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LBNL–57045, CBP Tech Note–331

Lattices with Large Dynamic Aperture for ILC Damping Rings∗

A. Wolski†
Lawrence Berkeley National Laboratory, Berkeley, CA 94720

(Dated: February 17, 2005)

The ILC damping rings will need a large acceptance to ensure good injection efficiency for the
high-emittance, high-power beam from the positron source. The damping rings also need to have
very low natural emittance for the collider to reach good luminosity. Meeting the simultaneous
requirements for large dynamic aperture and low natural emittance presents a challenge for the
lattice design. Previous designs have been based on theoretical minimumum emittance cells in the
arcs; here, we present two lattice designs using simple FODO cells. The first design is for a 5 GeV
ring with 16 km circumference and a layout similar to the TESLA “dogbone” damping ring. The
second design is based on the same optics, but the circumference is reduced to 6.3 km by eliminating
part of the long straight sections; this results in a small improvement in the dynamic aperture. The
shorter ring also operates at the lower energy of 3.74 GeV. A drawback with both designs is that
the high dispersion in the arcs leads to a large momentum compaction, which in turn leads to a
requirement for a very high RF voltage, and a large value for the synchrotron tune. As well as
presenting the designs and an analysis of the dynamic aperture in each lattice, we briefly consider
the collective effects and, for the 16 km lattice, discuss the coupling bumps needed to reduce the
space-charge tune shift.

I. INTRODUCTION

The basic requirements of the ILC damping rings are
that they accept a large beam from the particle sources,
and produce a highly stable, low-emittance beam for the
downstream systems, at the machine repetition rate of 5
Hz. We base the designs presented in this note on the
specifications set out in the TESLA TDR [1]. In the
TESLA design, the injected positron beam was expected
to have a normalized emittance of 0.01 m (horizontal and
vertical), and the normalized emittances of the extracted
beam were specified to be 8 µm horizontally and 0.02 µm
vertically. Each bunch train consisted of 2820 bunches
with 2× 1010 particles, and a nominal bunch separation
of 337 ns in the main linac. A bunch train of this length
must be compressed if the damping rings are to be of
a reasonable size. The TESLA TDR specified damping
rings of 17 km, with a bunch separation of 20 ns, based
on the expected performance of the kickers that would be
needed for injecting and extracting bunches individually.
A ring with a 6 km circumference has been proposed by
Mishra et al [2], using kickers with rise times of 6 ns.

One of the main challenges with any lattice design for
the ILC damping rings is achieving a good dynamic aper-
ture. The average injected beam power for a 5 GeV ring
will be 226 kW, so loss of even a small fraction of the in-
jected beam can cause large radiation loads in the damp-
ing ring. This makes the acceptance of the ring an im-
portant issue, and a good dynamic aperture (as well as a
large physical aperture) will be essential. Previous lattice
designs have usually been based on theoretical minimum
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emittance (TME) cells in the arcs, which generally have
low dispersion and large chromaticity; this means that
strong sextupoles are needed for chromatic correction,
and the result is often a limited dynamic aperture. Cai
[3] proposed the use of FODO cells in a predamping ring,
and recently has discussed the design of a small damping
ring using FODO cells. In this note, we report the de-
sign of a 16 km lattice using FODO cells in the arcs. The
large circumference has the advantage of easing the re-
quirements on the injection and extraction kickers, and
possibly of providing more flexibility in operation (for
example, if good kicker performance can be achieved, it
might be possible to allow a reduction in bunch charge
by increasing the number of bunches in the pulse train).
There are also some disadvantages to the large circumfer-
ence, including the need to couple the beam in the long
straight sections to reduce the space-charge forces.

Our main concern in the present design has been to
achieve a dynamic aperture which is several times the in-
jected beam size over the range of energy deviations ex-
pected in the injected beam. We consider only an “ideal”
lattice, that is, one without any systematic or random
higher-order multipoles in the main magnets, and with-
out any steering errors or tuning errors. In dynamic
aperture calculations, we have used a linear model for
the damping wiggler, consisting of a sequence of dipole
elements. It is known that the systematic nonlinearities
in the wiggler field can have a significant impact on the
dynamic aperture; however, the precise effects are sensi-
tive to the details of the wiggler design, and it is possible
that they may be mitigated by compensating elements.
We therefore regard the effects of the damping wiggler on
the dynamic aperture as beyond the scope of the present
work.

The 16 km lattice has long straight sections designed
to be located in the same tunnel as the main linac: this
reduces the overall tunnel length needed for the damp-
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ing rings. The chromaticity of the long straight sections
requires non-local correction in the arcs. This has some
impact on the dynamic aperture, and it is interesting to
consider the effect of reducing the circumference by elim-
inating some of the length of the straight sections. This
can be achieved rather easily, and we present some results
from a version of the lattice with a 6.3 km circumference.
Although there is some benefit to the dynamic aperture
resulting from a shorter circumference, the gain is fairly
small because the long straight sections are designed to
have very low chromaticity per unit length.

Designing a lattice with large dispersion in the arcs
helps to reduce the strengths of the chromatic sextupoles;
however, the large dispersion also leads to a high value
for the momentum compaction. In consequence, both lat-
tices presented here have a requirement for a very high
RF voltage (115 MV for the 16 km lattice, and 25 MV for
the 6.3 km lattice) to achieve a 9 µm longitudinal emit-
tance, and the synchrotron tunes are rather large (0.25
for the 16 km lattice, and 0.13 for the 6.3 km lattice). It
is possible to reduce the dispersion so as to reduce the
RF voltage and synchrotron tune to more acceptable val-
ues; however, this will have some impact on the dynamic
aperture. Some optimization is needed to find a good
balance between these competing effects.

In this note, we begin with a general description of the
lattices, and discuss some considerations of the fill pat-
tern, RF system, alignment sensitivities etc. We proceed
to present the results of frequency map analysis of the dy-
namic aperture, and an evaluation of the acceptance us-
ing a nominal distribution for an injected positron beam.
Finally, we consider some of the collective effects that
may have an impact on the operational performance of
the damping rings. For the case of the 16 km lattice, we
discuss the “coupling bumps” needed in the long straight
sections to reduce the space-charge forces.

