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Particle dark matter could belong to a multiplet that includes an electrically charged state. WIMP dark matter 
(𝜒0) accompanied by a negatively charged excited state (𝜒−) with a small mass difference (e.g. < 20 MeV) can 
form a bound-state with a nucleus such as xenon. This bound-state formation is rare and the released energy 
is (1 − 10) MeV depending on the nucleus, making large liquid scintillator detectors suitable for detection. 
We searched for bound-state formation events with xenon in two experimental phases of the KamLAND-Zen 
experiment, a xenon-doped liquid scintillator detector. No statistically significant events were observed. For a 
benchmark parameter set of WIMP mass 𝑚𝜒0 = 1 TeV and mass difference Δ𝑚 = 17 MeV, we set the most stringent 
upper limits on the recombination cross section times velocity ⟨𝜎𝑣⟩ and the decay-width of 𝜒− to 9.2 ×10−30 cm3∕s
and 8.7 × 10−14 GeV, respectively at 90% confidence level.
1. Introduction

The constituent of dark matter (DM) is one of the most pressing prob-

lems in particle physics and cosmology [1]. It is expected to consist of 
one or more new, beyond the Standard Model (SM) particles. A well-

motivated class of hypothetical particles that are DM candidates are 
weakly interacting massive particles (WIMPs). WIMPs are electrically 
neutral and are stable relative to the age of the universe. The standard 
WIMP scenario assumes thermal equilibrium between DM and SM par-

ticles in the early stages of the Universe. In this case, the cross section 
times velocity ⟨𝜎𝑣⟩, explaining the current dark matter abundance is 
3 ×10−26 cm3/s. However, there are wide varieties of dark matter mod-

els, and thus a broad dark matter search is needed to cover the diversity. 
One example is the co-annihilation scenario where the masses of dark 
matter particles are degenerate [2]. In such situations, constraints on ⟨𝜎𝑣⟩ are greatly relaxed.

In this paper, we assume the existence of a DM doublet consisting 
of a WIMP and a new electrically charged particle. If the WIMP is sepa-

rated from the charged excited state by a mass difference Δ𝑚, the new 
particle is able to bind to nuclei [3] with an expected binding energy of 
(1 − 10) MeV. Detectors sensitive to this energy region can be used 
to search for these interactions. KamLAND-Zen is such a detector, it 
consists of a large volume liquid scintillator detector with several hun-

dreds kg of xenon nuclei and the signal is the bound state reaction with 
xenon nuclei. KamLAND-Zen has previously presented such a dark mat-

ter search [4]. However, in this analysis we increased the statistics by 
including the KamLAND-Zen 800 data set, and optimized data analy-

sis and simulation to perform an analysis with significantly improved 
sensitivity.

2. The KamLAND-Zen detector

The KamLAND detector, located 2700 m.w.e. underground in the 
Kamioka mine in Gifu prefecture in Japan was originally designed to 
be a multi-purpose neutrino detector sensitive to anti-neutrinos, such as 
reactor-neutrinos and geo-neutrinos [5–8]. It consists of 1 kton of liq-

uid scintillator (outer-LS) filled in a 13-m-diameter spherical balloon 
made of 135-μm-thick transparent nylon film and ethylene-vinylalcohol 
copolymer (EVOH). This balloon is located at the center of an 18-

m-diameter spherical stainless steel tank with 1325 17-inch and 554 
20-inch photomultiplier tubes (PMTs) detecting scintillation light. This 
detector part is called the inner detector (ID). The remainder of the 
volume between the balloon and the stainless steel tank is filled with 
non-scintillating mineral oil. A cylindrical water Cherenkov outer detec-

tor (OD) is constructed outside of the ID to identify cosmic ray muons 
and to serves as the radiation shield from the surrounding rock.

