
UCLA
UCLA Electronic Theses and Dissertations

Title
Prio+: Private Aggregate Statistics via Boolean Shares

Permalink
https://escholarship.org/uc/item/4x44h552

Author
Jaffe, Eli Aaron

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4x44h552
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Prio+: Privacy Preserving Aggregate Statistics via Boolean Shares

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Eli Aaron Jaffe

2023



© Copyright by

Eli Aaron Jaffe

2022



ABSTRACT OF THE DISSERTATION

Prio+: Privacy Preserving Aggregate Statistics via Boolean Shares

by

Eli Aaron Jaffe

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2023

Professor Rafail Ostrovsky, Chair

This paper introduces Prio+, a privacy-preserving system for the collection of aggregate

statistics, with the same model and goals in mind as the original and highly influential Prio

paper by Henry Corrigan-Gibbs and Dan Boneh (NSDI 2017). As in the original Prio, each

client holds a private data value (e.g. number of visits to a particular website) and a small

set of servers privately compute statistical functions over the set of client values (e.g. the

average number of visits). To achieve security against faulty or malicious clients, unlike

Prio, Prio+ clients use Boolean secret-sharing instead of zero-knowledge proofs to convince

servers that their data is of the correct form and Prio+ servers execute a share conversion

protocol as needed in order to properly compute over client data. This allows us to ensure

that clients’ data is properly formatted essentially for free, and the work shifts to novel share-

conversion protocols between servers, where some care is needed to make it efficient. Our

overall approach is simpler than Prio and our Prio+ strategy reduces the client’s computa-

tional burden by at least two orders of magnitude (or more depending on the statistic) while

keeping server costs comparable to Prio. Prio+ permits computation of exactly the same

wide range of complex statistics as the original Prio protocol, including high-dimensional

linear regression over private values held by clients. We report detailed benchmarks of our
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Prio+ implementation and compare these to both the original Go implementation of Prio

and the Mozilla implementation of Prio. Our Prio+ software is open-source and released

with the same license as Prio.
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CHAPTER 1

Introduction

In recent decades, modern society has exploded with a wave of internet-enabled devices.

Smart-watches, cell-phones, cars, and ATMs are constantly collecting data on their surround-

ings to improve performance. For many cloud services controlling such devices, collecting

and computing statistics over such a large pool of data has become a hugely profitable en-

deavor. Navigation apps detect congestion with user location data [Jes13], fitness trackers

collect average data for user comparison [HPK16]. Aggregate statistics are one of the prin-

cipal currencies in the modern data-driven economy.

Although these services only wish to compute aggregate statistics, not collect individual

data, their methods often involve storing users’ personal data in the clear on their servers

and then computing statistics directly on that data. Such a centralized cache of sensitive

user data presents clear security risks. As described in [CB17], a motivated attacker may

simply steal and disclose this sensitive information [KLP15, WWW16], cloud services could

misuse or sell this information for profit [Smi14], and intelligence agencies may acquire the

data for targeting or mass surveillance purposes [GLL14].

The specific problem to be solved is as follows: each of n clients Pi holds a private value

xi ∈ {0, 1}, and they wish to learn the sum
∑

i xi. As described in the original Prio paper

[CB17], some previous systems have also attempted to solve this problem of privately com-

puting aggregate statistics. One such attempt involves using a randomized response system

to provide differential privacy [EKP14, FPE15]. That is, some user data is replaced with

1



random data according to some fixed probability p < 0.5. By aggregating this “noisy” data,

data collectors can get a somewhat accurate estimate of overall statistics. This technique

scales well and provides robustness (each malicious client can at most affect the sum by ±1),

but the privacy guarantees are relatively weak. There is an inherent trade-off between the

privacy guarantee to the client and the accuracy of the overall statistic. Another option is

to have clients submit encryptions of their data to servers. Then, servers can sum up the

ciphertexts and only decrypt the final sum [DFK13, EDG14, JL13, MDC15, enc09, PBB11].

This achieves stronger privacy guarantees but sacrifices robustness: a malicious client can

affect the final sum arbitrarily because servers cannot tell the difference between an encryp-

tion of 0/1 and an encryption of some large integer. Such attacks are often incentivized: if

used for a voting scheme, this would allow any client to submit as many votes as they like.

These attacks can be mitigated using zero-knowledge proofs [EKO19], but such approaches

heavily impact scalability. Servers require expensive public-key operations to verify these

proofs, and clients are burdened with the computationally difficult task of generating the

proofs.

Prio is a brilliant and highly influential private aggregation system which successfully

resolves this discrepancy between privacy, robustness, and scalability. Prio works within the

client-server model in which the n clients rely on a small number of computationally power-

ful servers in order to compute aggregate statistics. Prio provides relatively strong privacy

guarantees: it guarantees privacy so long as at least one of the computation servers is hon-

est. It also provides robustness: any malicious client can affect the protocol no more than

misreporting their private data value as another valid value. That is, if the client is supposed

to submit a value in the range [0, 64], Prio servers can syntactically reject submissions of any

value outside that range, but clients can of course choose to submit a different value in that

range besides their true private value. To achieve this, Prio utilizes a new technique called

SNIPs (secret-shared non-interactive proofs), which allows servers to collaboratively check

a shared proof of correctness at a low communicational cost. In particular, the bandwidth
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used by servers during verification remains constant as the size of user inputs increases. The

Prio protocol has been widely adopted, and has even been re-implemented by Mozilla for

use in privately collecting web usage statistics. It is being run as a service for other web-

based organizations by the Internet Services Research Group (ISRG), a non-profit focused

on reducing barriers to secure communication over the internet. Both Apple and Google

have also begun using it to perform analytics in their exposure notifications express (ENX)

system for measuring health data.

Prio achieves highly desirable security guarantees, and their solution achieves signifi-

cant efficiency gains over other comparably secure data-collection systems. However, the

client-side computation and client-to-server communication of their solution, though bet-

ter than other comparable systems, each increase at a superlinear rate as the size of user

data increases. In the client-server model, client computation and communication costs are

most often the bottlenecks for overall efficiency, since clients are on low-power devices and

high-latency connections whereas servers are usually collocated high-power machines. For

example, clients usually run on either web browsers or cell phones when using the Mozilla

Firefox browser. It is somewhat inefficient then to require clients on such devices to use

SNIPs to verify simple properties like the size of a user’s input, as it places an unnecessarily

large computational burden on these weak devices.

In this paper, we present Prio+, a new and improved version of Prio that is optimized to

reduce overall burden on the client, not the servers. Prio+ utilizes a Boolean secret-sharing

scheme so that clients can prove their data falls within the correct range at essentially zero

computational cost. Then, servers simply execute a Boolean-to-arithmetic share conversion

protocol (if necessary) to continue computing statistics as in the original Prio protocol. We

utilize known methods for share conversion using daBits (double-authenticated bits) [RW19]

since their pre-computed nature helps to maximize the efficiency of our protocol’s online

3



phase. For some of our protocols on particular statistics, Prio+ still uses SNIPs, as they are

particularly well-suited for verifying certain multiplicative relationships. We do not, however,

use them to verify everything about client inputs as is done in Prio. We implemented Prio+

in C++ and our code is publicly available at https://github.com/KuraTheDog/Prio-plus.

Our strategy significantly reduces both client computation and client-to-server commu-

nication, the two most expensive computational resources in our efficiency model. Even for

the few statistics where SNIPs are still necessary (variance and linear regression), the size

of the SNIPs and the work necessary for clients to create them decreases dramatically. The

result is a system which computes the same set of complex statistics as Prio with identical

privacy and robustness guarantees but with reduced client computation and client-to-server

communication. For example, when collecting the distribution of tens of thousands of client

responses to a simple true/false question, Prio+ clients can encode their data over 350x faster

than Prio clients, and the client’s message size is nearly 5x smaller. In many cases, Prio+

also improves server efficiency: For the example given above, once servers have received all

client inputs, Prio+ servers are able to process client submissions 85x faster with essentially

the same server-to-server communication. As the size of inputs increases, Prio+ sees an

increase in server communication whereas Prio’s server communication stays constant. But,

for practically sized inputs, Prio+ servers still communicate only a few hundred bytes per

client submission.

Both Prio and Prio+ support computation of more complex statistics in addition to just

summation. While Prio applies a general SNIP-based solution across the board, Prio+ ap-

plies a specialized approach for each complex statistic and uses SNIPs for a lighter relations

as needed. For example, the Prio+ summation protocol, the protocol which is most heav-

ily used by Mozilla, does not require SNIPs at all. This specialized approach means the

efficiency of Prio+ varies depending on the statistic being computed. For some such statis-

4
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Client Mults Proof Size Server Mults Serv Comm.

Prio[CB17] M logM M (M logM)n n
Linear PCPs [BBC19] M logM logM (M logM)n n

Πsum None None λ n+ λ2

Πand/or/max/min None None None n

Πvar/linReg M ′ logM ′ M ′ (M ′ logM ′ + λ)n n+ λ2

Πfrq None None nλ (n+ λ) log n

Table 1.1: Table of asymptotic comparisons between Prio and the protocols Π comprising Prio+. M is the

number of multiplication gates required to check if an input is properly encoded for the relevant statistic. λ is

the bit-length of each client’s input, M ′ := M−λ is the number of multiplication gates not used for checking

bit-length, and n is the total number of clients. Note M ≥ λ because λ multiplication gates are always used

for checking bit-length in Prio. ‘Serv Comm.’ is the communication between servers in bits. Note that Prio

and the Linear PCP extension implement a general protocol for all statistics, whereas Prio+ uses different

protocols for each statistic. Thus the entries in the first two rows represent all statistics computed by Prio,

where the value M varies depending on the particular statistic. Note that Πsum,Πvar/linReg,Πfrq also use λ

symmetric key operations (oblivious transfers) during pre-computation. Θ(·) notation suppressed to improve

readability.

tics, Prio+ not only improves client performance and server computation, but additionally

achieves extremely low and constant server communication. As an example, when computing

the maximum of client data in the range [0, 128], Prio+ servers communicate a constant 16

bytes per client, compared to a constant 740 bytes for Prio servers. This is in addition to a

nearly 750x faster client encode time, 5x smaller client message size, and a 43x improvement

in server computation time. Even for the few statistics where Prio+ still utilizes SNIPs, we

see significant improvements in client encode time, client message size, and server compute

time at little-to-no server bandwidth cost.

Contributions: In what follows we summarize our contributions:

• Provide a detailed daBit-based semi-honest Boolean-to-arithmetic share conversion

protocol whose output shares lie in a field Zp, which was not explicit in [RW19],

• demonstrate how to use Boolean-to-arithmetic share conversion in conjunction with

Boolean secret-sharing and smaller-scope SNIPs for particular relations in order to

provide robustness and privacy in a large-scale data collection system, and

5



• demonstrate that client usage of Boolean representation avoids expensive Zero-Knowledge

proofs which leads to dramatic speed-ups of the system overall, and

• exhibit the effectiveness of our protocols with a full-scale and publicly available im-

plementation allowing private and robust computation of a wide range of complex

statistics.

We now give an informal theorem of our results for a single protocol (Πsum). We establish

similar results for the remaining protocols according to the asymptotics given in Table 1.1.

Note that although our results are stated in a model using only two servers, all results

generalize trivially to k servers and provide the same security guarantees as Prio (security

against a coalition of k − 1 semi-honest servers).

Theorem 1. (Informal) Suppose n players P1, . . . , Pn each hold a private L-bit integer xi,

and they wish to rely on two servers SL and SR to compute the sum f(x1, . . . , xn) =
∑

i xi.

There exists a protocol Πsum, returning the sum f(·) to each client and returning no output to

either server, which is both private and robust against a coalition of up to n malicious clients

and one semi-honest server and requires zero client-side multiplications, no zero-knowledge

proofs, O(L) multiplications per server (in some prime field Zp for large p), O(L) symmetric

key operations per server, and O(n) bits of communication between servers.

With Prio+, we hope to provide the same benefits as Prio to systems and organizations whose

clients cannot withstand the burden of generating and sending expensive zero-knowledge

proofs.

6



CHAPTER 2

Technical Overview

In this section we briefly overview the remaining sections of the paper.

Arithmetic vs. Boolean Secret-Sharing: Secret-sharing (specifically, threshold

secret-sharing) is a cryptographic tool which allows a user to “share” a private value x

into a vector of values [x] = ([x]1, . . . , [x]n) in such a way that any strict subset of these val-

ues reveals nothing about x, but all values together can be used to reconstruct x completely.

Prio is primarily built around arithmetic secret-sharing: [x]i are random values in a ring ZM

(often this is a field and M = p) subject to the constraint
∑

i[x]i = x (mod M). Clients

share their private inputs and send one share to each server. Servers then sum them up

locally and then return those local aggregations to clients. Clients them combine the local

aggregations to learn the total sum. Servers force clients to submit private values within a

particular range by requiring clients to also submit specialized zero-knowledge proofs attest-

ing to that fact.

Another possible secret-sharing scheme is called Boolean secret-sharing. Here, the client

holds a private L-bit integer x and secret-shares it as ([x]1, . . . , [x]n), where each [x]i is a

random L-bit integer subject to the constraint
⊕

i[x]i = x, where the direct sum is done

component-wise with each bit of the binary representation. This scheme obeys many of the

same properties as arithmetic secret-sharing, particularly that each share appears random

except when combined with all other shares. The crucial difference is the following: if each

share [x]i is an L-bit integer, it is guaranteed that the private value x is also an L-bit integer.

7



This allows servers to verify the bit-length of a client’s submitted private value via simple lo-

cal checks on the shares themselves, without needing expensive zero-knowledge proofs. Note:

to distinguish Boolean shares from arithmetic shares, arithmetic shares will be denoted [x]A,

and Boolean shares will be denoted [x]B.

Boolean-to-Arithmetic Share Conversion: Using Boolean shares presents an issue:

how do servers compute the sum over Boolean shares of client inputs? Prio’s method of

summing shares locally and then returning those aggregated values to clients only works

with arithmetic shares, not Boolean shares. Prio+ servers use Boolean-to-arithmetic share

conversion, which converts Boolean shares of x to arithmetic shares of the same x. Such pro-

tocols have been studied extensively [DSZ15, RW19, EGK20, CDI05], and the most efficient

method based on oblivious transfer (OT) is due to [DSZ15] and outputs arithmetic shares

in a ring ZM . For use with SNIPs, M should be a prime.