II. GENERAL LATTICE DESCRIPTION

The main lattice parameters are given in Table I, and
the beam parameters are given in Table II. The footprint
of the 16 km lattice is shown in Figure 1, and that of the
6.3 km lattice is shown in Figure 2. Each lattice is com-
posed of two arcs, each with circumference roughly 1.4
km, joined by long straight sections. The long straight
sections contain the RF cavities and the wiggler, and a
series of high-beta FODO cells. In the case of the 16 km
lattice, the FODO cells compose most of the length of
the straight. Each arc consists of 84 FODO cells. The
final 21 cells bend in the reverse direction to the preced-
ing 63 cells, so that a forward bend of 270◦ is followed
by a reverse bend of 90◦. The result is that the exit
of the arc is parallel to the entrance, but with the beam
traveling in the opposite direction. The distance between
the entrance and exit beamlines can be controlled by in-
serting short straight sections of different lengths after
90◦ and 270◦ total bending. Matching the dispersion to

zero at either end of the arc is achieved by adjusting the
quadrupole strengths in the final three FODO cells. Note
that the sextupoles in these cells are omitted, so that sex-
tupoles appear only in the regular, periodic arc cells. The
straight sections between the arcs are tuned so that the
phase advances horizontally and vertically between the
periodic arc cells take on integer values. For on-energy
particles, this means that the dynamics in the lattice are
essentially determined by the dynamics in one arc cell;
this simplifies optimization of the dynamic aperture. For
off-energy particles, the phase advances in the straight
sections vary because of the chromaticity, resulting in a
reduction in dynamic aperture.

The damping wiggler in both the 16 km and the 6.3 km
lattices has a total length of 441 m. In the 16 km lattice,
the peak field is 1.6 T; this gives a damping time of a little
under 27 ms which is sufficient to reduce the injected
emittances to the specified extraction values after 200
ms (one machine cycle). At 5 GeV, the damping time in
the 6.3 km lattice with 441 m of 1.6 T wiggler would be a
little over 10 ms; the significant margin on this damping
time allows us to reduce both the beam energy and the
wiggler peak field for the same length of wiggler, which
has the benefit of reducing both the energy spread and
the natural emittance. However, a lower energy does
make the beam more sensitive to collective effects. To
keep the lattice functions in the 6.3 km lattice the same
as those in the 16 km lattice, the wiggler peak field has
been reduced in proportion to the energy, to 1.2 T. The
beam energy in the 6.3 km lattice is 3.74 GeV, which was
chosen to give a damping time of around 27 ms, while
avoiding major spin resonances.

The lattice functions at the entrance to one arc, in-
cluding three periodic arc cells, are shown in Figure 3.
The RF cavities are interleaved with sections of the wig-
gler: the lattice functions in the cavities and wiggler are
shown in Figure 4. The lattice functions at the entrance
to one long (high-beta) straight section are shown in Fig-
ure 5. The coupling bump included in this part of the
lattice is discussed in more detail below. For now, we
simply note that the lattice functions are defined so that
the rms beam sizes are given by:

〈x2〉 = βxεx + βII
11εy (1a)

〈xy〉 = βI
13εx + βII

13εy (1b)

〈y2〉 = βI
33εx + βyεy (1c)

where the transverse emittances are εx and εy. Using the
above equations, it is apparent from Figure 5 that in the
case εy � εx, the beam is approximately round (with
some small tilt in the drifts between the quadrupoles).

The lattice functions in one full periodic section of the
6.3 km lattice are shown in Figure 6. Note that there
is no coupling in the 6.3 km lattice. The phase ad-
vances in one arc cell are a little below 90◦ horizontally
and vertically, and were chosen to give a good dynamic
aperture for on-energy particles. The dynamic aperture
is not highly sensitive to the exact phase advances, which
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TABLE I: General lattice parameters.

Energy E 5.00 GeV 3.74 GeV

Circumference C 15935 m 6333.5 m

Harmonic number h 34550 13732

Revolution frequency f0 18.813 kHz 47.334 kHz

RF frequency fRF 650.0 MHz 650.0 MHz

RF voltage VRF 115 MV 24.7 MV

Synchronous phase φs 80.1◦ 75.5◦

Energy loss per turn U0 19.78 MeV 6.191 MeV

Damping times τx, τy, τz 26.9, 26.9, 13.4 ms 25.5, 25.5, 12.8 ms

Tunes νx, νy, νs 75.783, 76.413, 0.252 65.783, 66.413, 0.130

Natural chromaticity ξx, ξy -90, -95 -78, -84

Natural transverse emittance ε0 0.673 nm 0.377 nm

Momentum compaction αp 0.474× 10−3 1.19× 10−3

Natural bunch length σz 6.38 mm 9.06 mm

Natural energy spread σδ 1.41× 10−3 0.993× 10−3

Natural longitudinal emittance εz 9.0 µm 9.0 µm

TABLE II: Beam parameters.

Circumference C 15935 m 6333.5 m

Particles per bunch N0 2.0× 1010 2.0× 1010

Number of bunches nb 2826 2808

Bunch spacing ∆τb 15.38 ns 6.154 ns

Bunches per train ntrain 18 36

Bunches per gap 4 8

Number of bunch trains 157 78

Average current 〈I〉 170 mA 426 mA

Injected normalized emittance γεinj 0.01 m 0.01 m

Equilibrium vertical emittance γεy 0.02 µm 0.02 µm

FIG. 1: Footprint of 16 km lattice.

allows some flexibility in controlling the overall tunes of
the lattice. As we mentioned above, the straight sections
are tuned to give integer phase advances between periodic
sections of the arcs. The tunes of the lattice therefore
need to be controlled by adjusting the phase advances
over the arc cells rather than the straights. Since the
arcs in the 16 km and the 6.3 km lattices are the same,
the fractional parts of the tunes in the two lattices are
the same. The final working point has been chosen with

the following considerations:

• The vertical tune should be close to the half
integer, to minimize sensitivity to quadrupole
alignment errors. However, the tune should be
sufficiently far from the half integer that the
lattice is not overly sensitive to focusing errors.

• The working point should be away from major
coupling resonances, to reduce sensitivity of the
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FIG. 2: Footprint of 6.3 km lattice.

FIG. 3: Beta functions and dispersion at the entrance to one arc, including three periodic FODO cells.

vertical emittance to sextupole misalignment and
quadrupole rotation errors.

• The working point should be sufficiently far from
major nonlinear resonances, to allow good
dynamic aperture.

Ideally, in addition to the above considerations, the hor-
izontal and vertical tunes should also be below the half-
integer. Above the half-integer, the coupled-bunch mode
most strongly driven by the resistive wall impedance is
antidamped; below the half-integer, it is damped. How-
ever, the additional requirements on the bunch-by-bunch
feedback system from operating slightly above the half-
integer, compared to operating slightly below, are not
great. In the present case, the vertical tune is below the

half-integer, and the horizontal tune is above the half-
integer.

