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Abstract

Purpose: Disseminated tumor cells (DTCs) expressing epithelial markers in the bone marrow 

are associated with recurrence and death, but little is known about risk factors predicting 

their occurrence. We detected EPCAM+/CD45- cells in bone marrow from early-stage breast 

cancer patients after neoadjuvant chemotherapy (NAC) in the I-SPY 2 Trial and examined 

clinicopathologic factors and outcomes.

Methods: Patients who signed consent for SURMOUNT, a sub-study of the I-SPY 2 Trial 

(NCT01042379), had bone marrow collected after NAC at the time of surgery. EPCAM+CD45- 

cells in 4 mLs of bone marrow aspirate were enumerated using immunomagnetic enrichment/flow 

cytometry (IE/FC). Patients with >4.16 EPCAM+CD45- cells per mL of bone marrow were 
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classified as DTC-positive. Tumor response was assessed using the residual cancer burden (RCB), 

a standardized approach to quantitate the extent of residual invasive cancer present in the breast 

and the axillary lymph nodes after NAC. Association of DTC-positivity with clinicopathologic 

variables and survival was examined.

Results: A total of 73 patients were enrolled, 51 of whom had successful EPCAM+CD45- cell 

enumeration. Twenty-four of 51 (47.1%) were DTC-positive. The DTC-positivity rate was similar 

across receptor subtypes, but DTC-positive patients were significantly younger (p=0.0239) and 

had larger pretreatment tumors compared to DTC-negative patients (p=0.0319). Twenty of 51 

(39.2%) achieved a pathologic complete response (pCR). While DTC-positivity was not associated 

with achieving pCR, it was significantly associated with higher RCB class (RCB-II/III, 62.5% 

vs. RCB-0/I; 33.3%; Chi-squared p=0.0373). No significant correlation was observed between 

DTC-positivity and distant recurrence-free survival (p=0.38, median follow-up=3.2 years).

Conclusion: DTC-positivity at surgery after NAC was higher in younger patients, those with 

larger tumors, and those with residual disease at surgery.

Keywords

disseminated tumor cells; neoadjuvant chemotherapy; pathologic complete response; residual 
cancer burden

INTRODUCTION

Disseminated tumor cells (DTCs) detected in the bone marrow (bone marrow) after 

neoadjuvant chemotherapy (NAC) are thought to represent dormant residual disease that 

could ultimately give rise to distant metastases. These cells are believed to have a non-

proliferative phenotype, utilizing pathways for survival that are distinct from proliferating 

cells in the primary tumor or growing distant metastases [2]. Several previous clinical 

studies in the neoadjuvant setting for treatment of early-stage breast cancer have shown that 

DTCs detected at surgery after completion of NAC or within the post-surgical follow-up 

period are independently predictive of breast cancer recurrence and survival [9, 10, 18]. 

However, none of these studies showed a significant correlation between DTCs and response 

to NAC.

Achieving a pathologic complete response (pCR) or RCB-0 provides a significant survival 

advantage over those who have residual disease after NAC [13]. There are no well-

established molecular and cell-based biomarkers that can accurately predict pCR or identify 

those at risk of recurrence after surgery. Additional molecular and cellular information 

available at the time of surgery may help fine-tune the prognostic value of pCR as an 

early surrogate endpoint of survival. Detection of DTCs in bone marrow may complement 

pathologic evaluation of the primary tumor and could potentially supplement the prognostic 

value of pCR.

In this study, we assessed the clinical significance of DTCs in SURMOUNT, a sub-study 

of the neoadjuvant I-SPY 2 Trial—an ongoing, multicenter, and adaptive Phase 2 trial—that 

investigates new agents combined with standard NAC for the treatment of locally advanced 

breast cancer [20, 21, 25]. We sought to characterize patients who are DTC-positive after 
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NAC and assess whether DTC-positivity was associated with baseline clinicopathologic 

characteristics, response to NAC, or longer-term outcomes in the I-SPY 2 Trial.

PATIENTS AND METHODS

Patient population.

Patients enrolled in the I-SPY 2 Trial (NCT01042379) were recruited to participate in 

a sub-study called SURMOUNT (Surveillance Markers of Utility for Recurrence after 

Neoadjuvant Therapy for Breast Cancer) (Supplementary Figure 1, Supplementary Table 1). 

