feedback bidirectional process which aims to maintain a target 

network firing rate through the activity-dependent modulation of post-synaptic AMPA receptor 

densities (Burrone and Murthy, 2003; Turrigiano, 2008; Pozo and Goda, 2010). Network-wide 

reduction of activity, through cortical deafferentation or the application of tetrodotoxin (TTX), 

has been demonstrated to result in increased synaptic strength and neuronal excitability in order 

to recover a baseline firing rate through HSP (Topolnik et al., 2003a, b; Wierenga et al., 2005; 

Jin et al., 2006; Nita et al., 2006; Echegoyen et al., 2007; Trasande and Ramirez, 2007; 

Avramescu and Timofeev, 2008; Ibata et al., 2008; Lemieux et al., 2014). Activation of this 

bidirectional mechanism has been suggested to involve activity-dependent [Ca2+]i sensors 

influencing relative TNFa and BDNF expression levels (Burrone and Murthy, 2003; Turrigiano, 

2008; Pozo and Goda, 2010). Additionally, the bidirectionality of HSP appears to be 

differentially regulated, with TNFa and BDNF levels influencing synaptic up-scaling and 

changes in PSD-95 affecting down-scaling of synaptic strengths in response to prolonged 

increases in network activity (Turrigiano, 2008; Pozo and Goda, 2010; Sun and Turrigiano, 

2011). Therefore, impairments in the bidirectionality of this mechanism could mediate 

transitions to an epileptic state following TBI. 

In healthy tissue, HSP works to counteract the intrinsically unstable Hebbian plasticity, 

prevent run-away excitability, and maintain overall network stability (Pozo and Goda, 2010). 

However, in the case of chronic reduction of activity, as observed in response to cortical 

deafferentation, HSP may fail to precisely compensate for the loss of network-wide activity, 

thereby promoting hyperexcitability and the generation of paroxysmal epileptiform discharges 

(Houweling et al., 2005; Frohlich et al., 2008a; Volman et al., 2011a; Volman et al., 2011b). 

Indeed, previous studies have shown that, in a computational model of the cortical network, 
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deafferentation of afferent inputs to a subpopulation of neurons within the network initiated 

homeostatic up-regulation of AMPA receptor conductance (Houweling et al., 2005; Volman et 

al., 2011a; González et al., 2015). Though the network was able to recover its baseline firing 

rate, the synaptic strengths increased substantially, putting the network in a pathological 

hyperexcitable state in which seizures could be easily generated.  

Recent work also suggests that the susceptibility to PTE may be age-dependent 

(Timofeev et al., 2013; González et al., 2015). Partial cortical deafferentation in young and old 

cats resulted in the generation of spontaneous recurring electrographic seizures in older animals. 

Though acute seizures were observed in young animals within hours of the initial insult, 

sustained epileptogenesis was not observed in these younger cats. It was hypothesized that age-

dependent impairment of the down-scaling mechanism of HSP may underlie the increased 

seizure susceptibility for older animals and patients (Timofeev et al., 2013). Recent experimental 

work has provided evidence for age-dependent differences in HSP down-scaling. It was 

demonstrated that the differential expression of the scaffolding protein PSD-95 in older neurons 

rendered homeostatic down-scaling ineffective (Sun and Turrigiano, 2011). Endogenous levels 

of PSD-95 increase with age, and it was shown that in old neurons, upregulation of PSD-95 

impaired the HSP down-scaling without impacting HSP up-scaling (Sun and Turrigiano, 2011). 

As such, it is possible that the initial compensation for decreased network activity following TBI 

through HSP up-scaling can drive an older network to a higher AMPA conductance pathological 

state. In a younger network, HSP down-scaling would correct for this initial overcompensation 

by reducing AMPA receptor conductances and re-establishing physiological activity state. The 

reduced or lack of bidirectionality of HSP, due to increased levels of PSD-95 in older animals, 
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may keep the older network in a higher AMPA conductance state rendering the network more 

prone to seizure onset. 

In a similar vein as to how mechanisms of ionic homeostasis, which are meant to 

maintain physiological activity and combat hyperexcitable pathological states, homeostatic 

mechanisms which regulate synaptic strength such as homeostatic synaptic scaling can drive a 

network to pathological states when the underlying network has undergone some form of sever 

perturbation. In its attempts to recover baseline activity following trauma, HSP may 

overcompensate for the initial loss of network-wide activity and alter the dynamics of the 

network such that the basin of attraction for the pathological state becomes more similar to the 

physiological state. As described earlier, this would result in an easier transition to pathological 

seizure states in response to small network perturbations.  

Infra-slow resting-state network fluctuations and epilepsy 

 Recurrent spontaneous seizures are a hallmark of epileptic disorders. It is not, however, 

the only symptom. Epilepsy often presents with comorbid psychiatric disorders and cognitive 

impairments (Krishnamoorthy et al., 2007; Cataldi et al., 2013). Of patients suffering mesial 

temporal lobe epilepsy (mTLE), the most common form of focal epilepsy, an estimated 24-72% 

also suffer from depression and roughly 10-19% present with psychosis (Gaitatzis et al., 2004; 

Nadkarni et al., 2007; Cataldi et al., 2013). During seizure episodes, patients often experience 

altered levels of awareness, confusion, hallucinations, anxiety and paranoia (Krishnamoorthy et 

al., 2007). Similarly, interictal periods can also be plagued by hallucinations, memory deficits, 

delirium, behavioral disturbances, and personality disorders (Krishnamoorthy et al., 2007). 

Traditionally, focal epileptic seizures have been thought to originate in an isolated epileptic focus 

(Cataldi et al., 2013). This train of thought has become controversial as more studies have shown 
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that a number of brain regions within the temporal lobe, including the hippocampus and 

extrahippocampal structures, can function as epileptic foci (Bartolomei et al., 2005; Bartolomei 

et al., 2008). As such, the description of mTLE as an isolated epileptic focus disorder has been 

replaced with mTLE as a temporal lobe network disorder. This mTLE network may involve the 

hippocampus as well as other limbic structures, subcortical areas such as the thalamus, and 

various neocortical regions (Cataldi et al., 2013).  

 Recent functional magnetic resonance imaging (fMRI) studies have demonstrated altered 

spontaneous resting-state network activity in patients with mTLE (Vanhatalo et al., 2004; Liao et 

al., 2010; Zhang et al., 2010b; Zhang et al., 2010a; Liao et al., 2011; Fahoum et al., 2012). There 

is now substantial evidence for the role of resting-state networks in the regulation of various 

conscious, cognitive, and affective behaviors (Vanhatalo et al., 2004; Fukunaga et al., 2006; 

Buckner et al., 2008; Greicius, 2008; Greicius et al., 2008; Broyd et al., 2009; Zhang and 

Raichle, 2010; Picchioni et al., 2011). Studies comparing patients with mTLE to healthy subjects 

have demonstrated altered spontaneous resting-state activity and functional connectivity between 

specific nodes within these resting-state networks (Liao et al., 2010; Zhang et al., 2010b; Zhang 

et al., 2010a; Liao et al., 2011). One such affected network is the Default Mode Network (DMN) 

which has key nodes in the posterior cingulate cortex and the ventral medial prefrontal cortex 

(Greicius et al., 2003; Buckner et al., 2008; Greicius et al., 2008; Broyd et al., 2009; Greicius et 

al., 2009). The DMN has been historically referred to as a task-negative functional network as 

the structures that comprise this network are deactivated during goal-directed tasks and external 

stimuli (Buckner et al., 2008; Raichle, 2011, 2015). However, DMN activation occurs in 

response to internal stimuli, memory retrieval, mind-wandering, and abstract thinking (Buckner 

et al., 2008; Raichle, 2011, 2015). mTLE patients show overall reduced activation and decreased 
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functional connectivity between keys nodes of the DMN (Vanhatalo et al., 2004; Liao et al., 

2010; Zhang et al., 2010b; Zhang et al., 2010a; Liao et al., 2011; Fahoum et al., 2012). 

Additionally, epileptic events such as interictal population spikes have been shown to decrease 

DMN activity similar to deactivation patterns observed in healthy subjects in response to natural 

sensory input (Kobayashi et al., 2006; Fahoum et al., 2012). Interestingly, several neurological 

and psychiatric disorders, such as Alzheimer’s and schizophrenia, have been shown to correlate 

with altered resting-state fluctuations and functional connectivity within the DMN (Vanhatalo et 

al., 2004; Buckner et al., 2008; Greicius, 2008; Lui et al., 2008; Broyd et al., 2009; Raichle, 

2010; Zhang and Raichle, 2010; Gupta et al., 2017). These alterations in spontaneous resting-

state activity and functional connectivity within various resting-state networks such as the DMN 

may explain decreased cognitive performance in mTLE patients and other comorbid psychiatric 

disorders (Cataldi et al., 2013). 

 The spontaneous resting-state activity fluctuations in fMRI signals are a robust 

phenomenon that has been widely used to evaluate brain network properties (Vanhatalo et al., 

2004; Fukunaga et al., 2006; Buckner et al., 2008; Greicius, 2008; Greicius et al., 2008; Broyd et 

al., 2009; Zhang and Raichle, 2010; Picchioni et al., 2011). In attempting to study the source of 

noise in fMRI recordings during resting-states, Biswal et al. (1995) observed that the 

spontaneous background fluctuations recorded during fMRI scans were coherent between 

functionally related brain regions (Biswal et al., 1995). Since then, other studies have shown 

similar coherent resting-state activity between regions comprising functional networks such as 

the DMN and executive control network (Fukunaga et al., 2006; Raichle and Mintun, 2006; 

Buckner et al., 2008; Greicius, 2008; Greicius et al., 2008; Broyd et al., 2009; Greicius et al., 

2009; Larson-Prior et al., 2009; Raichle, 2011, 2015). These resting-state fluctuations occur in 



 

 25 

the frequency range of 0.01 – 0.2 Hz (Fukunaga et al., 2006; Honey et al., 2007; Buckner et al., 

2008; Ghosh et al., 2008; Greicius, 2008; Greicius et al., 2008; He et al., 2008; Khader et al., 

2008; Broyd et al., 2009; Greicius et al., 2009; Larson-Prior et al., 2009; Lorincz et al., 2009; 

Chang and Glover, 2010; Picchioni et al., 2011; Palva and Palva, 2012; Pan et al., 2013; Hiltunen 

et al., 2014; Raichle, 2015), and are reported with neuroimaging, electrophysiological, and 

optical techniques (Biswal et al., 1995; Fukunaga et al., 2006; Greicius, 2008; Greicius et al., 

2008; Pan et al., 2013; Hiltunen et al., 2014). Though the number of publications studying the 

properties of these infra-slow fluctuations and their functional relevance have increased 

substantially, few studies have focused on explaining the underlying biophysical properties 

which give rise to these infra-slow fluctuations.  

 In order to understand how epilepsy and seizures influence the properties resting-state 

network fluctuations and their potential roles in altered cognitive and conscious states during and 

between seizures, we must first develop a better understanding of the underlying biophysical 

mechanisms by which these spontaneous infra-slow fluctuations arise. As previously mentioned, 

changes in ion concentration gradients have been proposed to underlie modifications to network-

wide activity (Pedley et al., 1974; Chub and O'Donovan, 2001; Somjen, 2002; Bazhenov et al., 

2004; Chub et al., 2006; Frohlich and Bazhenov, 2006; Frohlich et al., 2008b; Krishnan and 

Bazhenov, 2011; Wei et al., 2014a; Krishnan et al., 2015). These changes in relative ion 

concentrations have been reported to occur on slow time scales (McCreery and Agnew, 1983). 

Indeed, low amplitude [K+]o fluctuations have been reported during resting-state activity over a 

long time period (McCreery and Agnew, 1983). Similarly, slow [K+]o fluctuations have been 

recorded prior to seizure-like activity in animal model of epilepsy and have been suggested to 

underlie slow bursting dynamics in epilepsy (Pedley et al., 1974; Traynelis and Dingledine, 
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1988; Somjen, 2002; Ziburkus et al., 2013; Huberfeld et al., 2015). As such, it may be likely that 

the intrinsic mechanisms which regulate ionic homeostasis may influence spontaneous resting-

state activity and give rise to the infra-slow time scale of these fluctuations. 

 Here, we explore the how ionic and synaptic homeostatic mechanisms give rise to and 

regulate network dynamics. We begin by first exploring the role of homeostatic synaptic scaling 

in the development of post-traumatic epilepsy and how age-dependent impairments in this 

homeostatic mechanism might explain the age-related differences in susceptibility to 

epileptogenesis following cortical trauma. We then explore the role of the KCC2 co-transporter 

in seizure initiation in genetic epilepsies characterized by K+-channelopathies. Finally, we 

explore how ion concentration dynamics and their regulatory mechanisms give rise to and 

mediate spontaneous infra-slow resting-state network fluctuations.  
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Chapter 2: Homeostatic Synaptic Scaling and Age-Dependent Post-traumatic Epilepsy 
 
Abstract:  
 

Homeostatic synaptic plasticity (HSP) has been implicated in the development of 

hyperexcitability and epileptic seizures following traumatic brain injury (TBI). Our in vivo 

experimental studies in cats revealed that the severity of TBI-mediated epileptogenesis depends 

on the age of the animal. To characterize the mechanisms of these differences, we studied the 

properties of the TBI-induced epileptogenesis in a biophysically realistic cortical network model 
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with dynamic ion concentrations. After deafferentation, which was induced by dissection of the 

afferent inputs, there was a reduction of the network-wide activity and up-regulation of 

excitatory connections leading to spontaneous spike-and-wave type seizures. When axonal 

sprouting was implemented, the seizure threshold increased in the model of young but not the 

older animals, which had slower or unidirectional homeostatic processes. Our study suggests that 

age-related changes in HSP mechanisms are sufficient to explain the difference in the likelihood 

of seizure onset in young versus older animals.  

Introduction:  
 

Penetrating brain wounds or other forms of brain trauma commonly lead to 

epileptogenesis (Kollevold, 1976; Dinner, 1993; Temkin et al., 1995; Annegers et al., 1998; 

Topolnik et al., 2003a; Jin et al., 2006; Nita et al., 2007; Avramescu and Timofeev, 2008). Partial 

cortical deafferentation triggers the development of electrographic seizures within hours of the 

initial insult (Topolnik et al., 2003b; Nita et al., 2006). Following partial cortical deafferentation, 

epileptiform discharges were observed in vitro (Prince and Tseng, 1993; Xiong et al., 2011). In 

vivo studies in undercut cat cortex have revealed synaptic strength modulation and changes in 

intrinsic excitability (Avramescu and Timofeev, 2008), but the exact mechanisms leading to 

seizure generation following brain trauma remain to be understood. 

Homeostatic synaptic plasticity (HSP) has been implicated in epileptogenesis following 

severe brain trauma (Houweling et al., 2005; Echegoyen et al., 2007; Trasande and Ramirez, 

2007; Frohlich et al., 2008a; O'Leary et al., 2010; Volman et al., 2011a; Volman et al., 2011b). 

HSP is a slow negative feedback mechanism that maintains neural activity within a physiological 

range through activity-dependent modulation of synaptic strength and intrinsic excitability 

(Burrone and Murthy, 2003; Turrigiano, 2008; Pozo and Goda, 2010). It has been proposed that 
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this is achieved through the use of activity-dependent [Ca2+]i sensors, TNFa and BDNF levels, 

as well as changes in Arc/Arg3.1 expression (Burrone and Murthy, 2003; Turrigiano, 2008; Pozo 

and Goda, 2010). In a normal network, HSP works to counter-balance Hebbian plasticity thereby 

preventing runaway excitation, and restricts the network activity to maintain network stability 

(Pozo and Goda, 2010). However, for chronic activity deprivation, as occurs after partial cortical 

deafferentation, HSP may fail to correctly compensate for the loss of network activity promoting 

hyperexcitability, and may potentially lead to paroxysmal synchronized bursting events 

(Houweling et al., 2005; Frohlich et al., 2008a; Volman et al., 2011a; Volman et al., 2011b). 

Recent studies of epileptogenesis in animals of different ages revealed that older animals 

are more prone to epileptic seizures after traumatic brain injury than the younger ones (Timofeev 

et al., 2013). It was suggested that following recovery from injury, HSP may fail to control 

synaptic strength in deafferented areas leading to “overshooting” of synaptic strength and 

promoting epileptogenesis. In this study, we explored the hypothesis that HSP regulation is age-

dependent and its changes may lead to epileptogenesis using a biophysically realistic cortical 

network model in which synaptic strengths are under homeostatic regulation, and the dynamics 

of intra- and extracellular ion concentrations are implemented to achieve realistic “in vivo-type” 

network dynamics. Following network deafferentation, we observed a decrease in the seizure 

threshold that was dependent on the severity of trauma. Implementing axonal sprouting rescued 

the normal physiological activity, but only when HSP was able to precisely control excitability. 

Impairment of the homeostatic down-regulation, as observed in older animals, increased severity 

of epileptogenesis and led to persistent epileptiform discharges as observed experimentally in the 

older, but not in the younger animals. 
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Results:  
 
Trauma-induced epileptogenesis in vivo 
 

Our previous studies have demonstrated that cortical undercut induces acute seizures 

stopping within several hours (Topolnik et al., 2003b). In head-restrained adult cats, the seizures 

were also developed in chronic conditions – weeks to months following the undercut in 70% of 

animals (Nita et al., 2007). Although cats are very tolerant to head-restrained conditions, some 

physiological artifacts, due to the unusual environment could be a factor that contributed to 

seizure generation. Therefore, in this study we performed continuous wireless electrographic and 

behavioral recordings for two-four months in four young (10-12 months old at the time of 

surgery) and one adult cat (older than 8 years at the time of surgery).  

The acute seizures were recorded for 8-10 hours after the end of isoflurane anesthesia in 

all animals. The amplitude of electrical activity in the undercut suprasylvian area was lower as 

compared to other sites of intracortical recordings. The general dynamics of pathological 3-5 Hz 

rhythmic activity around the undercut cortex were not different from our previous study in terms 

of their spatial and temporal distribution (Nita et al., 2007). This electrical activity was recorded 

in the 8-year-old cat only. However, we observed new phenomena that had not been seen in 

head-restrained animals. The undercut cortex produced isolated large amplitude (~0.5 mV) slow 

waves. There were 18-20 periods of these slow waves per day in the first week following the 

undercut, and then their occurrence increased to about 50 periods per day. Within each period 

there were 2 to 40 slow waves none of which were rhythmic, and they occurred at most once 

every ten seconds. We have not observed these events in the head-restrained conditions in our 

previous experiments (Nita et al., 2007).  
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After six weeks, rare large paroxysmal electrographic events developed in the adult cat 

only. The full-blown seizures accompanied with motor jerks developed at the end of the third 

month. Most of the seizures were detected in the waking state, within a minute of transition from 

either slow-wave or REM sleep (figure 2.1A). In this animal, the highest amplitude of slow-

waves during slow-wave sleep were recorded in both right and left somatosensory cortices 

(figure 2.1 B1, B2, green traces) and the lowest amplitude was recorded in the undercut cortex 

(figure 2.1 B1, B2, black traces). During seizure, the maximal local field potential (LFP) 

amplitude was recorded in marginal gyrus (figure 2.1, B1, B2, red trace) followed by left 

postcruciate gyrus (figure 2.1 B1, B2, upper green trace). Both these recording sites were 

surrounding the undercut cortex, suggesting that the areas surrounding the undercut cortex play a 

leading role in seizure generation. After the end of the seizure the cat awakened as demonstrated 

by activated LFP pattern in visual cortex and was at physical rest as evidenced by an absence of 

movements, low neck muscle tone, and strong mu rhythm recorded over somatosensory cortical 

areas (figure 2.1 D1, D2). 

In our previous experiments, about 70% of cats developed seizures in chronic conditions 

after undercut (Nita et al., 2007). These animals were of unknown age. Here we reanalyzed these 

data. Out of 6 animals, the two that did not develop epilepsy within 3-4 months of observation 

were the cats that weighed 1.9-2.2 kg. The cats that developed epilepsy within the first several 

months from the undercut weighed 2.3-3.9 kg; veterinary examination did not consider these cats 

to be obese. The cats that weighed more than 2.3 kg were most likely fully adult. This further 

suggests that cortical undercuts lead to the development of epilepsy only in adult cats. 
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Figure 2.1 Cortical undercut leads to electrographic seizures in vivo. A, Transition between slow-wave sleep 
(SWS), rapid eye movement sleep (REM), waking state and seizure. Brain drawing shows location of intracortical 
local field potential electrodes. The other traces are EOG – electrooculogram, Acc – accelerometer and EMG – 
electromyogram. Segments of recordings indicated by the grey area are expanded in time in B1 (SWS), C1 (Seizure) 
and D1 (Postictal recovery). Further expansion in time and amplitude is shown in panels B2, C2 and D2. 
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Partial cortical deafferentation triggers seizure-like activity in the network model 
 

Following our previous studies (Timofeev et al., 2000; Topolnik et al., 2003b, a; 

Houweling et al., 2005; Frohlich and Bazhenov, 2006; Frohlich et al., 2008b; Frohlich et al., 

2008a; Timofeev et al., 2010; Volman et al., 2011a; Volman et al., 2011b), partial network  

deafferentation was used as a computational model of TBI. The network model incorporated 

populations of synaptically coupled excitatory pyramidal cells and inhibitory interneurons. In 

addition, realistic ion concentration dynamics were implemented to simulate in vivo-like 

conditions (see Methods for details). HSP was implemented to maintain a target firing rate by 

up- or down-regulation of synaptic strength. To achieve feasible simulation times, the HSP 

scaling rate was significantly increased to achieve much faster than physiological scaling. 