Semi-Honest Boolean-to-arithmetic Share Conversion into Zp via daBits: For

more efficient share conversion in this case, we use an offline phase to generate pre-computed

daBits (double-authenticated bits) from [RW19], which allow share conversion with less com-

munication and only use one OT to generate each beforehand. This cheap offline phase makes

the resulting online protocol much more efficient than Prio. A daBit is a known primitive

used for various functionalities, including share conversion. A daBit is a secret-shared pair

([b]A, [b]B) where b ∈ {0, 1} is a random secret bit. It is known how to convert Boolean shares

of an λ-bit integer to arithmetic shares using λ daBits [RW19] in the malicious setting, so

we present an efficient semi-honest version of this protocol for quick parallelizable share con-

version. Malicious security is not necessary since all servers are semi-honest (following the

threat model of Prio), and they perform the conversion. Details of the generation and share

conversion, as well as measures of the complexity of these procedures, are in Section 9. Al-

though we would like to provide an analytical comparison between the efficiency of resulting

8



protocol with Prio, the Prio paper does not give analytic measures of their complexity to

enable such a comparison. Thus we rely on a practical comparison of the two systems.

Complex Statistics: Prio+ supports computation of the exact same statistics as Prio.

In particular, in addition to SUM, clients can compute Boolean AND / OR (where each client

holds a single bit), MAX / MIN and frequency count FRQ (where each client holds a value

in some small range [0, K]), integer variance VAR and standard deviation STDDEV (where

each client holds an L-bit integer), and linear regression linReg (where each client holds a

degree d feature vector of L-bit integers).

Many of these statistics (AND, OR, MAX, MIN) are even simpler than SUM, requiring

no share conversion, no zero-knowledge proofs, and virtually no communication between

servers. FRQ, similar to SUM, requires share conversion to allow summation on the server

side, but does not require any zero-knowledge proofs. Instead, servers use some simple logical

mechanisms to detect improperly encoded inputs, which we will discuss in the next section.

The only statistics which do require zero-knowledge proofs are VAR, STDDEV, and linReg.

In these cases, clients encode their private values in such a way that SNIPs are the most

efficient method for verifying that encoding. The key difference is that SNIPs in this case

are only being used to verify one small part of the encoding, whereas in Prio they are used

to verify every property of the encoded value. At a high level, we have removed the need

for SNIPs to verify the length of client inputs, reducing the overall complexity. Since SNIPs

operate on arithmetic shares of the input, we first apply daBit-based Boolean-to-arithmetic

share conversion on the clients’ submitted Boolean shares, which we need to do anyway to

perform aggregation after the validation.

Frequency Count: To compute FRQ, Pi is required to submit shares of an impulse
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vector δxi
with value 1 at index xi and value 0 at all other locations. Servers then sum up

these impulse vectors component-wise to output a histogram h⃗ of the distribution of client

values. Verifying that no client submitted a non-impulse vector is somewhat non-trivial: it

requires more than simply verifying the length of individual shares, but checking the rela-

tion via SNIPs requires many multiplication gates since it is not an inherently multiplicative

relation. However, servers can accomplish this task at relatively low cost using some simple

logic. First, servers use the Boolean shares of client inputs to check the parity of the number

of 1’s in each client’s submitted vector. This requires passing a single bit per client and

reveals nothing about any honest client’s input, since an honest input will always be an

impulse and thus have an odd number of 1’s. This step ensures that no client submitted a

zero vector, since that would have an even number of 1’s. Next, servers check whether the

total number of 1’s is equal to the total number of players. If so, this (in combination with

the fact that no player submitted a zero vector) implies that all players submitted a single

impulse. If not, they can locate the misbehaving player by repeating this check a logarithmic

number of times on smaller subsets of the players, honing in on the misbehaving player via

binary search. To check whether the total number of 1’s is equal to the total number of

players, servers simply apply Boolean-to-arithmetic share conversion on each component of

each shared vector, locally sum all components of all shared vectors, recombine the total sum

and check this against the total number of players. After this check identifies all misbehaving

players and those inputs are discarded, servers sum the arithmetic shares of all well-behaving

clients and return these summed vectors to the clients who sum them together to get the

histogram h⃗.

Practical Comparison: We compared Prio+ to both the original Go implementation

of Prio as well as another implementation by Mozilla which only computes SUM, no complex

statistics. We did not compare to the updated construction given in [BBC19] because it has

not yet been implemented and is focused on the case of extremely long inputs. In the case of

practically-sized inputs, large constant terms overshadow the asymptotically smaller client
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message sizes.

First, we compared all three implementations in evaluating the SUM(x1, . . . , xn) where

n = 10, 000, n = 50, 000, and n = 100, 000. We recorded the encode time (milliseconds per

client), client message size (bytes per client per server), server compute time (milliseconds

per server per client), and server communication (bytes per server per client) and averaged

the results from each value of n. We ran four separate experiments in which xi was 1-bit,

8-bits, 16-bits, and 32-bits respectively. Prio+ clients were able to encode their data up

to 540x faster than in the Go implementation of Prio, and up to 3000x faster than in the

Mozilla implementation. Client messages in Prio+ were over 3x smaller than in the Mozilla

implementation, and up to 23x smaller than in the Go implementation. Although reducing

server computation time was not the primary goal of this project, Prio+ servers processed

client submissions up to 116x faster than the Go implementation and up to 615x faster than

the Mozilla implementation. The expected drawback of these savings was server communica-

tion, since conserving server bandwidth was the primary motivation for Prio’s SNIPs. Prio+

does see increased server bandwidth in some cases, particularly as the size of user inputs

increases. However, the practical bandwidth usage for 1-bit integers is essentially the same

as in the Mozilla implementation and 18x less than the Go implementation. By comparison,

for 32-bit inputs, Prio+ server communication is still 3x less than the Go implementation,

and just 7x more than the Mozilla implementation. This tells us that for practically-sized

user inputs, Prio+ achieves monumental improvements in client computation, client com-

munication, and server computation with minimal impact to server communication.

We also ran similar experiments between Prio+ and the Go implementation of Prio for

MAX and linReg. Since MAX requires no SNIPs and no share conversion, we saw improve-

ments across the board: when client values lied in the range [0, 128], Prio+ client encode

time was 750x less, client message size was 5x smaller, server compute time was 43x less,
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and server communication was 46x less. Even though linReg still requires some SNIPs (with

reduced scope), we saw up to 30x lower client encode time, up to 4x smaller client message

size, up to 3x less server compute time, and server communication varying between 5x less

(for degree 2 inputs) and 1.5x more (for degree 8 inputs). Prio+ is clearly more efficient

across the board when computing MAX and low-degree linReg. For higher-degree linReg, we

see significant gains in encode time, client message size, and server compute time for a slight

increase in server communication.
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CHAPTER 3

Preliminaries

In this section we will describe our computational model. This includes a description of our

ideal functionality, the client/server setup, our efficiency model, the set of adversaries we

defend against, and the assumptions we rely upon to build our protocol.

“Two-Party” Setting: In this work we construct protocols for secure computation of

a wide range of aggregate statistics in the client-server model. That is, a set of n clients with

private data wish to compute statistics on that data with the help of two honest-but-curious

servers. The basis of our system is a secure two-party protocol between these servers. That

is to say that each client with an input, secret-shares his/her input between the two com-

putation servers (which are assumed to not collude). Then, the two computation servers

run the secure two-party computation protocol on the input shares which does not reveal to

either server any information about client inputs. Finally, they send the output shares back

to the clients who then reconstruct the output. This technique of using secure two-party

computation in the client-server setting was first described in the ABY framework of [DSZ15]

and has been used in many applications since, including [CB17].

Just as in the ABY framework of [DSZ15], this also allows for reactive computations in

which the two computation servers maintain some secure state information between multiple

executions. This could be used in the case where client data is being collected over time and

the data is sent to the servers one point at a time.
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Formally, our deployment consists of n clients {P1, . . . , Pn} and 2 servers SL and SR.

Each client Pi holds some private input xi. Each client can communicate with each server

and servers can communicate with clients and each other via private channels, but clients do

not communicate with each other. Side note: although Prio+ is described as a two-server

protocol, it can be easily generalized to a k server protocol for any positive integer k by

simply using k-wise instances of each primitive (secret-sharing, daBits, SNIPs as necessary).

Efficiency Model: We assume clients have low computational power and servers have

high computational power. Similarly, we assume a low-bandwidth connection from clients to

servers, and a high-bandwidth connection between servers. Thus we seek to minimize client

computation and communication as our highest priority, and server costs as an afterthought.

In general, we assume network latency is the greatest computational bottleneck and are con-

cerned more with optimizing communication than computation for both clients and servers.

Security Against Semi-Honest Servers, Malicious Clients: Our deployment pro-

tects client privacy as long as at most one server is passively corrupted (regardless of ma-

licious client misbehavior). Our system cannot tolerate malicious, misbehaving servers as

this comes at a direct cost of functionality, as discussed in [CB17]. Our deployment always

provides robustness (correctness) so long as neither server maliciously misbehaves. We sum-

marize our security definitions here, please refer to Appendix B for details.

Privacy: Intuitively, our deployment provides f -privacy for an aggregation function

(statistic) f if an adversary controlling any number of clients and all but one server learns

nothing about the honest clients’ inputs besides what is revealed by the output of f . More

formally, any such adversary can simulate its view of the protocol run given the output of f .

For some aggregation functions, we weaken our protocol to provide f̂ -privacy where f̂ leaks

slightly more information than the statistic itself (for example, servers may leak the number
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of clients who provided invalid inputs).

Robustness: A protocol is t-robust if a coalition of t malicious clients cannot affect the

output of the protocol beyond misreporting their private data values. This is the strictest

notion of correctness in the malicious security model, since a client’s private input is known

to nobody but themselves, meaning we cannot prevent them from misreporting it. If this

data value is meant to come from a specific domain, however, malicious clients should not be

able to submit data from outside of that domain. This is particularly relevant in our setting,

where client data must be encoded correctly to permit efficient computation of the aggregate

statistic. Clients should absolutely not be able to submit improperly encoded data, as this

allows a single client to affect the output arbitrarily without detection. Our deployment

is robust against malicious clients, but not against malicious servers. Though robustness

against malicious servers may seem desirable, it comes at a direct cost to performance, as

argued in [CB17]. Since the number of clients is much larger than the number of servers, it

is much more reasonable to prevent and/or replace faulty servers than faulty clients.

Analogously to [CB17], we assume cryptographic primitives for the establishment of

pairwise authenticated channels (CCA-secure public key encryption [CS98], digital signa-

tures [Sho01a, Sho01b], etc.). We make no synchrony assumptions about our network and

do not rely on external systems to provide users anonymity.

Notation: We write x ⊕ y to denote the XOR operation (addition modulo 2), x +l y

for addition within the ring Z2l , and x +p y for addition in the field Zp. When x⃗, y⃗ ∈ Z2m

are vectors of bits, we will write z⃗ = x⃗ ⊕ y⃗ to denote the bitwise-XOR operation. That is,

(z⃗)i = (x⃗)i ⊕ (y⃗)i for each 0 ≤ i < m. We assume a maximum bit-length l on all integer

data and thus treat all integer-valued data as elements of the ring Z2l , except in the case

where we perform share conversion on client data. In that case, the resulting shares will lie
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within the field Zp, as this is required for our polynomial identity testing procedure. This

of course requires that p > 2l, which will always be the case. We denote an arithmetically

secret-shared variable x by [x]A. A variable x shared in the Boolean secret-sharing scheme

is denoted [x]B. We will exclusively use two-party secret-sharing, and thus shares held by

server SL will be written [x]tL, t ∈ {A,B}. Shares held by server SR will similarly be written

[x]tR. For an integer x, we refer to the i’th least significant bit of the binary representation

of x as (x)i. We will say that a function f : N −→ R is negligible if for every positive

polynomial poly there exists an integer Npoly such that for x > Npoly, |f(x)| < 1
poly(x)

.
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CHAPTER 4

Necessary Primitives

For our purposes, we focus on having N = 2 servers with secrets shared between them.

Clients hold a secret value x, and want to split it into two shares Share(x) = [x]L, [x]R for

servers L and R. This can also be reversed, where Rec([x]L, [x]R) = x. Privacy here is

straightforward, where any one server can’t recover the secret, but both together can. Cor-

rectness means that Rec succeeds in the presence of both shares.

Definition 4.1. Arithmetic Secret-Sharing: Given an integer x ∈ ZM , an arithmetic

secret-sharing of x is a random pair a, b ∈ ZM subject to the condition a+ b = x (mod M).

Semantics : The two-party arithmetic secret-sharing scheme consists of the following pair

of functions:

• Share+,M : ZM −→ (ZM)2, Share+,M(x) = ([x]AL , [x]
A
R), which are random elements of

ZM subject to the constraint [x]AL + [x]AR = x (mod M).

• Rec+,M : (ZM)2 −→ ZM , Rec+,M([x]AL , [x]
A
R) = [x]AL + [x]AR (mod M).

Addition/Scalar Multiplication: Addition and scalar multiplication over arithmetic

secret shares are trivial. To compute a share of z = x + y given shares [x]A and [y]A,

each server i ∈ {L,R} locally computes [z]Ai = [x]Ai + [y]Ai . Similarly, to compute scalar

multiplication [w]A = c · [x]A for public c ∈ ZM , each server locally computes [w]Ai = c · [x]Ai .
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Definition 4.2. Boolean Secret-Sharing Given an integer x ∈ Z2, a Boolean secret-

sharing of x is a random pair c, d ∈ Z2λ subject to the condition c⊕ d = x.

Semantics: The two-party λ-bit Boolean secret-sharing scheme consists of the following

pair of functions:

• Share⊕,λ : Z2λ −→ (Z2λ)
2, Share⊕,λ(x) = ([x]BL , [x]

B
R), which are random elements of

Z2λ subject to the constraint [x]AL ⊕ [x]AR = x.