An interesting feature of the 16 km lattice is that the
relatively large momentum compaction and the high RF
voltage result in some variation in the bunch length and
energy spread in different parts of the lattice; in effect,
the lattice behaves as a bunch compressor, and the large
synchrotron tune is one consequence of this. The vari-
ations in bunch length and energy spread may be char-
acterized in terms of longitudinal beta functions, thus:

〈z2〉 = βIII
55 εz (2a)

〈zδ〉 = βIII
56 εz (2b)

〈δ2〉 = βIII
66 εz (2c)
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FIG. 4: Beta functions and dispersion in the RF cavities and wiggler.

FIG. 5: Beta functions at the entrance to one long straight section.

We have assumed that the transverse emittances are not
coupled into the longitudinal plane. The longitudinal
beta functions in the 16 km lattice are plotted in Figure
7. The variation of βIII

55 indicates a variation in bunch
length of roughly 9% between the maximum and min-
imum values. We also note that through most of the
lattice, there is some correlation between energy devia-
tion and longitudinal position in the bunch. Under these
conditions, care is needed when calculating the equilib-
rium beam distribution; the usual formulae using the syn-

chrotron radiation integrals assume the energy deviation
is not correlated with position, and a more general tech-
nique, such as Chao’s method, must be used. There are
similar variations in the bunch length and energy spread
in the 6.3 km lattice, but of much smaller amplitude: for
this case, the range of variation of the bunch length is a
little over 2%.
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FIG. 6: Beta functions in one half of the 6.3 km lattice.

FIG. 7: Longitudinal beta functions in one arc and RF/wiggler section of the 16 km lattice.

III. TECHNICAL SUBSYSTEMS

Here, we outline the general requirements and specifi-
cations for the injection/extraction system, the RF sys-
tem, the multipole magnets and damping wiggler, and
the vacuum system.

A. Injection/Extraction Timing and RF System

In each lattice, the bunches are arranged in trains with
regular short gaps intended to prevent ion trapping. Ex-
traction proceeds with the last bunch in each train; the
gap after the last bunch train is one bunch longer than
the others, so that after the last bunch has been extracted
from each train, extraction continues with the last-but-
one bunch in each train with no delay in the arrival of
bunches at the linac. This fixes the harmonic number of
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the ring; the frequency of the RF system is then deter-
mined by the circumference. In both the 16 km and the
6.3 km lattices, the exact circumference has been chosen
so that the RF frequency is 650 MHz, or one half of the
main linac RF frequency. With the fill pattern shown
in Table II, the time between extracted bunches in the
16 km lattice is 338 ns, very close to the value specified
for TESLA. In the 6.3 km lattice, the time between ex-
tracted bunches is 271 ns. This may be too short for the
linac; an alternative fill pattern could be used, but this
would require changing the circumference of the lattice.

The RF voltage in each lattice is chosen to give a lon-
gitudinal emittance of 9 µm. The lower energy spread in
the 6.3 km lattice (a result of the lower energy) means
that the bunch length is proportionately longer: 9.1 mm,
compared to 6.4 mm in the 16 km lattice. The RF volt-
age in the 16 km lattice is rather large at 115 MV; the
6.3 km lattice needs a more reasonable (but still large)
24.7 MV. A consequence of the large voltage and momen-
tum compaction in each lattice is that the synchrotron
tunes are also large, 0.252 and 0.130 in the 16 km and
6.3 km lattices respectively. This may be a concern for
synchro-betatron coupling.

B. Dipoles, Quadrupoles, Sextupoles

The parameters of the dipoles and higher multipoles
in the 16 km, 5 GeV ring are shown in Table III. We
have assumed a full aperture of 60 mm for all magnets,
which will allow a vacuum chamber inside radius of 25
mm. this gives a reasonable pole-tip field for all magnets.
There is sufficient room in the lattice to allow flexibility
in the lengths of the magnets, to increase the aperture
while reducing the pole-tip field if necessary. Note that at
present, all magnets of a given type have the same length
and aperture. For the 6.3 km, 3.74 GeV ring, the magnet
strengths are reduced in proportion to the energy.

TABLE III: Parameters of dipoles and strongest multipoles
in the 16 km, 5 GeV ring. The aperture is the diameter of
the largest circle that can be inscribed between the poles.

Type Length Field Aperture Pole-tip field

[m] or Gradient [m] [T]

Dipoles 4.998 0.1248 T 0.06 0.1248

Quadrupoles 0.30 22.0 T/m 0.06 0.660

Sextupoles 0.20 41.7 T/m2 0.06 0.0188

C. Damping Wiggler

The wiggler parameters for the 16 km, 5 GeV ring are
given in Table IV. The parameters for the 6.3 km, 3.74
GeV ring are the same, except that the peak field is re-
duced in proportion to the energy, to 1.2 T. Note that

the ends of the wiggler are designed so that the orbit is
centered on the wiggler axis; the length of each wiggler
section is therefore not exactly the period length multi-
plied by the given number of periods per section. It is
desirable to have as large a physical aperture as possible
in the wiggler; this is constrained by the field strength
requirements, and the values for the peak field and the
period are fairly conservative. A hard-edged dipole model
is used at present in the lattice. A magnetic model exists
for the 1.6 T wiggler, but design work is needed for a 1.2
T wiggler.

TABLE IV: Wiggler parameters in the 16 km, 5 GeV ring.

Period λw 400 mm

Peak field B̂w 1.60 T

Periods per wiggler 6.5

Total number of wigglers 180

Total length of wiggler 441 m

D. Vacuum System

Some parameters of the vacuum system are needed for
estimates of certain collective effects. We assume the
parameters given in Table V. The circular cross-section is
an approximation for purposes of estimates of resistive-
wall effects. In the 16 km lattice, the average beam-
pipe radius is 32.9 mm, and in the 6.3 km lattice, the
average radius is 22.0 mm. The challenging specification
on the residual gas pressure (0.1 ntorr) is driven by the
ion effects, and will probably require an antechamber.

TABLE V: Vacuum system parameters.