In an intact, non-deafferented network, application of a low amplitude 1 sec current pulse 

stimulus to all pyramidal neurons was unable to elicit seizure activity (figure 2.2A-C). The brief 

stimulus caused a small transient increase in network activity reflected in the rise of the mean 

firing rate of the network (figure 2.3A, red trace). Prior to the stimulus, the network firing rate 

was fairly constant around the target firing rate of 5 Hz. At the onset of the stimulus (300 sec in 

figure 2.3A), the firing rate of the network increased to ~10 Hz, but quickly returned to the 

baseline following termination of the current pulse. Increase in the network mean firing rate was 

accompanied by small transient increases in extracellular potassium ([K+]o) and intracellular 

sodium ([Na+]i) concentrations, which then returned to the baseline shortly after the stimulus 

ended (figure 2.3D red traces). The firing pattern of this intact network remained unperturbed, 

showing spontaneous activity across the entire network (figure 2.2A-C).  
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Figure 2.2 Network deafferentation leads to reduction of seizure threshold. A, Raster plot of activity in control 
network without deafferentation. Brief 1s stimulus was applied at 300s (red bar). B, Single cell activity from control 
network in A (location indicated by arrow). C, Zoom in of activity from B showing spontaneous firing pattern. D, 
Raster plot of activity of a network with 50% deafferentation applied at 100s (green triangle). Stimulation was 
applied at 300s (red bar) of equal duration and strength as that applied in A. E, Single cell activity from the 
deafferented network in D. F, Left, synchronized bursting events with spike inactivation during spike and wave 
seizure-like activity in E. Right, background bursting firing pattern generated between seizures. G, Left, LFP of the 
network corresponding to the spike and wave epileptiform activity shown in F (left). Right, the LFP corresponding 
to background bursting in F (right). 
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Inducing 50% deafferentation (afferent input was reduced by half) (green triangle, figure 

2.2D) to a middle region of 80 neurons (out of a total of 120 neurons) led to an immediate 

decrease of activity in the region affected by the deafferentation (figure 2.2D, figure 2.3A black). 

This triggered homeostatic up-regulation of excitatory synaptic connectivity leading to the slow 

recovery of the network firing rate (figure 2.3A, see the time interval 100-200 sec). Figure 2.2E 

shows the voltage trace of a single representative neuron within the deafferented region, and the 

reduction in activity of the neuron following deafferentation. Extracellular potassium 

concentration (figure 2.3D black trace and figure 2.3E) was also slightly reduced as a result of  

 the deafferentation. Synaptic weights between pyramidal neurons progressively increased 

(figure 2.3B black trace) through HSP regulation in response to the reduction of firing rate.  

Upon application of external stimulus to the deafferented network (figure 2.2D red bar; 

strength same as figure 2.2A), the network generated seizure-like activity. We found a significant 

reduction in the seizure threshold: seizure-like activity could be generated in the deafferented 

network using only 4% of the stimulus strength needed to induce seizure-like activity in the 

intact network. Pathological activity showed characteristic state transitions between fast runs and 

spike-and-wave complexes, followed by spontaneous termination and post-ictal depression 

(figure 2.2D, E) resembling in vivo recordings of electrographic seizures (Topolnik et al., 

2003b). The LFP during the fast runs and spike-and-wave complexes in the model (figure 2.2G) 

resemble the LFPs recorded in vivo in figure 2.1. Following post-ictal depression, the baseline 

firing rate of the deafferented network fluctuated around the target firing rate of 5 Hz. However, 

there was a marked difference in the network baseline firing pattern after deafferentation. Unlike 

asynchronous spontaneous firing observed in the intact network (figure 2.2 A-C), the neurons 

showed isolated bursting events following deafferentation (figure 2.2 D-F, right). Bursting was 
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observed independently of the seizure episodes suggesting that the origin of this pattern was 

purely a consequence of network deafferentation.  

The dynamics of network activity can be illustrated by following the trajectory in a 

reduced phase space of the average synaptic weights plotted against the average firing rate 

(figure 2.3C). Without deafferentation (figure 2.3C, red), the state of the network was in a fixed 

point–like attractor and stayed there for the duration of the simulation. Following 50% 

deafferentation, the network state drifted away from the fixed point (figure 2.3C, black) due to 

HSP-mediated increase in synaptic weights. It approached a limit cycle-like attractor 

corresponding to the slow oscillatory dynamics of the baseline activity. In this state, the network 

was sensitive to small perturbations; thus, a small external stimulus could trigger a seizure. The  

seizure-like activity resulted in a rapid rise in the firing rate followed by a return of oscillations 

(figure 2.3C, spike in black plot).  

Analysis of the [K+]o (figure 2.3D-E) suggested that the seizure onset was triggered by a 

positive feedback mechanism. Following external stimulation, [K+]o in the region of the network  

affected by deafferentation reached a level high enough to increase excitability and neuronal 

firing; that further increased [K+]o leading to seizure onset (figure 2.3 D-E). During seizure-like 

activity [K+]o reached as high as 7 mM, while the [Na+]i reached 22.5 mM; in contrast, the levels 

of [K+]o and [Na+]i in the intact network remained around 4 mM and 20 mM, respectively (figure 

2.3D, red traces). [K+]o and [Na+]i levels remained high in the intact regions of the deafferented 

network compared to the baseline levels in the non-deafferented network (figure 2.3E, F). 

Dynamics of [K+]o and [Na+]i determined the spike-and-wave pattern of the epileptic seizure and 

its termination. As previously shown, [K+]o increases during fast runs and decreases during the 

spike-and-wave phase mediating periodic transitions between the two dynamic states in the  
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Figure 2.3 Synaptic weights and ion concentration dynamics. A, Average firing rate a network without 
deafferentation (red) and network with 50% deafferentation (black). B, Average synaptic weight dynamics. HSP 
scaling was blocked during seizure state to avoid un-physiologically fast changes of synaptic weights. C, Phase 
space projection shows dynamics of the averaged network firing rate and synaptic weight for intact (red) and 
deafferented (black) networks. D, Left (right), evolution of the extracellular potassium (intracellular sodium) 
concentrations near (from) a single cortical pyramidal neuron. E, F, raster plots of extracellular potassium and 
intracellular sodium concentrations respectively, for the network with deafferentation. Time of deafferentation is 
indicated by the green triangle, and stimulus application is indicated by red bar. 
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presence of bistability between fast runs and spike-and-wave complexes (Frohlich et al., 2005; 

Frohlich and Bazhenov, 2006). Progressive increase of [Na+]i over the course of seizure 

eliminated the bistability leading to termination of the seizure and a post-ictal depression state 

(Krishnan and Bazhenov, 2011).  

We found that stimulation of the deafferented network during either the peak or trough of 

the slow baseline [K+]o oscillation did not significantly affect seizure threshold. While we 

previously reported dependence of the threshold for seizure onset on the level of [K+]o (Frohlich 

et al., 2010), fluctuations of the baseline [K+]o reported here were too small (<1 mM) to produce 

a significant change of the seizure threshold.  

In this model, seizure-like activity started first near the center of the network. This was 

likely because there were enough intact neurons within the deafferented region to trigger a 

seizure. In networks with more severe deafferentation (e.g. 90% deafferentation in figure 2.5), 

there were fewer active neurons within the deafferented region, but neurons from the intact part 

of the network stimulated activity near the border of the intact and deafferented regions; that area 

became a primary site for seizure initiation.  

Severity of deafferentation determines seizure threshold 

 We next explored the effects of the severity of deafferentation on seizure threshold. We 

began by keeping the size of the deafferented region constant while varying the percent of 

deafferented neurons within the affected region. In a 1D network of 120 PY neurons, an affected 

region of 80 contiguous neurons was chosen, and within these 80 neurons the percent of 

deafferented neurons was varied. Starting with a network with 0% deafferentation (all neurons 

were left intact) and increasing the severity of the trauma to 100% deafferentation (all 80 

neurons experienced partial deafferentation) there was a significant decrease in seizure threshold 
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(figure 2.4A). In intact non-deafferented networks, seizure-like activity could still be induced by 

a sufficiently strong current pulse (100% in figure 2.4 A, C). Similar to the seizures in the 

deafferented network, the intact network exhibited characteristic fast run and spike-and-wave 

complex state transitions, and large increases in [K+]o as well as increases in [Na+]i. With a small 

deafferentation (<10%) the seizure threshold was reduced but remained relatively high (figure 

2.4A). Deafferentation of 10% of the neural population (figure 2.4B) resulted in a seizure 

threshold of 70% of the stimulus strength necessary to evoke seizure in intact network. In that 

case, reduction in the network baseline activity following deafferentation (green triangle) was 

relatively small. Nevertheless, even such minor “trauma” led to appearance of isolated bursting 

events (similar to that shown in figure 2.2F, right).  

The seizure threshold quickly reduced with deafferentation of 20% and higher; 50% 

deafferentation produced the lowest seizure threshold of about 4% of that in the intact network 

 (figure 2.4A). This condition (50% deafferentation) was chosen for simulations shown in figures 

2.2 and 2.3. Increasing deafferentation to 100% led to a small increase in seizure threshold as 

compared to that in the model with 50% deafferentation. The remaining intact (and therefore, 

more active) neurons at the intermediate levels of deafferentation (e.g., 50%) could likely help 

initiate seizure; this can explain the minor threshold increase when an entire population was 

deafferented. In these simulations, although seizure initiation threshold became very low with 

increasing size of deafferentation, spontaneous seizures were not generated. Independent of the 

severity of the trauma, all seizure-like events exhibited characteristic fast run and spike-and-

wave complex state transitions and increases in [K+]o. Additionally, all but the fully intact 

network developed isolated bursting following deafferentation.  
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We then tested the effect of the size of deafferented region on the susceptibility of the 

network for seizure generation by changing the number of neurons in the affected region (i.e. 80 

neurons for the previous condition) and applying 50% deafferentation (approximately 40 neurons 

were deafferented out of 80 neurons for the previous condition). Increasing the size of the 

affected region from 0 neurons to a block of 100 neurons also showed a significant change in 

Figure 2.4 Severity of deafferentation affects seizure threshold. A, Threshold values for different degrees of 
deafferentation. Red line shows the mean threshold for a given degree of deafferentation, black bars give a range of 
thresholds from individual simulations. B, Raster plot of activity from a network with 10% deafferentation (green 
triangle). Bottom, activity of a single neuron from the network (top panel); location is indicated by the arrow. C, 
Threshold values for different sizes of deafferented area. D, Raster plot of activity from a network with a block of 70 
neurons undergoing 50% deafferentation (green triangle). Bottom, activity of a single neuron from the network. 
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seizure threshold (figure 2.4C). Affected regions of 10 to 20 neurons resulted in a small decrease 

of threshold (>60% of that in intact network), very similar to the small change in seizure 

threshold observed in the 10% deafferented condition (figure 2.4A). Deafferented regions of 30 

to 100 neurons, however, led to much larger decrease of the seizure threshold. When 100 

neurons were deafferented, the seizure threshold reduced to only 3% of that in the intact 

condition. figure 2.4D shows a network with a deafferented region of 70 neurons. Surprisingly, 

this network produced a seizure pattern that was very similar to that in the network with only 

10% deafferentation (figure 2.4B). Unlike the results from varying the percent of deafferented 

neurons (figure 2.4A), we did not observe an increase in threshold as the size of the affected 

region approached 100 neurons. Although both of the trauma conditions resulted in very low 

seizure initiation thresholds, varying the size of the deafferented region showed a smoother drop 

in threshold (figure 2.4C) as opposed to the abrupt drop in figure 2.4A. As was the case with 

varying the percent of neurons being deafferented, varying the size of the affected region did not 

result in the generation of spontaneous seizures. 

Seizure-like events start near the boundary between intact and deafferented regions 
 

To study spatio-temporal properties of initiation and spread of seizure-like activity, we 

increased the size of the network to 200 neurons leaving an intact region of 60 neurons on either 

side of the deafferented area of 80 neurons in the center of the network (figure 2.5A). We then 

applied 90% deafferentation (figure 2.5A, green triangle). As in the previous experiments, prior 

to the “trauma” the network displayed an asynchronous firing pattern. After deafferentation, we 

observed an immediate and strong drop in activity of the deafferented region. A brief, 1 s 

stimulus applied to the entire population of neurons (red bar) evoked seizure-like activity. figure 

2.5B provides a closer look at the spatio-temporal pattern of activity near the time of stimulation. 
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The stimulus (red bar) triggered tonic firing which lasted about 20 s before transitioning to spike-

and-wave bursting activity. In all models of epileptiform activity reported in this study, [K+]o 

increased during fast runs and decreased during spike-and-wave bursting phase (Frohlich et al., 

2005; Frohlich and Bazhenov, 2006). This created a bistability between two dynamic network 

states for a range of [K+]o mediating transitions from tonic firing to spike-and-wave bursting. 

We observed that epileptic bursts initiated at the boundaries between intact and 

deafferented regions (figure 2.5B) and then propagated outward to the rest of the network. A 

closer look at a single neuron near the boundary and a neuron from the center of the deafferented 

region revealed the delay in the onset of transition from fast runs to spike-and-wave complexes 

(figure 2.5C, D), thus indicating that the synchronized activity propagated away from the 

boundaries and well inside the intact and deafferented regions. Seizure-like activity in the intact 

regions of the network appeared to last longer than that in the deafferented region.  These results 

are consistent with our new experimental findings (figure 2.1), which reported that the seizure 

amplitude was highest near the boundary of the undercut area, and with the previous 

experimental studies showing that seizure initiation in vivo occurs near the boundary between  

intact and deafferented regions (Nita et al., 2007). Unlike the neurons located well inside 

deafferented region, neurons near the border receive synaptic input from active intact neurons 

while some of their excitatory connections are homeostatically up-regulated. This combination of 

up-regulated synaptic strength and strong synaptic input made these neurons hyperexcitable and 

primed for seizure (Volman et al., 2011a). 

Spontaneous vs. evoked epileptiform events 
 

To test effect of HSP properties on seizure threshold, we varied the rate of homeostatic 

scaling (𝛼"#$ , which is the rate at which synaptic weights change during HSP, see Methods for   
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Figure 2.5 Seizures initiate at the boundaries and propagate towards intact and deafferented regions. A, 
Raster plot of activity from a network with 90% deafferentation applied at 100sec (green triangle) followed by 
stimulus at 300sec (red bar). B, Zoom in the raster plot of activity during one episode of seizure in A. C, D, Single 
cell activity from the network in B; locations are indicated by the arrows. Note bursting with spike inactivation 
followed by tonic spiking (fast run) just before termination of seizure. 
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details); higher scaling rate manifested faster, but also less accurate adjustment of synaptic 

weights. Spontaneous seizures were generated after 50% deafferentation (similar to conditions 

presented in figure 2.2) when the rate of homeostatic scaling was increased from 0.01 to 0.06, 

and the update time for synaptic weights was increased from every 5 s to every 20 s (figure 2.6A, 

B). Less precise synaptic scaling at higher rates prevented fine adjustments of synaptic weights 

thereby making the network more prone to overcompensate for the loss of activity and increase 

its propensity for seizure. Physiologically, this effect could result from the feedback delay 

between increase of synaptic strength and changes of the ambient glutamate level sufficient to 

stop synaptic up-regulation. These spontaneous seizures exhibited characteristic fast runs and 

spike-and-wave complexes (figure 2.6B) and were accompanied by a large increase in the 

network mean firing rate, with a maximum rate reaching 65 Hz, and large increases of synaptic 

weights (figure 2.6C, D). The network generated the first spontaneous seizure about 100 s after 

the deafferentation, with about 250 s between seizure-like events (figure 2.6A). Post-ictal 

depression lasted for about 100 s. Before the first seizure onset, synaptic weights reached higher 

level than that in the model with a slower and more precise HSP rate (compare figure 2.3B with 

2.6D), which could explain the occurrence of spontaneous seizures.  This experiment suggested 

that precise regulation of the HSP scaling may have an important impact on the network 

dynamics.  

Effects of axonal sprouting on seizure threshold 
 
 Local axonal sprouting has been observed in cortex following cortical deafferentation 

(Carmichael and Chesselet, 2002; Avramescu and Timofeev, 2008; Timofeev et al., 2013; 

Kusmierczak et al., 2015). Connection probabilities progressively increased up to 6 weeks after 

cortical undercut was administered in cats (Avramescu and Timofeev, 2008). Axonal sprouting  
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in response to cortical trauma was found to be regulated by synchronous network activity after 

the trauma (Carmichael and Chesselet, 2002). To study the effect of trauma-induced axonal 

sprouting on seizure threshold and generation, we implemented a recovery process which 

modeled the axonal sprouting observed following brain trauma, and which regulated the amount 

of external input received by the deafferented population of neurons. This model of axonal 

Figure 2.6 Spontaneous epileptiform events. A, Raster plot of activity with spontaneous, recurrent seizure-like 
events. Deafferentation time is indicated by the green triangle (αHSP = 0.06 and check time = 10 sec). B, Top, single 
cell activity from the network in A (black arrow). Bottom, zoom in shows individual bursts with spike inactivation 
during seizure. C, Average firing rate of the network in A. D, Mean synaptic weights dynamics as a function of time 
for the network in A. HSP scaling was blocked during seizure state to avoid un-physiologically fast changes of 
synaptic weights. 
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sprouting was only applied to deafferented neurons, and the level of input was not allowed to 

exceed that in the intact network. 

Because both homeostatic scaling and axonal sprouting may vary with age, we varied the 

rate of both processes in our model and tested the effect of these changes on the seizure threshold 

(figure 2.7A). In general, we found that as the sprouting rate increased the threshold for seizure 

generation also increased. For high sprouting rates, increasing HSP rate, 𝛼"#$, led to an increase 

in threshold. For networks with a very fast HSP rate (𝛼"#$= 0.06) and sprouting rate (𝛾#&'= 

0.001), the seizure threshold reached the level observed in a completely intact network (figure 

2.7A, top/right). Figure 2.7B shows examples of the seizure threshold dynamics over time for 

two combinations of HSP and sprouting rate parameters (see 1 and 2 in figure 2.7A). We 

compared a “fast” network with faster HSP and faster sprouting rate (𝛼"#$= 0.005; 𝛾#&'= 0.001) 

to a “slow” network that had a slower HSP and slower sprouting rate (𝛼"#$ = 0.001; 𝛾#&'= 

0.0002). Fifty percent deafferentation was applied to both networks at the same time point 

(figure 2.7B, arrow). In figure 2.7B, early and late HSP are defined by the time elapsed 

following the initial cortical insult, early HSP was the time almost immediately after 

deafferentation and late HSP was the time when the target firing rate was fully recovered. From a 

clinical perspective, early HSP can be considered the time when early onset seizures are 

prevalent, and late HSP is when the incidence of late onset seizures is increased. The threshold 

values presented prior to the onset of the deafferentation represent the threshold for intact 

networks.  

During early stages of HSP, the fast network had a lower seizure threshold than the slow 

network (figure 2.7B; compare the first point after deafferentation). However, as the time 

progressed, the fast network displayed a significant increase in the threshold level  (>70% of  
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intact network) whereas the slow network’s seizure threshold continued to decline. It should be 

noted that both networks, with the fast and slow HSP and sprouting rate in figure 2.7B, were able 

to fully recover their seizure thresholds after a substantial amount of time; however, the overall 

Figure 2.7 Effect of axonal sprouting rate on seizure threshold. A, Seizure threshold (color map) as a function of 
HSP αHSP and sprouting rate, 𝛾#&'. All thresholds were tested in late HSP 
condition representing the last data points in panel B. The tiles numbered 1 & 2 correspond to the thresholds of the 
fast and slow networks in B, respectively. B, Threshold dynamics for two sample networks. Fifty percent 
deafferentation was applied at 100sec (arrow). The “fast” network (red) has a fast HSP and fast sprouting rate (αHSP 
= 0.005, 𝛾#&'= 0.001) while the “slow” network (blue) has slow HSP and slow sprouting rate (αHSP = 0.001, 𝛾#&'= 
0.0002). Hundred percent represents seizure threshold of an intact network.  
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duration of the time window when the threshold was reduced was much longer in the network 

with the slow sprouting rates. Experimental studies with cats (Timofeev et al., 2013) suggest that 

the age-related increase in seizure susceptibility following cortical deafferentation may be caused 

by the differences in homeostatic scaling and axonal sprouting. Indeed, our model predicts that it 

may be a plausible mechanism to explain the reduced likelihood of late onset seizure as seen in 

animal experiments, as well as in juvenile TBI patients compared to adult TBI patients.  

Impact of impaired homeostatic down-regulation on seizure threshold  
 

In the previous section, we showed that the differences in the properties of HSP scaling 

and axonal sprouting rate may explain why younger cats are less likely to develop seizures than 

older animals following severe brain trauma (Timofeev et al., 2013). Below we tested several 

specific mechanisms that could explain the difference between TBI impact on young and adult 

animals.  

Experimental data suggest that different biophysical mechanisms are responsible for 

homeostatic up- and down-regulation, and that they may be differentially impaired with aging. 