KamLAND-Zen is a modification of the KamLAND detector. The main 
goal of the experiment is to search for neutrinoless double-beta decays 
(0𝜈𝛽𝛽) in 136Xe nuclei. The first phase of KamLAND-Zen project was 
KamLAND-Zen 400, the second phase, KamLAND-Zen 800, is ongoing. 
2

Fig. 1 shows the KamLAND-Zen detector schematically.
Fig. 1. Schematic view of the KamLAND-Zen detector. The IB radius is larger 
in KamLAND-Zen 800 than in KamLAND-Zen 400, doubling the amount of dis-

solved 136Xe.

2.1. KamLAND-Zen 400

KamLAND-Zen 400 Phase-I (2011-2012) [9] used 320 kg of xenon 
enriched with 136Xe nuclei. The xenon-loaded liquid scintillator (Xe-LS) 
was in a 3.08-m-diameter, 25-μm-thick nylon spherical balloon (inner 
balloon, IB) located at the center of the KamLAND detector. In this 
phase, 214Bi in the IB and 110𝑚Ag were the main backgrounds.

KamLAND-Zen 400 Phase-II (2013-2015) [10] was then started af-

ter purifying the Xe-LS. This period was also divided into period-1 and 
period-2. In this phase, 110𝑚Ag was successfully reduced by purifica-

tion. The Xe-LS with about 381 kg of enriched xenon was filled in the 
same IB. The Xe-LS was composed of 80.7% decane and 19.3% psedoc-

umene (1,2,4-trimethylbenzene) by volume, 2.29 g/l of the fluor PPO 
(2,5-diphenyloxazole) and (2.91 ± 0.04)% of enriched xenon gas by 
weight. The isotopic abundances in the enriched xenon were measured 
by a residual gas analyzer to be (90.77±0.08)% 136Xe and (8.96±0.02)% 
134Xe. This is consistent with the component values of the quality spec-

ification sheet provided by the company.

2.2. KamLAND-Zen 800

KamLAND-Zen 800 (2019-) [11] has about 745 kg of enriched xenon 
by replacing the IB with a new 3.8 m in diameter balloon, doubling the 
amount of xenon compared to KamLAND-Zen 400. This phase was suc-

cessful in making a cleaner IB to reduce the BG events such as 214Bi [12].

The Xe-LS is composed of 82% decane and 18% psedocumene by vol-

ume, 2.4 g/l of the fluor PPO and (3.13 ± 0.01)% of enriched xenon gas 
by weight. The isotropic abundance of the enriched xenon in this phase 
was given by the quality specification sheet provided by the company: 
136Xe is (90.85±0.13)% and 134Xe is (8.82±0.01)%. The uncertainty was 
estimated by the difference between the values in the quality specifica-

tion sheets and the measured results in KamLAND-Zen 400.

The analysis used all xenon in the IB. The energy response of the Xe-
LS and the outer-LS are different. The relative light yield of the outer-LS 
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to the Xe-LS is estimated to be 1.07 [13]. This difference is taken into 
account in the present analysis.

3. The models and the expected signal

There are scenarios where a WIMP is part of a multiplet with an 
electrically charged excited state [3,14–19]. If the mass difference Δ𝑚
between the WIMP and the excited state is lower than 20 MeV, the neg-

atively charged excitation of the WIMP can form a stable bound state 
with xenon [3]. The Coulomb binding energy, which depends on the 
target nucleus, compensates for Δ𝑚.

There are two possible cases: a positron is emitted (Case A) or a 
neutron in the nucleus is converted to a proton (Case B).

CaseA ∶𝑁𝑍 + 𝜒0 → (𝑁𝑍𝜒
−) + 𝑒+, (1)

CaseB ∶𝑁𝑍 + 𝜒0 → (𝑁𝑍+1𝜒
−), (2)

where 𝑁𝑍 is the target nucleus with atomic number Z and 𝜒0 (𝜒−) is 
the WIMP ground (excited) state. The bound state 𝑁𝜒− is formed in an 
excited state and will de-excite by emitting 𝛾 -rays. In addition to the de-

excitation 𝛾 -rays and a positron, annihilation 𝛾 -rays could be observed 
in this process for Case A. In both cases, it is assumed that all expected 
signals are emitted simultaneously and the DM signal is detected as a 
single event in KamLAND-Zen. Therefore, the total observable energy 
𝐸tot is given by [3],