Vacuum chamber material aluminum

Beam pipe conductivity σc 3.8×107Ω−1m−1

Vacuum chamber cross-section circular

Beam-pipe radius in arcs 20 mm

Beam-pipe radius in wiggler 8 mm

Beam-pipe radius in long straight 49 mm

Residual gas pressure p0 0.1 ntorr

IV. SINGLE-PARTICLE BEAM DYNAMICS

The principal beam dynamics issues are: the coupling
bumps needed to increase the vertical beam size to reduce
the space-charge effects in the 16 km lattice; the sensi-
tivity of the vertical emittance to magnet alignment; the
dynamic aperture; the impact of various collective effects.
We consider each of these issues in turn.
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A. Coupling Bumps

Coupling the beam in the straight sections was pro-
posed as a technique to reduce the space-charge forces
in the TESLA TDR damping ring design [1]. Without
the coupling, the space-charge tune shift was estimated
to be around 0.23; the coupling in the straight sections
reduced this to 0.035. In principle, implementation of the
coupling is straightforward, and the required transforma-
tion can be achieved using three skew quadrupoles. The
basic concepts have been analyzed and described by Der-
benev et al, see for example [4]. Let us consider a point
in the beamline where the Twiss beta functions are equal
in the horizontal and vertical planes, βx = βy = β. Also,
the Twiss alpha functions are zero and there is no cou-
pling. The beam correlation matrix (sigma matrix) is
given by:

Σ =


βεx 0 0 0
0 εx

β 0 0
0 0 βεy 0
0 0 0 εy

β

 (3)

Now we take a symplectic transformation M :

M = R̃
(
−π

4

)
·R (β, µ) · R̃

(π

4

)
(4)

where R̃ represents a rotation in co-ordinate space:

R̃(θ) =


cos θ 0 sin θ 0

0 cos θ 0 sin θ

− sin θ 0 cos θ 0
0 − sin θ 0 cos θ

 (5)

and R represents a linear transformation in phase space
(with different phase advances in the horizontal and ver-
tical planes):

R(β, µ) =


cos µ β sinµ 0 0

− 1
β sinµ cos µ 0 0

0 0 − sinµ β cos µ

0 0 − 1
β cos µ − sinµ

 (6)

After the transformation M for any value of the phase
advance µ, the sigma matrix becomes:

Σ′ = M ·Σ ·MT

=


1
2βε+ 0 0 1

2ε−
0 1

2β ε+ − 1
2ε− 0

0 − 1
2ε−

1
2βε+ 0

1
2ε− 0 0 1

2β ε+

 (7)

where ε± = εx ± εy. After the transformation, the hor-
izontal and vertical beam sizes are equal, and the beam
has no tilt. The required transformation can be achieved
using a set of three equally-spaced skew quadrupoles.

The central skew quadrupole needs integrated normal-
ized strength k1L; the outer two skew quadrupoles need
integrated normalized strengths αk1L; the distance be-
tween the skew quadrupoles should be d:

k1L =
2
√

2
β

(8a)

α = −1
2

(
1 +

1√
2

)
(8b)

d =
β

2
√

1 +
√

2
(8c)

The same transformation can be used to decouple the
beam, as long as the phase advances of the two transverse
modes are equal between the transformations. In the 16
km lattice, the coupling is implemented at the entrance
to the long straight section, where a matching section is
used to set the beta functions to 140 m, and the alpha
functions to zero. There does appear to be some sensi-
tivity to the tuning of the coupling bumps; variations in
the integrated strengths or distances between the skew
quadrupoles can result in a beam that has equal pro-
jected beam sizes, but still appears as a flattened ellipse
in co-ordinate space. The most effective suppression of
the space-charge forces is achieved by making the beam
truly round. In the present lattice deck, the coupling
transformations are implemented using thin multipoles,
with the exact strengths and separations given by equa-
tions (8). The resulting lattice functions can be seen in
Figure 5: note that the skew quadrupoles are located at
2148 m, 2193 m and 2238 m.

It is convenient for some purposes to be able to turn
the coupling off. This is readily achieved by inter-
leaving five normal quadrupoles within the three skew
quadrupoles. To couple the beam in the straights,
the skew quadrupoles are turned on, and the normal
quadrupoles are turned off; to operate without coupling,
the skew quadrupoles are turned off, and the normal
quadrupoles are turned on. Some adjustment is made
to the strengths of quadrupoles in the straight section
between the wiggler and the matching to the high-beta
part of the straight, to ensure the correct lattice tunes
under both conditions.

B. Alignment Sensitivity

The minimum vertical emittance that can be achieved
is determined by the vertical opening angle of the syn-
chrotron radiation [5]:

εy =
13
55

Cq

Jy

∮ βy

|ρ|3 ds∮
1
ρ2 ds

(9)

For both 16 km and 6.3 km lattices, the minimum vertical
emittance (not normalized) is 0.08 pm, or roughly 4% of
the specified operating vertical emittance.
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The dominant contribution to the vertical emittance
will come from magnet misalignments. An equilibrium
vertical normalized emittance of 0.02 µm is a challeng-
ing goal that will require precise magnet alignment and
correction of the vertical dispersion and betatron cou-
pling. The sensitivity of the vertical orbit, dispersion
and coupling to magnet motion are relevant quantities,
which depend on the magnet strengths and lattice func-
tions. To quantify the sensitivities, it is convenient first
to define the following quantities:

Σ1O =
∑

quadrupoles

βy(k1L)2 (10a)

Σ1D =
∑

quadrupoles

βyη2
x(k1L)2 (10b)

Σ1C =
∑

quadrupoles

βxβy(k1L)2 (10c)

Σ2D =
∑

sextupoles

βyη2
x(k2L)2 (10d)

Σ2C =
∑

sextupoles

βxβy(k2L)2 (10e)

The numeric subscript on the Σ∗∗ indicates whether the
summation is performed over the quadrupoles or the sex-
tupoles, and the alphabetic subscript identifies the quan-
tity as relevant for the orbit (O), dispersion (D), or be-
tatron coupling (C). The k1L are the integrated normal-
ized quadrupole strengths, and the k2L are the integrated
normalized sextupole strengths.

In terms of the above quantities, we can write the fol-
lowing approximate relationships:

〈y2〉
〈σ2

y〉
'

〈∆Y 2
q 〉

8εy sin2 πνy

Σ1O (11)

εy

〈∆Θ2
q〉

' Jx

Jy

1− cos 2πνx cos 2πνy

(cos 2πνx − cos 2πνy)2
εxΣ1C

+Jε
σ2

δ

sin2 πνy

Σ1D (12)

εy

〈∆Y 2
s 〉

' Jx

Jy

1− cos 2πνx cos 2πνy

4 (cos 2πνx − cos 2πνy)2
εxΣ2C

+Jε
σ2

δ

4 sin2 πνy

Σ2D (13)

Here, 〈y2〉 is the mean square vertical orbit distortion;
〈∆Y 2

q 〉 is the mean square vertical quadrupole misalign-
ment; 〈∆Y 2

s 〉 is the mean square vertical sextupole mis-
alignment; 〈∆Θ2

q〉 is the mean square quadrupole rota-
tion about the beam axis; Jx, Jy and Jε are the damping
partition numbers; νx and νy are the betatron tunes, and
σδ is the rms natural energy spread. These expressions
assume that the misalignments are random and uncor-
related, that the betatron coupling is dominated by the
lowest-order difference resonance, and that the disper-
sion in the dipoles and wigglers is not correlated. These
assumptions are not necessarily valid for damping rings.