Recent data (Sun and Turrigiano, 2011) revealed that down-regulation of synaptic strength in 

older animals may be impaired by increased expression levels of PSD-95 (see more in 

Discussion). We, therefore, proposed that homeostatic synaptic scaling may be less bidirectional 

in the older animal as compared to the young ones. As such, we tested the possibility of age-

related changes in seizure susceptibility by varying the down-regulation of synaptic weights 

(𝛼("#$) while keeping up-regulation constant (𝛼)"#$ = 0.01). First, we set the sprouting rate to 

zero. Following the onset of deafferentation, the network generated spontaneous seizures for 

values of 𝛼("#$ ≤ 0.003 (figure 2.8A). The seizure threshold was reduced (compared to a 

control network) for all values of 𝛼("#$ ≤ 0.002 (figure 2.8A inset). Reducing 𝛼("#$ to 0.001  
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Figure 2.8 Seizure susceptibility in the “young” vs. “old” animal models. Fifty percent deafferentation was 
applied at 100 sec (black arrow or green triangle). A, Number of spontaneous seizures vs. HSP down-regulation rate, 
α-HSP. Inset shows the seizure thresholds for networks with different α-HSP. B, Top, Raster plot of activity of a 
network with α-HSP = 0.009. Bottom, phase space projection shows dynamics of synaptic weights and averaged firing 
rate. Inset, amplitude of the steady-state oscillation in the phase space projections for values of α-HSP = 0.003 – 0.01; 
these values did not produce spontaneous seizures.  C, Top, Raster plot of the network activity for α-HSP = 0.002. 
Bottom, phase space projection shows dynamics of synaptic weights and averaged firing rate leading to seizure. D, 
Time evolution of seizure threshold for networks with varying α-HSP. All networks implemented synaptic sprouting; 
vertical arrow indicates the time of deafferentation. E, Raster plots of the network activity with bidirectional HSP 
(left), and unidirectional HSP (right). F, Single cell activity from the networks with bidirectional (left) and 
unidirectional (right) HSP. 
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or removing down-scaling all together led to the generation of multiple recurrent spontaneous 

seizures in response to 50% deafferentation.  

Figures 2.8B and C show examples of the networks with different degrees of impairment 

of the down-regulation processes. A network model with a slightly reduced 𝛼("#$ = 0.009, 

representing scenario of a “younger” animal (figure 2.8B), did not produce spontaneous seizures 

following deafferentation (green triangle in figure 2.8B). The phase trajectory of this network 

converged to a fixed point-like attractor (figure 2.8B, bottom). In the network model representing 

an “older” animal and having a larger reduction of 𝛼("#$ = 0.002 (figure 1.8C), we observed 

recurrent spontaneous seizures (see the end of the simulation in figure 2.8C, top) and the phase 

trajectory converged to a limit cycle-like attractor in which the synaptic weights slowly 

oscillated along with the average firing rate (figure 2.8C, bottom). 

Analysis of the network dynamics for 𝛼("#$ values which did not lead to spontaneous 

seizures (𝛼("#$ = 0.003 – 0.01) revealed that the amplitude of the steady-state oscillations in the 

reduced phase space of the average firing rate plotted against synaptic weights increased as the 

𝛼("#$ value decreased (compare figure 2.8B vs. 2.8C; see figure 2.8B insert) suggesting a 

dynamical mechanism of instability and seizure initiation in the models with imprecise synaptic 

scaling for lower 𝛼("#$ values.  

Next, we explored the effects of impaired homeostatic down-regulation on seizure 

threshold in the presence of synaptic recovery. We tested this by determining the seizure 

thresholds of four different networks. Each network had the same sprouting rate but varied in the 

rate of homeostatic down-regulation of synaptic weights, 𝛼("#$ (figure 2.8D). Following 

deafferentation, all four networks had similar seizure thresholds at the early stages of the HSP. 

However, a clear-cut difference was found at the late stages of synaptic homeostasis. The 
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networks with less impaired 𝛼("#$ were able to recover some of the seizure threshold and 

prevent spontaneous seizure generation (figure 2.8D, blue and green lines). In contrast, the 

networks with more impaired 𝛼("#$ produced recurrent spontaneous seizures (figure 2.8D, 

black and red lines overlap in most of the plot). Even for very long simulation times, the 

unidirectional network, 𝛼("#$ = 0 , was unable to recovery its seizure threshold.  

 Representative examples of the network dynamics and activity of one pyramidal cell from a 

bidirectional (𝛼("#$ = 𝛼)"#$) and unidirectional (𝛼("#$ = 0) network are shown in figures 

2.8E and F. The green triangles in both plots indicate the time of deafferentation, and the red bar 

in figure 2.8E left indicates the stimulus used to induce seizure-like activity. The first 

spontaneous seizure generated in the unidirectional HSP network occurred 100 s prior to the 

evoked seizures in the bidirectional network. The bidirectional network never generated 

spontaneous seizures. 

Discussion: 
 

Previous theoretical studies predicted that synaptic up-regulation after severe brain 

trauma may lead to a hyperexcitable network where susceptibility for seizures is dramatically 

increased  (Houweling et al., 2005; Frohlich et al., 2008a; Volman et al., 2011a; Volman et al., 

2011b).  Reduction of the seizure threshold after severe deafferentation is consistent with 

experimental studies where it was observed that cortical undercut increased local neuronal 

connectivity, which eventually increased network excitability and promoted seizures (Salin et al., 

1995; Jin et al., 2006; Avramescu and Timofeev, 2008; Jin et al., 2011).  

In this study we present in vivo experimental data and results of computer simulations to 

test the hypothesis that age-related changes in homeostatic synaptic plasticity (HSP) may be 

sufficient to explain the difference in the likelihood of seizure onset in young versus old animals. 
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Our study, based on detailed modeling of the interaction between homeostatic synaptic scaling 

and ion concentration dynamics, revealed that following deafferentation the threshold for seizure 

initiation recovers to a state close to that in an intact network for models of younger animals but 

remains low for models implementing HSP changes that may occur during aging.  

Evidence for age dependence of trauma-induced epileptogenesis. 

Our new in vivo data suggest a strong correlation between seizure susceptibility after 

brain trauma and the age of an animal. Adult cats in our study developed trauma-induced 

epilepsy but this was not the case in our young cats. Previous studies in rats revealed age-

dependent differences in susceptibility to pharmacologically-induced seizure following cortical 

injury. FeCl3 injection induced post-traumatic seizures in young (4 months) and old (18 months) 

rats, however, older rats were more susceptible to post-traumatic epilepsy than younger animals 

and exhibited both faster seizure spread and faster seizure onset (Jyoti et al., 2009).  

Age-dependent differences in the development of TBI-induced epilepsy have been 

observed in human patients. One study reported that patients 65 years of age and older at the 

time of injury were more susceptible to the development of epilepsy than younger patients 

(Annegers et al., 1998). More recent study (Christensen et al., 2009) assessed the risk of 

developing epilepsy in children and young adults suffering from TBI. Taking into consideration 

age, severity of trauma, sex and family history, the study found that the risk of epilepsy was 

dependent on the severity of the trauma and the age of patient at the time of injury.  

Role of HSP in epileptogenesis. 

Reduced network activity, through bath application of TTX in vitro or through cortical 

deafferentation in vivo, leads to changes in synaptic strengths and increases in the excitability of 

the network (Topolnik et al., 2003a, b; Wierenga et al., 2005; Jin et al., 2006; Nita et al., 2006; 
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Echegoyen et al., 2007; Trasande and Ramirez, 2007; Avramescu and Timofeev, 2008; Ibata et 

al., 2008; Lemieux et al., 2014). It is generally accepted that these changes are caused by 

homeostatic plasticity - a regulatory mechanism, which maintains a target firing rate through up-

regulation of excitatory intrinsic and synaptic factors and down-regulation of inhibitory factors 

(Burrone and Murthy, 2003; Rich and Wenner, 2007; Turrigiano, 2008; Pozo and Goda, 2010).  

Our previous modeling studies explored the hypothesis that HSP may fail to control 

“normal” excitability in heterogeneous networks, where there are subpopulations of neurons with 

severely different levels of activity – conditions found in traumatized cortex (Houweling et al., 

2005; Frohlich et al., 2008a; Volman et al., 2011a; Volman et al., 2011b). In these models HSP-

dependent epileptogenesis was manifested by periodic bursting events; however, the realistic 

pattern of spike-and-wave seizures was impossible to reproduce because of the model simplicity. 

Changes of the ion concentrations can have profound effects on the network dynamics and may 

be responsible for the characteristic patterns of electrical activity observed during seizures. In 

particular, increase of [K+]o during epileptic seizures functions as a positive feedback loop to 

depolarize the neurons and to make the network more excitable leading to further increase of 

[K+]o (Somjen, 2002; Frohlich et al., 2008b; Krishnan and Bazhenov, 2011). The model 

presented in this study included dynamics of intra- and extracellular concentrations of K+ and 

Na+ ions, as well as intracellular concentrations of Cl- and Ca2+. In this model, seizure-like 

activity closely resembled in vivo intracellular recordings of spike-and-wave electrographic 

seizures in cats (Avramescu and Timofeev, 2008), which spontaneously terminate and are 

followed by an inter-ictal period.  

 Our model predicts the role of the severity of brain trauma in determining the 

susceptibility to seizure onset. It has been reported that cats that have undergone partial cortical 
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deafferentation are much more likely to have seizures when anaesthetized with 

ketamine/xylazine than cats that do not have cortical trauma (Topolnik et al., 2003a; Nita et al., 

2006). Changing the degree of deafferentation in our model resulted in different thresholds for 

seizure generation such that larger deafferentation produced lower seizure thresholds; this is 

consistent with previously reported results in simplified models of the cortical network (Volman 

et al., 2011a). We found that the seizure activity could also be induced in a control, non-

deafferented network by sufficiently strong stimulation. This result supports the idea of the 

presence of bistability in the cortical network with physiological and pathological attractors 

coexisting and having different basins of attraction in epileptic and non-epileptic brains (Frohlich 

et al., 2010).  

In vivo data presented in our study suggest that state of vigilance may affect the transition 

from physiological activity to epileptic seizures. Neocortical seizures commonly occur during 

slow-wave sleep. One possible explanation depends on the presence of repetitive hyperpolarized 

down states in the cortex found during slow-wave sleep. It has been suggested that such periods 

of silence may lead to an increase in cortical excitability and may facilitate seizure onset 

(Timofeev et al., 2000; Topolnik et al., 2003b, a; Nita et al., 2006, 2007; Avramescu and 

Timofeev, 2008; Timofeev et al., 2010; Timofeev et al., 2013). Transition from sleep to waking 

is associated with activation of the cholinergic system and overall increase in excitability (Brown 

et al., 2012). Taken together it suggests that the time just after the sleep-wake transition, when 

the sleep-related increase in excitability is still in place and increase in excitability associated 

with cholinergic changes just occurred, would constitute ideal conditions for seizures to occur. 

Indeed, in our in vivo study, seizures always occurred shortly after transitions from sleep to 

waking states.  
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Mechanisms of age dependence in epileptogenesis. 

Our in vivo study revealed that the outcome of trauma-induced epileptogenesis 

significantly depends on the age of an animal with older animals being much more prone to 

seizures. The multiplicative nature of HSP is of special interest in terms of age-related 

differences. The multiplicativity of HSP depends on the modulation of AMPA receptors that 

occurs at all synapses on a given neuron. This type of HSP is different from synapse-specific 

HSP expression (Echegoyen et al., 2007; Goel and Lee, 2007; Rich and Wenner, 2007; 

Turrigiano, 2008; Lee et al., 2014). Age-dependent differences in multiplicative vs. synapse-

specific HSP expression in response to dark rearing was previously reported (Goel and Lee, 

2007). 

Thus, the properties of homeostatic scaling and/or the rate of axonal sprouting of the 

traumatized connectivity may be different in young and adult animals and may lead to different 

final states of the cortical network excitability. Impaired homeostatic down-regulation in the 

older animals will prevent full restoration of intact synaptic connectivity after recovery of 

synaptic input to affected areas, e.g., by axonal sprouting (Timofeev et al., 2013). Indeed, studies 

on spinal cord injury-induced sprouting and hippocampal deafferentation-induced sprouting have 

shown age-dependent differences (Schauwecker et al., 1995; Jaerve et al., 2011). Following 

trauma, increases in growth associated proteins (GAPs) occurred in the hippocampus of young 

rats (3 months old), but not in adult rats (24 months old).  

In our model, we tested this mechanism by introducing a model of axonal sprouting 

processes, which worked to compensate for the afferent input lost during partial deafferentation. 

Our results revealed that the network with faster sprouting rate and homeostatic scaling 

displayed a rapid increase of seizure thresholds after initial decline, while the network with slow 
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synaptic sprouting and synaptic scaling displayed prolonged periods of seizure-like activity. 

Although the latter network eventually restored its initial high seizure threshold, we can 

speculate that older animals may have limited abilities for axonal sprouting and, therefore, 

synaptic projections to the undercut area may never fully recover leading to chronically reduced 

seizure threshold. 

Homeostatic scaling is a bidirectional process that aims to maintain a target firing rate 

through the strengthening and weakening of synaptic connections. Most of the synaptic strength 

modulation involved in this process can be attributed to changes in synaptic AMPA receptor 

densities (Rich and Wenner, 2007; Hou et al., 2008; Pozo and Goda, 2010; Remme and 

Wadman, 2012). It was recently demonstrated that the scaffolding protein PSD-95 is necessary 

for synaptic scaling, and its role in scaling the synaptic strength was dependent on age and 

directionality of the scaling (Sun and Turrigiano, 2011). Expression levels of PSD-95 increased 

as the neurons aged and PSD-95 affected mainly the down-regulation of synaptic strength while 

up-regulation was much less affected. These results support our hypothesis that the down-

regulation of synaptic strength in older animals may be more difficult to regulate leading to 

higher susceptibility to seizures (Timofeev et al., 2013). We found that impairing the sensitivity 

of the homeostatic scaling sensor not only reduced seizure threshold but also led to generation of 

spontaneous seizures.  

Age-dependent changes of the homeostatic up-regulation may also contribute to seizure 

susceptibility. BDNF has been shown to be involved in the increase of AMPA receptor insertion 

following decrease in synaptic activity, but not to the removal of receptors in response to 

increased activity (Rutherford et al., 1998; Leslie et al., 2001; Turrigiano, 2008; Pozo and Goda, 

2010). Additionally, BDNF expression levels have been shown to decrease with age 
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(Lommatzsch et al., 2005). Taken together these results suggest that reduced levels of BDNF in 

older animals could reduce the dynamic range of BDNF regulation of homeostatic up-scaling. 

This may lead to larger increases in AMPA receptor insertion in response to the smaller changes 

in BDNF expression in older animals as compared to younger ones and may provide a 

complimentary mechanism for age-dependent changes of the seizure susceptibility. 

Strategies to prevent epileptogenesis. 

Trauma-induced epilepsy is poorly controlled by anti-epileptic drugs (AEDs) 

(Hernandez, 1997; Chang et al., 2003; Temkin, 2003; Agrawal et al., 2006; Temkin, 2009). 

Administration of AEDs immediately following TBI reduces incidence of early seizure onset 

within the first week following brain insult (Annegers et al., 1998; Agrawal et al., 2006; 

Szaflarski et al., 2014), but rarely controls late seizures. Our study predicts that reduction of the 

neuronal excitability – a common target of the anti-epileptic drugs, e.g.,  levetiracetam 

(Szaflarski et al., 2014) – in some conditions can enhance HSP mediated synaptic up-regulation 

and increase severity of epileptogenesis. Thus, our study provides new insight into the 

development of interventions that can be used to treat TBI, which would target to maintain 

physiological level of activity in deafferented areas and thus reduce likelihood of epileptic 

seizures. 

Methods and Materials: 
 

In vivo experiments. All experiments were performed in accordance with the guideline of 

the Canadian Council on Animal Care and approved by the Université Laval Committee on 

Ethics and Animal Protection. Experiments were performed on cats of either sex. To create 

conditions that occur in penetrating wounds, the white matter underneath the suprasylvian gyrus 

(parietal cortex, area5 and 7) was transected under isoflurane anesthesia. The details of this 
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cortical undercut procedure were described previously (Topolnik et al., 2003b, Nita et al., 2007). 

The details of the surgery and simultaneous wireless LFP – behavioral recordings are described 

in (Grand et al., 2013). In these experiments, the intracortical LFP electrodes were inserted to a 

depth of 1 mm in undercut cortex (left suprasylvian gyrus), left posterior marginal gyrus 

(secondary visual cortex, area 18), and right and left postcruciate gyri (primary somatosensory 

cortex, area 6). To control for states of vigilance and to record seizure-associated movements, we 

implanted electrooculogram (EOG) electrodes in the inferior surface of the orbital plate of the 

frontal bone, electromyogram electrodes into the neck muscles, and an accelerometer (ADXL-

330, Analog Devices, Norwood, MA, USA) was attached to the head bones. Continuous wireless 

recordings of electrographic and movement activities were achieved with NeuroWare W16-

series system (Triangle Biosystems Inc., Durham, NC, USA). The wireless amplifier and battery 

were attached to the head and protected with a plastic housing. Head-restrained experiments 

were carried out identically to previous description (Nita et al., 2007). The experiments lasted for 

three to six months. 

Analysis: All recordings were analyzed off-line using custom-written routines in IgorPro 

4 (Lake Oswego, Oregon, USA). 

Pyramidal cell and interneuron models. Pyramidal cells (PYs) and inhibitory 

interneurons (INs) were modeled as two-compartment neurons with dendritic and axosomatic 

compartments as described previously in detail (Mainen and Sejnowski, 1996; Kager et al., 2000; 

Bazhenov et al., 2004; Frohlich and Bazhenov, 2006; Krishnan and Bazhenov, 2011). The 

change in voltage for each compartment can be described by the following equations: 

   𝐶1
234
25
	= 	−𝑔9:(𝑉: −	𝑉#) −	𝐼:?@AB −	𝐼:

CD1C −	𝐼:E'5 

    𝑔9#(𝑉: −	𝑉#) = 	−	𝐼#?@AB −	𝐼#
CD1C −	𝐼#E'5 



 

 58 

where 𝑉: is the voltage of the dendritic compartment, 𝐼:?@AB and 𝐼#?@AB	are the sum of the ionic 

leak currents, 𝐼:
CD1C and 𝐼#

CD1C are the sum of the Na+ and K+ currents through the Na+/K+ 

pump, and 𝐼:E'5 and 𝐼#E'5 are the intrinsic currents for the dendritic and axosomatic compartments 

respectively.  

The intrinsic current present in the dendritic compartment (𝐼:E'5) include the voltage-gated 

sodium current (𝐼FA), persistent sodium current (𝐼FA$), high-threshold calcium current (𝐼GA), 

calcium-activated potassium current (𝐼HGA), slowly activating potassium current (𝐼H1), 

hyperpolarization-activated depolarizing mix cationic currents (𝐼I), and leak conductances. The 

axosomatic compartment (𝐼#E'5) consisted of the delayed-rectifier potassium current (𝐼HJ), 

voltage-gated sodium current (𝐼FA), the persistent sodium current (𝐼FA$), and the sodium-

activated potassium current (𝐼HFA). All of these currents have been described in detail elsewhere 

(Krishnan and Bazhenov, 2011).  

  Ion concentration dynamics. This model exhibits changes in concentrations of [K+]o, 

[K+]i , [Na+]o, [Na+]i, [Ca2+]i, and [Cl-]i. The reversal potentials for each current calculated 

through the use of the Nernst equation for the specific ion or ions passing through the channel of 

interest. The concentration dynamics of these ions were modeled similar to previous work 

(Kager et al., 2000; Bazhenov et al., 2004; Frohlich and Bazhenov, 2006; Krishnan and 

Bazhenov, 2011) and are described as follows: 

 

2[HL]N
25

= O B
P2
Q R𝐼H

CD1C 	+	𝐼∑H
E'5U + 𝛿W O

R[HL]NXY)	[HL]NLYU
Z

− [𝐾)]WQ + 𝛿W([𝐾)]W9 − [𝐾)]W) + 𝐺  

 

𝑑[𝐾)]^
𝑑𝑡 = −`

𝑘
𝐹c R𝐼H

CD1C 	+	𝐼∑H
E'5U + 𝛿^([𝐾)]^9 −	 [𝐾)]W) 
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𝑑[𝑁𝑎)]W
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𝑘
𝐹𝑑c R𝐼FA
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(−5.1819 × 10(z𝐼GA)
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	+	f2.4 × 10(} −
[𝐶𝑎Z)]^
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h 

 

where 𝐹 = 96489 C/mol, the conversion factor 𝑘 = 10, 𝑑 = 0.15 determined the ratio of the 

extracellular compartment volume to the surface area, [𝐾)]W9 and [𝑁𝑎)]W9 are the K+ and Na+ 

concentrations in the adjacent compartments, and [𝐾)]W(g,	[𝐾)]W)g, [𝑁𝑎)]W(g, and [𝑁𝑎)]W)g 

are the concentrations of K+ and Na+ in neighboring cells respectively. In this model, [K+]o 

represents the concentration of the extracellular potassium immediately surrounding a given 

neuron. Additionally, extracellular K+ was allowed to diffuse between the two compartments in 

the model and between the space volumes associated with neighboring neurons. 𝐺 represents the 
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glial K+ uptake. For the chloride dynamics, [𝐶𝑙(]^j = 5mM,	𝜏G?j = 2x104, and  𝜏HWG? = 0.08s. As 

discussed in (Krishnan and Bazhenov, 2011), these values were chosen to match experimental 

data with regards to the role of [𝐾)]W on KCC2 co-transporter efficiecy. Values for 𝜏GA and 

𝐷GAwere set to 300ms and 0.85 respectively.   

Network and Synaptic Properties. The cortical network was modeled as a one-

dimensional network which consisted of 120 PYs and 24 INs. Each PY neuron made local 

excitatory connections to five other PY neurons on both sides such that each PY neuron 

projected to 10 PYs with AMPA conductance strength of 9 nS and NMDA conductance of 0.9 

nS. Each PY neuron also formed synaptic connections onto IN neurons with AMPA and NMDA 

conductance strengths of 3 nS and 0.3 nS respectively. Each IN neuron, in turn, projected to 5 

local PY neurons, forming GABAA connections with conductance strengths of 9 nS. 