𝐸tot =

{
𝐸

(0)
𝑏

−Δ𝑚+𝑚𝑒 =𝐾𝑒+ +𝐸𝛾 + 2𝑚𝑒 (CaseA)
𝐸

(0)
𝑏

−Δ𝑚+𝑚𝑍 −𝑚𝑍+1 =𝐸𝛾 (CaseB),
(3)

where Δ𝑚 ≡ 𝑚𝜒− − 𝑚𝜒0 and 𝐸(0)
𝑏

is the binding energy corresponding 
to the ground state of the bound states with the nucleus. The Coulomb 
binding energy 𝐸(0)

𝑏
, which depends on the target nucleus, has been 

calculated to be 18.4 MeV for a xenon target [14]. Xenon nuclei are 
good targets because of their large 𝑍 number, which increases the 𝐸(0)

𝑏
value and the Δ𝑚 region that can be explored.

Fig. 2 shows the expected energy spectrum for several Δ𝑚 values, 
where the horizontal axis is the visible energy in KamLAND-Zen 800. 
The higher and lower visible energy ranges correspond to lower and 
higher Δ𝑚, respectively. These spectra take into account the detector 
response effects of the energy non-linearity, the energy resolution and 
the difference in light yield between the Xe-LS and the outer-LS as de-

scribed in Refs. [10,11]. The non-Gaussian distributions are due to the 
light yield difference in Xe-LS and outer-LS. It depends on whether the 
emitted 𝛾 -ray deposits its energy mainly to the Xe-LS or the outer-LS. 
In the low energy region, in contrast, almost all energy of the 𝛾 -ray is 
deposited in the Xe-LS, resulting in a single peak.

In the nuclear de-excitation, we assume that the energy correspond-

ing to the difference of the binding energy is emitted as a single 𝛾 -ray 
with energy 𝐸𝛾 . The expected number of signal events is given by 
Ref. [3]:

𝑁expected =
𝑀𝑇𝑁T𝜌DM⟨𝜎𝑣⟩

2𝑚𝜒0
, (4)

where MT, 𝑁𝑇 , 𝜌DM and ⟨𝜎𝑣⟩ are the detector exposure, number of 
target nuclei per kg, the local density of dark matter and the WIMP-

nucleus recombination cross section with incoming dark matter velocity 
v, respectively.

Assuming a specific model as in Ref. [3], the recombination cross 
section can be converted to other physical parameters. In Case A, it can 
be converted to a decay width of a new particle Γ𝜒− with ⟨𝜎𝑣⟩ as follows,

⟨𝜎𝑣⟩ ≃ (|𝑔𝑒𝐿|2 + |𝑔𝑒𝑅|2)∕(8𝜋𝑚𝜒0 ) ×
∑
𝑛,𝑙

𝐵𝑛,𝑙, (5)

Γ𝜒− = 𝜏−1𝜒− ≃

√
Δ𝑚2 −𝑚2

𝑒
(Δ𝑚+𝑚𝑒)(|𝑔𝑒𝐿|2 + |𝑔𝑒𝑅|2), (6)
3

4𝜋𝑚𝜒0
Physics Letters B 855 (2024) 138846

Fig. 2. The expected visible energy spectra of the bound state formation for 
several values of Δ𝑚 in the KamLAND-Zen 800 detector. The multiple peaks at 
higher energy are due to the light yield differences between Xe-LS and the outer-

LS. Top is for CaseA ∶𝑁𝑍 +𝜒0 → (𝑁𝑍𝜒
−) +𝑒+ and bottom is for CaseB ∶𝑁𝑍 +

𝜒0 → (𝑁𝑍+1𝜒
−).

where 𝐵𝑛,𝑙 , 𝜏𝜒− and (|𝑔𝑒𝐿|2 + |𝑔𝑒𝑅|2) are the contributions from the cap-

ture into the state (n,l), the lifetime of 𝜒− and the Yukawa couplings, 
respectively [3]. In Case B, assuming the Fermi gas model, the effective 
coupling 𝑔eff is calculated using the following relations,