• Rec⊕,λ : (Z2λ)
2 −→ Z2λ , Rec⊕,λ([x]

A
L , [x]

A
R) = [x]AL ⊕ [x]AR.

XOR: Computing XOR over Boolean shares is trivial. [z]B = [x]B ⊕ [y]B. Each server

s ∈ {L,R} locally computes [z]Bs = [x]Bs ⊕ [y]Bs .

These two schemes each have strengths and weaknesses. If client data is arithmetically

secret-shared under a large modulus M , servers can efficiently compute the sum of shared

values via associativity of addition by locally summing their shares modulo M , as in Prio

[CB17]. This is not efficient with Boolean shares as they are built using bitwise XOR instead.

On the other hand, Boolean shares of x are the same bit-length as x itself, meaning servers

can trivially verify the size of client inputs. Prio+ leverages both of these advantages to

privately compute complex aggregate statistics efficiently. Prio+ clients submit their data

in the Boolean scheme (so that servers can verify the bit-length efficiently) and then servers

convert these shares back to the arithmetic scheme in order to sum the data together and

compute the given statistic.

Boolean to arithmetic share conversion is a well-studied technique. The current most

efficient protocol in the semi-honest two-party setting is due to [DSZ15] and is based on

Oblivious Transfer (OT). In particular, to convert a pair of λ-bit Boolean shares to arith-

metic shares in Z2λ , they use λ independent instances of OT where each OT transfers on
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average a string of length (λ+1)/2. The total communication cost is λ(κ+(λ+1)/2) = O(λ2)

[DSZ15].

To achieve share conversion with more efficient online work, we utilize precomputed pairs

called daBits (doubly-authenticated bits), discussed in [RW19]. Although they are primarily

used in the malicious setting, we are able to use them very efficiently in the semi-honest

setting, which to our knowledge hasn’t been detailed explicitly. Compared to OT share

conversion above, for the same number of bits converted this uses the same number of OTs

for generating the precomputed daBits, and then only communicates a single bit between

servers, per bit converted using daBits. They require the same OTs to generate as the share

conversion protocol in [DSZ15], and only require a single bit communicated per converted

bit to perform the computation. See Section ?? for further details.

The final piece of Prio+, used only for a few statistics, is the secret-shared non-interactive

zero-knowledge proof (SNIP) which underpins the Prio protocol of [CB17]. Although we

claim that Prio overuses SNIPs in unnecessary situations, SNIPs are an incredibly efficient

method for verifying multiplicative relationships on secret-shared inputs. Below we review

how SNIPs allow servers to efficiently verify that some client input x is valid without learning

any additional information. The following description comes directly from [CB17].

A secret-shared non-interactive proof (SNIP) protocol consists of an interaction between

a client (the prover) and multiple servers (the verifiers). At the start of the protocol:

• Each server i holds a share [x]Ai ∈ Fλ for some field F.

• The client holds the secret input (vector) x =
∑

i[x]
A
i ∈ Fλ.

• All parties hold an arithmetic circuit representing Valid : Fλ −→ F.
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The client’s goal is to convince the servers that Valid(x) = 1 without revealing any addi-

tional information about x. To do so, the client sends a proof string to each server. After

receiving these proof strings, the servers gossip amongst themselves and then conclude either

that Valid(x) = 1 (accept x) or Valid(x) ̸= 1 (reject x).

A valid SNIP must satisfy correctness, soundness, and zero-knowledge.

Correctness. If all parties are honest, the servers will accept x.

Soundness. If all servers are honest, and if Valid(x) ̸= 1, then for all malicious clients,

even ones running in super-polynomial time, the servers will reject x with overwhelming

probability. In other words, no matter how the client cheats, the servers will almost

always reject.

Zero-knowledge. If the client and at least one server are honest, then the servers learn

nothing about x, except that Valid(x) = 1. More precisely, there exists a simulator

(that does not take x as input) that accurately reproduces the view of any proper

subset of malicious servers executing the SNIP protocol.

The construction in [CB17], based on a generalized version of the polynomial-based

batched multiplication verification technique of Ben-Sasson et al. [BFO12], satisfies each

of these properties as proven in their Appendix D.
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CHAPTER 5

Private Summation Without Robustness

Our protocols are all based on the following simple scheme for computing the sum of clients’

private bits. This is also the basis of Prio’s solution and is described in [CB17]. We reiterate

that scheme here for convenience.

Each client Pi, i ∈ {1, . . . , n}, holds a private bit xi ∈ {0, 1}. They wish to learn the

sum f(x1, . . . , xn) =
∑n

i=1 xi. Even this basic functionality has wide-ranging applications

for data collectors, since it allows one to survey clients on any yes/no question and learn the

distribution of responses. Consider the following protocol for computing the sum.

1. Upload: Each Pi computes Share+,M(xi) = ([xi]
A
L , [xi]

A
R). The client then sends one

additive share to each server over secure pairwise-authenticated channels. Note: al-

though xi is a single bit, we treat it here as an element of ZM for M > n.

2. Aggregate: SL and SR hold accumulator values AL, AR ∈ Zp respectively, initially

set to zero. For each i, when SL receives [xi]
A
L from Pi, computes AL ← AL + [xi]

A
L

(mod M). SR does the same with its accumulator AR upon receiving [xi]
A
R from Pi.

3. Publish: Once data is collected, servers publish their accumulator values AL, AR to

every client.

4. Client Computation: Clients compute the sum of the accumulator values AL + AR

(mod M).
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Note that if all players behave, each client’s output is

AL + AR (mod M) =
∑
i

[xi]
A
L +p

∑
i

[xi]
A
R (mod M) =

∑
i

xi (mod M)

Since each xi is at most 1, requiring M > n ensures that
∑

i xi never overflows the mod-

ulus 2l. This means that the output, interpreted as an integer, is indeed the sum
∑

i xi.

The authors of [CB17] make two crucial observations about this simple scheme. First, it

provides privacy as long as one server is honest. The adversary’s view only includes a single

share, say [x]AL , of an honest client’s input x, which appears totally random without [x]AR.

Second, the scheme does not provide robustness against malicious clients. A single malicious

client can completely corrupt the protocol output by submitting (for example) arithmetic

shares of a random integer r ∈ ZM to each server.

The authors of Prio [CB17] solve the client robustness issue by forcing clients to construct

and submit SNIPs (secret-shared non-interactive proofs), a novel type of zero-knowledge

proof which allows the servers to non-interactively verify the form of client inputs. This is

effective, but requires somewhat expensive computation and communication on the clients’

part to construct and send these SNIPs to the servers. Since clients are presumed to be com-

putationally weak compared to servers in our model, latency between clients and servers is

high, this is not ideal. We would rather invoke some extra communication and computation

among the servers if it would allow us to reduce the communication and computation on the

client side.

We observe that clients can solve the robustness issue by instead submitting their data

using the 1-bit Boolean secret-sharing scheme. This allows servers to verify that x ∈ {0, 1}
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by simply confirming that each share is a single bit, forcing the client to sharing a value

which is only a single bit in length. Then, servers can execute a share conversion protocol

to privately convert these into arithmetic shares of the same secret values in the larger ring

ZM and sum them up as before. This observation is the intellectual core of our deployment.

In the next section, we give further details of how we protect against malicious clients

using share conversion. In particular, we show how to apply our observation described

above to prevent clients from submitting data outside the range {0, 1}. This can be trivially

generalized to verifying that client data falls within the range [0, 2l − 1]. In future sections,

we show how servers can verify other aspects of user inputs besides the bit-length. These

tools will be necessary for computing more complex statistics. In that case, clients will

encode their inputs before sharing with the servers, and servers will need tools to verify that

submitted data is properly encoded. The authors of Prio [CB17] once again accomplish this

via SNIPs, but we will show that such machinery is, in most cases, wasteful and unnecessary

for computing the desired statistics.
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CHAPTER 6

Protecting Correctness

In this section we give further details about share conversion and how we use it to make

Prio+ robust against malicious clients.

The reason a malicious client can cheat and submit xi ̸∈ {0, 1} is that when xi is shared

arithmetically in ZM , a single share reveals nothing about the size of xi. From the servers’

perspective, the underlying data xi could be any element of ZM . Thus, server SL holding a

single share [xi]
A
L cannot tell whether xi ∈ {0, 1}.

Imagine, however, that Pi shares xi via the 1-bit Boolean scheme as xi = [xi]
B
L ⊕ [xi]

B
R.

If [xi]
B
L ∈ {0, 1} and [xi]

B
R ∈ {0, 1}, then it is guaranteed that xi ∈ {0, 1}. Using Boolean to

arithmetic share conversion, servers can then compute arithmetic shares [xi]
A of the value xi

in the extended ring ZM and continue computation according to the simple scheme. If this

conversion is done securely, these shares will have the same amount of entropy as the original

1-bit Boolean shares, effectively hiding the underlying secret value. Thus, all we need in order

to make the simple scheme robust against malicious clients is a Boolean to arithmetic share

conversion protocol achieving the following ideal functionality FB2A described below.

Definition 6.1. The two-player l-bit ideal functionality FB2A (with output in ZM) behaves

as follows:

• FB2A receives [x]BL , [x]
B
R ∈ Z2l as inputs from SL, SR respectively.

• FB2A computes x = [x]BL ⊕ [x]BR
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• FB2A computes Share+,M(x) = ([x]AL , [x]
A
R) satisfying [x]AL + [x]AR = x (mod M).

• FB2A returns [x]AL , [x]
A
R to SL, SR respectively as outputs.

Share conversion has been well-studied, both in its theoretical limitations [CDI05] and

its practical performance [DSZ15]. In this case we use a daBit (double-authenticated bit)

based Boolean-to-arithmetic share conversion (see [RW19] for discussion of daBits). Share

conversion is further detailed in Section 9.

From now on, we will use the notation B2Al,M([x]BL , [x]
B
R) to represent an evaluation of a

Boolean to arithmetic share conversion protocol with l-bit inputs and whose output lies in

ZM . When the bitlength of the input shares and the output range are clear by context, we

may simply write B2A([x]BL , [x]
B
R)

With B2A in our toolbox, we can now strengthen the simple scheme from the previous

section to prevent malicious clients from corrupting the output. In particular, we force clients

to submit single bits by making them submit data under the 1-bit Boolean secret-sharing

scheme. Then, servers convert the Boolean shares into the arithmetic scheme using B2A.

Servers then compute the sum of the shared data according to the simple scheme. Servers

only accept shares consisting of a single bit, which means that if both servers accept shares

[xi]
B
L , [xi]

B
R from Pi, we are guaranteed that [xi]

B
L ⊕ [xi]

B
R ∈ {0, 1}. This precisely guarantees

robustness in the sense that a malicious client cannot affect the output of the protocol be-

yond misreporting their private data. A detailed description of this strengthened protocol

can be found below. Detailed proofs of its privacy and robustness can be found in Appendix

C.
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ΠbitSum

Inputs : xi ∈ {0, 1} for i ∈ [n].

Output :
∑n

i=1 xi.

1. Upload:

(a) Each client Pi computes Share⊕,1(xi) −→ [xi]
B
L , [xi]

B
R via Definition 4.2

(b) Each Pi sends [xi]L, [xi]R to SL, SR respectively.

2. Verify Bit-Length: Initially, n′ = n. If a server receives a share which is not 1 bit in length

from Pi (assume SL w.l.o.g.):

(a) SL sends the index i to SR.

(b) Both servers discard [xi]
B.

(c) Both servers set n′ ← n′ − 1

3. Convert Shares: SL and SR jointly evaluate B2A1,2λ({[xi]BL , [xi]BR}) on each of the n′ valid

pairs of Boolean shares. SL receives as output {[xi]AL}i and SR receives as output {[xi]AR}i.

4. Aggregate: SL locally adds all arithmetic shares into an accumulator AL, initially zero.

That is: AL ←− AL +
∑

i[xi]
A
L . SR analogously accumulates its arithmetic shares into

AR ←− AR +
∑

i[xi]
A
R.

5. Publish: Once all n′ shares have been accumulated, SL and SR publish AL and AR to every

client.

6. Client Computation: Clients output AL +AR.
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As we can see, this minor modification of the simple scheme guarantees both privacy and

robustness without any heavy client-side computation. It also easily generalizes to compute

the sum of l-bit integers for l > 1 by simply sharing data in the l-bit Boolean scheme and

then using Boolean to arithmetic share conversion. If servers intentionally leak the number

of honest clients n′, then this protocol for computing the sum is sufficient for computing

the arithmetic mean as well. The authors of Prio [CB17] extend their scheme beyond just

computing the sum and arithmetic mean. Prio supports computation of a wide array of

aggregation functions including: variance (VAR), standard deviation (STDDEV), Boolean

OR and AND, integer MIN and MAX, frequency count (FRQ), and linear regression (linReg).

They accomplish this by having users encode their input in particular ways such that the

sum of the encoded inputs reveals the desired statistic. These are discussed in the literature

as affine aggregatable encodings (AFEs), and we refer the reader to [CB17] for more infor-

mation regarding these encodings.

The only obstacle in computing these statistics analogously using our system is to design

a way for servers to successfully verify that clients’ inputs are properly encoded. If this can

be done, our Prio+ servers can verify that client data is properly encoded (and is within the

proper range), perform share conversion, sum the resulting arithmetic shares and return the

sum of the properly encoded inputs using the exact same technique as our ΠbitSum protocol.

This sum of encoded inputs will be precisely the desired statistic according to the under-

lying AFE. Instead of universally relying on SNIPs for verifying client encodings, as Prio

does [CB17], we use SNIPs sparingly. We use them exclusively for verifying multiplicative

relationships within the encoding, and all other properties of the encoded inputs are verified

via alternative, novel methods. We believe that this is a more appropriate application of

SNIPs since they are, at their core, designed around verifying the outputs of multiplication

gates within a validity circuit.
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In the following section, we outline each of the more complex statistics that our scheme

computes. For each statistic we describe the corresponding encoding for which summing the

encoded inputs produces the desired statistic.
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CHAPTER 7

Complex Statistics

In this section, we describe each of the statistics our deployment computes. For each statis-

tic, we describe the corresponding encoding which we use to enable computation. That is,

how can we compute an encoding of xi (written en(xi)) so that the statistic f we wish to

compute is given by f(x1, . . . , xn) =
∑

i en(xi) (or some locally computable function of this

sum). These encodings are referred to as “affine aggregatable encodings,” or AFEs. As most

of the machinery of AFEs is irrelevant to our applications, we omit a detailed discussion and

instead refer readers to [CB17] for more information.