Additionally, each PY and IN neuron received individual afferent excitatory input modeled as a 

Poisson process. This network configuration, although simplified, reproduced realistic electrical 

activity found in cortical network during epileptic seizures and is similar to those used in 

previous studies (Bazhenov et al., 2002; Frohlich and Bazhenov, 2006; Frohlich et al., 2008b; 

Krishnan and Bazhenov, 2011). 

Trauma to the network, in the form of cortical deafferentation, was modeled as a 50% 

reduction of the afferent input to a given set of PY neurons. The PYs that underwent 

deafferentation were selected at random and were within the 80 neurons in the center of the 

network. This provided a region of 40 PYs, 20 on both ends of the network, which would remain 

intact and allow for observation of seizure propagation and control for boundary effects. The 

fraction of deafferented PYs was varied from 0 to 100% within the aforementioned regions of 80 



 

 61 

PY neurons, where 0% meant no PY was deafferented, and 100% meant that all 80 PYs 

underwent deafferentation. 

The firing rate of the network was calculated every 5 s and was determined by averaging 

over all number of PY spikes in the 5 s interval. AMPA conductance between PYs was then 

adjusted, through homeostatic scaling, to maintain a target network firing rate of 5 Hz. We used 

a similar homeostatic rule as previous studies (Houweling et al., 2005; Frohlich et al., 2008a) and 

was given by the following: 

𝑊^)g
$�($� = 	𝑊^

$�($� +	𝛼"#$(𝑣� −	 �̅�)𝑊^
$�($� 

where 𝑊^
$�($� is the AMPA conductance between two excitatory neurons at the ith 5 s interval, 

𝑣� is the target firing rate (5 Hz), �̅� is the current network averaged firing rate, and 𝛼"#$ is the 

rate of homeostatic scaling (𝛼"#$ = 0.01, unless otherwise specified). Because it was not 

possible to simulate the network model on the longer time scale of the HSP, we applied HSP at a 

much faster rate (minutes) than observed in vivo (hours to days). We determined the value of 

𝛼"#$ by controlling the network activity and ion concentrations, ensuring that they always stayed 

in the physiological range without requiring excessively long computational times.  

Seizures in humans and animal models of TBI generally last for only a brief period (30 

sec to a few minutes). Homeostatic changes in network excitability in cell cultures, in vitro and 

in vivo conditions require several hours (> 4 hrs) to days of chronically blocked activity 

(Topolnik et al., 2003b, a; Nita et al., 2006; Echegoyen et al., 2007; Nita et al., 2007; Rich and 

Wenner, 2007; Trasande and Ramirez, 2007; Avramescu and Timofeev, 2008; Ibata et al., 2008; 

O'Leary et al., 2010). Therefore, we assumed that the timescales for HSP and seizure activity are 

very different, and that HSP may not have much of an effect on synaptic weights during a single 

seizure event. As such, to prevent unrealistic changes of synaptic weights during seizures in the 
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model, where the rate of HSP was increased to obtain reasonable simulation times, we turned 

HSP off during seizure-like events.  

In addition to the homeostatic scaling, we added synaptic recovery processes to some of 

the simulations to model trauma-induced axonal sprouting (Kusmierczak et al., 2015) and to 

allow the deafferented PY neurons to recover the lost afferent inputs. This was implemented by: 

𝐴^)g$� = 𝐴^$� +	𝛾#&'(𝐴� − 𝐴^$�)𝐴^$� 

where 𝐴^$�is the strength of the current afferent input to the deafferented PY neurons, 𝐴� is the 

original strength of the afferent input, and 𝛾#&' is the sprouting rate. The sprouting rate was 

varied in our simulations to test the hypothesis that the differences in axonal sprouting may be 

sufficient to explain observation that older cats are more susceptible to seizure than younger cats 

following partial cortical deafferentation (Timofeev et al., 2013). In our simulations, the 

homeostatic rule was applied globally, and axonal sprouting process was applied to all 

deafferented PY neurons only. 

Estimation of seizure thresholds. The seizure threshold was determined using a binary 

search method using an iterative procedure. The network was initially stimulated with high, PUp, 

and low, PLow, amplitude current pulses that would not induce a seizure, PLow1, and would always 

induce seizure, PUp1, respectively. At each step in the iterative process, the current pulse value 

was set to the average of the upper and lower bounds, <P>. If this new value <P> elicited a 

seizure, then the upper bound would be set to PUp2 = <P>. If the pulse value of <P> was unable 

to elicit a seizure, the lower bound would be set to PLow2 = <P>. The next current pulse value 

would be determined by once again taking the average of the upper and lower bounds. This 

process was repeated until the difference between the upper and lower bounds was less than e = 

0.1, at which point the threshold was taken to be the average of these final bounds. 
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Chapter 3: KCC2-Dependent Potassium Efflux in 4-Aminopyridine-Induced Seizure 
 
Abstract: 
 

A balance between excitation and inhibition is necessary to maintain stable brain network 

dynamics. Traditionally, seizure activity is believed to arise from the breakdown of this delicate 

balance in favor of excitation with loss of inhibition. Surprisingly, recent experimental evidence 

suggests that this conventional view may be limited, and that inhibition plays a prominent role in 

the development of epileptiform synchronization. Here, we explored the role of the KCC2 co-

transporter in the onset of inhibitory network-induced seizures. Our experiments in acute mouse 

brain slices, of either sex, revealed that optogenetic stimulation of either parvalbumin- or 

somatostatin-expressing interneurons induced ictal discharges in rodent entorhinal cortex during 

4-aminopyridine application. These data point to a proconvulsive role of GABAA receptor 

signaling that is independent of the inhibitory input location (i.e., dendritic vs. somatic). We 

developed a biophysically realistic network model implementing ion concentration dynamics to 

explore the mechanisms leading to inhibitory network-induced seizures. In agreement with 

experimental results, we found that stimulation of the inhibitory interneurons induced seizure-

like activity in a network with reduced potassium A-current. Our model predicts that interneuron 

stimulation triggered an increase of interneuron firing, which was accompanied by an increase in 

the intracellular chloride concentration and a subsequent KCC2-dependent gradual accumulation 
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of the extracellular potassium promoting epileptiform ictal activity. When KCC2 activity was 

reduced, stimulation of the interneurons was no longer able to induce ictal events. Overall, our 

study provides evidence for a proconvulsive role of GABAA receptor signaling that depends on 

the involvement of the KCC2 co-transporter. 

Introduction: 
 

Under specific conditions, activation of inhibitory GABAA receptor signaling may play a 

prominent role in the generation of seizures (Lillis et al., 2012; Hamidi and Avoli, 2015; Sessolo 

et al., 2015; Uva et al., 2015; Yekhlef et al., 2015; Shiri et al., 2016). This evidence is in conflict 

with the established notion that epileptiform discharges result from excessive glutamatergic 

signaling due to reduced inhibition (Ben-Ari et al., 1979; Dingledine and Gjerstad, 1980; 

Schwartzkroin and Prince, 1980). Indeed, it has been shown that inhibitory interneurons 

discharge action potentials at the onset of seizure-like events both in vitro (Lillis et al., 2012; 

Uva et al., 2015; Levesque et al., 2016) and in vivo (Grasse et al., 2013; Toyoda et al., 2015). 

Moreover, seizure-like discharges in vitro disappear after pharmacological interventions that 

interfere with GABAA receptor signaling (Avoli et al., 1996; Lopantsev and Avoli, 1998; Uva et 

al., 2015). In line with this evidence, direct optogenetic activation of inhibitory interneurons 

during bath application of 4-aminopyridine (4AP) elicits seizure-like discharges in vitro (Yekhlef 

et al., 2015; Shiri et al., 2016). Together, these data suggest that an increase in inhibitory 

interneuron synchrony may lead to the development of paroxysmal seizure-like activity under 

conditions of impaired potassium (K+) channel conductances. However, the mechanisms of this 

action remain to be fully understood. 

Intracellular chloride concentration ([Cl-]i) increases in principal neurons at the onset of 

seizure-like activity in 4AP treated conditions (Lillis et al., 2012). Such intracellular 
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accumulation of [Cl-]i, which is presumably due to an increase in GABAergic signaling prior to 

seizure onset, can be accompanied by a large increase in the extracellular potassium 

concentration ([K+]o) (Krishnan and Bazhenov, 2011). In vitro optogenetic stimulation of 

inhibitory interneurons can increase [K+]o to a level capable of inducing seizure-like discharges 

(Yekhlef et al., 2015). An elevated level of [K+]o may function as a positive feedback loop, 

increasing overall network excitability and leading to seizure onset (Pedley et al., 1974; 

Traynelis and Dingledine, 1988; Somjen, 2002; Frohlich and Bazhenov, 2006; Frohlich et al., 

2008b; Krishnan and Bazhenov, 2011; González et al., 2015). Indeed, fast-rising [K+]o increases 

associated with interneuron network activity preceded the initiation of seizure-like events in vitro 

in the 4AP seizure model (Librizzi et al., 2017). Previous computational studies found that 

oscillations of [K+]o mediate periodic transitions between fast runs and spike-and-wave 

complexes during seizures (Frohlich and Bazhenov, 2006; Frohlich et al., 2008b; Krishnan and 

Bazhenov, 2011), and that increases in baseline [K+]o fluctuations may occur following cortical 

trauma (González et al., 2015). K+ dynamics have been implicated in the transition to seizure and 

spreading depression (Wei et al., 2014a), two network states previously thought to be 

mechanistically distinct.  

The potassium-chloride co-transporter isoform 2 (KCC2) has been proposed as the 

critical link between the increase in [Cl-]i and subsequent increase in [K+]o (Rivera et al., 2005; 

Hamidi and Avoli, 2015; Shiri et al., 2016). Indeed, reduction of KCC2 activity prevents the 

generation of seizure-like events induced by 4AP (Hamidi and Avoli, 2015), as well as the 

increases in [K+]o that occur in response to high-frequency stimulation (Viitanen et al., 2010). 

Therefore, it was postulated that synchronized GABAergic activity may cause a gradual 

accumulation of [Cl-]i , leading to the activation of KCC2. This results in the extrusion of both 
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Cl- and K+, allowing K+ to reach a level necessary to elicit seizure (Avoli and de Curtis, 2011; 

Avoli et al., 2016).  

In our new study, we tested this hypothesis by employing a biophysically realistic 

network model with dynamic ion concentrations, Na+/K+ ATPase activity, and KCC2 co-

transporter activity. We found that reduction of the outward K+ (type A) current (IA), mimicking 

the effects of 4AP application, changed the network dynamics so interneuron stimulation could 

initiate seizure-like activity. Importantly, reduction of KCC2 activity (cf.,(Hamidi and Avoli, 

2015) prevented seizure generation, thus supporting our hypothesis about the role of KCC2 in 

ictogenesis. 

Results: 
 
Optogenetic stimulation of interneurons triggers ictal discharges 
 

Spontaneous 4AP-induced ictal discharges were recorded from the entorhinal cortex (EC) 

of PV-Cre mice that were transcranially injected with the enhanced ChR2 opsin, ChETA (n = 5 

slices). These discharges occurred every 158.07 ± 10.30 s with an average duration of 45.97 ± 

1.33 s (n = 124 events). Using a 30 s train of 1 s light pulses at 0.2 Hz that optogenetically 

activated fast-spiking parvalbumin (PV)-positive interneurons, we were able to trigger ictal 

discharges of similar duration (i.e., 43.91 ± 2.27 s) but more frequently, at an average interval of 

139.45 ± 4.79 s (n = 35 events; p < 0.05; figure 3.1A).  

Next, we established whether the ability of interneuron activation to drive ictal discharges 

was linked exclusively to fast-spiking PV-positive interneurons, or whether ictal discharges 

could also be triggered by activating regular-spiking somatostatin (SOM)-positive interneurons. 

Therefore, we obtained brain slices containing the EC of SOM-Cre mice that had been 

transcranially injected with the ChETA opsin (n = 8 slices). Spontaneous 4AP-induced ictal  
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Figure 3.1 Ictal discharges can be triggered by optogenetic stimulation of PV- or SOM-positive interneurons. 
A, Ictal discharge evoked by 0.2 Hz series of 1 s light pulses stimulating PV-positive interneurons during bath 
application of 4AP; ictal onset is expanded to show the timing of the light pulse in relation to ictal onset (box). B, 
The same stimulation parameters applied to SOM-positive interneurons also triggers ictal discharges. 
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discharges in these experiments occurred every 127.35 ± 6.30 s and lasted on average 63.28 ± 

1.84 s (n = 126 events). Using the same protocol used to stimulate PV-interneurons (i.e. 1 s light 

pulses at 0.2 Hz for 30 s), we were able to trigger ictal discharge of similar duration (55.71 ± 

1.90 s), but at a shorter interval of 104.56 ± 5.47 s (n = 44 events; p < 0.05; figure 3.1B). The 

ictal discharges elicited by the optogenetic activation of either PV- or SOM-expressing 

interneurons showed characteristic properties of low-voltage, fast (LVF) ictal discharges. 

Previously, we showed that these LVF ictal discharges are different from the hypersynchronous 

(HYP) ictal discharges induced by optogenetic stimulation of CamKII-positive principal neurons 

suggesting a different mechanism between principal neuron- and inhibitory interneuron-induced 

ictal discharges (Shiri et al., 2016). 

Reduction of IA primes the network for interneuron-induced seizure-like activity 
 

In order to establish the mechanisms by which PV- and SOM-interneuron stimulation 

causes ictal discharges in brain slices treated with 4AP, we developed a biophysically realistic 

network model implementing dynamic ion concentrations, the electrogenic Na+/K+ pump, and 

the KCC2 co-transporter. The network contained synaptically coupled principal (excitatory) 

neurons (PN) and inhibitory interneurons (IN), where the extracellular compartments of these 

two neuron types were ionically coupled (see Methods). In order to make comparisons between 

our model and experimental data, we modeled the application of 4AP as resulting in a 50 percent 

reduction of the outward K+ A-current. Additionally, optogenetic stimulation of interneurons was 

modeled as a series of 1 s pulses at 0.2 Hz for 30 s similar to those used in our in vitro 

experiments; these “activating” pulses were applied to all interneurons.  

 In a control network, one without reduction of IA, the stimuli applied to INs resulted in 

increased IN firing rate for the duration of the stimulation, followed by a gradual decay back to  
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baseline firing (figure 3.2A). During baseline activity, the mean IN firing rate fluctuated around 

1 Hz, but during stimulation it reached ~25 Hz (figure 3.2C, red). The increase in IN firing 

during stimulus pulses was accompanied by a hyperpolarization and relative silencing of the 

postsynaptic PNs (figure 3.2B and C, black trace). Similar to INs, PNs displayed a gradual return 

Figure 3.2 Stimulation of inhibitory interneurons in a healthy network results in brief silencing of excitatory 
neurons. A, Top panel shows raster plot of interneuron activity. Bottom panel shows zoom in of a single 
representative interneuron spiking from the network in the top panel. Time of interneuron stimulation is indicated by 
the blue trace. B, Principal neuron network activity with zoom in the spiking pattern of a single principal neuron. 
The blue trace indicates the time of interneuron stimulation. C, Mean firing rates for the interneurons (red) and 
principal neurons (black). 
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to a baseline mean firing rate of about 5 Hz (figure 3.2C, black trace). This control network 

behaved as expected, i.e., the transient increase in IN firing caused a transient hyperpolarization 

of the PNs followed by a gradual return to the baseline activity. 

 We next tested the effects induced by IN stimulation on the network dynamics during 

conditions mimicking 4AP application, i.e., a reduction of IA in both PNs and INs that resulted in 

a slight increase of the mean intrinsic baseline firing rates of both cell types (~ 4 Hz and ~ 12 Hz 

for INs and PNs respectively; figure 3.3D). In this condition, a single stimulus applied to INs 

produced an expected hyperpolarization and silencing of PN activity. We then proceeded to 

apply a sequence of the stimuli to all INs to model the effect of optogenetic stimulation similar to 

our experiment in the control network (figure 3.2). IN firing peaked at ~ 35 Hz during each 

stimulus pulse (figure 3.3A and D, red trace), and during the first 2 pulses PNs were 

hyperpolarized and silenced by the IN-mediated inhibition (figure 3.3B and C). However, during 

subsequent stimulation pulses, the mean firing rate of PNs began to increase (figure 3.3D, black 

trace), and the network developed a seizure-like state, which initiated as focal tonic firing (figure 

3.3B, cells 60-100) before spreading to the rest of the network, and eventually transitioning to a 

clonic bursting phase (figure 3.3B and C). Seizure termination was followed by the postictal 

depression, and then by a return to baseline firing in both neuron types.  

Since reduction of IA shifted the network to a state where synchronous inhibitory activity 

could induce seizure, we next tested the effect of IA strength on the seizure threshold. Reduction 

of IA made networks more susceptible to seizure (figure 3.3E; 40-60% range), which can be 

attributed to increased intrinsic network excitability due to reduced K+-dependent inhibition. IA 

strengths less than 40% of the baseline resulted in spontaneous seizures, while strengths greater 

than 60% did not allow transitions to seizure-like activity following interneuron stimulation. 



 

 71 

 

Figure 3.3 Reduction of A-current increases network excitability allowing for ictogenesis upon interneuron 
stimulation. A, Top panel shows raster plot of interneuron activity. Bottom panel shows zoom in of a single 
interneuron spiking from the network in the top panel. Time of interneuron stimulation is indicated by the blue trace. 
B, Principal neuron network activity with zoom in the spiking pattern of a single principal neuron. The blue trace 
indicates the time of interneuron stimulation. C, Corresponding local field potentials (LFP) for the zoom-ins in B. D, 
Mean firing rates for the interneurons (red) and principal neurons (black). E, Stimulus strength necessary for seizure 
generation as a function of A-current strength. Red square indicates the A-current strength used for the network 
presented in panels A-D. 
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Dynamics of the [K+]o and [Cl-]i under these two network conditions – i.e., control and 

under reduced IA (figures 3.2 and 3.3) – revealed stark differences following IN stimulation. As 

seen in figure 3.4A, mean [Cl-]i and [K+]o for all PNs behaved similarly prior to and during IN 

stimulation in both control and reduced IA networks (red and black traces respectively). During 

IN stimulation, both networks revealed increases in the mean [Cl-]i, and initial decreases in [K+]o 

(figure 3.4A). The increase in [Cl-]i in PNs was presumably due to activation of postsynaptic 

GABAA receptors, while the transient (initial) decrease in [K+]o could reflect the resulting 

reduction of PN firing. Following termination of the IN stimulation, the [Cl-]i in the control 

network gradually returned to baseline along with the IN firing rate (figure 3.2C, red trace and 

figure 3.4A, red trace in left panel). PN firing became transiently elevated but then also returned 

to baseline (figure 3.2C, black trace). In contrast, under conditions of IA reduction, IN firing 

remained elevated and [Cl-]i continued to increase following the end of the stimulation (figure 

3.2C, red trace and figure 3.4A, black trace in left panel). Accumulation of [Cl]i caused 

activation of the KCC2 co-transporter. As KCC2 uses K+ gradient to remove Cl- (Payne et al., 

2003), activation of KCC2 led to accumulation of [K+]o (figure 3.4A, right panel, black trace). 

This increased PNs excitability (already elevated under reduced IA conditions) and triggered a 

positive feedback loop (Frohlich and Bazhenov, 2006; Frohlich et al., 2008b; Krishnan and 

Bazhenov, 2011) initiating a network transition to seizure-like activity (figure 3.4B and 3.4C). It 

is important to emphasize, that while the increase of [Cl-]i reduced the effect of inhibition, the Cl- 

reversal potential never raised above the resting membrane potential of PNs and, therefore, the 

effect of GABAA remained hyperpolarizing throughout the entire simulation time. 

Both [Cl-]i in PNs and [K+]o in the surrounding extracellular space remained elevated 

during the seizure-like activity (figure 3.4B and C, respectively). The expanded sample shown in 
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figure 3.4D illustrates how activation of INs resulted in the silencing and hyperpolarization of 

PNs during stimulation pulses, while the subsequent accumulation of [K+]o increased firing rate 

and eventually triggered the transition to seizure-like activity. These results reveal that in 

conditions of increased baseline excitability (such as after reducing IA), the network is able to 

generate seizure-like activity following interneuron activation. Our model suggests that the 

mechanism of seizure initiation involves: (a) IN stimulation leading to the release of GABA and 

postsynaptic activation of GABAA receptors; (b) GABAA receptor activation leading to increase 

of [Cl-]i mediating KCC2 activation; (c) KCC2 activation leading to increase of [K+]o sufficiently 

to initiate the positive feedback loop that mediates an “avalanche” increase of excitability.  

KCC2 co-transporter activity gives rise to interneuron-induced seizure-like activity 
 

To directly test our hypothesis that an increase of KCC2 activity, resulting from [Cl-]i 

accumulation, may underlie initiation of seizure-like activity, we reduced KCC2 co-transporter 

strength by 50 percent (𝛼HGGZ = 40, see Methods) in a network with reduced IA, while 

stimulating INs (figure 3.5). IN stimulation was identical to that performed in the previous 

experiments (figures 3.2 and 3.3). In this new condition, stimulation of INs resulted only in the 

transient silencing of PN activity (figure 3.5A, top), and [K+]o returned to the baseline levels 

shortly after the termination of IN stimulation (figure 3.5A, bottom). Unlike the results shown in  

figure 3.3, no transition to seizure-like activity occurred during or following the termination of 

IN stimulation. Note, however, that the reduction of KCC2 activity resulted in a less excitable 

network, which was caused by a decrease of [K+]o accumulation due to the reduced KCC2 

baseline activity.  