Eligibility criteria for the I-SPY 2 Trial have been described in detail in previous reports 

[20, 21]. The study included female patients, 18 years of age or older, diagnosed with 

high-risk, stage II/III breast cancer and a tumor at least 2.5 cm in diameter. To be eligible 

for the SURMOUNT study, patients required consent for bone marrow aspiration obtained at 

surgery and collection of blood samples after NAC.

Ethics declaration.

Six I-SPY 2 Trial sites participated in the SURMOUNT sub-study, obtaining Institutional 

Review Board approval for this additional consent form at each site, and all patients 

provided written informed consent to the sub-study.

Data acquisition.

5 mLs of bone marrow aspirate were collected from the posterior superior iliac crest 

while the patient was under anesthesia immediately before surgery (Supplementary Figure 

2). Samples were drawn into ethylenediaminetetraacetic acid (EDTA) tubes and shipped 

overnight in a cold pack to the John Park Laboratory at the University of California San 

Francisco using an overnight courier. Samples were processed immediately after receipt.

Cells positive for expression of an epithelial marker (EPCAM) and negative for a 

leukocyte-specific marker (CD45), were enumerated in 4 mLs of bone marrow using an 

immunomagnetic enrichment/flow cytometry (IE/FC) assay as previously described [7, 

16]. Briefly, magnetic beads coated with anti-EPCAM (epithelial cell adhesion molecule) 

monoclonal antibodies were used to enrich for EPCAM-expressing cells in the bone marrow. 

After adding a nuclear stain and fluorochrome-conjugated antibodies to EPCAM and CD45, 

the enriched sample was analyzed by flow cytometry.

To determine the presence of background EPCAM+CD45- cells, bone marrow samples from 

8 individuals with no history of cancer were subjected to IE/FC (Supplementary Table 2). 

The cutoff for DTC-positivity was then set at two standard deviations above the mean of 

EPCAM+CD45- cells per mL present in the samples (Supplementary Table 2). Bone marrow 

samples with >4.16 EPCAM+CD45- cells per mL of bone marrow from patients in this 

cohort were classified as DTC-positive.

Evaluation and reporting of the biomarker in this study were compliant with the REMARK 

guidelines [19].
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Study design.

The response endpoints were pCR and residual cancer burden (RCB) as determined 

routinely on the I-SPY 2 Trial and previously described [13]. pCR was defined as the 

complete eradication of invasive cancer in both the breast and regional lymph nodes 

determined at the time of surgery. Residual cancer in the breast and the nodes was also 

evaluated using the RCB method [23]. This method classified patients into 4 groups with 

increasing amounts of residual disease: RCB-0 (equivalent to pCR), RCB-I (minimal), 

RCB-II (moderate), and RCB-III (extensive). Distant recurrence-free survival (DRFS) was 

calculated from the date of patient consent for treatment to the date of clinical diagnosis of 

metastatic recurrence or death by any cause. Patients lost to follow-up were censored at the 

time of their last visit. Survival analysis was performed on follow-up data available as of 

June 2020.

Statistical Methods.

To determine associations between DTC-positivity and categorical variables, including 

menopausal status, clinical T and N stage, receptor subtypes, MammaPrint status, race, 

pCR, and RCB, we used the Chi-square test for proportions. T-test was used to compare 

means of continuous variables—age at screening, longest tumor diameter by magnetic 

resonance imaging (MRI), and RCB index—between groups stratified according to DTC 

status (DTC-positive vs. DTC-negative). Logistic regression was used to estimate the odds 

ratio (OR) and 95% confidence interval (CI). Survival in DTC-positive and DTC-negative 

groups was visualized using Kaplan-Meier analysis and compared using the log-rank test. 

The hazard ratio and 95% confidence interval were estimated using Cox proportional hazard 

regression.

RESULTS

A total of 73 patients from 6 participating I-SPY 2 sites were enrolled between July 

2014 and June 2017 (Supplementary Figure 1, Supplementary Table 1). Of the 73 enrolled 

patients, 53 (72%) had bone marrow samples successfully collected, of which 51 (96.2%) 

were successfully analyzed for the presence of EPCAM+CD45- cells (Supplementary 

Figure 2). The distribution of study patients by study site and treatment arm is shown 

in Supplementary Figure 1. EPCAM+CD45- cells were detected in 46 (90.2%) patients, 

ranging from 0 to 104.5 EPCAM+CD45- cells per mL (Supplementary Figure 2). The 

median EPCAM+CD45- cells per mL of bone marrow was 4.03. Using the cutoff >4.16 

EPCAM+CD45- cells per mL (Supplementary Table 2), 24 (47.1%) were classified as 

DTC-positive.