⟨𝜎𝑣⟩ = 𝑔4eff𝑚
2
𝑝

8𝑀4
𝑊

∫ 𝑑3𝑟𝜌𝑛(𝑟)

𝑚𝑛+
𝑝2
𝑛𝐹
2𝑚𝑛

∫
𝑚𝑛

𝑑𝑝0𝑛
4
3𝜋𝑝

3
𝑝𝐹

×
√

(−𝑉 (𝑟) − Δ𝑚+ 𝑝0𝑛)2 −𝑚2
𝑝

√
𝑝02𝑛 −𝑚2

𝑛

× 𝜃

(
−𝑉 (𝑟) − Δ𝑚+ 𝑝0𝑛 −𝑚𝑝 −

𝑝2
𝑝𝐹
(𝑁𝑍+1)

2𝑚𝑝

)
,

(7)

where 𝑀𝑊 and 𝑉 (𝑟) are the 𝑊 -boson mass and potential energy, re-

spectively [3].

4. Analysis

In the present analysis, we used the KamLAND-Zen 400 Phase-II pe-

riod 1, 2 and KamLAND-Zen 800 data-sets.

For the DM search, spherical fiducial volumes with 2.0 m and 2.5 
m radius from the IB center were used for KamLAND-Zen 400 and 
KamLAND-Zen 800, respectively. These selections cover the full volume 
of the IB and a small part of the outer-LS. The reason for this selection 
is that the reconstructed position of the DM signal can be larger than 
the radius of the IB due to the emitted 𝛾 -rays. The spatial detection effi-

ciency 𝜖det (𝑟, Δm) is estimated from a Monte Carlo (MC) Geant4 [20–22]
simulation. The spherical volume cuts have signal efficiencies of over 
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93% and 94% for KamLAND-Zen 400 and KamLAND-Zen 800, respec-

tively. These cuts reject external backgrounds from the PMTs, the rock 
and the stainless-steel deck of the detector.

4.1. Event selection

Candidate events are selected by performing the following series of 
first level cuts, which are the same as in the 0𝜈𝛽𝛽 search [11].

1. Events reconstructed within 0.7 m from the bottom hot spot on 
the IB are rejected in KamLAND-Zen 800 due to a relatively high 
background from 214Bi. On the other hand, the KamLAND-Zen 400 
IB has a 10 times higher background rate than the KamLAND-Zen 
800 IB. There is no equivalent cut in KamLAND-Zen 400 because it 
would cut away most of volume.

2. Muons and accompanying events within 2 ms after muons which 
cause PMT afterpulses and instability of the signal baseline, are re-

jected.

3. Sequential radioactive decays, such as 214Bi–Po and 212Bi–Po are 
tagged and rejected by a space-time correlation between the prompt 
and delayed events, called a delayed coincidence tag. The delayed 
coincidence tag requires that the time and distance between the 
prompt and delayed events be less than 1.9 ms and 1.7 m, respec-

tively.

Because of the relatively short lifetime (𝜏=430 ns) of 212Po, some 
212Bi–Po decay sequences may be detected in a single event acqui-

sition window. These are tagged by looking for double-pulses in 
the PMT hit timing distribution. Due to the expected decay energy, 
the tag is only applied to events with visible energy of less than 
5 MeV. The tag for identifying these pileup events is slightly dif-

ferent in KamLAND-Zen 400 and KamLAND-Zen 800 analyses. In 
KamLAND-Zen 400, it does not lead to any inefficiency for the DM 
signal, while in KamLAND-Zen 800 it leads to a Δ𝑚 dependent in-

efficiency of a maximum of 6.3% for Δ𝑚=17.8 MeV (Case A) and 
9.5% for Δ𝑚=17.2 MeV (Case B). For Case A, there is a possibility 
that the emitted positron will form ortho-positronium (𝜏=3.2±0.1 
ns in LS [23]). We include a 2.9% (0.6%) systematic uncertainty 
in KamLAND-Zen 800 (KamLAND-Zen 400) to account for ortho-

positronium.