 To further demonstrate that accumulation of [Cl-]i was directly responsible for the 

activation of the KCC2 co-transporter and subsequent accumulation of [K+]o, in the next  
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Figure 3.4  Increase of [Cl-]i leads to gradual accumulation of [K+]o and ictogenesis. A, Mean [Cl-]i (left) and 
[K+]o (right) for principal neurons in the control network from figure 2, and the reduced A-current network in figure 
3 (red and black respectively). The blue trace indicates the pattern of interneuron stimulation. B and C, network-
wide [Cl-]i and [K+]o for principal neurons. The blue trace indicates the pattern of interneuron stimulation. D, 
Overlay of the spiking of a single principal neuron (black) from figure 3, and the corresponding [Cl-]i (green), [K+]o 
(purple), and IN stimulation (blue). 
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experiment we reduced the effect of KCC2 on the ion concentrations but prevented the reduction 

of baseline network activity (figure 3.5A). Thus, we kept the strength of KCC2 intact (𝛼HGGZ = 

80), but we capped the maximal amount of Cl- that can enter both PNs and INs. In doing so, we 

limited the peak KCC2 activity without changing the baseline KCC2 activity and, therefore, 

baseline network firing rate. In this condition, IN stimulation was still unable to initiate a 

seizure-like response (figure 3.5B). [Cl-]i increased during IN stimulation, however, it was 

unable to induce sufficient activation of the KCC2 co-transporter to trigger high [K+]o increase. 

Thus, following IN stimulation, only a small and brief increase in [K+]o was observed (figure 

3.5B, bottom). This suggests that limiting KCC2 performance may prevent the transition to the 

seizure-like activity. We need to mention, however, that limiting peak [Cl-]i level also affected 

other network properties (e.g., reversal potential of Cl- and therefore effect of inhibition).   

Since limiting [Cl-]i increase could affect several properties of the model, in the next 

experiment we artificially limited the effect of [Cl-]i on the KCC2 co-transporter only. Therefore, 

in this condition, though the [Cl-]i could exhibit a significant increase, the KCC2 co-transporter 

would only sense a limited increase in [Cl-]i. That is, the value of the variable in the IKCC2 

equation representing intracellular Cl- concentration (see Methods) was kept below the actual 

amount of [Cl-]i. Essentially, this rendered the K+ extrusion mechanism of the KCC2 co-

transporter less sensitive to [Cl-]i. As shown in figure 3.5C, IN stimulation was unable to elicit 

seizure-like activity in this network. Brief increases in both [Cl-]i and [K+]o were observed 

following the stimulation (figure 3.5C, bottom). Though the KCC2 activity increased [K+]o 

following IN stimulation, [K+]o never reached concentrations sufficient for generation of seizure-

like activity. Importantly [Cl-]i could reach its peak level (the same as in the control model) in  
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this experiment, suggesting that the shift of the GABAA reversal potential, associated with 

increase of [Cl-]i , alone is not sufficient to induce seizure-like activity. 

Finally, we tested whether a direct increase in [Cl-]i in PNs could lead to the activation of 

the KCC2 co-transporter and subsequent elevation of [K+]o. In this experiment, we used a 

baseline model where the effect of [Cl-]i on KCC2 was intact (similar to network in figure 3.3). 

Figure 3.5 Seizure onset is dependent on KCC2 activation. A, Reduction of KCC2 activity prevents seizure. Top, 
raster plot of principal neurons in a network with reduced A-current and KCC2 activity. Blue trace indicates pattern 
of interneurons stimulation. Bottom, corresponding mean [Cl-]i (red) and mean [K+]o (black) for principal neurons in 
top panel. B, Network with limited [Cl-]i accumulation. Top, raster plot showing activity of principal neurons. 
Bottom, corresponding mean [Cl-]i (red) and mean [K+]o (black) for principal neurons from the top panel. C, 
Network with artificially impaired [Cl-]i sensitive K+ mechanism. Top, raster plot showing activity of principal 
neurons. Bottom, corresponding mean [Cl-]i (red) and mean [K+]o (black) for principal neurons in top panel. D, Cl- 
injection can trigger seizure. Top, rater showing activity of principal neurons. Blue trace shows time of Cl- injection 
to principal neurons. Bottom, corresponding mean [Cl-]i (red) and mean [K+]o (black) for principal neurons in top 
panel. 
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We found that a brief and sufficiently strong increase of [Cl-]i in PNs was able to activate KCC2 

extrusion of K+ followed by the development of seizure-like activity (figure 3.5D). Together, 

these data suggest that Cl- specific activation of KCC2 activity gives rise to the increase in [K+]o 

sufficient for triggering transition to seizure-like activity. 

GABAA, and KCC2 influence properties of interneuron-induced seizure-like activity 
 

Our model predicts that GABAA receptor-dependent increase in [Cl-]i results in KCC2 

mediated increase of [K+]o and may lead to the initiation of seizure. Next, we tested how these 

two specific properties affect seizure onset and duration. By changing the contribution of 

GABAA to the [Cl-]i in the model, we found that limiting [Cl-]i increase in PNs increased the 

seizure threshold (figure 3.6A). Reducing GABAA receptor-dependent increase of [Cl-]i to 94 % 

of the baseline, prevented IN stimulation from inducing seizure-like activity in the model. The 

reduced contribution of GABAA receptor activation to the [Cl-]i also resulted in the shorter 

seizure duration (figure 3.6C). Both these effects arise from the fact that reduced [Cl-]i 

accumulation led to the lower KCC2 activation and reduced K+ efflux.  

This prediction was further validated by directly changing KCC2 strength (𝛼HGGZ). As 

illustrated in figure 3.6B, increasing KCC2 strength decreased seizure threshold, while 

decreasing KCC2 strength led to the threshold increase. Decreasing KCC2 strength also resulted 

in a decrease of seizure duration, while increased KCC2 strength had an opposite effect (figure 

3.6D and F). Interestingly, reduction of KCC2 strength also delayed the onset time of seizure-

like activity (figure 3.6E). Between the network with control (100 %) KCC2 activity and the 

network with low KCC2 activity (figure 3.6F, blue), there was a difference of about 11 s for the 

seizure onset time. In the networks with stronger KCC2 (figure 3.6E, green), seizure onset 

occurred earlier as compared to that in a control network with 100% KCC2 strength. This effect  
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Figure 3.6 Contributions to [Cl-]i from GABAA, and KCC2 activity modulate seizure threshold, duration and 
onset. A, Seizure threshold as a function of GABAA contribution to [Cl-]i . B, Seizure threshold as a function of 
KCC2 strength. C, Seizure duration as a function of GABAA contribution to [Cl-]i. D, Seizure duration as a function 
of KCC2 activity. E, Seizure onset delay as a function of KCC2 activity. Delay was measured between the onset time 
of a seizure in the control network with 100% KCC2 strength as compared to the seizure onset time in the networks 
with varied KCC2 strength. Inset shows examples of the filtered seizure LFPs. Colored data points correspond to the 
sampled data in the inset. Black trace in inset represents the control network with 100% KCC2 activity. Dash line 
shows threshold used to calculate seizure onset times.  F, Examples of different seizure durations as a result of varied 
KCC2 strength. Top, filtered network LFP. Middle and Bottom, corresponding mean [Cl-]i and [K+]o respectively. 
Arrows point to the corresponding data points in D. 
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Figure 8.1 Minimal cortical network model exhibits resting-state fluctuations. A1, Cartoon of the basic network 

architecture. A2, Spontaneous activity in the network of PY and IN neurons. T1 and T2 indicate times expanded 
below in single PY cell traces. B-E, Mean PY firing rate, mean filtered (0.001-0.1Hz) membrane voltage, [K+]o and 
[Na+]i, and Na+/K+ pump current dynamics, respectively. F, Power spectrums of the mean PY firing rate, membrane 
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Figure 3.6 Contributions to [Cl-]i from GABAA, and KCC2 activity modulate seizure threshold, duration and 

onset. A, Seizure threshold as a function of GABAA contribution to [Cl-]i . B, Seizure threshold as a function of 
KCC2 strength. C, Seizure duration as a function of GABAA contribution to [Cl-]i. D, Seizure duration as a function 

of KCC2 activity. E, Seizure onset delay as a function of KCC2 activity. Delay was measured between the onset time 
of a seizure in the control network with 100% KCC2 strength as compared to the seizure onset time in the networks 
with varied KCC2 strength. Inset shows examples of the filtered seizure LFPs. Colored data points correspond to the 

sampled data in the inset. Black trace in inset represents the control network with 100% KCC2 activity. Dash line 
shows threshold used to calculate seizure onset times.  F, Examples of different seizure durations as a result of varied 

KCC2 strength. Top, filtered network LFP. Middle and Bottom, corresponding mean [Cl-]i and [K+]o respectively. 
Arrows point to the corresponding data points in D. 

 
Figure 9.1 Minimal cortical network model exhibits resting-state fluctuations. A1, Cartoon of the basic network 

architecture. A2, Spontaneous activity in the network of PY and IN neurons. T1 and T2 indicate times expanded 
below in single PY cell traces. B-E, Mean PY firing rate, mean filtered (0.001-0.1Hz) membrane voltage, [K+]o and 
[Na+]i, and Na+/K+ pump current dynamics, respectively. F, Power spectrums of the mean PY firing rate, membrane 

voltage, [K+]o and [Na+]i, and Na+/K+ pump current. 

 
Figure 10.1 Minimal cortical network model exhibits resting-state fluctuations. A1, Cartoon of the basic network 

architecture. A2, Spontaneous activity in the network of PY and IN neurons. T1 and T2 indicate times expanded 
below in single PY cell traces. B-E, Mean PY firing rate, mean filtered (0.001-0.1Hz) membrane voltage, [K+]o and 
[Na+]i, and Na+/K+ pump current dynamics, respectively. F, Power spectrums of the mean PY firing rate, membrane 
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can be explained by the different rate of [K+]o accumulation resulting from KCC2 activity. When 

KCC2 activity was enhanced, [K+]o accumulated faster and reached the critical threshold that 

was sufficient for initiation of seizure-like activity after only a few seconds. 

Discussion: 
 

Application of potassium channel blocker 4AP may lead to epileptiform activity both in 

vivo and in vitro (Avoli and de Curtis, 2011). Optogenetic activation of inhibitory interneurons, 

in acute mouse brain slices exposed to 4AP, triggered seizure-like discharges (Sessolo et al., 

2015; Yekhlef et al., 2015; Shiri et al., 2016). Blocking KCC2 activity with either VU024055 or 

high doses of bumetanide abolished ictal discharges in 4AP-treated rat brain slices (Hamidi and 

Avoli, 2015), suggesting that this form of inhibition-induced seizure may involve activation of 

the KCC2 co-transporter. In this new study, we tested the hypothesis that in conditions of 

elevated cortical excitability (as in the presence of 4AP), Cl--dependent activation of the KCC2 

co-transporter can trigger the progression of a network to a seizure state by an increase of 

extracellular K+. Our in vitro data and computer simulation results predict that synchronous 

activation of the inhibitory interneurons can lead to a Cl- increase sufficient for KCC2 activation 

and development of paroxysmal activity. This mechanism does not require synaptic GABAA to 

inverse polarity as the epileptiform activity is mediated by an increase of the extracellular K+ and 

not by the depolarizing effect of the GABAA signaling, which remains inhibitory. 

K+ channelopathies in epilepsy 
 

Various channelopathies, including mutated or misregulated K+ channels, have been 

suggested to underlie certain forms of genetic epilepsies (D'Adamo et al., 2013; Lascano et al., 

2016). Indeed, mutations in KV4 α-subunits are present in some patients suffering from 

pharmacoresistant temporal lobe epilepsy (Singh et al., 2006; D'Adamo et al., 2013). 
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Specifically, a truncation mutation of the KV4.2 α-subunit, responsible for the IA, was observed 

in human patients (Singh et al., 2006). This mutation results in an attenuated IA and subsequent 

increases in seizure susceptibility. In addition to mutations of specific ion channels, mutations of 

genes encoding proteins which modulate ion channel activity were found. Patients suffering from 

autosomal dominant partial epilepsy with auditory features (ADPEAF) have been shown to have 

point mutations in the leucine-rich glioma-inactivated 1 (LGI1) gene, resulting in reduced 

neuronal secretion of LGI1 (Ottman et al., 2004; Nobile et al., 2009; Dazzo et al., 2015). 

Neuronally secreted LGI1 binds to KV1.4 and KVβ1, two known subunits comprising the A-type 

channels, preventing rapid inactivation of A-type currents (Schulte et al., 2006). The reduction of 

LGI1 expression in patients with ADPEAF results in the rapid inactivation of A-type channels 

and subsequent hyperexcitability. 

The IA antagonist, 4AP, has been shown to cause increased neuronal excitability and 

seizure-like discharges in vivo (Fragoso-Veloz et al., 1990; Levesque et al., 2013) and in vitro 

(Avoli et al., 1996; Lopantsev and Avoli, 1998). Interestingly, direct knockout of the KV4.2 α-

subunit resulted in increased excitability but did not generate spontaneous seizures. This 

knockout can, however, increase seizure susceptibility in response to additional proconvulsive 

pharmacological agents (Barnwell et al., 2009). Previous studies proposed that reduction of A-

type K+ current promotes ictogenesis by directly increasing neuronal excitability (Galvan et al., 

1982; Gustafsson et al., 1982; Yamaguchi and Rogawski, 1992). In contrast, our study predicts 

that the reduction of A-type K+ current leads to increased excitability of both excitatory and 

inhibitory neurons, and that the latter is critical for ictogenesis. We show that acute brain slices 

treated with 4AP exhibit transitions to seizure when perturbed by photostimulation of inhibitory 

interneurons. Using computer modeling, we tested the hypothesis that the mechanism by which 
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increased GABAergic signaling may lead to paroxysmal discharges involves Cl--dependent 

activation of KCC2 followed by increases in the extracellular K+.  

GABAA receptor-dependent [K+]o excitatory transients 
 

Early studies proposed that reduced inhibition underlies seizure generation and perhaps 

epilepsy (Ben-Ari et al., 1979; Dingledine and Gjerstad, 1980; Schwartzkroin and Prince, 1980). 

Later, this view was challenged in several studies, (de Curtis and Avoli, 2016), which revealed 

that synchronous inhibitory interneuron activity occurs prior to seizure onset in slices treated 

with 4AP (Lillis et al., 2012; Uva et al., 2015; Levesque et al., 2016). It has been reported that 

intense GABAergic stimulation results in an increase of [K+]o and long-lasting depolarizations 

(Rivera et al., 2005; Viitanen et al., 2010). Additionally, application of either bicuculline or 

furosemide inhibits these events (Viitanen et al., 2010). Indeed, these GABAergic excitatory 

[K+]o transients have been shown to elicit prolonged depolarizations in rat CA1 and EC, and may 

play a prominent role in seizure generation (Lopantsev and Avoli, 1998; Viitanen et al., 2010). 

The proconvulsive GABAergic excitatory [K+]o transients may give rise to the spontaneous 

seizure onset in patients with K+ channel abnormalities. 

In vitro and in silico results presented in this study predict the mechanisms by which 

GABAergic signaling can trigger seizure onset. We propose that the increased GABAergic 

signaling, such as triggered by stimulation of inhibitory interneurons, induces Cl- build up, 

followed by Cl--dependent activation of the KCC2 co-transporter and subsequent increase of 

[K+]o. Indeed, high frequency stimulation has been shown to cause increases in [K+]o in response 

to intense GABAA receptor activation (Ruusuvuori et al., 2004; Rivera et al., 2005; Viitanen et 

al., 2010). Optogenetic stimulation of either SOM- or PV-expressing interneurons also causes 

large increases in [K+]o (Yekhlef et al., 2015). It has been shown that sufficiently large initial 
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increase of [K+]o can give rise to a positive feedback loop due to an increase in the network 

excitability through [K+]o-dependent depolarization of neurons, which in turn results in a further 

increase of [K+]o and can lead to epileptiform activity (Somjen, 2002; Frohlich and Bazhenov, 

2006; Frohlich et al., 2008b; Krishnan and Bazhenov, 2011; Wei et al., 2014a; González et al., 

2015; Krishnan et al., 2015). Our new study predicts that the mechanisms leading to the initial 

increase in [K+]o, which kicks the network into a vicious feedback cycle, may involve KCC2-

dependent efflux of K+. 

KCC2 in epilepsy 
 

It has been shown that during early stages of development, GABAergic signaling in the 

rodent brain produces depolarizing potentials (Payne et al., 2003; Ben-Ari et al., 2007). The 

transition from depolarizing to hyperpolarizing GABAergic signaling has been attributed to the 

changes in Cl- homeostasis as the animal develops (Payne et al., 2003; Watanabe and Fukuda, 

2015). During early stages of development, the Na+-K+-Cl- co-transporter (NKCC1) - responsible 

for transporting two Cl- ions and one K+ and Na+ ion into the neuron - is highly expressed in rat 

and mouse neurons (Dzhala et al., 2005). As a result [Cl-]i can reach baseline concentrations of 

30mM (Achilles et al., 2007) resulting in depolarization of the Cl- reversal potential and making 

GABAergic signaling depolarizing. As the brain develops, NKCC1 expression levels decrease, 

and KCC2 expression increases (Watanabe and Fukuda, 2015). Indeed, KCC2 mRNA is not 

detected until E18.5 and E15.5 in mouse CA1 and CA3 hippocampal subfields, respectively, 

while by P15, KCC2 and NKCC1 expression in the mouse brain reaches adult levels (Watanabe 

and Fukuda, 2015). In our current study, as well as in previous reports (Sessolo et al., 2015; 

Yekhlef et al., 2015; Shiri et al., 2016), epileptiform activity was induced through optogenetic 

stimulation of inhibitory interneurons in juvenile and young adult mice ranging from P15 to P40 
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during 4AP treatment. Furthermore, experiments in adult rats have shown that the KCC2 co-

transporter plays a prominent role in the development of 4AP-induced epileptiform activity 

(Avoli et al., 1996; Lopantsev and Avoli, 1998; Hamidi and Avoli, 2015). Together, these results 

suggest that the “ictogenic” effect of interneuron activation in 4AP conditions, as described in 

our study, does not depend on the reversal of the GABAA synaptic potential as found early in 

development, but may rely on the mechanisms that were tested in our computational model. 

These mechanisms rest on the increase in the extracellular K+ concentrations that result from 

KCC2 activation, triggered by an increase of intracellular Cl- during intense interneuron firing. 

Downregulation of KCC2 expression levels have been suggested to underlie the 

development of epilepsy in patients (Huberfeld et al., 2007; Buchin et al., 2016). However, other 

studies have shown that increased KCC2 activation may play a prominent role in seizure 

generation (Viitanen et al., 2010; Hamidi and Avoli, 2015). Activity dependent regulation of 

KCC2 expression may explain this seemingly conflicting evidence. Indeed, KCC2 expression 

has been shown to reduce following increases in activity and epileptiform discharges (Rivera et 

al., 2002; Rivera et al., 2004; Rivera et al., 2005). Our computational model revealed that the 

reduction of KCC2 activity prevents seizures in response to intense GABAergic signaling, 

suggesting that the observed reduction of KCC2 expression may not be a seizure triggering 

factor, but rather a protective mechanism to reduce the likelihood of seizures being triggered by 

other factors. Our study predicts that an increase of [Cl-]i in excitatory neurons activates the 

KCC2 co-transporter and promotes seizure initiation. Consistent with this prediction, recent 

experimental studies reported large increases in [Cl-]i in excitatory neurons prior to paroxysmal 

discharges (Lillis et al., 2012). Our model also predicts that increases in KCC2 activity can 

increase seizure susceptibility and duration. This result is consistent with previous computational 
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modelling and experimental work (Krishnan and Bazhenov, 2011; Hamidi and Avoli, 2015). 

Importantly, our model predicts a complex effect of GABAA inhibition in seizure development. 

On one hand, increase of GABAA signaling would act to suppress the network activity, on the 

other it would promote increase of [Cl-]i in excitatory neurons which drives KCC2 activation and 

[K+]o efflux, thus paradoxically increasing network excitability. The balance of these opposite 

factors determines the resulting network dynamics (normal vs epileptic) in the physiological 

settings. 

Methods and Materials: 
 

Animals. All procedures were performed according to protocols and guidelines of the 

Canadian Council on Animal Care and were approved by the McGill University Animal Care 

Committee. PV-Cre (Jackson Laboratory, B6;129P2-Pvalbtm1(cre)Arbr/J, stock number 008069) 

and SOM-Cre (Jackson Laboratory, Ssttm2.1(cre)Zjh/J, stock number 013044) homozygote 

mouse colonies were bred and maintained in house in order to generate pups that were used in 

this study. 

Stereotaxic virus injections. Four PV-Cre (2 male and 2 female) and five SOM-Cre (3 

male and 2 female) pups were anesthetized at P15 using isoflurane and positioned in a 

stereotaxic frame (Stoelting). AAVdj-ChETA-eYFP virus (UNC Vector Core) was delivered in 

the entorhinal cortex (EC) (0.6 µL at a rate of 0.06 µL/min). Injection coordinates were: 

anteroposterior -4.00 mm from bregma, lateral +/- 3.60 mm, dorsoventral -4.00 mm. The 

transverse sinus was used as a point of reference, and the injection needle was inserted with a 2º 

anteroposterior angle. After completion of the surgery, pups were returned to their home cage. 