In particular, when calculating the contribution of the
vertical dispersion to the emittance, it is important to
consider the dispersion in the wiggler separately from the
rest of the lattice. This is because the radiation from the
wiggler dominates over the radiation from the dipoles.
Also, the above expressions do not include the effects of
the coupling bump in the 16 km lattice. The emittance
tuning is best studied by detailed simulations; however,
it is often found that these simple analytical estimates do
give a good indication of the sensitivity of the lattice to
various misalignments, so we will proceed to evaluate the
sensitivity for our 16 km and 6.3 km lattices. In the case
of the 16 km lattice, the coupling in the long straight is
turned off.

We define the following three measures of the lattice
sensitivity:

Quadrupole jitter sensitivity is the rms quadrupole
misalignment that will generate an orbit distortion
equal to the beam size for a specified emittance.
This is found from Eq. (11).

Quadrupole rotation sensitivity is the rms quadru-
pole rotation that will generate a specified vertical
emittance. This is found from Eq. (12).

Sextupole alignment sensitivity is the rms sextu-
pole vertical misalignment that will generate a
specified vertical emittance. This is found from Eq.
(13).

The values of these sensitivities for the present lattices
are given in Table VI. The values for the 16 km lattice are
typical for a large storage ring operating with an emit-
tance ratio of around 0.3%. The 6.3 km lattice is less
sensitive to misalignments, for two reasons: first, there is
a smaller number of magnets in the lattice; and second,
under the specified operating conditions, the emittance
ratio is larger, close to 0.7%.

TABLE VI: Lattice sensitivities.

Lattice circumference 15935 m 6333.5 m

Quadrupole jitter 273 nm 309 nm

Quadrupole rotation 145 µrad 227 µrad

Sextupole alignment 97.4 µm 169 µm

C. Chromaticity

In both the 16 km and the 6.3 km lattices, the sex-
tupoles in the arcs are tuned to give zero first-order
chromaticity. The remaining tune-shifts with energy are
second-order and higher. The tune-shifts with energy in
the 16 km lattice (with coupling in the long straights)
are shown in Figure 8, and the tune-shifts with energy in
the 6.3 km lattice are shown in Figure 9.
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FIG. 8: Tune-shifts with energy in the 16 km lattice.

D. Dynamic Aperture

Achieving a good dynamic aperture was a primary con-
cern in the design of the lattices described here. We
attempted to minimize the chromaticity of each section
within each lattice, to reduce the sextupole strengths
needed for chromatic correction. The arcs were designed
with large dispersion and lattice functions at the sex-
tupoles, again to reduce the strengths needed for chro-
matic correction. Each arc cell was tuned for phase ad-
vances that gave good dynamics, and sections between
arc cells were tuned for phase advances of an integer ×2π,
so that the dynamics of on-energy particles the lattice
are essentially determined by the dynamics in a single
arc cell.

We use frequency map analysis to study the dynamic
aperture (see, for example, [6, 7, 8]). The frequency map
for on-energy and off-energy dynamics in the 16 km lat-
tice are shown in Figures 10 and 11 respectively. Corre-
sponding plots for the 6.3 km lattice are shown in Figures
12 and 13. Assuming an injected normalized emittance
of 0.01 m, the injected rms beam sizes at the observation
point are σx = 2.77mm, σy = 3.65mm for the 16 km
lattice, and σx = 3.20mm, σy = 4.21mm; the on-energy
dynamic aperture is around 20σ horizontally, and rather
more than 20σ vertically. However, the dynamic aperture

FIG. 9: Tune-shifts with energy in the 6.3 km lattice.

drops rapidly for even small energy deviations, and 10σ
seems a more reasonable characterization. The dynamic
energy acceptance is rather better in the shorter lattice.
This is not surprising, since the additional chromaticity
in the long straight sections of the 16 km lattice has an
adverse effect on the off-energy dynamics.

FIG. 10: Frequency map for on-energy dynamics in the 16
km lattice. The lattice functions at the observation point
are βx = 7.5m, βy = 13.0m, αx = αy = 0. The color scale
indicates the rate of change of the betatron tunes over the
time of the tracking, expressed as log10

p
∆ν2

x + ∆ν2
y where

∆νx and ∆νy are the changes in the tunes between the first
128 turns and the second 128 turns of tracking.
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FIG. 11: Frequency map for off-energy dynamics in the 16
km lattice.

FIG. 12: Frequency map for on-energy dynamics in the 6.3
km lattice. The lattice functions at the observation point are
βx = 7.5m, βy = 13.0m, αx = αy = 0.

FIG. 13: Frequency map for off-energy dynamics in the 6.3
km lattice.

E. Tracking with Synchrotron Oscillations

The characterization of the dynamic aperture using
frequency map analysis does not include the effects of
synchrotron oscillations; the plots in Figures 11 and 13
were produced with the RF turned off. To test the full
dynamic acceptance, we tracked a sample particle dis-
tribution produced by Batygin [9] from modeling of an
undulator-based positron source for ILC. In the distribu-
tion provided, the transverse normalized emittances are
a little over 0.005 m, somewhat smaller than the nomi-
nal value of 0.01 m assumed for the damping ring design.
However, there are significant tails in the distribution.
A set of 1960 particles were tracked through the 16 km

lattice without errors, and with the RF turned on. There
was a nominal physical aperture of 1 m applied through
the lattice, so all particle losses were the result of the
dynamical effects of the sextupoles. Tracking with syn-
chrotron radiation is possible, but no radiation effects
were included in this simulation. After 500 turns (equal
to one damping time), 15 of the original particles were
lost, representing a little under 1% of the injected beam.
This would result in a radiation power load of around 20
kW; once errors are included in the lattice, the number
of lost particles could be significantly larger. Although
the frequency map analysis suggests significant margin in
the dynamic aperture for the injected beam, the dynamic
aperture is still not sufficient to ensure 100% injection
efficiency. Most of the lost particles have large energy er-
rors, which suggests that the limitation lies in the energy
acceptance of the lattice. It may be possible to improve
the injection efficiency by collimating the positron beam
at low energy, shortly after the production target: this
remains to be studied.

V. COLLECTIVE EFFECTS

In this section, we present the results of initial esti-
mates of the severity of a variety of collective effects ex-
pected to be important. Many of the phenomena we con-
sider need a more careful analysis than we have carried
out at the present time; the results here should be inter-
preted only as general indications of the severity of the
relevant effects. For the 16 km lattice, the calculations
have been done in most cases with the coupling bumps
turned off; for the space-charge tune shift calculations,
however, we consider both cases, i.e. with and without
coupling in the long straights. We also neglect the vari-
ation in bunch length around the ring that we noted in
Section II.