4. Anti-neutrino events from reactors which produce a positron and a 
neutron from inverse 𝛽-decay are identified with the delayed coin-

cidence tag.

5. Poorly reconstructed events with inconsistent charge, hit and time 
distributions are rejected to suppress electronic noise and acciden-

tal pileup.

4.2. Background

The fiducial volume includes the region of the Xe-LS, the IB and the 
outer-LS. One of the backgrounds for the DM search in both KamLAND-

Zen 400 and KamLAND-Zen 800 are radioactive impurities in the fidu-

cial volume. Other backgrounds are caused by neutrino interactions, 
external 𝛾 -rays or muon spallation products.

4.2.1. Radioactive impurities

The primary background source arises from decays in the 238U and 
232Th series in the Xe-LS, in the IB and outer-LS. Other radioactive back-

ground sources are 85Kr in the Xe-LS and outer-LS, and 40K in the Xe-LS, 
outer-LS and IB film. 110𝑚Ag in the Xe-LS and IB is only considered a 
background in KamLAND-Zen 400 Phase-II [10].

4.2.2. 136Xe two-neutrino double-beta decay
136Xe two-neutrino double-beta decay (2𝜈𝛽𝛽) has a Q-value of 

2.458 MeV and has an energy spectrum with a continuous distribution. 
4

2𝜈𝛽𝛽 events dominate in the energy region less than 2.5 MeV.
Physics Letters B 855 (2024) 138846

4.2.3. Solar neutrinos

Neutrino-electron elastic scattering events due to 8B solar neutrinos 
uniformly distribute in the detector. The event rate is estimated to be 
(4.9 ± 0.2) × 10−3 (ton × day)−1 [11]. This energy spectrum contin-

ues up to about 18 MeV and is a primary background above 5.5 MeV. 
Additionally, solar neutrinos react with 136Xe through charged-current 
interactions producing 𝑒− and 136Cs (𝜏=19.0 day, Q=2.548 MeV). The 
decay of 136Cs to 136Ba gives a background peak at around 2 MeV. The 
interaction rate is expected to be (0.8 ± 0.1) ×10−3 (ton × day)−1 in 
Xe-LS [11].

4.2.4. External 𝛾 -rays

The origins of external 𝛾 -rays are the PMTs, the rock and the 
stainless-steel tank and the deck surrounding KamLAND. The 2.6 MeV 
𝛾 -rays from 208Tl in the PMT’s material are the dominant background. 
Additionally, 𝛾 -rays above 5 MeV are due to neutron capture in the rock 
and the stainless-steel structure. We fit the radius distribution for 𝑟 < 5
m with a function 𝑓 (𝑥) ∝ 𝑒(−𝑥∕𝜇) where 𝜇 is the attenuation length of 𝛾 -

rays. The estimated background rate in 𝑟 < 2.5 m for KamLAND-Zen 800 
is (0.08±0.02)(day)−1. For KamLAND-Zen 400 the IB radius is smaller 
and the backgrounds on the IB are larger, making the external 𝛾 -ray 
background negligible.

4.2.5. Spallation

Radioactive isotopes produced by cosmic muon spallation of carbon 
and xenon with accompanying neutrons, are uniformly distributed in 
the detector. The decaying isotopes cause backgrounds for the complete 
Δ𝑚 of the DM signals under consideration.

These spallation events are selected with parameters based on time 
intervals from preceding muons (Δ𝑇 ), space correlations with vertices 
of neutron capture 𝛾 -rays induced by those muons, and reconstructed 
muon tracks and shower profiles [24]. We divide the background into 
two groups according to their lifetime: short-lived and long-lived (LL), 
and apply the following four rejection criteria:

1. Events within 150 ms after a muon passing through the LS are re-

jected. This cut removes 99.4% of 12B (𝜏 = 29.1 ms, Q = 13.4 
MeV).

2. To reduce short-lived carbon spallation backgrounds, such as aris-

ing from 10C, 11C, 6He, 12B, 8B, 8Li and 11Be decays, we remove 
events reconstructed within 1.6 m from neutron vertices with Δ𝑇
<180 s.