As a reminder, each client Pi holds input xi from some secret-space D which will be

encoded as en(xi). They wish to compute f(x1, . . . , xn) using servers SL, SR. The servers

are responsible for verifying that en(xi) is a proper encoding of some xi ∈ D, as well as for

summing these encodings and returning them to clients so they can reconstruct the value

f(x1, . . . , xn). For each statistic f , we give the domain D of the input xi (also referred to as

the “secret-space”) as well as the encoding we will use for computing f . We will also give a

brief intuition of why this encoding is sufficient and how the servers will use it to compute

the statistic.

SUM, MEAN:

SUM(x1, . . . , xn) =
∑n

i=1 xi
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MEAN(x1, . . . , xn) =
1
n
· SUM(x1, . . . , xn)

Secret-Space: D = Z2l

Encoding : enint(xi) = xi

Intuition: Clients submit their data secret-shared via the l-bit Boolean scheme. Servers use

B2A to convert valid l-bit Boolean shares to arithmetic shares of the same secret xi in ZM

for M > n and then locally sum the resulting arithmetic shares. In order to compute the

mean, we allow the servers to modestly leak the number of players n− c whose valid shares

are included in the aggregate. Then clients can locally compute the mean. Note: this means

our integer mean protocol achieves only f̂ -privacy, where f̂ leaks n− c.

AND, OR:

AND(x1, . . . , xn) = 1 ⇐⇒ ∀i, xi = 1

OR(x1, . . . , xn) = 0 ⇐⇒ ∀i, xi = 0

Secret Space: D = {0, 1}

Encoding : enand(xi) = (1 − xi)r⃗ ∈ Fλ
2 for some security parameter λ and random r⃗ ∈ Fλ

2 .

That is, if xi = 1, enand(xi) = 0⃗, and if xi = 0, enand(xi) = r⃗.

enor(xi) = xi · r⃗ ∈ Fλ
2 for some security parameter λ and random r⃗ ∈ Fλ

2 . That is, if

xi = 0, enor(xi) = 0⃗, and if xi = 1, enor(xi) = r⃗.

Intuition: Here, share conversion is unnecessary because the aggregation operator and the

reconstruction operator for the Boolean secret-sharing scheme are both XOR. Thus, servers
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can simply locally XOR their valid shares and publish these aggregated values to clients,

who will then XOR the aggregated values together to produce the output. When computing

AND, if every client has xi = 1, then every en(xi) = 0⃗, and so the XOR of these encodings

will certainly be 0⃗. In this case, clients can conclude AND(x1, . . . , xn) = 1. Otherwise, if

some client has xi = 0, then en(xi) = r⃗ and the XOR of the encodings will be non-zero with

probability 1 − 1
2λ
. In this case, they conclude that AND(x1, . . . , xn) = 0. The argument is

analogous in the case of OR.

MAX, MIN:

MAX(x1, . . . , xn) = maxi xi

MIN(x1, . . . , xn) = mini xi

Secret Space: D = {0, . . . ,M} for small M ∈ Z

Encoding : enmax(xi) = (r⃗1, . . . , r⃗i, 0⃗, . . . , 0⃗) ∈ Fλ×M
2 , where each r⃗j ∈ Fλ

2 is independently

random. This is equivalent to applying the enor() function to each component of the vector

(1, . . . , 1, 0, . . . , 0) ∈ FM
2 where the first i components are 1.

Intuition: To compute the maximum, servers run the OR protocol M times in parallel on

each component of the encoded input. That is, they analogously XOR their shares locally,

and return them to clients to XOR and reconstruct the output. The clients parse this

(λ×M)-bit string in λ-bit chunks, reading each chunk as a 0 if and only if every bit of that

chunk is 0. The clients compute the largest index k for which the corresponding OR protocol

gave output 1, and conclude the maximum is k. That is, they compute the largest value k

such that the k’th substring of λ consecutive bits contains a 1. This is certainly bounded

above by the maximum, and the probability that it undershoots the maximum by ∆ is 1
2λ×∆ ,
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which is negligible in the security parameter λ.

To compute the minimum, clients first represent their input xi as χi = M −xi, and compute

the maximum of these χi values, yi = MAX(χ1, . . . , χn), as above. The desired minimum

will be preciselyMIN(x1, . . . , xn) = M−yi, with the same error bounds as the MAX protocol.

VAR, STDDEV:

VAR(x1, . . . , xn) =
1
n

∑n
i=1(xi −MEAN(x1, . . . , xn))

2

STDDEV(x1, . . . , xn) =
√

VAR(x1, . . . , xn)

Secret Space: D = Z2l

Encoding : envar(xi) = (xi, x
2
i )

Intuition: Servers parse the encoded input into its two parts and compute shares of (
∑

i xi,
∑

i x
2
i )

using two parallel instances of our protocol for SUM, which they return to clients. The clients

divide these values by n, which is a public parameter, to compute E[X] and E[X2], where X

is a random variable taking on each value xi with equal probability. From this, clients can

locally compute VAR(x1, . . . , xn) = E[X2] − (E[X])2. Note: in the case where clients may

misbehave, this protocol is only f̂ -private, where f̂ leaks E[X] and the remaining number

of behaving players n′ in addition to the output. Clients who wish to compute the standard

deviation simply add a local square root operation to the end of the protocol.

linReg:

linReg((x1, y1), . . . , (xn, yn)) = (c0, c1), where ŷ(x) = c0 + c1x is the unique line which mini-

mizes the sum of squares loss
∑

i(yi − ŷ(xi))
2.
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Secret Space: D = Z2l × Z2l

Encoding : enreg(xi, yi) = (xi, x
2
i , yi, xiyi)

Intuition: Analogously to the variance computation, servers compute the sum of the various

parts of the encoding in parallel via our protocol for SUM and return shares of (
∑

i xi,
∑

i x
2
i ,
∑

i yi,
∑

i xiyi)

to all clients. The clients can solve for the desired real regression coefficients c0 and c1 locally

using the following linear system:

 n
∑

xi∑
xi

∑
x2
i

 ·
c0

c1

 =

 ∑
yi∑
xiyi

 (7.1)

Note that again, in the case of misbehaving clients, this implies servers must also reveal the

value n − c of remaining players in the protocol, introducing a modest leakage. Thus this

protocol will also be f̂ -private, where f̂ leaks n − c in addition to the output. This tech-

nique also trivially generalizes to d-dimensional client inputs (x(0), x(1), . . . , x(d)) for d > 2 as

described by [CB17].

FRQ:

FRQ(x1, . . . , xn) = h⃗ = (f1, . . . , fk) ∈ Zk
n+1, where fj = |{xi : xi = j}| ≤ n is the frequency

of input j ∈ Zk

Secret Space: D = {0, . . . , k − 1} for small k ∈ Z

Encoding : enfrq(xi) = (δxi
) ∈ Z2k , where the xi’th component of (δxi

) is 1 and all other

components are 0. That is, (δxi
) is an impulse at xi.

Intuition: If all players behave, taking the sum of these encodings yields the desired vector

h⃗. Thus, servers evaluate k independent instances of B2A on each vector (one for each com-
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ponent) and then locally sum the resulting vectors of arithmetic shares. They then publish

these aggregated vectors to clients who add them together to get h⃗ in the same manner as

our SUM protocol.

We have now intuitively argued that, conditioned on the fact that all inputs are properly

encoded, servers can efficiently and privately compute each of these desired statistics. All

that remains is to describe the method by which servers can privately verify that shares

[xi]L, [xi]R reconstruct proper encoding of an element xi ∈ D for each of the encodings de-

scribed above.

In the case of SUM, MEAN, AND, OR, MAX, and MIN, we simply observe that any

Boolean vector of the correct length is a valid encoding of some input in the relevant secret

space. This makes our job simple, since servers can trivially verify the bit-length of the input

by checking the bit-length of its shares.

For VAR, STDDEV, and linReg, servers must verify multiplicative relationships among

different parts of the secret-shared encoded inputs. We accomplish this using SNIPs analo-

gously to the methods of [CB17] described in Section 2. For a more detailed description of

SNIPs construction and usage, see [CB17].

The trickiest encoding to verify is enfrq. Here, servers are given Boolean shares of v and

they must verify that
∑

i(v)i = 1. That is, v has exactly one component equal to 1. In other

words, v is an impulse. This is a difficult encoding to verify because the number of valid en-

codings is quite small compared to the total number of proper-length Boolean vectors. This

principle applies to all of our constructions: verifying an encoding is easiest when the set of

proper encodings is “dense” within the set of all Boolean vectors of proper length. That is,

if most or all Boolean vectors are proper encodings, little to no verification is necessary. In
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hindsight, this justifies the fact that verifying enVAR (and similarly linReg) requires so much

additional machinery, since the density of valid encodings in that case is 2l

23l
= 1

2l
.

In the case of FRQ, the proportion of valid encodings is very low, l
2l
. Furthermore,

there does not seem to be any straightforward way to verify that a shared vector is a single

impulse using only addition and multiplication of shares. Thus, our servers will have a bit

more verification work to do. It would be desirable to construct some alternative encoding

for computing frequency count which still permits computation but whose density of proper

encodings in the set of Boolean vectors is higher. Despite these challenges, we give a novel

and practically efficient technique for verifying this encoding in the next section.
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CHAPTER 8

Resolving Frequency Count

In this section we give a unique method for servers SL, SR, given [x]B ∈ Z2l , to verify

that x is an impulse. In particular, we detail how to do this efficiently in parallel for

[x1]
B, . . . , [xn]

B. When we say x is an impulse, we mean (x)j = 1 ⇐⇒ j = j∗ for some

unique j∗ ∈ {0, . . . , k − 1}. Crucially, they must do this without leaking anything about

honest players’ input xi besides whether or not it is an impulse.

Intuitively, we break this process down into two parts:

1. Make sure no player submitted a zero vector.

2. Make sure no player submitted multiple impulses by verifying that the sum of compo-

nents in the final histogram equals n′, the number of valid shares received.

We can perform the first check on all n inputs using just 2n bits of communication and n·l

XOR operations. This is accomplished by checking the parity of the number of ones in each

vector and throwing out any vector with an even number of ones. Servers can perform this

parity check in the clear since it will never reveal any information about an honest player’s

input besides the fact that there are an odd number of ones, which is already implied by

the fact that they submitted an honest impulse vector. Thus, each server simply computes

the parity of their share and they combine these parities in the clear to get the parity of the

client’s encoded input. This uses exactly two bits of communication and l XOR operations

per server for a single parity check. More precisely:
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• SL, SR initially hold [x]BL , [x]
B
R respectively.

• SL computes bL =
⊕

j([x]
B
L )j and sends bL to SR.

• SR computes bR =
⊕

j([x]
B
R)j and sends bR to SL.

• Both servers compute b = bL ⊕ bR.

• If b = 0, both servers discard [x]B.

Now, assume the first condition holds. Since no player submitted a zero vector, we must

now detect players who submitted “bad” vectors with multiple ones in them. We know

from the first condition that if the sum of the components in the final histogram, which we

call sum(⃗h), is precisely n′, the number of players who submitted non-zero vectors, we can

conclude that no player submitted a bad vector of multiple ones.

We would ideally like to allow servers to simply sum the components of their local shares,

producing a single arithmetic share of sum(⃗h). Then, they could reconstruct this value and

compare it to n′. This would leak no information about honest players’ inputs, since it is

already known that honest players submitted a single impulse, and this sum reveals nothing

about the location of any particular impulse, only the total number of such impulses. Since

components of the input vectors are originally shared using the Boolean scheme, however,

we must first convert each component into the arithmetic secret-sharing scheme using B2A.

Once we make this conversion, servers can sum these vectors of Arithmetic shares locally to

produce arithmetic shares of sum(⃗h), reconstruct this in the clear, and compare it to n′, as

detailed above.

In the best case, if this check succeeds the first time we attempt it, we know with cer-

tainty that no player submitted a non-impulse vector (conditioned on the fact that no player

submitted a zero vector, as confirmed by the initial verification step). If it fails, we split the
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set of behaving players in half and recursively repeat this check on each half, locating mis-

behaving players via binary search. In the worst case, this brings the total communication

to 2nl · log(n) bits of communication and O(n log n) local additions/multiplications.

As we mentioned, the rest of the verification is simple: servers compute sL =
∑

i([x]
∗
L)i

and sR =
∑

i([x]
∗
R)i. We will then have that sL + sR = sum(⃗h). To compare this value to

n′, SL sends sL to SR and SR computes sL + sR − n′. If this value is zero, then all inputs

are single impulses and SR replies with the bit 1. If not, SR replies with the bit 0, indicat-

ing that some input has failed, and they continue the recursive search for misbehaving clients.

Once both verification steps succeed, we know that every player submitted a valid impulse

except with negligible probability. From this point, servers proceed to compute the frequency

count by locally summing their valid vectors of arithmetic shares into local accumulators

AL, AR ∈ Zk
2l
. If each such vector is valid, then AL+AR = h⃗, the desired histogram. Servers

then return AL, AR to clients who reconstruct h⃗ in precisely this manner.
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CHAPTER 9

Share Conversion

In this section, we detail our daBit-based Boolean to arithmetic share conversion protocol.