Association between DTCs and clinicopathologic variables.

Younger age was significantly associated with higher levels of EPCAM+CD45- cells in 

DTC-positive patients (correlation coefficient=−0.41, Spearman rank p=0.0490) (Figure 

1A). The mean age was significantly lower among DTC-positive patients compared to 

DTC-negative patients (43.4. vs. 50.1, t-test p=0.0239) (Table 1, Figure 1B). However, 

there was no association with menopausal status (Table 1, Supplementary Figure 3). DTC-

positivity was also significantly associated with non-white race, with 8 of 9 (88.9%) 
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non-white patients DTC-positive compared to only 16 of 42 (38.1%) white patients (Chi-

squared p=0.0056). Regarding tumor factors, the length of the longest tumor diameter by 

MRI at pretreatment was significantly greater in DTC-positive compared to DTC-negative 

patients (t-test p=0.0319, Figure 1C). Notably, no significant associations were observed 

between DTC-positivity and nodal status or receptor subtype. Regarding the latter, it is 

noteworthy that 50% of patients were classified as DTC-positive in each receptor subtype 

when classified as HR+/HER2-, any HER2+, and triple-negative breast cancer.

To determine which factors were independently associated with DTC-positivity, we built 

logistic regression models using the factors that were significant in univariate analysis. 

The univariate analysis showed that age (p=0.0329), longest tumor diameter by MRI at 

pretreatment (p=0.0366), and race (p=0.0205) were significant predictors of DTC-positivity 

(Table 2). In a multivariate model containing these three predictors, longer tumor diameter 

by MRI at pretreatment (p=0.0444) and non-white race (p=0.0250) remained significantly 

independently associated with being positive for DTCs.

A total of 20/51 patients (39.2%) achieved pCR and there was no significant association 

between pCR and DTC-positivity (Chi-squared p=0.1658) (Table 1, Supplementary Figure 

4). Association between DTC-positivity and RCB classes was not significant (Chi-squared 

p=0.1138). When dichotomized as RCB-0/I vs. RCB-II/III, the association between DTC-

positivity and RCB was significant (Chi-squared p=0.0373), i.e., the proportion of DTC-

positive patients was significantly higher in patients with moderate or extensive residual 

cancer (RCB-II/III, 62.5%) compared to those with no or minimal residual cancer (RCB-0/I, 

33.3%). The mean RCB index was also numerically higher, but not statistically significant, 

in DTC-positive patients compared to DTC-negative patients (1.6 vs. 1.0, t-test p=0.1516).

At the time of this analysis, the median follow-up of the I-SPY 2 Trial DTC cohort was 

3.2 years (range of 0.9–6.1 years). 8/51 (15.7%) patients experienced distant recurrence, 6 

(11.8%) of whom died. In this small sample, no significant difference was seen in DRFS 

between DTC-positive and DTC-negative patients (log-rank p=0.38) (Supplementary Figure 

5) even after adjusting for subtype (Supplementary Table 3).

DISCUSSION

We examined the relationship of DTC-positivity detected after NAC with standard 

clinicopathologic variables, response to NAC, and risk of metastatic recurrence and death in 

locally advanced high-risk breast cancer patients in the SURMOUNT study, a subset of the 

I-SPY 2 Trial.

In univariate analysis, we found that DTC-positive patients were significantly younger 

and had larger pretreatment tumors by MRI compared to those who were DTC-negative. 

Preliminary findings based on our small dataset showed a significant association between 

DTC-positivity and race: non-white patients had a higher DTC-positivity rate compared to 

white patients. In multivariate analysis, pretreatment tumor size by MRI and race but not age 

remained significant predictors of DTC-positivity.
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Our results showed no significant association between DTC-positivity after NAC and pCR. 

However, when the response variable RCB was dichotomized (RCB-0/I vs. RCB-II/III), 

we found that the proportion of DTC-positives was significantly higher in patients with 

moderate and extensive residual disease (RCB-II/III, 62.5%) compared those with no or 

minimal residual disease (RCB-0/I, 33.3%).

Our findings that DTC-positivity after NAC reflect aggressive disease (e.g., larger tumors 

at pretreatment) provide additional clinical evidence that DTCs are an intermediate step in 

the metastatic process. The finding of a higher DTC-positivity rate in non-whites vs. white 

patients was unanticipated and not clearly due to the confounding effects of more advanced 

stage, warranting further investigation.