3. To reduce the 137Xe (𝜏 = 5.5 min, Q = 4.17 MeV) neutron capture 
background, we remove events reconstructed within 1.6 m from 
the vertices identified as neutron captures on 136Xe producing high 
energy 𝛾 ’s (Q-value of 4.03 MeV) with Δ𝑇 <27 min.

4. Events without a neutron tag are rejected with the help of muon 
showers, by identifying the point around the spallation reaction as 
the largest energy deposition along the muon track [24]. To reject 
the spallation products, we calculate the likelihood using probabil-

ity density functions (PDFs) as follows,

𝐿1 = PDF(Δ𝑄, Δ𝐿)×PDF(Δ𝑇 ), (8)

where Δ𝐿 is the distance between the muon track and spallation 
background, Δ𝑄 is the residual charge whose intensity implies the 
occurrence of energetic interactions in the detector and Δ𝑇 is the 
time interval from a preceding muon. The PDF(Δ𝑄, Δ𝐿) is made 
from 12B neutron-untagged events due to its short life time and high 
abundance. The PDF(Δ𝑄, Δ𝐿) of accidental events is estimated 
from an off-time-window analysis. The PDF(Δ𝑇 ) is evaluated us-

ing the Evaluated Nuclear Structure Data File (ENSDF) [25].

5. Some 136Xe spallation backgrounds with long lifetime (typically 
several hours) remain after these cuts. The xenon spallation back-

ground is associated with more neutron production than carbon 
spallation because xenon is a neutron-rich nucleus. To reduce the 

long-lived spallation background, we calculate another likelihood 
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defined using neutron multiplicity as an “effective number of neu-

tron (ENN)”,

𝐿2 = PDF(ENN,Δ𝑅𝑛𝑒𝑎𝑟𝑒𝑠𝑡)×PDF(Δ𝑇 ), (9)

where Δ𝑅𝑛𝑒𝑎𝑟𝑒𝑠𝑡 is the distance from spallation backgrounds to the 
nearest neutron. We estimated the expected production rate us-

ing muon-induced spallation by FLUKA [26,27] with subsequent 
radioactive decays estimated by Geant4 [20]. The systematic un-

certainties of the production rate and the tagging efficiency for 
the likelihood method are also estimated by the MCs. This tag-

ging method is called LL-tag, and the LL-tagged events are also 
used in DM search fitting for long-lived spallation background es-

timation. The tagging efficiency is determined in the spectral fit 
by introducing it as one of the fitting parameters. The tag effi-

ciency obtained by energy spectral fitting, which will be discussed 
in the next DM search section, is consistent with those estimated 
using MC.

4.3. DM search

We used the KamLAND-Zen 400 Phase-II (period-1 and period-

2) [10] and KamLAND-Zen 800 [11] LL-untagged data-sets, with live-

times of 226.3 days, 221.8 days and 523.4 days, and LL-tagged datasets 
with livetime of 16.6 days, 15.3 days and 49.3 days, respectively. 
We searched for DM events in 0.5 MeV intervals in the Δ𝑚 range of 
1−17.0 MeV in the visible energy range of 0.8–20 MeV in KamLAND-

Zen 400 and 1−17.0 MeV and 17.8 MeV in the visible energy range of 
0.5–20 MeV in KamLAND-Zen 800.

The DM rate is evaluated with the maximum likelihood method to 
the binned energy spectrum in concentric hemispherical-shell volumes, 
made by dividing the fiducial volume into 20 equal-volume bins for each 
of the upper and lower hemispheres, as illustrated in Fig. 3. The energy 
range of this figure is above the Q-value of 3 MeV for 110𝑚Ag.