The core of the semi-honest share conversion is to efficiently convert Boolean shares of a single

bit [b]B to arithmetic shares [b]A, i.e. b = [b]BL ⊕ [b]BR = [b]AL +[b]AR for secret bit b. Then for an

arbitrary λ-bit value x shared using Boolean shares, we can convert the shares to arithmetic

in parallel and combine them. Namely, given [x]B = ([x0]
B, . . . , [xλ−1]

B) where xi ∈ {0, 1}

is the ith bit of x, we have [x]A =
∑λ−1

i=0 2i[xi]
A, noting that x =

∑λ−1
i=0 2i([xi]

B
L ⊕ [xi]

B
R) =∑λ−1

i=0 2i([xi]
A
L + [xi]

A
R). This means that converting a λ-bit Boolean share requires L parallel

conversions of a single bit, which requires the same number of rounds. This fact is used by

both the OT-based protocol of [DSZ15], and the daBit based protocol here in Prio+. Recall

that the OT-based protocol of [DSZ15] uses OT in the online phase to accomplish the same

goal of semi-honest Boolean to arithmetic share conversion.

A daBit is merely a shared correlated pair ([b]B, [b]A) for some random bit b, where the

Boolean share is a single bit, and each server has one share of [b]B and one share of [b]A.

To convert some single bit Boolean share [xi]
B to [xi]

A, the servers compute their respective

shares of [xi]
B⊕[b]B and swap them to get v = xi⊕b in the clear. Then, they locally compute

[xi]
A
L = v+[b]AL−2v[b]AL and [xi]

A
R = [b]AR−2v[b]AR. This requires communication of only a single

Boolean value v. If both players behave honestly, we get [xi]
A
L + [xi]

A
R = v + b− 2vb = v ⊕ b

since v and b are single bits, and v ⊕ b = xi by definition of v. To convert a λ-bit inte-

ger x, servers convert each bit xi in parallel and then locally compute [x]A =
∑λ−1

i=0 2i[xi]
A

(mod p) to get arithmetic shares of x. Because we are working in the semi-honest case, as
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these are used only by the semi-honest servers, this is more efficient than in [RW19], where

they needed to use an arithmetic Beaver triple to generate each daBit in the malicious setting.

The servers are able to generate each daBit in parallel offline using a single OT each. To

convert a single bit, the daBit B2A share conversion only needs to communicate a single bit

in the online phase (and consume a daBit), while OT share conversion in [DSZ15] requires

an online OT (OT where inputs depend on client data). Hence, our daBits share conversion

is much faster in the online phase. End to end, daBits B2A requires an OT to generate a

daBit in the offline phase to precompute the correlated daBit, so end-to-end daBit share

conversion including the offline phase only requires a single bit more than the OT protocol

in [DSZ15]. Formal protocols for daBit generation and share conversion are given below.
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daBitGenp

Inputs: one OT

Output : A random daBit ([b]A, [b]B) per server.

1. Sample Both servers i ∈ {L,R} samples a random bit bi ∈ {0, 1}. SL also samples a random

integer x mod p.

2. Use OT

• SL acts as the OT sender, sending (x, x+ bL). SL also sets yL = −x (mod p).

• SR acts as the OT receiver, using bR as the choice bit. SR receives yR = x + bLbR

(mod p)

3. Compute

(a) Both servers set [b]Ai = bi − 2yi (mod p).

(b) They also set [b]Bi = bi.

4. Output Server Si outputs ([b]
A
i , [b]

B
i ).
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B2Ap

Inputs: Boolean shares of a single bit [x]BL , [x]
B
R ∈ Z2. A single dabit ([b]A, [b]B)

Output : Arithmetic shares of the same bit [x]AL , [x]
A
R ∈ Zp.

1. Compute v = x⊕ b

(a) Both servers i ∈ {L,R} compute [v]Bi = [x]Bi ⊕ [b]Bi .

(b) Servers send their share [v]Bi to each other.

(c) Servers now have v = x⊕ b = [v]BL ⊕ [v]BR in the clear.

2. Convert

(a) Since v is in the clear, specifically server L computes [x]AL = v + [b]AL − 2v[b]AL (mod p),

and server R computes [x]AR = [b]AR − 2v[b]AR (mod p).

3. Output Server Si outputs [x]
A
i .
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CHAPTER 10

Security

In this section we briefly describe the security properties of the protocols in our system. For

formal statements and proofs, see Appendix C.

Let 0 ≤ c∗ ≤ n be the number of corrupted clients who submit invalid input shares. For

every protocol, up to n malicious players colluding with one semi-honest server learn nothing

but the output except with negligible probability, as well as some modest leakage in some

cases based on the specific statistic and/or AFE construction. In particular, to compute

MEAN servers must leak the number of players n − c∗ whose inputs were included in the

aggregate. Servers must also give this value when computing linReg. Due to the specific

AFE construction for VAR, the output necessarily leaks E[X] in addition to the variance.

All of these modest leakages are analogous to the results of [CB17].

In terms of robustness, all protocols provably prevent any coalition of up to n malicious

players from corrupting the output beyond misreporting their private values, except with

negligible probability. All statements given above are true, as proven in Appendix C, except

with negligible probability.
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CHAPTER 11

Practical Evaluation

In this section we describe the practical performance of our implementation of Prio+.

We implemented our scheme in 7,000 lines of C/C++. We utilized the libOTe toolkit

[Rin] for OT and silent OT-extension. Our scheme uses semi-honest OTs, since our servers

are assumed to be semi-honest. Similar to Prio, clients use NaCl’s “box” primitive to encrypt

and sign messages. This means that TLS is not required to secure client-server communica-

tion.

Our implementation supports secure computation of SUM,AND,OR,MAX, MIN, VAR,

FRQ and linReg. Two implementations of the original Prio protocol exist: the original im-

plementation, written in Go, supports secure computation of SUM,AND,OR,MAX, MIN,

and linReg. Since the original paper’s publication, another implementation was written by

Mozilla in C. The Mozilla implementation only supports SUM.

We provide comparison data for three statistics: SUM,MAX, and linReg. These represent

our three categories of protocols: SUM requires share conversion but no SNIPs, MAX requires

neither share conversion nor SNIPs, and linReg requires both share conversion and SNIPs.

We collected four types of data for comparison: client encode time (milliseconds per

client), client message size (bytes per client per server), server compute time (milliseconds
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per server per client), and server communication (bytes per server per client). Most data

we collected shows a direct linear relationship with the total number of clients, and so we

ran multiple trials with 10k, 50k, and 100k clients and then averaged the result. The only

exception to this is server compute time for VAR and linReg. Since they utilize SNIPs which

are easily batched, server compute time increases sublinearly with number of clients. In that

case only, we performed trials with 50k clients and averaged those results. In our end-to-

end implementation we used the exact same servers as the original Prio paper, two c4.2x

large AWS servers. All protocols were implemented using just two servers. Both servers are

located in the us-east-1f zone as to mimic a low-latency, high bandwidth connection. The

client code was run from a separate instance of the same c4.2x large AWS server, and all

client data was randomly generated. All three implementations (Go, Mozilla, Prio+) use

this same 2-server setup.

11.1 Data: SUM

For SUM, we compared Prio+ to both the original Go implementation and the Mozilla im-

plementation. We ran four separate experiments with clients holding 1-bit, 8-bit, 16-bit,

and 32-bit integers. Our results can be found in Figures 11.1, 11.2, 11.3, and 11.4. We also

measured end-to-end runtime of our system. In total, our Prio+ implementation computes

the sum of 100,000 16-bit integers in 0.47 seconds. This excludes offline pre-computation

time but includes client encode time, communication time, and server compute time.
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Figure 11.1: This chart shows the time necessary for a single client Pi holding private value
xi to encode that value, compute any necessary additional proofs, and secret-share both the
encoding and the proof(s) when executing a protocol to compute SUM(x1, . . . , xn). Results
are in milliseconds and data is arranged according to the number of bits in xi.
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Figure 11.2: This chart shows the size of the message Pi (holding private value xi) sends
to each server when executing a protocol to compute SUM(x1, . . . , xn). Results are in bytes
and data is arranged according to the number of bits in xi.
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Figure 11.3: This chart shows the computation time for each server when executing a protocol
to compute SUM(x1, . . . , xn). Results are in microseconds and data is arranged according
to the number of bits in the client’s private value xi. Prio+ (end-to-end) includes time to
pre-compute daBits for share conversion.
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Figure 11.4: This chart shows the communication required by each server when executing a
protocol to compute SUM(x1, . . . , xn). Results are in bytes and data is arranged according
to the number of bits in xi. Prio+ (end-to-end) includes time to pre-compute daBits for
share conversion.
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Analysis: As expected, our implementation of Prio+ overwhelmingly outperforms both

implementations of Prio in terms of client encode time and client message size. An additional

pleasant result is that Prio+ heavily outperforms the Prio implementations in terms of server

compute time as well. We expected to see performance drawbacks in server communication,

since our server communication is no longer constant with respect to input size. Prio+

has comparable server communication to the Mozilla implementation for summing single-

bit integers, but as the size of the integers increases, so does the communication. The

Go implementation has high, but still constant, server communication. This is due to it

being designed for a larger number of servers, whereas our experiments were run on a two-

server implementation. Prio+ servers still communicate less than those in the original Go

implementation except in the 32-bit case. The Mozilla implementation achieves lower server

communication than Prio+, and this is the expected drawback of using share conversion as

a replacement for SNIPs, which were designed to minimize server communication only.
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11.2 Data: MAX

Since the Mozilla implementation does not support MAX, we compared Prio+ to the origi-

nal Go implementation only. In our experiment, clients held integers in the range [0, x] for

x ∈ {16, 32, 64, 128}. In total, our Prio+ implementation computes the maximum of 100,000

4-bit integers in 5.25 seconds. This excludes offline pre-computation time but includes client

encode time, communication time, and server compute time.
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Figure 11.5: This chart shows the time necessary for a single client Pi holding private value
xi in the range [0, x] for x ∈ {16, 32, 64, 128} to encode that value, compute any necessary
additional proofs, and secret-share both the encoding and the proof(s) when executing a
protocol to compute MAX(x1, . . . , xn). Results are in milliseconds.
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Figure 11.6: This chart shows the size of the message Pi (holding private value xi in the range
[0, x] for x ∈ {16, 32, 64, 128}) sends to each server when executing a protocol to compute
MAX(x1, . . . , xn). Results are in bytes.
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Figure 11.7: This chart shows the average computation time per server when executing a
protocol to compute MAX(x1, . . . , xn), where each xi held by Pi lies in the range [0, x] for
x ∈ {16, 32, 64, 128}. Results are in milliseconds.
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Figure 11.8: This chart shows the average bytes communicated by each server when executing
a protocol to compute MAX(x1, . . . , xn), where each xi held by Pi is in the range [0, x] for
x ∈ {16, 32, 64, 128}. Results are in bytes.
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Analysis: In the case of MAX, Prio+ requires no share conversion and no SNIPs, result-

ing in dramatic performance benefits for both clients and servers. Particularly relevant is

the nearly 1,000x decrease in client encode time. Since servers do not have to perform share

conversion, we get an added benefit of sharply decreased server communication.

11.3 Data: linReg

Similar to MAX, linReg is only supported by Prio+ and the original Go implementation.

We performed four separate experiments in which the feature vectors held by clients are of

degree 2, 4, 6, and 8 respectively. All results are averaged between experiments with 10k,

50k and 100k clients except for server compute time where all experiments were performed

with 50k clients. In total, our Prio+ implementation computes a line-of-best-fit over 100,000

degree-2 vectors of 8-bit integers in 7.41 seconds. This excludes offline pre-computation time

but includes client encode time, communication time, and server compute time.
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Figure 11.9: This chart shows the time necessary for a single client Pi holding private
value x⃗i = (x

(0)
i , . . . , x

(d)
i ) to encode that value, compute any necessary additional proofs,

and secret-share both the encoding and the proof(s) when executing a protocol to compute

linReg(x⃗1, . . . , x⃗n). Each x
(k)
i is an 8-bit integer. Results are in milliseconds and data is

arranged according to the degree d of each x⃗i.
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Figure 11.10: This chart shows the size of the message sent by client Pi (holding private value

x⃗i = (x
(0)
i , . . . , x

(d)
i )) to each server when executing a protocol to compute linReg(x⃗1, . . . , x⃗n).

Each x
(k)
i is an 8-bit integer. Results are in milliseconds and data is arranged according to

the degree d of each x⃗i.
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Figure 11.11: This chart shows the total server time to compute linReg(x⃗1, . . . , x⃗n), where

each of the 50,000 clients Pi holds private value x⃗i = (x
(0)
i , . . . , x

(d)
i ) and each x

(k)
i is an 8-bit

integer. Results are in seconds and data is arranged according to the degree d of each x⃗i.
Prio+ (end-to-end) includes time to pre-compute daBits for share conversion.
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Figure 11.12: This chart shows the average bytes communicated by each server when
executing a protocol to compute linReg(x⃗1, . . . , x⃗n), where client Pi holds private value

x⃗i = (x
(0)
i , . . . , x

(d)
i ) and each x

(k)
i is an 8-bit integer. Results are in bytes and data is

arranged according to the degree d of each x⃗i. Prio+ (end-to-end) includes time to pre-
compute daBits for share conversion.
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Analysis: Prio+ provides significant benefits to the client in computing linReg at a

minimal server-side cost. Client encode time and message size are dramatically decreased,

although the difference in client message size decreases as the degree increases. This is

because as the degree increases, bit-length verification represents a smaller proportion of the

multiplication gates in the VALID circuit. Once again we have an added benefit of decreased

server computation, particularly for lower degree regression. Based on this trend, we expect

the server computation in Prio+ to exceed that of Prio beyond degree 8 linear regression.

We see a similar trend in terms of server communication, where Prio+ servers communicate

less for lower degree computation, but that communication grows with the degree whereas

Prio’s server communication remains constant.

11.4 Data: Offline Pre-computation

Prio+ requires pre-computed data which is independent of client data. In our semi-honest

setting, we are able to use a single OT to generate a daBit, leading to very efficient gener-

ation. On average, our daBit generation can produce around 4,000,000 daBits per second.

Thus it takes, for example, 1.25 seconds to compute enough daBits to perform 8-bit degree

2 linear regression of 100,000 submissions.
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CHAPTER 12

Conclusions and Future Work

By leveraging properties of Boolean secret-sharing, Prio+ effectively restructures the original

Prio protocol to privately compute aggregate statistics with minimal burden on the client.