To our knowledge, our study is the first to report on a significant association between 

DTC-positivity and response to NAC. Here, DTCs were detected using the IE/FC assay, a 

method that involves enrichment and detection of cells based on EPCAM expression. Tumor 

cells with low expression of EPCAM, e.g., those undergoing an epithelial-to-mesenchymal 

transition [12], will be missed by IE/FC and thus represents a limitation of the assay. 

Another limitation involves the detection of false positives in bone marrow samples 

from individuals with no history of cancer. Testing of the IE/FC assay in non-cancer 

controls during initial development revealed the presence of EPCAM+CD45- events by flow 

cytometry in non-cancer controls (mean: 1.31 DTC/mL, standard deviation: 1.43). Upon 

further investigation, we found cells with a weak autofluorescence in the EPCAM channel 

that resulted in what appears to be false-positive events. In this study, we used a cutoff 

based on two standard deviations above the mean EPCAM+CD45- cells per mL in the bone 

marrow of non-cancer controls for DTC-positivity. Samples in this present cohort with >4.16 

EPCAM+CD45- cells per mL were classified as DTC-positive. Since false positives were 

detected in non-cancer controls, we acknowledge that not all EPCAM+CD45- cells in bone 

marrow detected by IE/FC may represent bona fide DTCs with malignant characteristics. 

We, therefore, consider the results of our study as tentative findings that warrant future 

confirmatory studies.

In addition to EPCAM, other studies have used cytokeratin expression for detecting DTCs in 

bone marrow using standard immunocytochemistry (ICC) [6, 14]. In this study, we observed 

that 47.1% of bone marrow was DTC-positive. In a large, pooled DTC study using ICC, 

the positivity rate was 30.6% [5]. The IE/FC approach used in this study detected higher 

numbers of DTCs compared to ICC. The difference in detection rates may be due to the 

number of cells used as input for each assay. The IE/FC method routinely uses 4 mLs of 

bone marrow, which is equivalent to ~176 million mononuclear cells per sample, while 

the standard ICC evaluates 4–8 million cells per sample [8]. Therefore, IE/FC interrogates 

>20-fold more cells than ICC and thus may reflect the higher sensitivity of the IE/FC, but 

its specificity may be lower compared to that of the cytokeratin-based ICC assay. It is also 

possible that the IE/FC and ICC methods detect overlapping, but distinct populations of 

cells, since the former is based on flow cytometry detection of EPCAM expression, whereas 

the latter is based on the immunohistochemical detection of cytokeratin expression.
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In contrast to previous reports by Hall [9] and Hartkopf [10], our survival analysis did 

not reveal any significant correlation between DTC-positivity after NAC and increased risk 

of disease relapse or death. This may be due to the limited sample size, heterogeneity 

of clinical characteristics across breast cancer subtypes and the treatment received, and 

the relatively short follow-up of 3.2 years. Also, previous studies that have demonstrated 

the prognostic impact of DTCs have used cytokeratin-based approaches to detect these 

cells in the bone marrow [9, 10]. Our previous studies using IE/FC to detect DTCs in 

treatment-naïve early-stage breast cancer did show that DTC-positive patients who were 

also CTC-positive (DTC+CTC+) at surgery had the worst breast cancer-specific survival 

compared to other groups: DTC+CTC-, DTC-CTC+, and DTC-CTC- [17]. Also, higher 

pretreatment levels of DTCs, detected by IE/FC, were a significant predictor of recurrence 

and death in stage I-III breast cancer patients receiving adjuvant zoledronic acid [24].

The promise of DTCs lies in their potential utility for guiding patient selection [4] and 

improving risk stratification by adding prognostic information to the response endpoints 

(e.g., pCR and RCB) to accurately estimate the risk of recurrence. For example, the patient 

who had the highest levels of EPCAM+CD45- cells (104.5 cells per mL) achieved a pCR 

but experienced an ipsilateral breast cancer recurrence. Survival analysis using data from 

the whole population, however, did not show that DTCs were significantly associated with 

survival. Importantly, we found that DTCs after NAC were significantly associated with the 

presence of moderate and extensive residual disease (RCB II/III), a finding that warrants 

further study in larger populations. Identifying patients with systemic residual cancer, using 

DTCs as a surrogate marker, could inform therapeutic decisions in the adjuvant setting. In 

addition, the presence of DTCs after NAC may identify those who may benefit from more 

aggressive and/or targeted therapy (escalation) vs. those who can forgo additional treatment 

(de-escalation).