The energy region is divided into two categories because of the dis-

tribution of background: Δ𝑚 ≤ 12 MeV and Δ𝑚 > 12 MeV. The region 
less than 5.5 MeV, the influence of IB-derived BG (e.g. 238U and 232Th) is 
significant, resulting in a complex BG distribution. On the other hand, 
the major BGs in the region above 5.5 MeV are uniformly distributed 
in the Xe-LS and outer-LS, respectively. Therefore, the different number 
of volume-binning is employed. We choose the following two situations 
for our fit:

For Δ𝑚 above 12 MeV

In KamLAND-Zen 800, we fit to the binned spectra between 
0.5 and 7.0 MeV in 0.05 MeV bins and divide the fiducial 
volume into 20 equal-volume bins for each of the upper and 
lower hemispheres as indicated in the lower panel of Fig. 3. 
The contributions from dominant backgrounds in the Xe-LS, 
IB and outer-LS, such as 85Kr, 40K, 210Bi, the 228Th-208Pb sub-

chain of the 232Th series, long-lived spallation products, and 
2𝜈𝛽𝛽 are free parameters in the spectral fit. The contributions 
from the 222Rn-210Pb sub-chain of the 238U series and short-

lived spallation products are constrained by their independent 
measurements [24].

As for KamLAND-Zen 400 analysis, there are two points dif-

ferent from KamLAND-Zen 800: The first point is the addition 
of 110𝑚Ag in the fitting as a free parameter, as already men-

tioned. The other is that the lower edge of the fitting range is 
set to 0.8 MeV.

For Δ𝑚 less than 12 MeV

We fit to the binned spectra between 5.5 and 20.0 MeV in 
0.5 MeV bins, and divide the fiducial volume into two equal-

volume bins for each of the upper and lower hemispheres in 
KamLAND-Zen 800. The contributions from short-lived spal-
5

lation events such as 12B, 8Li, 8B and 11Be, solar neutrino 
Physics Letters B 855 (2024) 138846

Fig. 3. (Top) The event rate distribution of candidate events in 3.0−20.0 MeV, 
above the 110𝑚Ag background, in KamLAND-Zen 400 Phase-II. The thick black 
line is the IB film and the thin black dotted lines indicate the forty equal-volume 
spherical half-shells. (Bottom) The vertex distribution of candidate events in the 
same energy region for KamLAND-Zen 800. The small region in the bottom part 
of IB is rejected from the analysis due to a relatively high background from 214Bi 
in the region.

elastic scattering and external 𝛾 -rays are constrained by their 
independent measurements.

In contrast, KamLAND-Zen 400 is not divided into upper and 
lower bins.

The best fit results for Δ𝑚 = 17 MeV and 12 MeV in KamLAND-Zen 
800 are shown in Fig. 4. The cyan solid line is the best fit spectrum and 
the cyan dashed-line is the 90% confidence level (C.L.) upper limit for 
DM.

The results of the DM rate Δ𝜒2 scan for KamLAND-Zen 400 and 
KamLAND-Zen 800 are combined in Fig. 5 where the number of events 
per unit xenon mass is shown on the horizontal axis, in order to represent 

KamLAND-Zen 400 and 800 in one figure.
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Fig. 4. Energy spectra of DM signal candidates within 2.5 m radius spherical 
volume with the best fit backgrounds, the best fit DM and 90% C.L. upper limit. 
Top is for a DM signal of Δ𝑚=17.0 MeV and bottom is for a DM signal of 
Δ𝑚=12.0 MeV in KamLAND-Zen 800 (Case A). At Δ𝑚=17.0 MeV, the DM rate 
of the best fit is 0. The results of the best fit at Δ𝑚=16.5 MeV are also overlaid 
in purple.

5. Results

Our search has a 3.4𝜎 local significance for Δ𝑚 = 16.5 MeV in 
KamLAND-Zen 800, which reduces to a 2.2𝜎 global significance when 
accounting for the look-elsewhere effect [28].

The global p-value 𝑝global is approximately the following with p-local 
𝑝local,

𝑝global ≈ 𝑝local + ⟨𝑁𝑢⟩, (10)

where ⟨𝑁𝑢⟩ is following,

⟨𝑁𝑢⟩ ≈ ⟨𝑁𝑢0
⟩𝑒−(𝑢−𝑢0)∕2 (11)

In order to calculate ⟨𝑁𝑢⟩ with 𝑢=3.42,we took the following steps,

1. Based on the background model, 16 data sets are generated with 
the same number of events as the data by MC.

2. The fitting in the Δ𝑚 range as in the DM search is performed and 
the significance of Δ𝑚 is calculated for each data sets.