Brain slice preparation. Mice were deeply anesthetized with inhaled isoflurane and 

decapitated at P30-40. Brains were quickly removed and immersed in ice-cold slicing solution 
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containing (in mM): 25.2 sucrose, 10 glucose, 26 NaHCO3, 2.5 KCl, 1.25 KH2PO4, 4 MgCl2, and 

0.1 CaCl2 (pH 7.3, oxygenated with 95% O2/5% CO2). Horizontal brain sections (thickness = 

400 μm) containing the EC were cut using a vibratome (VT1000S, Leica) and incubated for one 

hour or more in a slice saver filled with artificial cerebrospinal fluid (ACSF) of the following 

composition (in mM): 125 NaCl, 25 glucose, 26 NaHCO3, 2 KCl, 1.25 NaH2PO4, 2 MgCl2, and 

1.2 CaCl2.  

Electrophysiological recordings, photostimulation, and analysis. Slices were transferred 

to a submerged chamber where they were continuously perfused with oxygenated ACSF (KCl 

and CaCl2 adjusted to 4.5 and 2 mM, respectively) (30 ºC, 10-15 mL/min). Field potentials were 

recorded using ACSF-filled microelectrodes (1-2 MΩ) positioned in the EC in the presence of 

4AP (150 µM). Signals were recorded with a differential AC amplifier (AM systems), filtered 

online (0.1-500 Hz), digitized with a Digidata 1440a (Molecular Devices) and sampled at 5 kHz 

using the pClamp software (Molecular Devices).  

For ChR2 excitation, blue light (473 nm, intensity 35 mW) was delivered through a 

custom-made LED system, where the LED (Luxeon) was coupled to a 3 mm wide fiber-optic 

(Edmund Optics) and was placed above the recording region. For optogenetic stimulation of 

interneurons, light pulses (1 s duration) were delivered at 0.2 Hz for 30 s with a 150 s interval 

between trains. All reagents were obtained from Sigma-Aldrich and were bath applied. Ictal 

duration and interval are expressed as mean ± SEM. Data were compared using the Student’s t-

test. Results were considered significant if the p-value was less than 0.05. 

Principal neuron and interneuron models. Principal or excitatory neurons (PNs) and 

inhibitory interneurons (INs) were both modeled as two compartment models as described 

previously in (Bazhenov et al., 2002, 2004; Houweling et al., 2005; Frohlich et al., 2008b; 
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Krishnan and Bazhenov, 2011; Volman et al., 2011a; Volman et al., 2011b; González et al., 

2015; Krishnan et al., 2015). The membrane potential dynamics for each compartment were 

modeled by the following equations: 

𝐶1
𝑑𝑉:
𝑑𝑡 	= 	−𝑔:

9 (𝑉: −	𝑉#) −	𝐼:?@AB −	𝐼:
CD1C −	𝐼:E'5 

𝑔#9(𝑉: −	𝑉#) = 	−	𝐼#?@AB −	𝐼#
CD1C −	𝐼#E'5 

where 𝑉:,# are the dendritic and axosomatic membrane potentials, 𝑔:,#9  are the dendritic and 

axosomatic compartment coupling current conductance, 𝐼:
CD1C and 𝐼#

CD1C are the sum total 

Na+/K+ ATPase currents, 𝐼:?@AB and 𝐼#?@AB	are the sum of the ionic leak currents, and  𝐼:E'5 and 𝐼#E'5 

are the intrinsic currents for the dendritic and axosomatic compartments respectively. The 

intrinsic currents for the dendritic and axosomatic compartments have been previously described 

in (Krishnan and Bazhenov, 2011; González et al., 2015; Krishnan et al., 2015).  

Dynamic ion concentrations. Ionic concentrations dynamics for [K+]o, [K+]i , [Na+]o, 

[Na+]i, [Ca2+]i, and [Cl-]i were modeled similar to our previous work (Krishnan and Bazhenov, 

2011; González et al., 2015; Krishnan et al., 2015). In order to model the KCC2 co-transporter, 

we made some modifications to the [K+]o and [Cl-]i equations. Briefly, our previous models 

included KCC2 regulation of [Cl-]i in a [K+]o dependent manner. However, the [K+]o was not 

affected by KCC2 activity. In this new study the [K+]o and [Cl-]i were modeled as follows: 

𝑑[𝐾)]W
𝑑𝑡 = `

𝑘
𝐹𝑑c R𝐼H

CD1C 	+	𝐼∑H
E'5 +	𝐼HGGZU + 𝛿W([𝐾)]W9 − [𝐾)]W) + 𝐺

+ 𝛿W ��
([𝐾)]W(g +	 [𝐾)]W)g)

2 + 𝛾([𝐾)]W�)� /(1 + 𝛾) − [𝐾)]W� 
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𝑑[𝐶𝑙(]^
𝑑𝑡 = 	− `

𝑘
𝐹c R𝐼∑G?

E'5 + 𝐼HGGZU 

where 𝐹 = 96489 C/mol is the Faraday constant, the ratio of the extracellular volume to surface 

area is given by 𝑑 = 0.15, and the conversion factor 𝑘 = 10. Additionally, 𝐼H
CD1C is the K+ current 

through the Na+/K+ ATPase, [𝐾)]W9 is the K+ concentration in the adjacent compartment, 

[𝐾)]W(g and	[𝐾)]W)g are the concentrations of K+ neighboring cells. 𝛾 = 0.06 is the ion 

coupling coefficient between PNs and INs, [𝐾)]W� is the K+ concentration of the neighboring IN 

when computing the [K+]o for PNs and vice versa. 𝛿W is the scaled diffusion coefficient (𝛿W =

𝐷/∆𝑥), where 𝐷 = 6x10(�	𝑐𝑚Z/𝑠 is the diffusion constant, ∆𝑥 = 100𝜇𝑚 is distance, and 𝐺 

represents the glial buffering of K+ as described in detail previously (Krishnan and Bazhenov, 

2011; González et al., 2015; Krishnan et al., 2015). 𝐼∑H
E'5 and 𝐼∑G?

E'5  are the sum total intrinsic K+ 

and Cl- currents respectively. 𝐼HGGZ defines the efflux of [K+]o and [Cl-]i generated by the KCC2 

co-transporter and is described as follows: 

𝐼HGGZ = 	 `
𝛼HGGZ

1 + exp	(([𝐶𝑙(]^j − [𝐶𝑙(]^)/1.0)
c `
[𝐶𝑙(]^j − [𝐶𝑙(]^	

𝜏G?
c 

 

𝜏G? =

⎝

⎜
⎛
100 +

𝜏G?j

f1 + exp `	 [𝐶𝑙
(]^j − [𝐾)]W
𝜏HWG?

ch
⎠

⎟
⎞

 

where 𝛼HGGZ = 80 defines the strength of the co-transporter, [𝐶𝑙(]^j = 5mM is the steady-state 

Cl- concentration, [𝐶𝑙(]^ is the intracellular Cl- concentration, 𝜏G?j = 4x103s, and 𝜏HWG? = 0.08s. 

Synapse and network properties. We modeled a one dimensional network consisting of 

100 PNs and 20 INs. Every PN formed local excitatory synapses onto ten neighboring PNs with 

AMPA conductance strength of 3.5 nS and NMDA conductance of 0.9 nS. PNs also formed 
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excitatory synaptic connections onto INs with AMPA and NMDA conductance strengths of 2.4 

nS and 0.24 nS respectively. INs synapsed onto five local PNs, with GABAA connections of 3.5 

nS conductance strength. Additionally, PN and IN received individual afferent excitatory input 

modeled as a Poisson process as described in our previous studies (Krishnan and Bazhenov, 

2011; González et al., 2015; Krishnan et al., 2015).  

Estimation of seizure threshold. The seizure threshold was determined using a binary 

search method that employed an iterative procedure as described in (González et al., 2015). 

Briefly, at each step of the searching algorithm, the strength of the stimulus would be set to the 

mean of the upper and lower limits, <P>. If this stimulus strength was able to elicit seizure, the 

upper limit would be set to the current value of <P>. If <P> was unable to elicit a seizure, the 

lower limit would take the value of <P>. The new stimulus strength, <P>, would then be 

computed based on the updated upper and lower limits. This process continued until the 

difference between the upper and lower limits was less than 0.1. The threshold was determined 

to be the average of these final limits. 

Acknowledgements 
 

Chapter 3, in full, is a reprint of the material as it appears in Role of KCC2-Dependent 

Potassium Efflux in 4-Aminopyridine-Induced Epileptiform Synchronization 2018. González, 

Oscar C.; Shiri, Zahra; Krishnan, Giri P.; Myers, Timothy L.; Williams, Sylvain; Avoli, 

Massimo; Bazhenov, Maxim. The dissertation author was the primary author of this paper. 

Chapter 4: Ion Dynamics and the Origin of Infra-Slow Resting-State Fluctuations 
 
Abstract: 

Resting-state or baseline low frequency (0.01-0.2 Hz) brain activity is observed in fMRI, 

EEG and LFP recordings. These fluctuations were found to be correlated across brain regions 
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and are thought to reflect neuronal activity fluctuations between functionally connected areas of 

the brain. However, the origin of these infra-slow fluctuations remains unknown. Here, using a 

detailed computational model of a brain network, we show that spontaneous infra-slow (< 0.05 

Hz) fluctuations could originate due to the ion concentration dynamics. Our computational 

model implemented dynamics for intra and extracellular K+ and Na+, intracellular Cl- and Ca2+ 

ions, Na+/K+ exchange pump, and KCC2 co-transporter. In the network model simulating resting 

wake-like brain state, we observed infra-slow fluctuations in the extracellular K+ concentration, 

Na+/K+ pump activation, firing rate of neurons and local field potentials. Holding K+ 

concentration constant prevented the generation of these fluctuations. The amplitude and peak 

frequency of this activity were modulated by Na+/K+ pump, AMPA/GABA synaptic currents and 

glial properties. Furthermore, in a large-scale network with long-range connections based on 

CoCoMac connectivity data, the infra-slow fluctuations became synchronized amongst remote 

clusters similar to the resting-state networks observed in vivo. Overall, our study proposes that 

ion concentration dynamics mediated by neuronal and glial activity may contribute to the 

generation of infra-slow spontaneous fluctuations of brain activity that are reported as the 

resting-state fluctuations in fMRI and EEG recordings. 

Introduction: 
 

Resting-state or spontaneous background fluctuations, in the frequency range of 0.01-0.2 

Hz (Fukunaga et al., 2006; Honey et al., 2007; Buckner et al., 2008; Ghosh et al., 2008; Greicius, 

2008; Greicius et al., 2008; He et al., 2008; Khader et al., 2008; Broyd et al., 2009; Greicius et 

al., 2009; Larson-Prior et al., 2009; Lorincz et al., 2009; Chang and Glover, 2010; Picchioni et 

al., 2011; Palva and Palva, 2012; Pan et al., 2013; Hiltunen et al., 2014; Raichle, 2015), are 

reported by a wide range of neuroimaging methods, including electrophysiological, optical, EEG 
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and fMRI (Biswal et al., 1995; Fukunaga et al., 2006; Greicius, 2008; Greicius et al., 2008; Pan 

et al., 2013; Hiltunen et al., 2014). The spontaneous resting-state activity in fMRI signals is a 

robust phenomenon that has been widely used to evaluate brain network properties, from 

determining functional connectivity during cognitive tasks to identifying altered functional 

connectivity in various conscious and disease states (Vanhatalo et al., 2004; Fukunaga et al., 

2006; Buckner et al., 2008; Greicius, 2008; Greicius et al., 2008; Broyd et al., 2009; Zhang and 

Raichle, 2010; Picchioni et al., 2011). The resting-state activity across wide brain regions forms 

functional networks, such as the default-mode network (DMN), that vary with brain state and 

type of cognitive activity (Vanhatalo et al., 2004; Fukunaga et al., 2006; Buckner et al., 2008; 

Greicius et al., 2008; Broyd et al., 2009; Picchioni et al., 2011). Several neurological and 

psychiatric disorders, such as epilepsy and schizophrenia, have been shown to correlate with 

altered resting-state fluctuations and functional connectivity (Vanhatalo et al., 2004; Buckner et 

al., 2008; Greicius, 2008; Lui et al., 2008; Broyd et al., 2009; Raichle, 2010; Zhang and Raichle, 

2010; Gupta et al., 2017). Although there is growing interest in understanding the resting-state 

fluctuations, the underlying neural mechanisms by which these oscillations arise remain 

unknown.  

Previous experimental work showed that infra-slow fluctuations in the local field 

potential (LFP) gamma power, neuronal firing rate, and slow cortical potentials (SCP) exhibit a 

correlational relationship with resting-state fMRI blood-oxygen-level dependent (BOLD) 

fluctuations (He et al., 2008; Khader et al., 2008; Picchioni et al., 2011; Palva and Palva, 2012; 

Pan et al., 2013; Hiltunen et al., 2014). Further, the underlying structural connectivity of brain 

networks was shown to shape the functional connectivity estimated from resting-state activity 

(Honey et al., 2007; Deco et al., 2009; Greicius et al., 2009; Deco et al., 2011). Finally, 
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computational studies, using population level models, suggested the role of intrinsic noise, 

coupling strengths, conduction velocities, and underlying structural connectivity in the 

generation of resting-state fluctuations (Honey et al., 2007; Ghosh et al., 2008; Deco et al., 

2009). However, these earlier modeling studies were based on the phenomenological mean field 

type models and so the underlying biophysical properties giving rise to the infra-slow time scale 

based on activity of individual neurons and their networks remains to be understood. 

Interestingly, experimental and computational studies suggest that the resting-state activity arises 

from switching between different activity levels in the localized brain regions. Changes in the 

ion concentrations have been suggested to modulate network activity (Pedley et al., 1974; Chub 

and O'Donovan, 2001; Somjen, 2002; Bazhenov et al., 2004; Chub et al., 2006; Frohlich and 

Bazhenov, 2006; Frohlich et al., 2008b; Krishnan and Bazhenov, 2011; Wei et al., 2014a; 

Krishnan et al., 2015) that could occur at a slow time scale. In this study, we tested the 

hypothesis that fluctuations of the ion concentrations may result in the infra-slow resting-state 

brain activity fluctuations. 

Extracellular potassium concentrations ([K+]o) have been shown to fluctuate during 

resting-state or background activity over a long time period (McCreery and Agnew, 1983). 

Recordings from anesthetized cat cortex have shown that the [K+]o exhibits small amplitude (~ 

0.5mM) fluctuations around a mean concentration, with the period of these fluctuations being 

about an hour or less (McCreery and Agnew, 1983). Additionally, extracellular potassium 

recordings in animal models of epilepsy have shown substantial [K+]o fluctuations prior to and 

during bouts of seizure-like activity (Pedley et al., 1974; Traynelis and Dingledine, 1988; 

Somjen, 2002). A number of computational models suggested a prominent role of potassium 

concentration dynamics modulating neuronal excitability and synchrony (Bazhenov et al., 2004; 
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Frohlich and Bazhenov, 2006; Frohlich et al., 2008b; Krishnan and Bazhenov, 2011; Wei et al., 

2014a; González et al., 2015; Krishnan et al., 2015). Previous studies have shown that slow 

spontaneous rhythmic activity in chick spinal cord may arise through accumulation and removal 

of intracellular chloride (Chub and O'Donovan, 2001; Chub et al., 2006). Similarly, changes in 

the ionic gradients have been reported to underlie slow bursting dynamics in epilepsy (Ziburkus 

et al., 2013; Huberfeld et al., 2015). We now know that slow neuronal dynamics can emerge 

without the presence of the slow time constants in the ion channel dynamics. The central idea of 

this new paper is that the ion gradients buildup and discharge, and ion pumping may result in the 

infra-slow time scale of the resting-state fluctuations.  

Our study predicts that resting-state activity can arise from infra-slow fluctuations of the 

ion concentrations. Furthermore, we identified that the low amplitude fluctuations in the ion 

dynamics allow for local and long-range synchronization among the distant networks. These 

local fluctuations can lead to correlated and anti-correlated activities between clusters of neurons 

through long-range feedforward excitatory and inhibitory projections, which reflect underlying 

network structural connectivity in agreement to the experimental observations of the resting-state 

activity. 

Results: 

The biophysical network model developed in this study incorporated synaptically coupled 

excitatory pyramidal (PY) and inhibitory (IN) neurons, and implemented realistic dynamics of 

the major ion concentrations to provide in vivo-like conditions (Frohlich and Bazhenov, 2006; 

Frohlich et al., 2008b; Krishnan and Bazhenov, 2011; González et al., 2015; Krishnan et al., 

2015). A “single cluster” network model possessed only local connectivity (5 neuron radius). 
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Below we will first explore dynamics of a single cluster network and then expand it to the case 

of several clusters connected with long-range synaptic connections. 

Infra-slow fluctuations arise spontaneously in the network model 

 In a network consisting of a single cluster of 50 neurons (figure 4.1 A1), PY and IN 

population activity appeared random over a period of 800 sec simulation time (figure 4.1 A2 

top). Individual voltage traces from PY neurons within the network showed spontaneous random 

firing (figure 4.1 A2 bottom). However, analysis of the mean firing rate of PY neurons revealed 

a very slow semi-periodic fluctuation (figure 4.1B). Similar fluctuations were observed in the 

band-pass filtered mean PY membrane voltage (figure 4.1C). The slow fluctuations in the mean 

firing rate and membrane voltage were also reflected in the slow fluctuations of the mean [K+]o 

and [Na+]i (figure 4.1D green and red respectively), and the mean Na+/K+ pump current (figure 

4.1E). The [K+]o fluctuation was 0.1-0.2 mM in amplitude, while the [Na+]i fluctuation was only 

~0.05 mM in amplitude. Power spectrum of the mean [K+]o, [Na+]i, Na+/K+ pump current, 

membrane voltage, and network firing rate revealed a peak amplitude at around 0.02 Hz (figure 

4.1F). 

Ion concentration dynamics give rise to the infra-slow fluctuations 

Since we observed infra-slow resting-state fluctuations in both mean [K+]o and [Na+]i, we 

first tested the role of these ions in the generation of the resting-state activity in our network 

model. Thus, we fixed the concentrations of these two ions independently. Holding the K+ 

concentration constant resulted in a loss of the infra-slow oscillatory activity in the mean 

membrane voltage of the PY neurons, regardless of the specific values of the concentration 

(figure 4.2A top red). Power spectrum analysis revealed the disappearance of a low-frequency 

peak and almost flat spectrum (figure 4.2B inset). In contrast, preventing the Na+ fluctuation did  
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Figure 12.1 Minimal cortical network model exhibits resting-state fluctuations. A1, Cartoon of the basic 
network architecture. A2, Spontaneous activity in the network of PY and IN neurons. T1 and T2 indicate times 
expanded below in single PY cell traces. B-E, Mean PY firing rate, mean filtered (0.001-0.1Hz) membrane voltage, 
[K+]o and [Na+]i, and Na+/K+ pump current dynamics, respectively. F, Power spectrums of the mean PY firing rate, 
membrane voltage, [K+]o and [Na+]i, and Na+/K+ pump current. 



 

 96 

not result in a loss of the infra-slow membrane voltage fluctuations (figure 4.2A and B, 

right). Unlike the condition with fixed K+, the Power spectrum of the mean membrane voltage in 

the network with constant Na+ still revealed a distinct peak around 0.02 Hz. This suggests that 

fluctuations of K+ play a major role in the generation of the resting-state activity, while Na+ 

fluctuation may play a modulatory role. 

 We next explored the role the Na+/K+ pump current, glia K+ buffering, and 

AMPA/GABA synaptic connections in regulating properties of the resting-state fluctuations. 

Increasing the strength of the Na+/K+ pump resulted in decreased fluctuation amplitude of the 

pump current as revealed by the reduced peak in the Power spectrum (figure 4.2C, black). This 

decrease in the fluctuation amplitude was accompanied by increase in the peak frequency (figure 

4.2C, red). For higher strength of the Na+/K+ pump, the relative changes of the extracellular K+ 

were reduced, leading to the smaller resting-state fluctuations. Similarly, decreasing the half 

activation concentration of [K+]o in glia cells, that increased effectiveness of glia buffering, 

reduced the resting-state fluctuation amplitude (figure 4.2D). Thus, the slow dynamic processes 

controlling the progressive accumulation of the ions and their removal determined the amplitude 

and peak frequency of the infra-slow fluctuations. Further, increasing the strength of the AMPA 

connections between PY neurons increased the amplitude of the resting-state fluctuations while 

shifting peak frequency to the lower values (figure 4.2E). GABA, on the other hand, had 

minimal impact on the amplitude of the resting-state fluctuations, but shifted the peak frequency 

to the higher values (figure 4.2E). Increase in the fluctuation amplitude due to increase in the 

AMPA connection strength suggests that recurrent synaptic excitation promoted faster and 

higher-level buildup of the extracellular K+ concentration thus leading to stronger and faster 

resting-state fluctuations. It should be noted that diffusion of ions in the extracellular space was 
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Figure 4.2 Ion concentrations, Na+/K+ pump, glial K+ buffering, and AMPA/GABA strength influence 
properties of the resting-state fluctuations. A, Mean membrane voltages (black) and mean filtered membrane 
voltages (red) for the networks with either fixed K+ (left) or fixed Na+ (right). B left, Power spectrum peak power as 
a function of fixed K+ concentration. Percentage is based on the mean [K+]o in control network. Inset shows 
individual Power spectrums for different fixed K+ conditions. Black line shows a control. Green box indicates time 
used to compute peak power. B right, Corresponding Power spectrum of the mean membrane voltage in fixed Na+ 
condition in A. C, Peak power (black) and peak frequency (red) as a function of Na+/K+ pump current strength. D, 
Power spectrum peak power as a function of glia model half activation K+ concentration. E, Power spectrum peak 
power as a function of AMPA and GABA connection strengths (left). Power spectrum peak frequency as a function 
of AMPA and GABA connection strengths (right). 
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 not required for the infra-slow activity, but removing diffusion reduced its amplitude (figure 

4.3). Furthermore, the infra-slow fluctuations in the model could not be explained by the 

simulation protocol, such as, e.g., properties of the random number generator used to generate 

Poisson drive.  Indeed: (a) The inter-arrival times of the Poisson input were very different from 

the time scale of the oscillations (figure 4.4G); (b) TTX like condition to remove Na+ spikes also 

eliminated slow fluctuations (figure 4.4A-F). 

