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Hyperbolic metamaterial as super absorber for scattered fields generated at its surface

Caner Guclu, Salvatore Campione, and Filippo Capolino*

Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697, USA
(Received 16 July 2012; revised manuscript received 1 November 2012; published 29 November 2012)

We show that hyperbolic metamaterials (HMs) that exhibit hyperbolic wave-vector dispersion diagrams possess
two important features related to super absorption: The total power scattered by a nanosphere is (i) greatly
enhanced when placed at the HM surface, compared to other material surfaces, and (ii) almost totally directed
into the HM. We show that these two features are peculiar of HM interfaces, and we support them using a spectral
theory study of transverse-electric and magnetic waves scattered by a subwavelength nanosphere. We analyze the
nanosphere’s scattered power absorbed by various substrate configurations. We also consider various nanosphere
materials.

DOI: 10.1103/PhysRevB.86.205130 PACS number(s): 42.25.Fx, 78.20.Ci, 72.80.Tm, 78.67.Pt

I. INTRODUCTION

Composite hyperbolic metamaterials (HMs) are a particular
kind of uniaxial anisotropic materials with an isofrequency
hyperbolic-like wave-vector dispersion diagram1,2 (as stated
in Sec. II, the wave-vector dispersion curve of a realistic HM
is not an exact hyperbola).

The aim of this paper is to use a spatial spectrum approach1

to show that a HM may exhibit the potential to act as a super
absorber for scattered fields generated by a nanoparticle near
its surface. In other words, two important phenomena occur:
(i) The nanoparticle’s scattered fields will be enhanced by
the presence of the HM, and (ii) fields are mainly directed
into the HM, and hence are almost totally absorbed there.
Implicitly, this means that the local density of states, related
to the total emitted power of a dipole, is greatly increased.
These physical properties are of key importance and allow us
to foresee broadband wide-angle absorption when scattering
is created at the HM surface, by either purposely roughening a
HM surface or, equivalently, locating many nanoscatterers at
the HM surface.

The use of spectral theory enables us to carefully analyze
the radiation capabilities of elementary dipoles or small
objects located close to HMs for different physical conditions
including, but not limited to, distance from the HM, materials,
shapes, and source power spectra. In particular, we analyze
systematically all the physical parameters that affect absorp-
tion capabilities, and we quantify their effect. This work aims
at providing a clear and exhaustive analysis of the interaction
between a single dipole, or a nanoscatterer, and a HM. This
analysis may lead to possible developments of innovative ways
to absorb fields at microwaves as well as millimeter-wave,
infrared, and optical frequencies, since HM fabrication using
composite materials is simple and does not require extreme,
unfeasible material parameters. The HM considered here is
either made by a multilayered metal–dielectric composite or
is a homogeneous HM. In both cases, we demonstrate the
HM suitability to super absorption capabilities, which are
consistent also with other HM implementations as well (e.g.,
wire medium). We show that when a homogeneous HM is
considered, the absorption properties discussed in this paper
are slightly overestimated when compared to a multilayered
HM implementation. The formulation shown here is general
and can be applied to other envisioned applications involving

HMs, not limited to absorption properties. Note that the
design of a practical absorber would require the analysis of
many nanoscatterers in proximity of the HM, and as such we
postpone this discussion to a future effort.

Multilayered structures as in Fig. 1 are practical implemen-
tations of HMs at optical frequencies and have been investi-
gated for negative refraction,3 subwavelength field focusing,
and superlensing applications.4–10 The spontaneous emission
patterns of electric and magnetic dipoles above a multilayer
HM surface were estimated using the dyadic Green’s function
technique in Ref. 11. An increased rate of spontaneous
emission near nanostructured HMs has been reported in
Ref. 12. The absorption of thin dye-doped polymeric films
located on top of several substrates (glass, silver, gold, and
multilayered HMs) has been shown in Ref. 13, concluding
that absorption can be tuned and enhanced by controlling the
substrate geometry and composition. As a result of a recent
experiment in Ref. 14, corrugated surfaces of HMs lead to a
very low reflectance and ultimate dark appearance, providing
a further incentive to the analysis here proposed.