Often the computational burden on the servers is also reduced, occasionally at the cost

of increased server communication. The scale of these performance improvements depends

heavily on the statistic being computed. For some statistics (AND,OR,MAX,MIN), Prio+

significantly reduces the burden on both clients and servers across the board. For others, par-

ticularly linear regression, the improvements in client performance and server computation

come with a moderate increase in server bandwidth usage. These costs are only apparent,

however, as the size of client inputs becomes large. For small and often practical client

values, Prio+ still outperforms Prio across all examined metrics. Prio+ does require an

additional offline pre-computation phase which enables efficient share conversion. However,

this computation is relatively inexpensive and can be done during times when data is not

being collected and servers are otherwise idle.

In the future, we wish to expand Prio+ to compute additional aggregate statistics. We

would particularly like to identify statistics similar to AND,OR,MAX, and MIN for which

neither SNIPs nor share conversion are required. This would ideally involve a formal clas-

sification of the set of statistics for which AFE’s exist (especially AFE’s where aggregation

is done via bitwise XOR). We are also interested in generalizing the process of computing

new statistics, so that a novel AFE is not necessary each time a new statistic needs to be

computed.
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APPENDIX A

Full Protocol Descriptions

In this section we give detailed descriptions of the protocols which up until now have been

described at a more informal level. We omit the protocol for MIN as it consists of a single

call to MAX plus a single pre-processing step and a single post-processing step. We also

omit the protocols for integer mean and standard deviation, as these too require a single

post-processing step on top of the integer sum and variance protocols respectively.

Πsum

Inputs : xi ∈ Z2l′ for i ∈ [n].

Output :
∑

i xi.

1. Upload:

(a) Each client Pi computes Share⊕,l′(xi) −→ [xi]
B
L , [xi]

B
R via Definition 4.2

(b) Each Pi sends [xi]L, [xi]R to SL, SR respectively.

2. Verify Bit-Length: Initially, n′ = n. If a server receives a share which is not l bits

in length from Pi (assume SL w.l.o.g.):

(a) SL sends the index i to SR.

(b) Both servers discard [xi]
B.
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(c) Both servers set n′ ← n′ − 1

3. Convert Shares: SL and SR jointly evaluate B2Al′,2l({[xi]
B
L , [xi]

B
R}) on each of the n′

valid pairs of Boolean shares as described in [DSZ15]. SL receives as output {[xi]
A
L}i

and SR receives as output {[xi]
A
R}i.

4. Aggregate: SL locally adds all arithmetic shares into an accumulator AL, initially

zero. That is: AL ←− AL+
∑

i[xi]
A
L . SR analogously accumulates its arithmetic shares

into AR ←− AR +
∑

i[xi]
A
R.

5. Publish: Once all n′ shares have been accumulated, SL and SR publish AL and AR

to every client.

6. Client Computation: Clients output AL + AR.
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Πand

Inputs : xi ∈ {0, 1} for i ∈ [n].

Output : 1 if and only if xi = 1 for all i ∈ {1, . . . , n}.

1. Upload: Each Pi encodes their as input as:

x̂i = 0 ∈ Z2λ if xi = 1

x̂i = r ∈ Z2λ if xi = 0, where r is uniformly random

Pi then computes Share⊕,λ(x̂i) = ([x̂i]
B
L,λ, x̂i]

B
R,λ) as in Definition 4.2 and sends one share

to each server.

2. Verify Bit-Length: Initially, n′ = n. If some server, say SL, receives from Pi [xi]
B
L,λ

which is an m-bit integer, m ̸= λ:

(a) SL sends the index i to SR.

(b) Both servers discard [xi]
B
λ (removing from accumulator if necessary).

(c) Both servers set n′ ← n′ − 1

3. Aggregate: SL and SR hold accumulator values AL, AR ∈ Z2λ , initially set to 0. Once

a λ-bit share is sent to SL by Pi, SL immediately XORs it with AL: AL ← AL ⊕ [x̂i]L.

SR does the same with its accumulator AR upon receiving a valid share. If either server

learns that a share already accumulated should be discarded, they simply XOR it with

their accumulator again.

4. Publish: SL publishes AL to all clients, SR publishes AR to all clients.

5. Client Computation: Clients compute A = AL⊕AR ∈ Z2λ . If A = 0, clients output

1. Otherwise, they output 0.
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Πor

Inputs : xi ∈ {0, 1} for i ∈ [n].

Output : 0 if and only if xi = 0 for all i ∈ {1, . . . , n}.

1. Upload: Each Pi encodes their as input as:

x̂i = 0 ∈ Z2λ if xi = 0

x̂i = r ∈ Z2λ if xi = 1, where r is uniformly random.

Pi then computes Share⊕,λ(x̂i) = ([x̂i]
B
L,λ, x̂i]

B
R,λ) as in Definition 4.2 and sends one share

to each server.

2. Verify Bit-Length: Initially, n′ = n. If some server, say SL, receives from Pi [xi]
B
L,λ

which is an m-bit integer, m ̸= λ:

(a) SL sends the index i to SR.

(b) Both servers discard [xi]
B
λ (removing from accumulator if necessary).

(c) Both servers set n′ ← n′ − 1

3. Aggregate: SL and SR hold accumulator values AL, AR ∈ Z2λ , initially set to 0. Once

a λ-bit share is sent to SL by Pi, SL immediately XORs it with AL: AL ← AL ⊕ [x̂i]L.

SR does the same with its accumulator AR upon receiving a valid share. If either server

learns that a share already accumulated should be discarded, they simply XOR it with

their accumulator again.

4. Publish: SL publishes AL to all clients, SR publishes AR to all clients.

5. Client Computation: Clients compute A = AL⊕AR ∈ Z2λ . If A = 0, clients output

0. Otherwise, clients output 1.

66



Πmax

Inputs : xi ∈ {0, . . . , K − 1} for i ∈ [n].

Output : maxixi

1. Upload: Each Pi encodes their private xi as x̂i ∈ Zλ
2K , where:

• (x̂i)j = rj ∈ Z2λ for 0 ≤ j ≤ xi, where rj is a uniformly random λ-bit integer.

• (x̂i)j = 0 ∈ Z2λ for xi < j ≤ K − 1

We will use (x̂i)j,k to refer to the k’th component of (x̂i)j,k). Each Pi then computes

Share⊕,λK(x̂i) = [x̂i]
B
L,λK , [x̂i]

B
R,λK ∈ ZK

2λ
as described in [DSZ15] and sends one share of

x̂i to each server.

2. Verify Bit-Length: Initially, n′ = n. If some server, say SL, receives from Pi [xi]
B
L,λK

which is an m-bit integer, m ̸= λK:

(a) SL sends the index i to SR.

(b) Both servers discard [xi]
B
λK (removing from accumulator if necessary).

(c) Both servers set n′ ← n′ − 1

3. Aggregate: SL computes AL =
⊕

i[x̂i]
B
L,λK and SR computes AR =

⊕
i[x̂i]

B
R,λK .

4. Publish: SL and SR publish their accumulator values AL and AR to every client.

5. Client Computation: Clients compute

((s1, . . . , sλ), . . . , (s(K−1)λ+1, . . . , sKλ)) := AL ⊕ AR

Clients output the largest index i ∈ {1, . . . , K} such that the substring (s(K−i)λ+1, . . . , sK−i+1λ)

is not identically zero.
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Πvar

Inputs : xi ∈ Z2l for i ∈ [n].

Output : VAR(x1, . . . , xn) = E[X2]− (E(X))2.

1. Upload:

(a) Each Pi encodes their input as x̂i = (xi, x
2
i ) ∈ Z23l , where xi is written using l-bits

and x2
i using 2l bits. We will call these two components x̂

(1)
i and x̂

(2)
i respectively.

(b) Each Pi then computes Share⊕,3l(x̂i) = [x̂i]
B
L,3l, [x̂i]

B
R,3l ∈ Z23l via 4.2. We refer to

the first l bits of these shares as [x̂i]
B,(1)
l and the last 2l bits of these shares as

[x̂i]
B,(2)
2l .

(c) Each Pi computes the circuit ValidVAR(x̂i) and constructs polynomials f, g, h rep-

resenting the values on the input and output wires of each multiplication gate.

(d) Pi sends one share of [x̂i]
B
3l to each server, as well as one share of [f(0)]B, one

share of [g(0)]B, and one share of [h]B (that is, one share of each coefficient of

h). Pi also computes and sends shares of a triple ([a]B, [b]B, [ab]B) for random

a, b ∈ Z23l .

2. Verify Bit-Length: Initially, n′ = n. If some server, say SL, receives from Pi [x̂i]
B
L,3l

which is an m-bit integer, m ̸= 3l:

(a) SL sends the index i to SR.

(b) Both servers discard [xi]
B
3l (removing from accumulator if necessary).

(c) Both servers set n′ ← n′ − 1

3. Convert Shares: SL and SR jointly evaluate B2Al,p({[x̂i]
B,(1)
L,l , [x̂i]

B,(2)
R,l }) as well as

B2A2l,p({[x̂i]
B,(1)
L,2l , [x̂i]

B,(2)
R,2l }) on each of the n′ valid sets of Boolean shares as described
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in Section 9. SL receives as output {[x̂i]
A,(1)
L } and {[x̂i]

A,(2)
L } and SR receives as output

{[x̂i]
A,(1)
R } and {[x̂i]

A,(2)
R }.

4. Verify Encoding: For each valid x̂i received, servers verify it is truly of the form

(x, x2) as follows:

(a) Servers compute values on all other wires of the ValidVAR(x̂i) circuit via affine

operations on the values they have already (input wires, input/output wires of

all multiplication gates). For input shares, servers use arithmetic shares from the

output of share conversion.

(b) Servers use polynomial interpolation on these shares to compute secret-shares of

[f ] and [g].

(c) Servers choose a random r ∈ Z2l and each server locally computes [f(r)]B, [r ·

g(r)]B, and [r · h(r)]B.

(d) Servers use the Boolean multiplication triple ([a]B, [b]B, [ab]B) to compute [r ·

f(r) · g(r)]B. From this and [r · h(r)]B, servers use affine operations to compute

[r · (f(r) · g(r)− h(r))]B.

(e) Servers reconstruct the value r · (f(r) · g(r) − h(r)). If this value is non-zero,

servers reject the input x̂i.

5. Aggregate: SL computes A
(1)
L =

∑
i[x̂i]

A,(1)
L and A

(2)
L =

∑
i[x̂i]

A,(2)
L , and SR computes

A
(1)
R =

∑
i[x̂i]

A,(1)
R and A

(2)
R =

∑
i[x̂i]

A,(2)
R .

6. Publish: SL and SR publish their accumulator values A
(1)
L , A

(2)
L , A

(1)
R , A

(2)
R to every

client.

7. Client Computation: Pi outputs
1
n
(A

(2)
L + A

(2)
R )− 1

n2 (A
(1)
L + A

(1)
R )2.
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ΠlinReg

Inputs : (xi, yi) ∈ Z2l × Z2l for i ∈ [n].

Output : linReg((x1, y1), . . . , (xn, yn)) = (c0, c1), where ŷ(x) = c0 + c1x is the unique line

which minimizes the sum of squares loss
∑

i(yi − ŷ(xi))
2.

1. Upload:

(a) Each Pi encodes their input as x̂i = (xi, x
2
i , yi, xiyi) ∈ Z26l , where xi, yi are each

written using l bits and x2
i , xiyi are written using 2l bits. We will call these four

components (from left to right) x̂
(j)
i , where j ∈ {1, 2, 3, 4}.

(b) Each Pi then computes Share⊕,6l(x̂i) = [x̂i]
B
L,6l, [x̂i]

B
R,6l ∈ Z26l via Definition 4.2.

We refer to the j’th component of these shares as [x̂i]
B,(j).

(c) Pi sends one share of [x̂i]
B
6l to each server.

2. Verify Bit-Length: Initially, n′ = n. If some server, say SL, receives from Pi [x̂i]
B
L,6l

which is an m-bit integer, m ̸= 6l:

(a) SL sends the index i to SR.

(b) Both servers discard [xi]
B
6l (removing from accumulator if necessary).

(c) Both servers set n′ ← n′ − 1

3. Convert Shares: SL and SR jointly evaluate B2Al,p({[x̂i]
B,(1)
L , [x̂i]

B,(1)
R }) as described in

Section 9 on each of the n′ valid pairs of Boolean shares, which returns {[x̂i]
A,(1)
L } to SL

and {[x̂i]
A,(1)
R } to SR. They similarly compute B2A2l,p({[x̂i]

B,(2)
L , [x̂i]

B,(2)
R }), B2Al,p({[x̂i]

B,(3)
L , [x̂i]

B,(3)
R }),

and B2A2l,p({[x̂i]
B,(4)
L , [x̂i]

B,(4)
R }). SL receives as output {[x̂i]

A
L} and SR receives as out-

put {[x̂i]
A
R}, returning {[x̂i]

A,(j)
L } to SL and {[x̂i]

A,(j)
R } to SR for j ∈ {2, 3, 4}.

4. Verify Encoding: For each valid x̂i received, servers verify it is truly of the form

(xi, x
2
i , yi, xiyi) analogously to the VAR protocol.
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5. Aggregate: For each j ∈ {1, 2, 3, 4}, SL computes A
(j)
L =

∑
i[x̂i]

A,(j)
L and SR computes

A
(j)
R =

∑
i[x̂i]

A,(j)
R .

6. Publish: SL and SR publish their accumulator values A
(j)
L , A

(j)
R for j ∈ {1, 2, 3, 4} to

every client as well as the value n′.

7. Client Computation: Pi computes A(j) = A
(j)
L +A

(j)
R for j ∈ {1, 2, 3, 4}. Pi computes

the output via Equation 7.1, using the values A(1) =
∑

i xi, A
(2) =

∑
i x

2
i , A

(3) =
∑

i yi,

A(4) =
∑

i xiyi, and n′ = n.
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Πfrq

Inputs : xi ∈ {0, . . . , K − 1} for i ∈ [n].