To reveal mechanisms behind the infra-slow fluctuations, we examined the ion 

concentration dynamics in the Na+/K+ concentrations subspace of the network model phase 

space. In the plane of (a) extracellular K+ vs intracellular Na+ concentrations (figure 4.5B) or (b) 

the ratio of extracellular and intracellular ion concentrations (figure 4.5C) there were several 

regions with high density of the phase flow. A kernel density estimate (figure 4.5D) revealed the 

separation between these regions which suggests existence of an attractor-like dynamics and 

possibility of multistability between these attractors. We next detected the positive and negative 

peaks of the mean firing rate of the excitatory neurons (figure 4.5A). The mean time difference 

between the peaks (positive or negative) was 24.2 sec (with 13.27 sec standard deviation), which 

corresponds to 0.02-0.04 Hz in the frequency domain. Using these peaks in firing rate as time 

markers, we averaged the ion concentration changes during the time before and after the peaks 

(essentially plotting positive/negative firing rate peak triggered average). As shown in the figure 

4.5F, during the time period before negative peak, the firing rate, concentrations of extracellular 

K+, and intracellular Na+ were elevated for up to ~20 sec (p<0.001 for t-test comparing values 20 

sec before and after for all 3 variables). Similarly, the time periods (~20 sec) before positive peak 

(figure 4.5E) revealed reduced firing rate, concentrations of extracellular K+, and intracellular 

Na+ (p<0.001). We next identified the firing rate peaks and preceding 20 sec time intervals of the  
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phase trajectories in the plane of extracellular K+ and intracellular Na+ concentrations (figure 

4.5G,H). The time periods prior (after) to the positive and negative peaks were marked by red 

(green) in figure 4.5G-H. Importantly, these regions were clearly separated in the phase space.  

Together, it suggests that the observed infra-slow activity may raise from the combination of the 

positive and negative feedback interactions between [K+]o /[Na+]i and neuronal excitability, 

which depend on the absolute levels of the ion concentrations. Indeed, we showed before that the 

ion dynamics may promote positive feedbacks between the ion concentrations and neuronal 

excitability, while further elevation of [K+]o and [Na+]i  may trigger negative feedbacks mediated  

 

Figure 4.3 Role of diffusion in the infra-slow fluctuations. A, Mean Na+/K+ pump currents in the networks with 
different strength of diffusion. Color indicates the strength of diffusion compared to the baseline as indicated by the 
legend in B. B, Power spectrums of the Na+/K+ pump currents from simulations in A. C, Power spectrum peak 
power as a function of diffusion strength. 
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Figure 4.4 Blocking Na+/K+ currents responsible for cell spiking eliminates infra-slow fluctuations. A, Raster plot of 
spontaneous activity in a network of PY and IN neurons where all fast Na+/K+ currents necessary for cell spiking are 
blocked. T1 and T2 indicate time intervals zoomed below for the membrane voltage of a single PY neuron. B-E, Mean PY 
firing rate, mean filtered (0.001-0.1Hz) membrane voltage, [K+]o and [Na+]i, and Na+/K+ pump current, respectively. Note, 
lack of oscillations. F, Power spectrums of the mean PY firing rate, membrane potential, [K+]o and [Na+]i, and Na+/K+ 
pump current. G, Inter-arrival times of the Poisson process simulating synaptic release for all external synaptic inputs in 
the network. 
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by changes of the Na+/K+ reversal potentials and increase of the outward Na+/K+ pump current 

(Krishnan and Bazhenov, 2011).  

This proposed mechanism was further verified in a simplified network model with DC 

input instead of stochastic Poisson drive (figure 4.6). We examined if the infra-slow fluctuations 

could arise in a simplified model with constant DC input, in place of the stochastic Poisson drive 

we have used in the rest of the simulations. Thus, we plotted the min and max values of the mean 

firing rate, extracellular K+, and intracellular Na+ concentrations as a function of the amplitude of 

DC input to the neurons (figure 4.6A). We observed three different regimes of activity due to 

constant DC input (figure 4.6A).  For very low DC input, the network was silent because the 

input strength was below the spike generation threshold. For very high input levels (marked by 

red region in figure 4.6A), the network showed high frequency tonic firing. Finally, for the low 

intermediate inputs, the network model demonstrated oscillations between active and silent states 

(figure 4.6A green box; figure 4.6B). In this regime, during the silent (non-spiking) state the 

extracellular K+ progressively increased because the neurons remained above the equilibrium 

potential for K+. This eventually triggered a transition to the active state. During the active phase, 

the intracellular Na+ progressively increased until it reached a high enough concentration that  

reduced intrinsic cellular excitability, due to the changes in the Na+ reversal potentials and 

increase of the outward Na+/K+ pump current (Krishnan and Bazhenov, 2011), triggering 

termination of the active phase and onset of the new silent phase. Repetition of these cycles led 

to oscillations as confirmed by existence of the limit cycle in the phase space (figure 4.6C). This 

result confirms our hypothesis about the interaction of ionic and synaptic mechanism for the 

generation of infra-slow fluctuations in the full network with random Poisson input. We should 

note that the firing rates and the ion concentrations observed in the model with DC input were  
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Figure 4.5 Network dynamics in the phase space of ion concentrations. A, Average network firing rate (top), 
average [K+]o (middle) and average [Na+]i (bottom) of the excitatory neurons from a simulation of network with 50 
excitatory and 10 inhibitory neurons. B, Projection of the phase space trajectories to the phase space in the plane of 
[K+]o and [Na+]i. C, Projection of the phase space trajectories to the phase space in the plane of ratio of extracellular 
and intracellular ion concentrations for K+ and Na+. D, Gaussian kernel density estimate of the phase projection 
shown in subpanel C. E-F, Positive (panel E) and negative (panel F) peak triggered average of the firing rate of 
excitatory neurons, [K+]o, and [Na+]i concentrations (from top to bottom). Peaks were detected by using a threshold 
of mean +/- 1.75 standard deviation on the firing rate. Average value is shown in black and standard deviation in 
blue. G-H, Phase space trajectories of the network dynamics in the phase space of the [K+]o and [Na+]i are marked 
in red (green) to indicate time window before (after) the positive (G) and negative (F) peaks of the firing rate. 
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different from those during spontaneous fluctuations in the baseline model with Poisson input,  
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where similar changes in the ion dynamics occurred (figure 4.5) but at a smaller degree. 

To identify the time scale for variations in the ion concentration dynamics, we varied the 

rate of stochastic external input to the neurons in the network. In this experiment, external drive 

Figure 4.6 Network firing rate dynamics in response to input alternations. A, External input was elevated by 
10% during 100 sec time window (black bar, 100-200s). Average firing rate across 10 trials is shown in red, 
standard deviation is shown in black. B, Time series of the firing rate from one trial during elevated input (black bar, 
100-200s). C, Projection of phase trajectories to the phase plane of [K+]o and [Na+]i for the single trial shown in B. 
Color indicates different steady-states regimes and the transients to traverse between states in the phase space. D-E, 
Left, Average firing rate of excitatory neurons for different glial half activation (D) and pump strength (E) values. 
Firing rate traces (from top to bottom) correspond to 53, 67, 80, and 100% for D, and 90, 95, 105, 110% for E. 
Right, Firing rate change during the transient (100-125s) compare to the baseline (50-75s) period is plotted vs glial 
half activation (D) and pump strength (E). 
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to the network was elevated by 10% at time 100 sec and reduced to the original value at time 200 

sec (figure 4.7A, solid black box indicates the period of high external input). Following increase 

(or decrease) in external input, the network firing rate and ion concentration displayed long 

transients before reaching the new steady-state values. The mean duration of the transients 

averaged across 10 trials was approximately 20 sec (figure 4.7A). Such transients could be also 

observed in the individual trials (example shown in figure 4.7B). We note that the transients 

observed in the individual trials closely resemble the slow fluctuations observed in the full 

network (compare figure 4.7B with 4.5A). In the phase space projection to the Na+/K+ subspace 

(figure 4.7C), these transients corresponded to the phase trajectories (marked by cyan and 

yellow) connecting regions representing network steady-states (low input – blue - and high input 

– green). Again, each such transient event lasted between 15-20 sec (figure 4.7C). We next 

examined how the transients vary with changes to the glia properties and Na+/K+ pump strength.  

Increasing glial activation (figure 4.7D) or Na+/K+ pump strength (figure 4.7E) both 

reduced amplitude of the transients, suggesting that increasing uptake of K+ impacts the network 

response characteristics. We would like to note that in this experiment we changed the input to 

the network as a way to reliably generate transients, however, spontaneously generated slow 

fluctuations in the baseline model do not arise from any changes in external input. 

Does the network size affect generation of the resting-state activity? To answer this 

question, we increased the number of neurons in the network to 500, but kept the same network 

configuration as in figure 4.1 A1. Again, the network included only local connections (i.e. 5 

neuron radius), and the ratio of PY to IN neurons was kept at 5:1. We found that the amplitude of 

the infra-slow fluctuations obtained from the averaged activity of the entire network was smaller 

than in our control 100 neurons network. To understand this phenomenon, we examined  
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Figure 4.7 Oscillations in the model with constant DC input. A, Min-max values of the firing rate (left), 
[K+]o (middle) and [Na+]i  (right) are plotted for different levels of the DC input. B, Representative sample 
traces of the firing rate (top), [K+]o (middle) and [Na+]i (bottom) for DC input indicated by the green box in 
panel A. C, Projection of phase space trajectories to the plane of [K+]o and [Na+]i for DC input indicated by 
the green box in panel A. D, Kernel density estimate of the phase space projection shown in panel C. 
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independently activity in the smaller subsets of neurons from the larger network (100 neurons 

subsets from the 500 neurons network). We observed in each such subnetwork the fluctuations of 

the same amplitude as we found in control small network (figure 4.8A-B). When random long-

range connectivity was introduced in the 500 neurons network, we observed increase of 

spontaneous fluctuations. This suggests that local synaptic connections and ion diffusion were 

sufficient to synchronize the entire small (up to about 100 neurons) network but not the larger 

(e.g., 500 neurons) network. In the last case, the network activity broke into semi-independent 

clusters, where each cluster might oscillate out of phase with the other clusters. Long-range 

connections can synchronize distinct clusters. This was also further confirmed by a large-scale 

simulation using CoCoMac connectivity (see next section). 

Feedforward connectivity influences correlations between infra-slow fluctuations  

 Structures comprising functional networks, such as the ventromedial prefrontal cortex 

(vmPFC) and posterior cingulate cortex (PCC) of the default mode network, have been shown to 

display coherent resting-state fluctuations (Buckner et al., 2008; Greicius et al., 2008; Broyd et 

al., 2009). Though fluctuations of the local ion concentrations, as proposed by our study, may 

underlie intrinsic fluctuations in these regions, the spatial separation of these regions makes  

sharing of the extracellular space between them unlikely. Therefore, these distinct regions should 

have independent dynamics of the local milieu of the ion concentrations. On the other hand, 

many brain regions are known to be connected through long-range synaptic projections. Thus, 

we next tested whether our model could also generate coherent fluctuations between distinct 

clusters of neurons connected through long-range synaptic connections where each cluster has 

local synaptic connectivity and local extracellular ion concentration dynamics. As depicted in 

figure 4.9 A1, our new network configuration consisted of two clusters of 50 excitatory neurons  
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Figure 4.8 Effects of network size on the resting-state fluctuation amplitude. A, Mean Na+/K+ pump 
currents from clusters of 100 neurons comprising the network of 500 neurons with only local connections. 
Note, lack of synchronization between individual clusters. B, Power spectrums calculated from the mean 
Na+/K+ pump currents in the individual clusters (colored lines match colors in A), and Power spectrum of the 
averaged Na+/K+ pump current from entire 500 neurons network (dashed line). C, Mean Na+/K+ pump current 
from the network of 500 neurons implementing both local and long-range connections. D, Power spectrum of 
Na+/K+ pump current from the network in C. Dashed lines represent SEM. 
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and 10 inhibitory interneurons each. We kept the same connectivity scheme as the previous 

network configuration (figure 4.1 A1) within each neuron cluster but prevented ions from 

diffusing between the two clusters. Additionally, we added long-range sparse synaptic 

projections between two clusters through excitatory PY-PY connections. Again, the activity of 

the PY and IN neurons in either cluster appeared to be random (figure 4.9 A2 top). Individual 

traces from two PY neurons (one from each cluster) show spontaneous background activity in 

both clusters (figure 4.9 A2 bottom). The mean Na+/K+ pump current within each cluster 

revealed synchronized resting-state fluctuations (figure 4.9B). Power spectrum analysis of the 

mean Na+/K+ pump currents from both clusters revealed a power spectrum peak around 0.02 Hz 

(figure 4.9C left). Importantly, fluctuations of the mean membrane potential and mean Na+/K+ 

current of both clusters revealed positive cross-correlation (figure 4.9C middle & right 

respectively). 

 We next varied the AMPA connection strength of the long-range connections between 

the two clusters to test its effect on the synchronization between the resting fluctuations of the 

two clusters. We computed the phase-locking index (PLI) between the mean Na+/K+ pump 

currents of the two clusters for different AMPA strengths. Increasing the AMPA strength of the 

long-range connections resulted in higher phase-locking between the two signals (figure 4.9D 

left). Similarly, increasing connection probability between the two clusters resulted in an 

increase of the phase-locking (figure 4.9D right). Importantly, even for relatively low connection 

strength and probability, the PLI remained significantly higher than that for two completely 

disconnected clusters. Furthermore, two completely disconnected clusters did not exhibit a 

positive cross-correlation as seen in the connected clusters (figure 4.10). 
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Figure 4.9 Long-range connections synchronize resting-state fluctuations. A1, Cartoon of the network model with 
feedforward excitation. A2, Spontaneous activity in the neuron clusters connected by feedforward excitation. T1 and T2 
indicate times of zoomed in single PY cell traces. B, Mean Na+/K+ pump currents for each cluster in A. C, Power 
spectrums of the Na+/K+ pump currents in B (left), cross-correlation of the mean filtered membrane potentials from 
clusters in A (middle), and cross-correlation of the mean Na+/K+ pump currents from B (right). D, Phase-locking index 
(PLI) as a function of feedforward AMPA strength (left) and connection probability (right). E1, Cartoon of the network 
model with feedforward inhibition. E2, Mean Na+/K+ pump currents for each cluster connected through feedforward 
inhibition. F, Power spectrums of Na+/K+ pump currents in E2 (left), cross-correlation of the mean filtered membrane 
potentials from clusters with feedforward inhibition (middle), and cross-correlation of the mean Na+/K+ pump currents 
from E2 (right). 
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In vivo, in addition to the positively correlated resting-state fluctuations in distinct regions, 

negatively or anti-correlated resting-state fluctuations have been observed (Greicius et al., 2003; 

Tian et al., 2007; Keller et al., 2015). We found that increasing the strength of the AMPA 

connection between excitatory PY neurons of the one cluster and the inhibitory IN neurons of 

another cluster resulted in negatively correlated resting-state fluctuations (figure 4.10E). This 

negatively correlated or anti-phasic activity was observed in both the filtered mean membrane 

potential and the mean Na+/K+ pump currents of the clusters (figure 4.10F, middle & right). 

Together, these findings suggest that the mechanisms proposed in our model can account for 

Figure 4.10 Network activity of two uncoupled clusters of neurons. A, Mean unfiltered (blue/green) and filtered 
(0.01-0.1 Hz) (black/red) membrane voltages from two clusters of 50PYs-10INs neurons (blue and green) with no 
connections between clusters. B, Mean [K+]o dynamics from neuron cluster 1 (black) and 2 (red). Note lack of any 
synchrony between two clusters. C, Left, cross-correlation of the filtered mean membrane voltages of two neuron 
clusters 1 and 2 from A. Right, cross-correlation of the mean [K+]o of two neuron clusters 1 and 2 from B. 
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individual cluster resting-state fluctuations as well as for positive and negatively correlated 

fluctuations between distinct brain regions. 

Functional connectivity reflects the underlying structural connectivity  

 Finally, to test whether our model could explain in vivo data that revealed correlations 

between structural and functional connectivity in the Macaque brain (Honey et al., 2007; Deco et 

al., 2009; Greicius et al., 2009; Deco et al., 2011), we modeled 58 different brain regions of the 

Macaque brain using connectivity information gathered from the CoCoMac structural 

connectivity database (http://cocomac.g-node.org). Each of the 58 regions was modeled as a 

cluster of 50 excitatory neurons and 10 inhibitory interneurons with connectivity within a cluster 

identical to that shown in figure 4.1 A1. Long-range excitatory PY-PY connections were formed 

between clusters based on the CoCoMac structural connectivity data set (http://cocomac.g-

node.org). We computed the correlation coefficient between Na+/K+ pump currents in different 

clusters for every possible pair of clusters. This analysis revealed the groups of clusters which 

showed high degree of correlation (figure 4.11A, middle panel). To quantify the relationship 

between structural and functional connectivity, we next computed the correlation coefficient 

between clusters (brain regions) showing significant correlation of the mean Na+/K+ pump 

currents (figure 4.11A, middle) and the clusters with strong structural connectivity (figure 4.11A, 

left panel). We found a significant correlation between the functional and structural connectivity 

(r = 0.20508) (figure 4.11A, right panel). Thus, we concluded that a network with local (cluster 

specific) ion concentration dynamics and long-range synaptic connectivity between clusters can 

account for the experimentally observed relationship between structural and functional 

connectivity. Recent data revealed the dynamic nature of functional connectivity (Hutchison et 

al., 2013b; Hutchison et al., 2013a; Allen et al., 2014; Shen et al., 2015). It has been shown that  
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Figure 4.11 Macaque simulations. A, Left, structural connectivity matrix for macaque network from the CoCoMac 
structural connectivity database (http://cocomac.g-node.org). Middle, functional connectivity calculated from the 
network model including 58 individual network clusters. Only significant correlations are shown (Bonferroni corrected 
for multiple comparisons). Right, correlation of functional and structural connectivity. B, Heatmaps, functional 
connectivity computed for consecutive 60sec time windows demonstrating the dynamic nature of the functional 
connectivity of the network model. Color indicates the correlation between infra-slow fluctuations in the simulated 
brain regions. Bottom plots, correlations between functional connectivity computed in corresponding heatmap and 
structural connectivity in A. Correlation coefficient and p-value are reported for comparison between the functional 
connectivity computed during each time bin and the structural connectivity in A. 
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the strength of the functional connectivity computed from the resting-state fluctuations between 

regions comprising the default mode network was varying in time (Chang and Glover, 2010). To 

check for a similar characteristic in our model, we computed the correlation coefficients for ten 

subsequent 60sec bins (figure 4.11B). Similar to experimental findings, our model revealed 

dynamic changes of the functional connectivity (figure 4.11B). The network exhibited both 

instances of strong and weak functional connectivity between specific clusters at different time 

epochs. Interestingly, the regions that showed mostly weak functional connectivity could 

develop strong connectivity transiently in time before returning to a low connectivity state. 

Discussion: 
 

In this study, we tested the hypothesis that dynamics of the ion concentrations, regulated 

through the neuronal and glial activity, may form the basis of the resting-state fluctuations in the 

brain. Comprising only about 2% of the total body weight of an average adult human, the brain is 

responsible for up to 20% of the total energy consumption (Raichle, 2015). Task-evoked 

responses generally increase brain energy consumption by less than 5% (Raichle and Mintun, 

2006). Though so much energy is consumed in order to maintain a baseline level of activity, little 

is known about its use, including spontaneous resting-state activity in the brain. It was first 

observed by Biswal et al. 1995 that the spontaneous background fluctuations recorded during 

fMRI scans were coherent between functionally related brain regions (Biswal et al., 1995). Since 

then, other studies have shown similar coherent resting-state activity between regions comprising 

functional networks such as the default mode network and executive control network (Fukunaga 

et al., 2006; Raichle and Mintun, 2006; Buckner et al., 2008; Greicius, 2008; Greicius et al., 

2008; Broyd et al., 2009; Greicius et al., 2009; Larson-Prior et al., 2009; Raichle, 2011, 2015). 

Interestingly, infra-slow (<0.2Hz) resting-state fluctuations have been observed in various 
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cognitive states (Fukunaga et al., 2006; Greicius et al., 2008; Larson-Prior et al., 2009; Picchioni 

et al., 2011), and can exhibit modified temporal coherence patterns in various neurological and 

psychiatric disorders (Vanhatalo et al., 2004; Buckner et al., 2008; Greicius, 2008; Broyd et al., 

2009; Zhang and Raichle, 2010). In our new study we proposed and tested the hypothesis that 

resting-state fluctuations may depend on the ion concentration dynamics, specifically [K+]o 

fluctuations, and that the phase coherence of the infra-slow activities between distinct brain 

regions depends on the long-range synaptic connectivity between these regions. Our model based 

on the CoCoMac structural connectivity database explained the relationship between structural 

and functional connectivity revealed in the studies of the resting-state activity in the Macaque 

brain.   

Ion fluctuations on the infra-slow time scale 

The characteristic time scale of the resting-state fluctuations is of the order of 50-100sec. 

Very few neural processes are known to act at such slow time scale. In our new study, we 

demonstrate that the ion concentrations may spontaneously vary with a very slow time scale and 

could act as the modulator of the neural activity leading to emergence of resting-state 

fluctuations. The underlying mechanisms generating this infra-slow activity may rest in the slow 

processes leading to the gradual accumulation and removal of the extracellular K+. Indeed, 

increase of the extracellular K+ results in higher excitability of neurons which may then trigger 

further elevation of extracellular K+, leading to the positive feedback loop (Frohlich and 

Bazhenov, 2006; Frohlich et al., 2008b; Krishnan and Bazhenov, 2011; González et al., 2015). 