The outline of the paper is as follows. We first model
multilayered HMs in Sec. II using both effective medium
approximation (EMA) and Bloch theory, showing that the
former is applicable under certain limitations and in general
overestimates results for the multilayered systems. Then we
study in Sec. III the power emitted by an impressed dipole
close to HMs via spectral theory. We then extend in Sec. IV
the developed theory to analyze the power scattered by a
nanoparticle close to HMs. Conclusions and final remarks are
stated in Sec. V.

II. LAYERED HYPERBOLIC METAMATERIAL
AND LIMITATION OF EFFECTIVE MEDIUM

APPROXIMATION

Consider a structure made by a stack of two homogeneous
layers as in Fig. 1, with subwavelength thicknesses d1 and
d2, and with relative permittivities ε1 = ε′

1 + iε′′
1 and ε2 =

ε′
2 + iε′′

2 (a prime and a double prime denote real and imaginary
parts, respectively). This multilayered structure can be approx-
imated by a homogeneous HM via EMA having the anisotropy
axis coincident with the z axis and permittivity tensor

εHM = εt (x̂x̂ + ŷŷ) + εzẑẑ, (1)
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FIG. 1. (Color online) (a) Elementary dipole at a distance h from
the interface between free space (upper space, denoted with subscript
u) and a multilayered HM. (b) A nanosphere with radius r , located at
the HM surface.

where the expressions for εt = ε′
t + iε′′

t and εz = ε′
z + iε′′

z

are15

εt = ε1d1 + ε2d2

d1 + d2
ε−1
z = ε−1

1 d1 + ε−1
2 d2

d1 + d2
. (2)

Assume for the moment absence of material losses (i.e.,
ε′′ = 0): A HM can be easily realized by choosing ε1 < 0
(metallic layer at optical frequencies) and ε2 > 0 (dielectric
layer). In general, two categories of plane waves, namely,
ordinary and extraordinary waves, are present in a uniax-
ial anisotropic medium propagating with exp[i(kxx + kyy +
kzz)], as described in Ref. 16, where kz and kt = (k2

x + k2
y)1/2

are the z and the transverse to z components of the wave vector
k = kx x̂ + ky ŷ + kzẑ. As shown already in Ref. 16, when
considering a homogeneous HM with uniaxial anisotropy of
permittivity, ordinary waves are TE (E field transverse to
z) and related to εt . Similarly, extraordinary waves are TM
(H field transverse to z) and exhibit a hyperbolic wave-
vector dispersion when εtεz < 0.16 The dispersion relations
of ordinary and extraordinary waves are given by

TE (ordinary) :
k2
t + k2

z

εt

= k2
0,

(3)

TM (extraordinary) :
k2
t

εz

+ k2
z

εt

= k2
0,

where k0 is the wave number in free space. In principle, the
case with εz < 0, εt > 0 allows the extraordinary waves to
propagate (carry power) in the HM for any kt , whereas the
ordinary waves propagate only for kt < k0

√
εt , provided EMA

holds (see the discussion regarding Fig. 3). When εz > 0,
εt < 0, instead, extraordinary waves propagate in the HM for
any kt > k0

√
εz, whereas ordinary waves are evanescent in the

whole spectrum, provided EMA holds. This latter HM case
is investigated here because its realistic design is achievable
over a wide bandwidth at optical frequencies when using
metallic (with large negative relative permittivity values) and
dielectric layers. It is fundamental to observe that TM waves
can propagate in the HM up to very large values of kt that would
otherwise be evanescent in the upper isotropic half-space,
resulting in the energy transfer from the evanescent spectrum
in free space into a propagating one in the HM.