A. Microwave and CSR Instability

The Keill-Schnell-Boussard criterion gives an im-
pedance threshold for the longitudinal microwave insta-
bility that may be written:

Z‖

n
= Z0

√
π

2
γαpσ

2
δσz

N0re
(14)

where Z0 is the free-space impedance, γ the relativistic
factor, and re the classical electron radius. There is also a
transverse coasting-beam instability associated with the
transverse impedance. Again applying the Keill-Schnell-
Boussard criterion, the threshold for this instability may
be written:

Z⊥ = Z0
γαpσδνy

N0re

ω0σz

c
(15)

Although the relationship is strictly true only for the
resistive wall impedance, the transverse broad-band im-
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FIG. 14: Phase space of a nominal positron distribution before tracking (top) and after tracking (bottom) 500 turns through
the 16 km lattice. The red points in the top plots identify particles that were lost during the tracking.

pedance is often assumed to be related to the longitudinal
broad-band impedance through:

Z⊥ =
2c

ω0〈b〉2
Z‖

n
(16)

where 〈b〉 is the mean vacuum chamber radius.
Coherent synchrotron radiation is also able to drive

beam instabilities; the threshold is given as a bunch
charge above which, the CSR instability starts to have
an effect [10]:

N0,th = 3.6
C

4π〈b〉
γαpσ

2
δσz

re
(17)

Using appropriate values for the parameters, we can
evaluate all the above thresholds. The results are given
in Table VII.

B. Space-Charge Tune Shift

Space-charge forces lead to a significant vertical tune
shift, because of the large circumference and small ver-
tical beam size. In a lattice without betatron coupling,
the incoherent tune shift is given by:

∆νy = − N0re
√

2π
3
γ3σz

∫ C

0

βy

σy (σx + σy)
ds (18)

Venturini has generalized this expression to include be-
tatron coupling [11]. The result is:

∆νk = − 1
4π

∫ C

0

βk
11Fxx + 2βk

13Fxy + βk
33Fyyds (19)

where the lattice functions are as defined in Equations
1, with βI

11 ≡ βx and βII
33 ≡ βy. k(=I,II) specifies the

transverse mode. The components of the force are given
by:

Fxx =
K

σ+

(
cos2 θ

σξ
+

sin2 θ

ση

)
(20a)

Fxy =
K sin 2θ

2σ+

(
1
σξ

+
1
ση

)
(20b)

Fyy =
K

σ+

(
sin2 θ

σξ
+

cos2 θ

ση

)
(20c)

where

K =
2λre

β2γ3
(21)

θ is the beam tilt, σξ and ση are the major and minor axes
of the beam ellipse in co-ordinate space, σ+ = σξ+ση, λ is
the line density of charge in the bunch, re is the classical
radius of the electron, β is the normalized velocity of the
bunch, and γ the relativistic factor.

The calculated space-charge tune shifts are given in
Table VIII. The coupling bumps in the 16 km lattice are
effective in reducing the tune shifts to tolerable values.
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TABLE VII: Microwave and CSR instability thresholds.

Lattice circumference C 15935 m 6333.5 m

Longitudinal broad-band impedance threshold Z‖/n 422 mΩ 627 mΩ

Transverse broad-band impedance threshold Z⊥ 19.4 MΩ/m 23.7 MΩ/m

Longitudinal equivalent impedance threshold ω0〈b〉2Z⊥/2c 4139 mΩ 5686 mΩ

CSR instability charge threshold N0,th 2.5×1012 2.2×1012

The vertical tune shift in the 6.3 km lattice is large com-
pared with that in the coupled 16 km lattice, because of
the lower energy. The results are consistent with the rela-
tive beam energies, given that the coupled straights make
negligible contribution to the space-charge tune shifts. It
is possible that the large tune shift in the 6.3 km lattice
could have adverse effects on the beam dynamics, and
tracking simulations will be needed to study this in more
detail.

TABLE VIII: Incoherent space-charge tune shifts.

Lattice 15935 m 15935 m 6333.5 m

uncoupled coupled

∆νx -0.011 -0.011 -0.0091

∆νy -0.21 -0.041 -0.12

C. Resistive-Wall Instability

The resistive-wall impedance of the vacuum chamber
will drive a transverse coupled-bunch instability. The
impedance is given by:

Z⊥(ω) = (1− sgn (ω) i) Z0
C

2π〈b〉3
δskin(ω) (22)

where the skin depth is:

δskin =
√

2
σcµcω

(23)

σc and µc are the conductivity and magnetic permeability
of the vacuum chamber. Assuming a uniform fill of nb

bunches with average current 〈I〉, the growth rate of a
transverse mode with mode number m is given by:

1
τm

= − c〈I〉
4πνyE/e

Re
∞∑

p=−∞
Z⊥ ((νy + nbp + m)ω0) (24)

With the nominal operating conditions, the ring will not
be uniformly filled, but there will be gaps between bunch
trains. We can still estimate the growth rates by as-
suming a uniform fill, but either using the same aver-
age current as in the case where there are gaps between
bunch trains, or using the same bunch charge. Using

the same average current will likely underestimate the
growth rates; using the same bunch charge will likely
overestimate the growth rates. In the present case, the
gaps account for roughly 22% of the circumference in
both the 16 km lattice and the 6.3 km lattice, so the dif-
ference between using the nominal average current and
using the nominal bunch charge is not large.

Figure 15 shows the growth rates of the unstable modes
in the 6.3 km lattice in the vertical plane, assuming a
uniform fill. The red (upper) points show the growth
rates with the same charge per bunch as the nominal
case; the black (lower) points show the growth rates with
the same average current as the nominal case. The blue
broken line shows the vertical damping time. Table IX
gives the growth times of the instability. A bunch-by-
bunch feedback system will be needed to suppress the
instability; a potential concern is the jitter induced on
the beam by the feedback system.

FIG. 15: Growth rates of unstable resistive-wall modes.

TABLE IX: Resistive wall instability growth times, assuming
uniform fill at nominal bunch charge.

Lattice circumference 15935 m 6333.5 m

Shortest growth time 2.25 ms 1.15 ms

Shortest growth time 42.3 turns 54.4 turns

We note that higher-order modes in the RF cavities
can also drive coupled-bunch instabilities. The RF cavity
design is not known at the present time, so we have not
investigated these growth rates.
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D. Ion Effects

First, we consider ion trapping. Without gaps in the
fill, ions with a relative molecular mass greater than Ax(y)

will be trapped horizontally (vertically), where

Ax(y) =
N0rpc∆τb

2σx(y) (σx + σy)
(25)

At the equilibrium beam size, all ions will be trapped
horizontally in both the 16 km and the 6.3 km lattices.
In the vertical plane, ions with a relative molecular mass
greater than 7 will be trapped in the 6.3 km lattice, and
ions with a relative molecular mass greater than 10 will
be trapped in the uncoupled 16 km lattice. For both
lattices, other ions will be trapped vertically as the beam
damps from its injected size. In the coupled 16 km lattice,
the larger vertical beam size in the long straight will mean
that all ions will be trapped at the equilibrium beam
sizes.