Output : FRQ(x1, . . . , xn) = h⃗ ∈ ZK

1. Upload:

(a) Each Pi encodes their input as x̂i = (δxi
) ∈ Z2K , the impulse vector at xi.

(b) Pi computes Share⊕,K(x̂i) = [x̂i]
B
L,K , [x̂i]

B
R,K via Definition 4.2.

(c) Pi sends one share of [x̂i]
B
K to each server.

2. Verify Bit-Length: Initially, n′ = n. If some server, say SL, receives from Pi [x̂i]
B
L,K

which is m-bits, m ̸= K:

(a) SL sends the index i to SR.

(b) Both servers discard [xi]
B
K (removing from accumulator if necessary).

(c) Both servers set n′ ← n′ − 1

3. Convert Shares: For each index 0 ≤ j < K and for each of the n′ valid pairs of K-bit

Boolean shares, SL and SR jointly evaluate B2A1,2l({([xi]
B
L,K)j, ([xi]

B
R,K)j}) as described

in [DSZ15]. SL receives as output {[xi]
∗
L}i and SR receives as output {[xi]

∗
R}i, length-K

vectors of Arithmetic shares satisfying [xi]
∗
L + [xi]

∗
R = xi ∈ Z2K .

4. Verify Encoding:

(a) Verify Odd Parity :

i. For each Pi, SL computes the parity bit ρi =
⊕

j([x̂i]
B
L,K)j and sends ρi to

SR. SR similarly computes its own parity bit ωi =
⊕

j([x̂i]
B
R,K)j.
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ii. SR computes σi = ρi ⊕ ωi, the parity of x̂i.

iii. If σi = 1, SR does not respond and the verification passes. If σi = 0, SR

responds with the index i and both servers discard [x̂i]
B
K .

(b) Verify Total Impulse Count :

i. SL computes σL =
∑

i

∑
j([x̂j]

∗
L)i ∈ Z2K . SR similarly computes σR =∑

i

∑
j([x̂j]

∗
R)i.

ii. SL sends σL to SR.

iii. SR computes σ = σR + σL

iv. If σ = n′, where n′ is the number of non-discarded inputs currently being

considered, the verification passes and SR does not respond.

v. If σ ̸= n′, SR responds with ‘0’ indicating failure. If n′ > 1, the servers

partition the set of n′ remaining players in half lexicographically and repeat

this check recursively in parallel on inputs from players {P1, . . . , Pn′/2} and

{Pn′/2+1, . . . , Pn′}. If n′ = 1, and this one remaining player is Pi, both servers

discard their shares [x̂i] once SR responds with ‘0’ and set n′ ← n′ − 1.

5. Aggregate: For all n′ remaining clients, SL computes AL =
∑

i[x̂i]
∗
L and SR computes

AR =
∑

i[x̂i]
∗
R.

6. Publish: SL and SR publish their accumulator values AL and AR to every client.

7. Client Computation: Clients output A = AL + AR ∈ Z2K .

73



APPENDIX B

Security Definitions

We use identical definitions of f -privacy, anonymity, and robustness as used in [CB17]. We

give an informal definition of f -privacy, for the sake of readability, which captures the proper

security properties. We use the standard notions of negligible functions and computational

indistinguishability (see [Gol06]). We often leave the security parameter implicit.

Definition B.1 (f -privacy). Suppose the final aggregate includes data from n different

clients. We say that the protocol is f -private if, for:

• any malicious server Si

• any number of malicious clients m ≤ n

there exists an efficient simulator that, for every choice of the honest clients’ inputs (x1, . . . , xn−m),

takes as input:

• the public parameters to the protocol run (all participants’ public keys, the description

of the aggregation function f, the cryptographic parameters, etc.),

• the indices of the adversarial clients and server,

• oracle access to the adversarial participants, and

• the value f(x1, . . . , xn−m),
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and outputs a simulation of the adversarial participants’ view of the protocol run whose

distribution is computationally indistinguishable from the distribution of the adversary’s

view of the real protocol run.

As discussed in [CB17], the adversary learns the value f(x1, . . . , xn−m) exactly. If the

number of honest players is not sufficiently large, this can leak significant information to

the adversary about honest players’ inputs. It is therefore up to the servers to ensure that

sufficiently many honest players’ inputs are included in the aggregate. Our system is subject

to the same denial of service and intersection attacks as Prio for the same reasons they give.

For a full description, see [CB17].

Definition B.2 (Anonymity). We say that a data-collection scheme provides anonymity if

it provides f -privacy (by Definition B.1) for f = SORT, where SORT is the function that

takes n inputs and outputs them in lexicographically increasing order.

A scheme achieving anonymity by this definition leaks the entire list of honest clients’

inputs (x1, . . . , xn−m) to the adversary. However, the adversary still learns nothing about

which client submitted which value xi. We also have the following Lemma from [CB17] which

tells us that providing f -privacy for any symmetric function is necessary and sufficient for

anonymity by this definition (where a symmetric function is one that is independent of the

order of its inputs).

Lemma 2. Let D be a data-collection scheme that provides f -privacy (by Definition B.1)

for a symmetric function f . That is, f(x1, . . . , xn) = f(xπ(1), . . . , xπ(n) for all permutations

π on n elements. Then D provides anonymity.

Since all aggregate statistics we compute are symmetric functions, once we prove a par-

ticular data-collection scheme is f -private, we will have that it also provides anonymity by

this result.
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Before we can define robustness, recall that each client in the system holds a value xi ∈ D,

where D is some set of valid data items (single bits, m-bit integers, impulse vectors). The

definition of robustness tells us that when all servers are honest, a set of malicious clients

cannot influence the output beyond their ability to choose valid inputs.

Definition B.3 (Robustness). Fix a security parameter λ > 0. We say that a protocol

in our scheme provides robustness if, when both servers execute the protocol faithfully, for

every number m of malicious clients (with 0 ≤ m ≤ n), and for every choice of honest clients’

inputs (x1, . . . , xn−m) ∈ Dn−m, the servers, with all but negligible probability in λ, output a

value in the set: {
f(x1, . . . , xn)|(xn−m+1, . . . , xn) ∈ Dm

}
.
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APPENDIX C

Proofs of Security

In this section we give proofs of privacy and robustness for each protocol described in Sec-

tion 8. As discussed in the previous section, [CB17] shows that privacy of any symmetric

functionality also implies anonymity. Since each statistic given here is symmetric (does not

depend on order of inputs), we get anonymity as a free corollary of privacy in each case.

C.1 Privacy

Our protocols amend the Prio protocol in a few ways. These amendments, however, do not

significantly affect the privacy proofs. In particular, our shift from Arithmetic to Boolean

secret-sharing affects nothing about the hiding property of the scheme, so any singular shares

are still indistinguishable from random. The introduction of the OT-based B2A share con-

version reveals no additional information besides the output based on the results of [DSZ15].

The output, from the view of a single corrupted server, is once again a single share of a secret

value but now in the arithmetic scheme, again indistinguishable from random. Since these

additional interactions between players are all efficiently simulatable, our protocols remain

secure. We do have to, however, prove that our daBit-based share conversion protocol is also

private in this regard.

Our protocols fall into three categories.
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• No share conversion, no SNIPs (Πand,Πor,Πmax,Πmin)

• Share conversion, no SNIPs (Πsum,Πfrq)

• Share conversion and SNIPs (Πvar,ΠlinReg)

Intuitively, protocols in the first category have the easiest proofs of privacy. In these

protocols, inputs are encoded in a manner such that any Boolean vector of the proper length

is a valid encoding, meaning once client data is split into Boolean secret-shares, all validation

work by servers can be done locally by simply verifying the length of the shares. Thus the

view of an adversary controlling a single server and arbitrarily many clients contains only a

single share of any honest player’s input, which is indistinguishable from random according

to the hiding property of our secret-sharing scheme. The only other message that the adver-

sary sees is the honest server’s aggregated value AR. This value, however, can be computed

deterministically from the output of the function and AL, which are known to the adversary.

Each proof in this category will follow this structure.

The second category is almost identical to the first, except that the protocol calls B2A

on the set of clients’ Boolean shares as a subroutine. The privacy of this protocol is proven

in [DSZ15], and concludes that neither server, except with negligible probability, learns any-

thing besides the corresponding set of arithmetic shares. This, in combination with the

above argument, proves privacy of this set of protocols.

Protocols in the third category rely on the SNIP construction of [CB17] due to the

fact that their encoding involves a multiplicative relationship. This is the ideal application

of SNIPs and thus we utilize them in this situation. However, we still use B2A and our

bit-length verification technique independently of the SNIP procedure. Thus, the only addi-

tional piece necessary to prove privacy for these protocols is the proof of zero-knowledge for

SNIPs given in Appendix D.2 of [CB17]. This guarantees that a single semi-honest server
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(and any number of misbehaving clients) learn nothing from the SNIP verification of an

honest player’s input besides the fact that the multiplicative relationship(s) hold. This, in

combination with the above arguments, completes the proof of privacy for this third category.

We now give formal proofs of privacy for each protocol.

Theorem 3. The protocol Πand is AND-private, where xi ∈ {0, 1} and

AND(x1, . . . , xn) = 1 ⇐⇒ ∀i xi = 1.

Proof. Suppose, without loss of generality, that the adversary A corrupts SL as well as

m clients Pn−m+1, . . . , Pn where m ≤ n. Suppose honest players P1, . . . , Pn−m hold in-

puts x1, . . . , xn−m ∈ {0, 1}. We must construct an efficient simulator which takes the value

AND(x1, . . . , xn) and plays the part of the honest players in the protocol to construct a sim-

ulated view V ∗ which is computationally indistinguishable from the adversary’s real view

in the protocol view(A) = view(SL, Pn−m+1, . . . , Pn). A’s actual view (excluding adversarial

inputs, which can be perfectly simulated given oracle access to the adversarial clients) is

precisely:

{[x̂1]
B
L , . . . , [x̂n−m]

B
L , AR}

The hiding property of the Boolean and Arithmetic secret-sharing schemes guarantees

that a single share reveals nothing about the underlying encoded secret x̂i and is thus indis-

tinguishable from a random ring element. Thus, we simulate the honest players’ shares seen

by SL by sampling random elements from the proper ring, in this case Zλ
2 .

To simulate the value AR, we examine two possible cases. If the output is AND(·) = 1,

then the simulator chooses the simulated value ÂR to be equal to AL. This is the only

possible value of AR which would result in the proper output, AL ⊕ AR = 0. Otherwise,
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if AND(·) = 0 the simulator chooses AR uniformly at random from Zλ
2 , resulting in the

proper output AL⊕AR = r⃗. We know ÂR and AR come from the same distribution because

they are both uniformly random subject to the constraint of producing the correct output.

In conclusion, the simulated adversarial view is precisely V ∗ = {r1, . . . , rn−m, ÂR}, where

ri ∈ Zλ
2 is chosen at random and ÂR is defined as above.

Corollary 4. The protocol Πor is OR-private, where xi ∈ {0, 1} and OR(x1, . . . , xn) = 0 ⇐⇒

∀i xi = 0.

Proof. The proof is identical except for the simulation of AR. In this case, if the output is 0,

the simulator chooses ÂR = AL, and if the output is 1 it samples ÂR randomly from Zλ
2 .

Theorem 5. The protocol Πmax is MAX-private, where xi ∈ {0, . . . , k−1} andMAX(x1, . . . , xn) =

max{x1, . . . , xn}.

Proof. The proof is nearly identical to the previous proof for AND, but we provide a detailed

proof regardless.

Again we suppose, without loss of generality, that the adversary A corrupts SL as well

as m clients Pn−m+1, . . . , Pn where m ≤ n. Suppose honest players P1, . . . , Pn−m hold inputs

x1, . . . , xn−m ∈ {0, . . . , k−1}. We must again construct an efficient simulator which takes the

value MAX(x1, . . . , xn) and plays the part of the honest players in the protocol to construct a

simulated view V ∗ which is computationally indistinguishable from the adversary’s real view

in the protocol view(A) = view(SL, Pn−m+1, . . . , Pn). A’s actual view (excluding adversarial

inputs, which can be perfectly simulated given oracle access to the adversarial clients) is

once again:

{[x̂1]
B
L , . . . , [x̂n−m]

B
L , AR}
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Once again, the hiding property of our secret-sharing schemes guarantees that a single

share reveals nothing about the underlying encoded secret x̂i and is thus indistinguishable

from a random ring element, this time in the ring Zλ×k
2 . Thus, we simulate the honest play-

ers’ shares seen by SL by sampling random elements from Zλ×k
2 .

To simulate the value AR, we again utilize the output of the protocol. Suppose without

loss of generality that MAX(x1, . . . , xn) = t, where t ∈ {0, . . . ,M−1}. The adversary simply

chooses ÂR at random from Zλ×k
2 subject to the following constraint: (AL ⊕ AR)j = 0 for

j < tλ and (AL ⊕ AR)k = 1 for some k ∈ {tλ, . . . , (t + 1)λ − 1}. We once again know ÂR

and AR come from the same distribution because they are both uniformly random subject

to the constraint of producing the correct output. In conclusion, the simulated adversarial

view is precisely V ∗ = {r1, . . . , rn−m, ÂR}, where ri ∈ Zλ×k
2 is chosen at random and ÂR is

defined as above.

Corollary 6. The protocol Πmin is MIN-private, where MIN(x1, . . . , xn) = min{x1, . . . , xn}

and xi ∈ {0, 1}.

Proof. The only interaction in Πmin is a single call to the Πmax protocol, whose privacy was

established via the previous theorem.

This concludes proofs of privacy for our first class of protocols which do not require

share conversion. Although the next few proofs involve share conversion, they only require

OT-based share conversion, so we simply rely on the proof of privacy from [DSZ15].

Theorem 7. The protocol Πsum is SUM-private, where xi ∈ Zl′
2 and

SUM(x1, . . . , xn) =
∑

xi (as integers in Z).