Consider now a lossy multilayered HM shown in Fig. 1
made of d1 = d2 = 5-nm-thick silver (complex permittivity
obtained from Ref. 17) and silica (εSiO2 = 2.2) layers. This
leads to the permittivity tensor entries εt and εz evaluated
by EMA shown in Fig. 2 with ε′

t < 0 and ε′
z > 0 for the

FIG. 2. (Color online) Effective εt = ε′
t + iε′′

t and εz = ε′
z + iε′′

z

evaluated by EMA versus frequency, pertaining to the HM made of
silica (εSiO2 = 2.2) and silver layers, with thicknesses d1 = d2 = 5 nm.

entire frequency band analyzed here, thus imposing hyperbolic
dispersion diagrams. It has been recently reported in Ref. 18
that the power directed toward the metal–dielectric multilayers
is overestimated by EMA, and we provide here a discussion
on the reasons behind this phenomenon. We employ Bloch
theory19 to determine the dispersion diagram complex kz

versus real kt (with kz = βz + iαz) for TM waves inside the
HM at 400 THz, reported in Fig. 3 (solid blue curve) and
compared to the dispersion diagram obtained by EMA (dashed
red curve). In Fig. 3, we only show the mode with βz > 0 and
αz < 0, because it is the only one decaying (carrying power)
in the − z direction, inside the HM. The curve shows that the
wave propagating inside the HM is backward because βzαz <

0.20,21 The −kz solution, with βz < 0 and αz > 0, would be the
equivalent solution decaying in the + z direction. We note that
similar diagrams are preserved at other frequencies as well (see
the discussion in Sec. III and Fig. 6).We observe that for a wide
kt spectrum, the real part of the wave number βz computed by
Bloch theory is close to the hyperbola obtained by EMA,
confirming a hyperbolic-like dispersion (Fig. 3). However,
for larger kt , the dispersion curve significantly deviates from
the one obtained by EMA, and it is not hyperbolic anymore.
Indeed, close to kt ≈ 14.3k0, βz approaches the Brillouin zone

FIG. 3. (Color online) kz − kt dispersion diagram normalized by
k0. (a) Real and (b) imaginary parts of the wave number kz = βz + iαz

in the multilayered HM with periodicity d = d1 + d2 = 10 nm ≈
λ0/75 at 400 THz obtained via Bloch theory and EMA.
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edge (βz ≈ 37.5k0 ≈ π/d at 400 THz, where d = d1 + d2 is
the period), and thereafter the attenuation constant αz increases
dramatically (behavior not modeled by EMA), marking a
mainly evanescent spectrum in the HM. It is observed that
even for small constituent-layer thicknesses and for large kt it
is important to take into account the heterogeneity of layered
structures because a large wave number kz implies a short
wavelength in the z direction. Hence, a maximum propagating
kt spectral limit can be determined. Therefore, one should not
rely on EMA for large wave numbers because EMA does
not introduce any limitation for the propagating spectrum,
i.e., theoretically all kt ∈ (kt, min,∞) would propagate in the
HM, where kt, min is determined following the discussion after
Eq. (3). In other words, according to EMA, the emitted power
spectrum coupled to the HM is limited only by the spatial
spectrum of the field at the HM interface, and therefore
EMA could lead to overestimation of the power emitted by
physically very small sources (characterized by a very wide
spatial spectrum of emission). It is for these reasons that in
the following, we mainly treat the HM as a nonhomogeneous
medium modeled via Bloch theory, and we also provide results
regarding the HM modeled by EMA in order to determine its
validity range.

III. SPECTRAL THEORY AND POWER EMITTED BY AN
IMPRESSED DIPOLE CLOSE TO A HYPERBOLIC

METAMATERIAL

We consider first the power emitted by a transverse ele-
mentary dipole with electric polarization P = px x̂δ(r) located
close to the interface between free space and the HM as
illustrated in Fig. 1(a). To gain physical insight into the super
absorption of the emitted power, we decompose the emitted
power spectrum due to TE and TM polarized-field spatial
harmonics and analyze their interaction with the HM. We use
the equivalent transmission line theory provided in chapters 2,
3, and 5 in Ref. 1. The total power Ptot = Pu + Pd coupled to
TE and TM waves (where u and d subscripts denote upward and
downward directions, respectively) is computed by spectral
integrals as