It is hoped that the gaps in the fill (77 ns in the 16 km
lattice, and 55 ns in the 6.3 km lattice) will be sufficient
to clear ions accumulated during the passage of a bunch
train. However, we must then consider the fast-ion in-
stability arising from the ions accumulated during one
bunch train [12]. The line density of ions at the end of a
bunch train is given by:

λion = N0ntrain
p0

kT
σion (26)

where σion is the ionization cross-section, assumed to be
2 Mb. The presence of the ions causes coherent and in-
coherent tune shifts, with the incoherent tune shift twice
as large as the coherent. Because of the small vertical
beam size, the effects are much stronger in the vertical
plane. The incoherent vertical tune shift is given by:

∆νy =
1
2π

∫ C

0

Kyβyds (27)

where the ion focusing is given by:

Ky =
λionre

γσy (σx + σy)
(28)

As well as the tune shifts, there is a growth in betatron os-
cillations of bunches towards the rear of the bunch train,
driven by oscillations of the ions in the potential of the
beam. The ion oscillation frequency is ωion, given by:

ω2
ion

c2
=

λ̄erp

Aσy (σx + σy)
(29)

where λ̄e = N0/c∆τb is the mean line density of electrons
in the beam, A is the relative molecular mass of the resid-
ual gas ions in the chamber, and rp is the classical radius
of the proton. The growth rate of betatron oscillations
of bunches towards the rear of the bunch train is given
by:

1
τ

=
f0

4
√

2σω

∫ C

0

ωionKyβyds (30)

where f0 is the revolution frequency, and σω is the stan-
dard deviation of the ion oscillation frequency around the
ring, resulting from the variation in beam size.

Table X gives the parameters of the fast-ion instability,
found by applying the above expressions to the uncou-
pled 16 km lattice and the 6.3 km lattice. We assume
that the dominant gas species in the chamber is CO. At
0.1 ntorr residual gas pressure, the incoherent tune shift
should be small enough in both lattices not to limit op-
erational performance. The exponential growth time is
fast, but it may be possible to suppress the instability
using a bunch-by-bunch feedback system; as with the re-
sistive wall instability, the concern is the jitter that such
a feedback system could induce on the beam. Emittance
growth will be associated with the coherent bunch os-
cillations driven by the accumulated ions. The simple
estimates used here indicate that ion effects are likely to
be an issue in the damping rings. Further studies, includ-
ing simulations and experimental work, will be needed to
predict the impact on machine performance with more
confidence.

E. Electron Cloud Effects

Electrons accumulating in the positron damping ring
may have a multitude of dynamical effects on the beam,
including single bunch and coupled bunch instabilities.
Here, we consider only the single bunch effects. We treat
the electron cloud as a broad-band transverse impedance,
with resonant frequency characteristic of the oscillation
frequency of the electrons in the potential of a single
positron bunch. This frequency ωcloud is given by:

ω2
cloud

c2
=

N0re√
2πσzσy (σx + σy)

(31)

For both the 16 km and the 6.3 km lattices, the oscil-
lation frequency is large compared to the bunch length
(see Table XI), so it is appropriate to use a coasting-beam
model for the instability. Following Ohmi and Zimmer-
mann [13], we estimate the transverse impedance from
the electron cloud as:

Z⊥ = Z0C
ρ̂cloud

2λbeam
(32)

where ρ̂cloud is the peak cloud density in the beam, and
λbeam = N0/

√
2πσz is the peak line density of charge

in the beam. Using the Keill-Schnell-Boussard criterion,
the instability threshold is:

Z⊥,th = Z0
γαpσδνy

N0re

ωcloudσz

c
(33)

Combining equations (32) and (33) gives the electron
cloud density threshold at which instability occurs:

ρ̂cloud =

√
2
π

γαpσδνy

re

ωcloud

cC
(34)
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TABLE X: Parameters of the fast-ion instability.

Lattice circumference C 15935 m 6333.5 m

Residual vacuum pressure p0 0.1 ntorr 0.1 ntorr

Molecular mass of residual gas (species) A 28 (CO) 28 (CO)

Ion density at end of bunch train λion 2320 m−1 4635 m−1

Incoherent vertical tune shift ∆νy 0.038 0.033

Exponential growth time τ 745 µs 316 µs

Exponential growth time 14.0 turns 14.9 turns

This may be compared with the mean density of elec-
trons in the chamber expected from the neutralization
condition:

ρneut =
N0

π〈b〉2c∆τb
(35)

Values are given in Table XI. For both the 16 km and the
6.3 km lattices, the instability threshold appears some-
what higher than the neutralization density. However,
the neutralization density is an average density that does
not include the enhancement that can occur during a
bunch passage. Simulations suggest that the density of
the cloud in the bunch can be increased by an order of
magnitude during a bunch passage. In this case, an in-
stability will occur. It appears that it will be necessary
for both lattices to reduce the density of the cloud in the
chamber at least by two orders of magnitude below the
neutralization level to prevent an instability.

F. Touschek Lifetime

The beam store time is around 200 ms, which is much
less than the Touschek lifetime. However, a reasonable
Touschek lifetime is desirable for commissioning and tun-
ing. For flat beams that are non-relativistic in the beam
rest frame, and assuming that the energy aperture is
given by the RF acceptance δmax, the Touschek lifetime
τ is given by [14]:

1
τ

=
r2
ecN0

8πγ2δ3
maxσz

1
C

∫ C

0

D(ε)
σxσy

ds (36)

where the function D(ε) is defined by:

D(ε)√
ε

= −3
2
e−ε +

ε

2

∫ ∞

ε

lnu

u
e−udu

+
1
2

(3ε− ε ln ε + 2)
∫ ∞

ε

e−u

u
du (37)

and the argument ε is given by:

ε =
(

δmaxβx

γσx

)2

(38)

Assuming an energy acceptance of 1%, the Touschek life-
time is 52 minutes for the uncoupled 16 km lattice, and

17 minutes for the 6.3 km lattice. An energy acceptance
of 1% is likely pessimistic, so the beam lifetime should
be reasonable for commissioning and tuning purposes.