DTCs also provide an opportunity to target tumor dormancy, to eliminate the reservoir of 

cells that can ultimately reactivate and travel to distant sites. Previous work on genomic 

analysis of EPCAM+/CD45- cells isolated by IE/FC from the bone marrow of early-stage 

breast cancer patients have revealed malignant characteristics of these cells [15]. DTCs 

detected after NAC represent genetic subclones that have escaped therapy [11]. Molecular 

characterization of these cells has revealed novel therapeutic targets, which could facilitate 

the development of more effective treatments in the neoadjuvant setting [1, 3, 22]. Such 

trials are ongoing, including the CLEVER (NCT03032406), PALAVY (NCT04841148), and 

ABBY (NCT04523857) trials.

CONCLUSIONS

Higher rates of DTC-positivity after NAC were observed in younger patients, those with 

larger tumors, and those with residual disease at surgery. The analyses were, however, 

limited by the small sample size. Further studies in larger cohorts are needed to confirm the 

predictive and prognostic impact of DTCs as well as their utility for guiding neoadjuvant 

therapy to improve patient outcomes.
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Figure 1. DTCs after neoadjuvant therapy vs. age and tumor burden at pretreatment.
A. Correlation between EPCAM+CD45- cells per mL and age at screening in DTC-positive 

patients. Correlation coefficient (rho) and p-value were calculated using Spearman’s rank 

correlation test; B. Association between DTC status and age at screening; C. Association 

between DTC status and longest tumor diameter by magnetic resonance imaging (MRI) at 

pretreatment. Means between groups (in B and C) were compared using Wilcoxon signed 

rank test.
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Table 1.

Clinicopathologic characteristics of 51 patients according to DTC status after NAC.

DTC- % DTC+ % Total % p value*

Menopausal status (n=47) 0.1884

Post 11 61.1 7 38.9 18 38.3

Pre 12 41.4 17 58.6 29 61.7

Tumor size (n=49) 0.5604

T1 and T2 20 55.6 16 44.4 36 73.5

T3 and T4 6 46.2 7 53.8 13 26.5

Nodal status (n=48) 0.7904

Node-negative 14 53.8 12 46.2 26 54.2

Node-positive 11 50.0 11 50.0 22 45.8

Subtype 1.0000

HER2+ 9 52.9 8 47.1 17 33.3

HR+HER2- 9 52.9 8 47.1 17 33.3

Triple negative 9 52.9 8 47.1 17 33.3

MammaPrint 0.6678

High 1 13 50.0 13 50.0 26 51.0

High 2 14 56.0 11 44.0 25 49.0

Race 0.0056

Non-white 1 11.1 8 88.9 9 17.6

White 26 61.9 16 38.1 42 82.4

Pathological complete response 0.1658

Yes 13 65.0 7 35.0 20 39.2

No 14 45.2 17 54.8 31 60.8

RCB class 0.1138

0 13 65.0 7 35.0 20 74.1

I 5 71.4 2 28.6 7

II 5 29.4 12 70.6 17

III 4 57.1 3 42.9 7 25.9

RCB class (binary) 0.0373

0 and I 18 66.7 9 33.3 27 52.9

II and III 9 37.5 15 62.5 24 47.1

RCB index 0.1516

mean (range) 0.5 0–3.8 1.6 0–3.4

Age 0.0239

mean (range) [Years] 50.1 28–72 43.4 26–64

Longest tumor diameter by MRI (pretreatment) 0.0319

mean and range [cm] 4.1 1.8–8.5 5.6 1.5–12.9

*
For continuous clinicopathologic variables (age and tumor size), association with DTC-positivity was assessed using a t-test. For categorical 

variables, association with DTC-positivity was assessed using a Chi-squared test. RCB-residual cancer burden.
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Table 2.

Logistic regression models for prediction of DTC-positivity after neoadjuvant chemotherapy. OR-odds ratio, 

CI-confidence interval

Predictors Univariate Multivariate

p value Odds ratio lower 95% CI higher 95% CI p value

Age at screening 0.0329 0.97 0.90 1.03 0.3379

Longest tumor diameter by MRI (pretreatment) 0.0366 1.37 1.03 1.94 0.0444

Non-white vs. White 0.0205 13.86 1.90 290.21 0.0250
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