Pu,d = ω2|px |2
8π

∫ +∞

0
pu,d(kt )dkt , (4)

where

pu,d(kt ) = Re
[
Y TM∗

u,d (kt )
]

∣∣Y TM
tot (kt )

∣∣2 kt + Re
[
Y TE∗

u,d (kt )
]

∣∣Y TE
tot (kt )

∣∣2 kt (5)

are the upward and downward directed power spectra, respec-
tively, where “∗” indicates complex conjugate operation. The
terms Y

TM,TE
u,d represent equivalent spectral admittances at the

dipole location, looking upward (+z direction) or downward
(−z direction), for TE and TM waves. Following Ref. 1, where
their expressions and physical interpretation are provided, we
recall that the wave admittances relative to the upper half-space
are simply given by

Y TM
u = ωεuε0

kz,u
, Y TE

u = kz,u

ωμ0
, (6)

where kz,u =
√

εuk
2
0 − k2

t . The downward admittances Y TM
d

and Y TE
d in Eq. (5) (evaluated at the dipole location) in the case

of a homogeneous HM half-space have to be calculated using
transfer matrix method19 and the TM and TE wave admittances

Y TM = ωεtε0

kTM
z,d

, Y TE = kTE
z,d

ωμ0
, (7)

where k
TE,TM
z,d is calculated using either the TE or TM

dispersion relation in Eq. (3). In the case of multilayered HM,
instead, the downward admittances Y TM

d and Y TE
d in Eq. (5)

are calculated applying Bloch theorem to the multilayered
structure and transfer matrix method.19 Following Ref. 1, the
total admittance in Eq. (5) is defined as

Y
TM,TE
tot (kt ) = Y

TM,TE
d (kt ) + Y TM,TE

u (kt ). (8)

Analogous calculations can be performed also for the power
emitted by a z-directed dipole pz, which is not reported here
for brevity. Note that with these expressions one can calculate
the spectral power content of TE/TM waves, independently,
and to the authors’ knowledge, this exact spectral analysis
has not been previously investigated for composite HMs.
Moreover, this formalism can also model the effect induced
by the periodic nature of the HM via Bloch theory,19 as was
explained in regard to Fig. 3. The ratio Ptot/Pfree space of the total
power emitted by an elementary dipole located at a distance
h = 15 nm from the interface between free space (εu = 1)
and five different kinds of bottom media, namely, bulk silica,
bulk silver, HMm (HM with metal as the topmost layer), HMd
(HM with dielectric as the topmost layer), and HM EMA (HM
modeled by EMA), is plotted versus frequency in Fig. 4(a).
Pfree space is the total power emitted by the same dipole in free
space. Similarly, in Fig. 4(b), the ratio Ptot/Pfree space is plotted
versus the dipole distance h from the interface, at 400 THz. In
the HM cases, we assume the period equal to d = d1 + d2 =
10 nm, as in Fig. 3.

Looking at the ratio Ptot/Pfree space in Fig. 4, without
considering the HM EMA result for the moment, the highest
emitted power occurs for the HMm case (slightly larger than
the HMd case), and the smallest for the bulk silver case, over
a wide frequency band. We note, however, that HM EMA
overestimates scattered power amounts for low frequencies or
low distances h, and the explanation behind this fact will be
provided in the discussion regarding Fig. 5. The power emitted
by an elementary dipole at a distance h = 15 nm is about 7
to 15 times higher than the power emitted by the same dipole
in free space in the case of HM bottom half-space [Fig. 4(a)].
Moreover, for the HM case, the ratio Ptot/Pfree space increases
almost exponentially if h is decreased, as shown in Fig. 4(b),
thanks to the coupling of power between evanescent spectrum
in free space and propagating spectrum in the HM. This clearly
indicates that a large boost of emitted power occurs when the
dipole is very close to the HM.