G. Intrabeam Scattering

As well as the large-angle scattering leading to parti-
cle loss (Touschek effect), particles within a bunch un-
dergo small-angle scattering. The resulting increases in
the beam emittances are described by the theory of intra-
beam scattering (IBS). To calculate the emittance growth
in the present lattice, we use approximate formulae de-
rived by Mtingwa et al [15] to the theory of Bjorken
and Mtingwa [16]. This approximation is valid for high-
energy beams, and has been shown to be in good agree-
ment to the exact theory in the regime of the damping
rings. Calculation of the IBS growth rates involves eval-
uating complicated integrals (involving the lattice func-
tions and emittances) around the lattice, and the advan-
tage of using the high-energy approximation is that the
IBS growth rates can be calculated much more rapidly.
This is important, since the growth rates depend on the
beam emittances and the equilibrium emittances for a
given bunch charge need to be found by iteration. Per-
forming the calculations for the 16 km and the 6.3 km
lattices gives the results shown in Table XII. For the case
of the 16 km lattice, we have used the version without
coupling in the straights. For both the 16 km and the
6.3 km lattices, we have neglected the small variation
in the bunch length around the ring. In the uncoupled
16 km lattice, the growth in the horizontal emittance
at the nominal bunch charge is not negligible, but the
equilibrium horizontal emittance is still within the spec-
ified operating value of 8µm. The coupling in the long
straight should reduce the horizontal emittance growth
somewhat, but most of the growth occurs in the arcs,
where there is large horizontal dispersion. The growths
in the vertical and longitudinal planes are much smaller.
In the 6.3 km lattice, the horizontal emittance growth is
very much larger: this is a combination of the fact that
the natural emittance of the shorter lattice is roughly half
that of the 16 km lattice, and the fact that the beam en-
ergy in the shorter lattice is lower. Despite the large IBS
growth, the equilibrium horizontal emittance in the 6.3
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TABLE XI: Parameters of the electron-cloud instability.

Lattice circumference C 15935 m 6333.5 m

Cloud oscillations per bunch ωcloudσz/c 7.6 12.7

Instability cloud density threshold ρ̂cloud 5.3× 1012 m−3 13.9× 1012 m−3

Neutralization density ρneut 1.6× 1012 m−3 7.1× 1012 m−3

TABLE XII: Intrabeam scattering growth rates and emittance growths.

Lattice circumference C 15935 m 6333.5 m

Bunch charge N 2× 1010 2× 1010

Horizontal growth time Tx 0.203 s 0.0483 s

Vertical growth time Ty 3.56 s 4.13 s

Longitudinal growth time Tp 0.976 s 0.345 s

Horizontal emittance growth εx,N/εx − 1 15% 110%

Vertical emittance growth εy,N/εy − 1 0.8% 0.7%

Energy spread growth σδ,N/σδ − 1 1.5% 3.9%

km lattice (5.8 µm) is still below the specified value of 8
µm. The vertical and longitudinal emittance growths are
small, but we should note that in the case that the verti-
cal emittance is generated entirely by betatron coupling
(as opposed to vertical dispersion, as we have assumed
here), the proportional growth in the vertical emittance
will be equal to the proportional growth in the horizontal
emittance. This could be an operational concern in the
6.3 km lattice.

VI. COMMENTS AND CONCLUSIONS

A lattice design based on FODO arc cells appears to
be a promising approach to achieving a good dynamic
aperture in the ILC damping rings. With an appropri-
ate number of arc cells, and a sufficiently long wiggler,
it is possible to reach the specification for the natural
emittance. Both the 16 km and 6.3 km versions of the
lattice presented here use 441 m of wiggler; in the longer
lattice, the peak field is 1.6 T, while in the shorter lat-
tice, the peak field is reduced in proportion to the beam
energy, to 1.2 T. The lower beam energy in the shorter
lattice is helpful in reducing the longitudinal emittance.
We should note that since the wiggler is important in
achieving the low natural emittance needed in the damp-
ing rings, if a design based on FODO cells is considered
for the electron damping ring, it will not be possible to re-
duce the length of wiggler to take advantage of the longer
damping time allowed by the smaller injected beam. On
the other hand, precisely because the injected electron
beam is smaller than the injected positron beam, the re-
quirements for the dynamic aperture are not so challeng-
ing, and it will likely be possible to use a design based,
for example, on TME cells.

The good dynamic aperture is partly achieved by de-

signing the arc cells for high dispersion; this reduces the
strengths of the sextupoles needed for chromatic correc-
tion, but has the disadvantage that the momentum com-
paction factor is very large. As a result, a very high RF
voltage is needed to reduce the equilibrium longitudinal
emittance to 9 µm, and the synchrotron tune is large.
There are possibilities for reducing the momentum com-
paction factor, including an increase in the number of arc
cells. It may be possible to reduce the momentum com-
paction without reducing the dispersion at the chromatic
sextupoles, and thus an adverse impact on the dynamic
aperture may be avoided. Also, the large momentum
compaction is helpful in raising the thresholds for a va-
riety of collective instabilities, and it is not desirable to
reduce it too far. In summary, there are various oppor-
tunities for improvement of the lattices presented here,
but there are a number of conflicting considerations, and
some compromises will be needed.

Even with a dynamic aperture of 10σ of the injected
beam for energy errors over ±1%, we find a small number
of particles lost in a tracking simulation using a nom-
inal injected distribution. The characterization of the
dynamic aperture we have used here is not sufficiently de-
tailed to guarantee survival of all particles within a given
envelope. It appears likely that to achieve the necessary
injection efficiency, it will be necessary to collimate the
positron beam more severely (before injection into the
damping ring) than was the case in our simulation. The
collimation will be done most safely at low energy.

Simple estimates of some of the collective effects sug-
gest that a number of effects will be significant, but the is-
sues of most concern are likely the fast-ion instability, and
the electron-cloud effect. It is hoped that appropriate
treatment of the vacuum chamber in the positron damp-
ing ring will prevent build-up of electron cloud. How-
ever, the fast-ion instability appears strong even at the
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challenging vacuum pressure of 0.1 ntorr. The coupling
bumps in the 16 km lattice appear effective in reducing
the space-charge tune shifts, but there is some concern
as to the tunability of the optics in the coupling sections.

While the results of analysis of the lattice designs pre-
sented here are encouraging, there is a significant amount
of further design work to be done. The main priority
should be to find an appropriate value for the momentum
compaction that reduces the synchrotron tune and the
need for a very high RF voltage, while maintaining com-
fortable levels for instability thresholds. At this stage,
there is significant flexibility in adjusting the circumfer-
ence of the lattice. Although there is some benefit to

the dynamic aperture from reducing the circumference,
the effects are not dramatic, and useful design work can
be done in advance of a decision for the damping rings’
circumference.
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