Proof. Suppose, without loss of generality, that the adversary A corrupts SL as well as

m clients Pn−m+1, . . . , Pn where m ≤ n. Suppose honest players P1, . . . , Pn−m hold in-

puts x1, . . . , xn−m ∈ Z2l′ . We must construct an efficient simulator which takes the value
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SUM(x1, . . . , xn) =
∑

i xi ∈ Z and plays the part of the honest players in the protocol to

construct a simulated view V ∗ which is computationally indistinguishable from the adver-

sary’s real view in the protocol view(A) = view(SL, Pn−m+1, . . . , Pn). The underlying B2A

protocol is Fb2a-private (see [DSZ15]), so the adversary only learns the output of B2A and

nothing else. Thus A’s actual view (excluding dishonest players’ inputs) is precisely:

{[x1]
B
L , . . . , [xn−m]

B
L , [x1]

A
L , . . . , [xn−m]

A
L , AR}

Based on the hiding property of the Boolean and Arithmetic secret-sharing schemes,

a single share in either scheme reveals nothing about the underlying secret and is thus

indistinguishable from a random element of the corresponding ring. Thus, we simulate the

honest players’ shares seen by SL by sampling random elements of the proper length, l′

bits for the Boolean shares and l bits for the Arithmetic shares. ÂR can be computed

as SUM(x1, . . . , xn) − AL, since AL + AR = SUM(·). Thus the simulated view is V ∗ =

{r1, . . . , rn −m, r′1, . . . , r
′
n−m, ÂR}, where ri ∈ Z2l′ and r′i ∈ Z2l are chosen at random.

Note that this proves privacy of our bit sum protocol as a corollary by simply substituting

l′ = 1.

Corollary 8. The protocol Πmean is MEAN-private, where xi ∈ Z2l′ and MEAN(x1, . . . , xn) =

( 1
n

∑
i xi, n).

Proof. The Πmean protocol is identical to the ΠSUM protocol except that servers also release

to clients in the clear the number of players n′ who submitted valid inputs so that they can

properly compute the mean. The adversary’s view and the simulated view are identical.

Theorem 9. The protocol Πfrq(x1, . . . , xn) is FRQ-private, where xi ∈ {0, . . . , k − 1} and

FRQ(x1, . . . , xn = h⃗− (f1, . . . , fk) ∈ Zk
n+1, where fj = |{xi : xi = j} ≤ n is the frequency of

input j ∈ Zk.
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Proof. We once again assume A corrupts SL as well as the last m clients. If we ignore the two

additional verification steps ensuring that each input is an impulse vector, the adversary’s

view is once again

view(A) = {[x1]
B
L , . . . , [xn−m]

B
L , [x1]

A
L , . . . , [xn−m]

A
L , AR}

just as in the SUM protocol. Simulating the SL shares is once again done via random sam-

pling in the rings Z2l′ and Z2l for the Boolean and Arithmetic shares respectively. Simulating

AR is once again done using the output of the protocol and AL. Specifically, ÂR = h⃗⊕ AL.

Thus, to prove privacy, we need only prove the privacy of these two additional verification

steps.

The first such step is a parity check on each encoded input x̂i to make sure it contains

an odd number of 1’s. This is accomplished in the clear by having each server computing

the parity of their share (call these parity bits pi,L and pi,R) and taking the direct sum

pi = pi,L ⊕ pi,R. Note that for any honest player Pi, we must have pi = 1. Similarly, for any

corrupted player Pj, our simulator knows the value pj exactly. Thus, we can simulate all pi,R

exactly by computing pi,R = pi ⊕ pi,L.

The second check is to ensure that no player submitted multiple impulses. To do this,

servers compute B2A on each component of each secret-shared “impulse.” Based on the pri-

vacy of B2A from [DSZ15], this does not reveal any information besides the output, the

corresponding Arithmetic shares. The servers sum all vectors together and sum the compo-

nents of the final vectors to get arithmetic shares of the total number of impulses submitted

by all clients. Note that this value is is simply n − c, where c is the number of adversarial

clients who submitted invalid inputs. Since our simulator knows the value c, this can be

simulated exactly. If c = 0, we are done. Otherwise, the process repeats recursively on

smaller subsets of players. Note that no matter how small these subsets become, the sum
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n′ − c′ of total impulses in any subset will never reveal anything about an honest player’s

input, since it is publicly known that all honest players submitted a single impulse. This

step will only possibly reveal adversarial players’ inputs. Thus this second check is again

private.

Since every message seen by the adversary in these additional verification steps is effi-

ciently simulatable, we conclude that the protocol is private.

Before we can prove the privacy of Πvar, Πstddev, and ΠlinReg, we must prove the privacy

of the share conversion protocol on which these protocols rely.

Theorem 10. B2Ap, as described in Section 9, is FB2A-private.

Proof. First note that there is only a single communication round in the protocol, in which

servers send their share [v]Bi to each other. Thus, any information about x that is leaked in

the protocol must be leaked by this single message. However, [v]Bi = [x]Bi ⊕ [b]Bi , where b is

a random bit whose value is not known in the clear to either party. Since neither x nor b

is known in the clear to either party, even an adversary who knows both [v]BL = [x]BL ⊕ [b]BL

and [v]BR = [x]BR ⊕ [b]BR does not have enough information to deduce x or b. For example, an

adversary corrupting server L would receive from the honest server R a value [v]BR, which it

knows is equal to [x]BR ⊕ [b]BR, but since both of these values are unknown, neither can be

deduced from the value [v]BR. An analogous argument applies when server R is corrupted.

Since no information about x or b can be deduced by an adversary corrupting a single party,

and these are the only inputs to the protocol, we can conclude that B2Ap is FB2A-private.

We now have the tools to prove that Πvar, Πstddev, and ΠlinReg are private.

Theorem 11. The protocol Πvar is ˆVAR-private, where xi ∈ Z2l and

ˆVAR(x1, . . . , xn) = (VAR{x1, . . . , xn},E{x1, . . . , xn}).
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Proof. Our proof is analogous to the previous examples except for three departures. First,

our proof additionally relies on the privacy of the SNIP verification procedure. The full proof

of security can be found in Appendix D of [CB17]. Their conclusion is that as long as one

server is honest, an adversary controlling the remaining servers (and any coalition of clients)

learns nothing from the SNIP verification procedure. This is analogous to how we rely on

the security of the OT-based B2A protocol from [DSZ15] to conclude that the adversary’s

learns nothing besides the output of the protocol, except with negligible probability. This

tells us that the view of our adversary remains the same before and after SNIP verification.

The second departure is that this protocol relies on our daBit-based share conversion

protocol. Since we have already proven that this protocol is private, we simply use that

result to ensure that the adversary learns nothing but the output during share conversion.

The adversary’s view (not including adversarial inputs) is thus:

{{[fi(0)]L}, {[gi(0)]L}, {[hi]}, {[x̂1]
B
L , . . . , [x̂n−m]

B
L , [x̂1]

A
L , . . . , [x̂n−m]

A
L , AR}

To simulate the polynomial shares, we call the simulator used in the SNIPs security proof

in Appendix D of [CB17] as a subroutine. For the rest of the shares, we simulate via random

sampling once again based on the hiding property of the secret sharing schemes.

The third departure is that the value AR, when combined with AL, reveals E[X] in

addition to VAR[X], where X is a uniform random variable over values x1, . . . , xn. This is

why our functionality ˆV AR additionally reveals E[X], meaning our simulator receives this

as input. From this and the variance, the simulator can reconstruct E[X2] using the identity

VAR[X] = E[X2] − (E[X])2. Then, since AL + AR = E[X2] − (E[X])2 with overwhelming

probability, the simulator can simulate AR by simply computing ÂR = E[X2]−(E[X])2−AL.
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Corollary 12. The protocol Πstddev is ˆSTDDEV-private, where ˆSTDDEV(X) = (
√
VAR(X),E[X]).

Proof. The protocol is identical to Πvar with an additional local operation applied on the

client side. Since there is no additional communication, the ˆVAR-privacy of Πvar implies the

corollary.

Theorem 13. The protocol ΠlinReg is ˆlinReg-private, where ˆlinReg additionally outputs n′,

the number of players whose shares were counted in the aggregate.

Proof. This proof is completely analogous to the previous proof for Πvar. The only difference

between the protocols, besides the length of encoded shares, is that two multiplicative rela-

tionships are being verified within the encoded inputs. These are both done using SNIPs,

however, and so with overwhelming probability neither server learns any additional informa-

tion based on Appendix D in [CB17]. Simulation of AR, once n′, c0, c1, and AL are known,

can be done via simple matrix operations on the matrix equation given in Section 6.

C.2 Robustness

In this section, we give proofs that each of our protocols are robust. That is, no client can

affect the output of the protocol beyond misreporting their private value as some other valid

input value. Our first and second categories of protocols (with the exception of Πfrq) will have

the simplest robustness proofs. This is because all Boolean strings of the proper length are

valid encodings, meaning the bit-length is the only property which servers must verify, and

doing so is trivial when client data is shared via the Boolean scheme. In the protocols which

utilize SNIPs, our robustness relies on the SNIPs’ soundness property, proven in Appendix

D of [CB17]. It guarantees that a malicious prover has only a negligible probability of

successfully submitting an invalid proof to the verifiers. This, in combination with the

trivial verification of bit-length, guarantees that each input lies in the correct range and

they obey the proper multiplicative relationships. The most involved proof of robustness is
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for the Πfrq protocol, since we must give an argument from scratch of the correctness of our

verification procedure.

Theorem 14. The protocol Πand(x1, . . . , xn) is robust, where xi ∈ {0, 1}.

Proof. Note that any λ-bit Boolean vector is a valid encoded input. Any player who does not

submit a λ-bit Boolean vector to each server is ignored by the protocol, which is equivalent

to having an input of zero. Any player who does submit a λ-bit Boolean vector to each

server, call them vL, vR ∈ Z2λ , has submitted an encoding of a valid input, since vL⊕ vR is a

λ-bit Boolean vector. Thus any misbehaving client must either submit a valid encoded input

or be treated as if they submitted input 0, which satisfies the definition of robustness.

Theorem 15. The protocol Πor(x1, . . . , xn) is robust, where xi ∈ {0, 1}.

Proof. See proof of previous theorem.

Theorem 16. The protocol Πmax(x1, . . . , xn) is robust, where xi ∈ {0, . . . ,M − 1}.

Proof. Same as previous proofs, except that valid encoded inputs are M × λ-bit Boolean

vectors.

Theorem 17. The protocol Πmin(x1, . . . , xn) is robust, where xi ∈ {0, . . . ,M − 1}.

Proof. Same as previous proof, valid encoded inputs are M × λ-bit Boolean vectors.

Theorem 18. The protocol Πsum(x1, . . . , xn) is robust, where xi ∈ Z2l′ , l
′ < l.

Proof. Note that once again, any l′-bit Boolean vector is a valid encoded input. Thus, as

long as each server received an l′-bit Boolean vector, the client submitted a valid input.

For the client to submit anything besides a valid input, he must send to at least one server

something besides an l′-bit Boolean vector, at which point the servers will detect it with

certainty, discard that clients’ shares, and continue as if that client submitted a zero.

Corollary 19. The protocol Πmean(x1, . . . , xn) is robust, where xi ∈ Z2l
′ , l′ < l.
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Proof. The protocol consists of one call to Πsum and local operations, so robustness of Πsum

implies robustness of Πsum.

This concludes our trivial robustness proofs. The following proofs rely on the soundness

property of SNIPs, for which we rely on the results of [CB17].

Theorem 20. The protocol Πvar(x1, . . . , xn) is robust, where xi ∈ Z2l.

Proof. Clients must submit shares of the proper length by the argument given in previous

proofs. The only additional factor in this protocol is that the encoded input must be of

the form (x, x2). This is accomplished via the use of SNIPs, and our robustness property

relies on the soundness of SNIPs proven in Appendix D of [CB17]. Their result guarantees

that no client has more than 2µ+1
2l

probability of submitting an input not of the form (x, x2)

for which the SNIP verification succeeds, where µ is the number of multiplication gates in

the Valid circuit. Here, µ = poly(l), so this probability is negligible. Since any input whose

SNIP verification fails will be ignored (which is equivalent to submitting the value 0), this

implies that no adversarial client can affect the output beyond misreporting their private

value except with negligible probability. Thus, Πvar is robust.

Corollary 21. The protocol Πstddev(x1, . . . , xn) is robust, where xi ∈ Z2l.

Proof. The protocol consists of one call to Πvar and local operations, so robustness of Πvar

implies robustness of Πstddev.

Theorem 22. The protocol ΠlinReg(x1, . . . , xn) is robust, where xi ∈ Z2l.

Proof. In this case, we must verify that the encoded input is of the form (x, x2, y, xy). The

proof is identical to the proof of robustness for Πvar except that the Valid circuit verifies both

multiplicative relationships at once. That is, according to the soundness of SNIPs proven in

Appendix D of [CB17], no client has more than a negligible probability (2µ+1
2l

) of submitting

an improperly encoded input for which the SNIP verification algorithm succeeds. Thus, by

the same argument as Πvar, ΠlinReg is robust.
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Theorem 23. The protocol Πfrq(x1, . . . , xn) is robust, where xi ∈ {0, . . . , k − 1}.

Proof. If an adversarial client submits anything besides an k-bit Boolean vector to either

server, their input will be discarded. Otherwise, the only ways to submit an invalid encoding

are to submit a zero vector or to submit multiple impulses. If Pi submits a zero vector,

servers will discover it has an even parity when they compute the parity in the clear. Thus,

the input will be discarded. Since all zero vectors are detected with certainty in this step,

assume from this point onwards that the servers do not hold shares of any zero vector and

that there are n′ remaining pairs of shares. If Pi submits a vector x such that (x)i = (x)j = 1,

then the sum of all the components in the sum of all vectors will be greater than n′, since

there are no zero vectors. This means the players will be partitioned lexicographically and

the check will repeat recursively. In the base case of this recursion, Pi will be the only

member of his partitioned set, and this check will reveal that the sum of the components

in his input is larger than 1, and his input will be discarded. This happens with certainty.

Thus, no client can submit an invalid input without their input being ignored, satisfying the

definition of robustness.

This concludes our proofs of security. We have shown that each protocol described in this

paper is private (with at most the same modest leakage as Prio), robust, and anonymous.
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