To investigate the physical mechanism causing the en-
hancement of the power emission by a dipole in proximity
of a HM, and the suitability to super absorption capabilities,
we report in Fig. 5 the downward and upward spectra pd

and pu in Eq. (5) normalized by k0. The very wide spectrum
ofpd(kt ) coupled to the HM, from kt ≈ 2.1k0 to kt ≈ 14.3k0,
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FIG. 4. (Color online) The ratio Ptot/Pfree space related to an
elementary transverse dipole located near the interface between free
space and five kinds of media: bulk silica, bulk silver, HMm (HM with
metal as the topmost layer), HMd (HM with dielectric as the topmost
layer), and HM EMA (HM modeled by EMA). The multilayered HM
is composed of 5-nm-thick silver and silica layers. (a) The dipole is
located at a distance h = 15 nm, and frequency is varied. (b) The
dipole location h is varied at 400 THz.

is clearly seen in Fig. 5(a), in agreement with the dispersion
diagram plotted in Fig. 3, which shows the kt spectrum where
TM waves have relatively small αz and thus are mainly
propagating. The upward power spectrum is instead present
only for kt < k0, the propagating spectrum in free space.
Also note that EMA results in a wider propagating spectrum

FIG. 5. (Color online) (a) Downward, pd, and (b) upward, pu,
spectral power emitted by a transverse dipole located at h = 15 nm
at 400 THz, for the same case considered in Fig. 4. Note the large
power spectrum pd for kt/k0 between 2.1 and 14.3 for the bottom
HMm and HMd cases, and between 2.1 and 36.5 for the bottom HM
EMA case.

inside the HM, from kt ≈ 2.1k0 to kt ≈ 36.5k0, eventually
in disagreement with Bloch theorem for large kt spectrum,
specifically in the region 14.3k0 < kt < 36.5k0. As mentioned
in Sec. II, EMA predicts that any kt > k0

√
εz is allowed to

propagate in the HM; however, due to the dipole distance from
the HM interface, a large kt spectrum cannot couple power
into the HM because of the free space evanescent field decay

proportional to exp(−
√

k2
t − k2

0h). It is this evanescent decay
that leads to power spectrum p(kt ) decay after kt ≈ 36.5k0 in
the HM EMA case in Fig. 5(a). This fact implies that the closer
is the distance h of the dipole from the HM, the larger is the
power coupled into the HM.

Observing the power spectrum in Fig. 5, it is also useful
to explain why the total scattered power evaluated with
EMA as in Fig. 4(a) is overestimated when compared to
the one calculated with Bloch theory, in the low-frequency
region. The power spectrum difference between EMA and
Bloch theory is mainly in the interval kBloch

t, max < kt < kEMA
t, max,

where kBloch
t, max and kEMA

t, max are evaluated as follows. The largest
spectral component kt of the field emitted by the source and
coupled to the HM under EMA is determined assuming that

the power spectrum decays as exp(−
√

k2
t − k2

0h), and it is

considered negligible when
√

k2
t − k2

0h > ξ , where ξ � 1 is a
predetermined number. This shows that the upper boundary
of the kt spectrum coupled to the HM under EMA (i.e.,

kt < kEMA
t, max) is kEMA

t, max =
√

k2
0 + (ξ/h)2 ≈ ξ/h. Note that this

upper limit is independent of frequency in the assumption
ξ 2/h2 � k2

0 (fully verified in our case).
The upper spectral limit kBloch

t, max denotes the maximum
spectrum able to propagate in the HM using the more precise
Bloch theory, and it is determined by βz approaching the
Brillouin zone edge. By looking at the dispersion diagrams
in Fig. 6 relative to different frequencies, one can observe that

FIG. 6. (Color online) kz − kt dispersion diagram normalized by
π/d , at the three frequencies shown in the legend, obtained via Bloch
theory (solid) and EMA (dashed dotted). (a) Real and (b) imaginary
parts of the wave number kz = βz + iαz in the multilayered HM
considered in Fig. 4.
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FIG. 7. (Color online) (a) Downward, pd, and (b) upward, pu,
spectral power emitted by a transverse dipole located at h = 15 nm at
400 THz, for the same case considered in Fig. 4, considering the two
periods in the legend (individual silver and silica layers are assumed
with equal thicknesses).