Operation of this feedback depends on the intracellular Na+; its increase leads to reduction of 

intrinsic excitability (Krishnan and Bazhenov, 2011). We propose here that the positive feedback 

mediates increase of the extracellular K+ and its time scale can be arbitrarily slow being 
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determined by the balance of the inward and outward K+ flux. Increase in the intracellular Na+ 

terminates the positive feedback loop initiating a phase of progressive decrease of the ion 

concentrations and firing rate; this again can be arbitrarily slow. When intracellular Na+ reduces 

sufficiently to recover the critical level of excitability, a new cycle of activity starts. Transitions 

between these phases depend on the Na+/K+ pump that becomes significantly more activated as 

the K+ and Na+ reach critical values leading to changes of the outward pump current and 

affecting intrinsic excitability. Indeed, experimental data suggested that the ion concentrations 

may have slow dynamics similar to the time course of the resting-state fluctuations (Moody et 

al., 1974; Pedley et al., 1974; McCreery and Agnew, 1983; Traynelis and Dingledine, 1988; 

Chub and O'Donovan, 2001; Somjen, 2002; Bazhenov et al., 2004; Chub et al., 2006; Frohlich 

and Bazhenov, 2006; Frohlich et al., 2008b; Wei et al., 2014a). Our previous modeling studies 

revealed that the ion concentration dynamics may lead to the slow (<0.2 Hz) quasi-periodic 

transitions between distinct network states (bursting and tonic firing) (Moody et al., 1974; Pedley 

et al., 1974; McCreery and Agnew, 1983; Traynelis and Dingledine, 1988; Somjen, 2002; 

Bazhenov et al., 2004; Frohlich and Bazhenov, 2006; Frohlich et al., 2006; Frohlich et al., 

2008b; Krishnan and Bazhenov, 2011; Wei et al., 2014a). Other studies have suggested the role 

of slow processes involving ion dynamics and Na+/K+ pump activity in information processing 

(Arganda et al., 2007; Forrest, 2014).  

The gradual accumulation of extracellular K+ has been suggested to contribute to 

development of seizure-like discharges (Frohlich and Bazhenov, 2006; Frohlich et al., 2008b; 

Krishnan and Bazhenov, 2011; Wei et al., 2014a; González et al., 2015). Studies in patients with 

epilepsy revealed abnormal resting-state fluctuations (Vanhatalo et al., 2004; Lui et al., 2008; 

Gupta et al., 2017). Indeed, it has been demonstrated that the amplitude of resting-state 
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fluctuations in epileptic patients is increased as compared to the healthy individuals (Gupta et al., 

2017). Interestingly, our previous work demonstrated that homeostatic up-regulation of 

excitatory connections, following trauma, may lead to rewiring long-range cortical connectivity 

and promote spontaneous seizures, along with relatively high amplitude very slow baseline 

fluctuations (González et al., 2015). Taken together, these results may explain differences in the 

resting-state fluctuation properties in epileptic patients and healthy individuals. 

Relationship between structural and function connectivity 

Studies in animals revealed a correlation between anatomical structural and functional 

connectivity (Honey et al., 2007; Deco et al., 2009; Greicius et al., 2009; Deco et al., 2011). It 

was proposed with computer models that the time scale of infra-slow fluctuations could be a 

result of transient bouts of synchrony between clusters of nodes, and that the functional 

connectivity arising in the network strongly reflected the underlying structural architecture 

(Honey et al., 2007; Deco et al., 2009). Phase-locking between distant network sites through 

long-range connections was reported in the mean-field type models (Honey et al., 2007; Ghosh et 

al., 2008; Greicius et al., 2009). For example, Honey et al (Honey et al., 2007) found that 

individual oscillating brain regions (modeled as Wilson-Cowen oscillators) may become 

synchronized in the presence of long-range synaptic connections. Nevertheless, phase-locking of 

the infra-slow activity in the network models implementing biophysical mechanisms of 

oscillation and sparse long-range connections, as described in our study, has not been previously 

reported. In agreement with previous data (Honey et al., 2007; Deco et al., 2009), functional 

connectivity in our model, computed over a long time window, reliably reflected the underlying 

structural connectivity.  
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Experimental work has shown that the lack of monosynaptic connections between brain 

regions does not accurately predict the absence of functional connectivity between those regions 

(Greicius et al., 2008). However, coupling strength between neuron clusters has been suggested 

to influence the strength of correlated and anti-correlated activity between nodes (Deco et al., 

2009). In our model, the correlation and phase-locking of infra-slow fluctuations between 

clusters of neurons reflected the strength of excitatory connections between clusters (figure 

4.9D). Stronger excitatory projections resulted in correlated activity and phase-locking of the 

infra-slow fluctuations. We found that feedforward inhibition could give rise to anti-correlated 

activity between neuronal clusters (figure 4.9E and F) and we observed dynamic changes of the 

functional connectivity over time, in agreement to the experimental studies (Hutchison et al., 

2013b; Hutchison et al., 2013a; Allen et al., 2014; Shen et al., 2015). 

 Recent experimental work has shown that fluctuations in the fMRI BOLD signals are 

well correlated with the local field potentials (LFPs) (He et al., 2008; Khader et al., 2008; 

Raichle, 2010; Picchioni et al., 2011; Scheeringa et al., 2011; Palva and Palva, 2012; Pan et al., 

2013; Hiltunen et al., 2014). Gamma band activity and slow cortical potentials (SCPs) have been 

shown to correlate with BOLD signals (Khader et al., 2008; Raichle, 2010, 2015). Similar to 

BOLD signals, SCPs show coherent activity patterns across various cognitive states. It has been 

suggested that the time scale of these SCPs may reflect slow metabolic processes occurring 

within populations of neurons (Raichle, 2010, 2015). Aerobic glycolysis accounts for ~15% of 

the glucose metabolized at rest (Raichle, 2010). The main glucose metabolite is ATP, a 

percentage of which is consumed by the Na+/K+ pump in order to maintain ionic gradients 

(Attwell and Laughlin, 2001; Cunningham et al., 2006). Other major energy demanding 

processes include neurotransmitter release and recycling, as well as lipid synthesis (Attwell and 
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Laughlin, 2001; Lennie, 2003). Modifying glucose concentration has been shown to modulate 

slow wave oscillations in vitro in rat entorhinal cortex (Cunningham et al., 2006). In agreement 

with these results, our model suggests that Na+/K+ pump activity may influence the properties of 

the infra-slow fluctuations. Na+/K+ pump activity is reflected in fMRI BOLD signals as 

oxygenated blood flow increases to brain regions exhibiting increased neuronal activity (Arthurs 

and Boniface, 2002). It suggests that taking into account effects of the ion concentrations and 

Na+/K+ pump dynamics, as implemented in our model, may be necessary to accurately capture 

the biophysical mechanisms leading to generation of infra-slow fluctuations in fMRI recordings. 

Resting-state infra-slow fluctuations were originally observed during baseline recordings 

of the BOLD signals in fMRI studies (Raichle and Mintun, 2006; He et al., 2008; Raichle, 2010, 

2011, 2015). Changes in oxygen consumption, a result of re-establishing ion gradients through 

active pumping following increases in activity, give rise to fluctuations in BOLD signals 

(Greicius et al., 2003; Greicius, 2008; Greicius et al., 2008; He et al., 2008; Raichle, 2011). 

Through oxidative phosphorylation, oxygen allows for the production of ATP, thereby providing 

the cells with energy necessary to, amongst other processes, re-establish ionic gradients through 

ion pumping (Wei et al., 2014b). As such, the production of ATP is limited by the time scale of 

oxygen consumption and the replenishing of oxygen/glucose reservoirs (Ingram et al., 2014; Wei 

et al., 2014b). The flux in glucose/oxygen consumption, and neuro-vascular coupling have been 

suggested to occur on a slow time scale leading to the slow network dynamics (Ingram et al., 

2014; Wei et al., 2014b; Wei et al., 2014a; Longden et al., 2017). Our model does not explore the 

neuro-vascular coupling, but rather focuses on the mechanisms arising from the interaction 

between neuronal and ion concentration dynamics. Future work exploring the interaction 

between neuronal and vascular dynamics is needed to advance our understanding of the complex 
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mosaic of the interacting biophysical mechanisms underlying the BOLD signal and may provide 

insights into how altered brain and disease states influence resting-state oscillations. 

Materials and Methods: 
 

Computational Model. Our network model with dynamics ion concentrations has been 

described in detail elsewhere (Bazhenov et al., 2004; Frohlich and Bazhenov, 2006; Krishnan 

and Bazhenov, 2011; González et al., 2015). Briefly, our network consisted of populations of 

excitatory pyramidal (PY) neurons and inhibitory interneurons (IN) with a 5:1 ratio. Both neuron 

types were modeled as two-compartmental conductance-base neurons with an axosomatic and 

dendritic compartments and Hodgkin-Huxley type ionic currents. Ion concentration dynamics 

were implemented for intracellular and extracellular K+ and Na+, and intracellular Cl- and Ca2+. 

Na+/K+ pump Na+ and K+ regulation and KCC2 cotransporter Cl- extrusion were included in both 

neuron types. Glial regulation of extracellular K+ was modeled as a free buffer as described in 

our previous work (Krishnan and Bazhenov, 2011; González et al., 2015; Krishnan et al., 2015).  

Excitatory synaptic connections were mediated through AMPA and NMDA 

conductances and inhibitory synaptic connections were mediated through GABAA. Local 

connectivity (within a single cluster) was restricted to a radius of 5 neurons for PY-PY 

connections. Long-range connections between clusters (ie. feedforward excitation or inhibition) 

were mediated by AMPA and NMDA conductances between PYs from one cluster to PYs 

(feedforward excitation) or INs (feedforward inhibition) of second cluster with a twenty-five 

percent connection probability. For Macaque simulations, 58 brain regions were modeled as 

independent clusters of neurons with long-range connections between clusters based on 

structural connectivity data from CoCoMac database (http://cocomac.g-node.org). Functional 
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connectivity was computed as the correlation coefficients between mean Na+/K+ pump currents 

from the individual clusters. 

Intrinsic properties and ion dynamics of excitatory and inhibitory neuron models. Our 

network model with dynamics ion concentrations has been described in detail elsewhere 

(Bazhenov et al., 2004; Frohlich and Bazhenov, 2006; Krishnan and Bazhenov, 2011; González 

et al., 2015; Krishnan et al., 2015). Briefly, both excitatory pyramidal cells (PYs) and inhibitory 

interneurons (INs) were modeled as two-compartment neurons with an axosomatic and a 

dendritic compartment. The evolution of voltage in time for each compartment was described by 

the following equations: 

   𝐶1
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and 𝐼#?@AB	are the sum of the ionic leak currents, 𝐼:
CD1C and 𝐼#

CD1C are the sum of the Na+ and K+ 

currents through the Na+/K+ pump, and 𝐼:E'5 and 𝐼#E'5 are the intrinsic currents for the dendritic 

and axosomatic compartments respectively. Each of these compartments contained conductance-

based Hodgkin-Huxley type ionic currents. The ionic current intrinsic to the dendritic 

compartment include the fast sodium (𝐼FA), persistent sodium current (𝐼FA$), slowly activating 

potassium current (𝐼H1), high-threshold calcium current (𝐼GA), calcium-activated potassium 

current (𝐼HGA), hyperpolarization-activated depolarizing mix cationic currents (𝐼I), and leak 

currents (Krishnan and Bazhenov, 2011; González et al., 2015; Krishnan et al., 2015). The 

axosomatic compartment contains the fast sodium current (𝐼FA), the persistent sodium current 

(𝐼FA$), delayed-rectifier potassium current (𝐼HJ), and the sodium-activated potassium current 

(𝐼HFA). Na+/K+ pump Na+ and K+ regulation and KCC2 cotransporter Cl- extrusion were included 
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in both neuron types. Additionally, dynamic ion concentrations for extracellular and intracellular 

Na+ and K+ as well as intracellular Cl- and Ca2+ were determined by the intrinsic currents, 

transporter-mediated currents, leak currents, extracellular and intracellular diffusion, and glial 

[K+]o buffering as described in the following equations: 
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where	𝐹 = 96489 C/mol, 𝑑 = 0.15 is the ratio of the extracellular compartment volume to surface 

area, the conversion factor 𝑘 = 10, 𝛿W is the scaled diffusion coefficient (𝛿W = 𝐷/∆𝑥) where 𝐷 = 

6x10-6 𝑐𝑚Z/𝑠 is the diffusion constant and ∆𝑥 = 100 𝜇𝑚 is distance, [𝐾)]W9 and [𝑁𝑎)]W9 are the 
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K+ and Na+ concentrations in the adjacent compartments, and [𝐾)]W(g,	[𝐾)]W)g, [𝑁𝑎)]W(g, and 

[𝑁𝑎)]W)g are the concentrations of K+ and Na+ in neighboring cells respectively. Glial buffering 

of extracellular K+ (𝐺) was modeled as a free buffer ([𝐵]) with total buffer ([𝐵]1A�) = 500mM. 

The [𝐵] K+ binding and unbinding rates (𝑘g and 𝑘Z respectively) were given by 𝑘g = 0.0008 and 

𝑘Z 	= 	𝑘g/(1 + 𝑒𝑥𝑝(([𝐾)]W − [𝐾)	]W5I)/(−1.05))), where [𝐾)	]W5I = 15mM is the half 

activation concentration of [𝐾)]W. [𝐶𝑙(]^j = 5mM,	𝜏G?j = 2x104, and  𝜏HWG? = 0.08s. 𝜏GA and 

𝐷GAwere set to 300ms and 0.85 respectively. Extracellular space in our model was constrained 

between neurons, and we modeled individual extracellular space for each neuron with local ion 

diffusion between nearest neighbors (ie. diffusion between PY-PYs and IN-INs). Additionally, 

the extracellular space was tightly bounded between the glia and neurons, and there was an 

instantaneous and direct impact of ion concentration changes in the extracellular space on the 

neuronal and glial activity. While equations for glial K+ buffering and chloride transport include 

some slow time constants, these processes are much faster than the observed infra-slow neural 

dynamics arising in the network. 

 Network and synaptic properties. The network model was modeled as a one-dimensional 

network and consisted of 50 (or 500) excitatory PY neurons and 10 (or 100) inhibitory IN 

neurons. Each PY neuron made local excitatory connections onto 10 other PY neurons and 

received 10 excitatory connections from other PY neurons. PY neurons also formed excitatory 

connections onto inhibitory IN neurons. Each PY projected onto one IN and each IN formed 

inhibitory connections onto 5 PY neurons. Excitatory connections were mediated by AMPA and 

NMDA conductances (11 nS and 1 nS, respectively), and inhibitory connections were mediated 

by GABAA conductances (11 nS) such as those described previously (Krishnan and Bazhenov, 

2011; González et al., 2015; Krishnan et al., 2015). Excitatory connections from PY neurons 



 

 129 

onto IN neurons were mediated by AMPA and NMDA conductances (3.5 nS and 0.35 nS, 

respectively). To model in vivo conditions, all neurons of both types received additional afferent 

excitatory input as a random Poisson process.  

 Single and double cluster network connectivity. For single cluster networks, a 1:5 ratio of 

IN to PY neurons was kept, regardless of the network size. Slow fluctuations were also observed 

in a fully connected network. As previously mentioned, local diffusion of K+ was allowed 

between PY-PY and IN-IN but not between PY and IN neurons.  

To study synchronization between clusters of neurons, we generated a network model 

consisting of two clusters. Each cluster included 50 PY neurons and 10 INs. Additionally, ion 

diffusion was not allowed between the clusters. In order to connect two clusters, PY neurons 

were allowed to make long-range PY-PY and PY-IN connections between clusters with twenty-

five percent connection probability (unless otherwise stated). Results of varying the probability 

of long-range connections are shown in Figure 4.9. Long-range connection probabilities and 

strengths were varied in ordered to study how these connection properties influence correlation 

between cluster oscillations.  

Phase-locking analysis. Phase-locking was used to study the synchrony between two 

fluctuations in two clusters. The phase-locking index (PLI) between two clusters (𝑥g and 𝑥Z) was 

computed as follows: 

𝛿� = 𝑎𝑛𝑔𝑙𝑒R𝐻(𝑥g)U − 	𝑎𝑛𝑔𝑙𝑒R𝐻(𝑥Z)U 

𝑃𝐿𝐼 = | < 𝑒^�� >5 | 

where 𝐻 is the Hilbert transform, and 𝛿� is the difference in angle between the two time series. 

Both time series were band-pass filtered between 0.001 and 0.1 Hz before the Hilbert transform 

was applied. 
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Macaque simulations. We developed the network model implementing the structural 

connectivity among 58 macaque brain regions. Connection strengths between brain regions were 

extracted from the CoCoMac database (http://cocomac.g-node.org). Functional connectivity was 

computed as the correlation coefficients between mean Na+/K+ pump currents from the 

individual clusters. Significance values were Bonferroni corrected to correct for multiple 

comparisons. For analysis of the dynamic nature of the resting-state fluctuations, 60sec time 

windows were used to compute correlation coefficients. An agglomerative hierarchical clustering 

(using ward distance metric) was applied to the correlation coefficient matrix consisting of all 

combination of clusters and was used for visualization used in Figure 4.11. 
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Chapter 5: Conclusion 
 
Summary: 

 Ionic and synaptic phenomena underlie the various electrical properties of neurons. They 

allow for the fast transmission of information between groups of neurons, and provide means by 

which brain networks can perform various computational tasks such as the processing of sensory 

input, transitions between various cognitive brain states, consolidation of memories, and 

generalization of these new memories for their incorporation into the brain’s working model of 

the world. Because of their crucial role in various electrical properties of neurons, there exists 

many homeostatic mechanisms which aim to maintain healthy physiological levels of ion 

concentrations and synaptic currents. Though these homeostatic mechanisms are meant to 
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stabilize network dynamics and prevent pathological brain states in healthy brain networks, in a 

pathological brain, one riddled with K+-channel defects or suffering traumatic brain injury, these 

mechanisms may actually destabilize the network and facilitate transitions between healthy 

network dynamics and pathological brain activity. Here, we explored how ionic and synaptic 

homeostatic mechanisms give rise to and regulate network-wide dynamics. We first described 

how homeostatic synaptic scaling, a negative feedback bidirectional mechanism meant to 

stabilize Hebbian plasticity, may underlie the epileptogenic period of post-traumatic epilepsy 

priming traumatized brain networks for the development of spontaneous recurrent seizures. 

Additionally, we predict that age-dependent impairment in the bidirectionality of this 

homeostatic mechanism may explain the age-related differences in susceptibility to post-

traumatic epilepsy. We then explored the contribution of the KCC2 co-transporter, a homeostatic 

regulator of intracellular Cl- and K+ concentration, in the development of seizures in K+-

channelopathy-dependent genetic epilepsies. Finally, we explored how natural fluctuations in ion 

concentrations may underlie infra-slow resting state network fluctuations observed in fMRI and 

EEG. We predict that local fluctuations in extracellular K+ concentrations may be responsible for 

synchronizing local populations of neurons and setting the infra-slow time scale of these resting 

state fluctuations, while feedforward excitatory (inhibitory) connections between ionically 

isolated brain regions may underlie correlated (anti-correlated) infra-slow fluctuations between 

brain regions comprising functionally related (opposing) brain networks such as the default mode 

network. 

Future Directions: 

 Though the presence of spontaneous recurrent seizures is a hallmark of an epileptic 

disorder, epilepsy often presents with comorbid psychiatric disorders and cognitive impairments. 
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Unfortunately, much of the focus around the study of epilepsy has been on the prediction and 

control of seizures, while the cognitive impairments that occur during interictal or ictal periods 

have received much less attention. Along these lines, there is now growing evidence for altered 

resting state infra-slow fluctuations amongst brain regions forming functional networks involved 

in memory consolidation, regulation of emotion, attentional networks, etc. As such, it is likely 

that these altered resting state fluctuations may underlie some of the cognitive impairments 

observed in patients suffering from epilepsy. In my future work I aim to study how impairments 

in ionic and synaptic homeostasis may play a crucial role in altered infra-slow resting state 

fluctuations observed in epileptic patients, and how these may relate to impaired cognitive 

abilities such as memory impairment and hallucinations. This work may also extend to other 

neurological disorders such as Alzheimer’s disease. Alzheimer’s patients may present with sub-

clinical seizure which, I suspect, may impact functional connectivity between brain regions 

comprising memory networks thereby impacting memory consolidation and retrieval.  

 Recently, I have started work on exploring the role of sleep in memory consolidation. 

Our recent work suggests that non-REM stage 3 slow-wave sleep may aid in the consolidation of 

overlapping, competing memory traces through memory replay during cortical Up-states. This, 

in turn, results in a restructuring of the underlie synaptic connectivity such that the same 

population of neurons can support the storage of overlapping memory traces without damaging 

either memory. Though there is growing evidence for the role of sleep in memory consolidation, 

the exact biophysical mechanisms underlying the biasing of network dynamics toward natural 

memory replay during cortical Up-states or the ionic regulation of sleep-wake transitions remains 

to be fully understood. I hope to bridge this gap in our knowledge by studying how changes in 

neuromodulatory tone during various stages of sleep impact ionic concentration dynamics 
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leading to changes in network dynamics allowing for memory reactivation. Additionally, altered 

sleep has been observed in a number of psychiatric and neurological disorders including 

epilepsy. To this end, I intend study how the breakdown in the regulation of ionic concentrations 

may lead to altered sleep architecture and how these changes may contribute to (i) seizures 

commonly observed at sleep-wake transitions, (ii) memory deficits, and (iii) various cognitive 

impairments observed not only in epilepsy but also other neurological and psychiatric disorders. 
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