3. ⟨𝑁𝑢⟩ is calculated as the average number of up-crossings above the 
threshold 

√
𝑢0=0.1.

No significant excess of events attributable to DM were found and 
we set upper limits at 90% confidence level. The results of this study for 
the WIMP parameter space are shown in Fig. 6 to 8.

We placed upper limits for the WIMP-nucleus recombination cross 
section ⟨𝜎𝑣⟩ as a function of 𝑚𝜒0 for several Δ𝑚 values, see Fig. 6. 
The red curves in Fig. 7 and Fig. 8 show the upper limits on the Γ𝜒−
6

(Case A) and 𝑔eff (Case B), respectively, set by KamLAND-Zen com-
Physics Letters B 855 (2024) 138846

Fig. 5. The Δ𝜒2 scan result for a combination of KamLAND-Zen 400 and 800. 
The horizontal axis is the event rate per xenon mass. Top is for a DM signal of 
Δ𝑚=17.0 MeV and bottom is for a DM signal of Δ𝑚=12.0 MeV (Case A).

Fig. 6. The WIMP-nucleus recombination cross section ⟨𝜎𝑣⟩ as a function of the 
WIMP mass 𝑚𝜒0 . The red solid lines show the 90% C.L. upper limit from this 
study for several Δ𝑚 values of KamLAND-Zen combined (Case A).

bined. Constrains based on reported spectra of several experiments [3]

are also shown. We obtain the most stringent limits on the charged ex-

cited states of WIMPs in the range of Δ𝑚=1.0−17.8 MeV (Case A) and 

Δ𝑚=0.4−17.2 MeV (Case B).



Physics Letters B 855 (2024) 138846S. Abe, M. Eizuka, S. Futagi et al.

Fig. 7. Excluded decay width of 𝜒− as a function of Δ𝑚 for Case A. The red 
curves show 90% C.L. upper limits of the KamLAND-Zen combined analysis. The 
solid and the dotted lines correspond to 𝑚𝜒0 of 100 GeV and 1 TeV, respectively. 
Filled regions are theoretical constraints using reported spectra from several 
experiments [3]. The darker and lighter regions correspond to constraints for 
1 TeV and 100 GeV, respectively.

Fig. 8. Excluded effective coupling 𝑔eff of 𝜒− as a function of Δ𝑚 for Case B. The 
red curves show 90% C.L. upper limits of the KamLAND-Zen combined analy-

sis. The solid and the dotted lines correspond to 𝑚𝜒0 of 200 GeV and 1 TeV, 
respectively. Filled regions are theoretical constraints using reported spectra 
from several experiments [3]. The darker and lighter regions correspond to 
constraints for 1 TeV and 200 GeV, respectively. The catalyzed big bang nu-

cleosynthesis (CBBN) shown by solid and dotted black lines was reported in 
Ref. [3].

6. Conclusion

In summary, we performed searches for the bound state formation of 
a xenon nucleus and the electrically charged WIMP state using data from 

the 0𝜈𝛽𝛽 detector KamLAND-Zen. No signals are found. We set stringent 
limits: the recombination cross section upper limit for Δ𝑚=17.0 MeV 
is ⟨𝜎𝑣⟩ < 9.2 × 10−30 cm3/s for 𝑚𝜒=1 TeV. The upper limit on the new 
particle decay width for Δ𝑚=17.0 MeV is Γ < 8.7 ×10−14 GeV for 𝑚𝜒= 
1 TeV. This is corresponding to the upper limit of 𝑔eff for Δ𝑚=16.4 MeV 
as 𝑔eff < 0.32 for 𝑚𝜒=1 TeV. We plan to improve the rejection efficiency 
for the long-lived spallation background, continue to collect data and 
use an unbinned profiled likelihood to achieve a better sensitivity in the 
future.
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