the kBloch
t, max decreases for decreasing frequency. However, since

the ratio kBloch
t, max/k0 remains almost constant and equal to about

14, as in Sec. II for the multilayered HM under analysis, we can
say that kBloch

t, max ≈ Kk0, where K is a proportionality constant
determined mainly by the periodicity of the multilayered HM
(see the discussion regarding Fig. 7). This means that the
difference between power spectra able to couple power into
the HM under EMA and Bloch theory is as wide as 
kt =
kEMA
t, max − kBloch

t, max ≈ ξ/h − Kk0. We note that 
kt increases for
decreasing frequency, hence leading to higher disagreement
between EMA and Bloch theory at lower frequencies, and
explaining the power overestimation by EMA in Fig. 4(a) in
the low-frequency region of the plot.

In Fig. 7, we analyze the power spectra of the HM for two
illustrative cases: the one shown in Fig. 5 with a metamaterial
period d = d1 + d2 = 10 nm, and another one with doubled
period d = d1 + d2 = 20 nm (still keeping the same d1/d2

of the case in Fig. 5). This analysis is performed to stress that
the metamaterial physical parameters impact the propagating
spectrum inside the HM, which tends to be narrower as the
period of the HM is increased. The upper edge of the propa-
gating spectrum inside the HM shifts from kt ≈ 14.3k0 (10 nm
period) to kt ≈ 7.1k0(20 nm), showing that the period of the
HM needs to be minimized in order to have a wide propagating
spectrum inside the HM that can be employed to couple power
coming from the evanescent spectrum in free space.

IV. POWER SCATTERED BY A NANOPARTICLE CLOSE
TO A HYPERBOLIC METAMATERIAL

We show and explain now the phenomenon of strong
absorption by the HM when a passive nanoscatterer in
proximity of the HM interface is illuminated. Inspired by the
experimental results in Ref. 22, we focus on understanding
how a nanosphere’s scattered power is affected by its size

and material properties. Hence, consider a silver nanosphere
located as in Fig. 1(b), excited by a linearly polarized (say
along the x direction) plane wave with normal incidence. The
nanosphere is modeled as an equivalent electric dipole via
the single dipole approximation,23,24 and its induced dipole
moment located at the center of the nanosphere (thus at a
distance from the HM equal to the radius r) is given by px =
αxxE

loc
x , where αxx is the electric polarizability (Clausius–

Mossotti expression reported in Refs. 23 and 24), and Eloc
x is

the local electric field acting on the nanosphere. In particular,

Eloc
x = Epw

x + Es
x, (9)

where E
pw
x is the total plane wave field, sum of the

incident plane wave and the one reflected at the HM
interface, evaluated at the nanosphere’s center. Furthermore,
Es

x = Gs
xxpx represents the field produced by the dipole itself,

and evaluated at its location, which accounts for the scattering
by the bottom half-space. Accordingly, the term Gs

xx is the x̂x̂
component of the regularized dyadic Green’s function, i.e., it
does not account for the free-dipole field but includes all the
spectral terms reflected by the HM interface. Accordingly, it
is given by the spectral representation

Gs
xx = iω

4π

∫ +∞

0

[
�TM

d (kt )

2Y TM
u (kt )

+ �TE
d (kt )

2Y TE
u (kt )

]
ktdkt , (10)

where

�
TM,TE
d (kt ) = Y TM,TE

u (kt ) − Y
TM,TE
d (kt )

Y
TM,TE
u (kt ) + Y

TM,TE
d (kt )

(11)

are the plane-wave reflection coefficients1 of TE and TM
spectral components with transverse wave number kt , looking
towards the − z direction, and evaluated at the nanosphere
center location. By solving for the scatterer’s dipole moment,
one obtains the closed form expression

px = αxx

1 − αxxGs
xx

Epw
x . (12)

The total plane field at the nanosphere’s center is given by
E

pw
x = Einc

x [1 + �d(0)], where Einc
x is the incoming normally

incident plane wave, and �d(0) is its reflection coefficient
evaluated at the nanosphere’s center. This method is accurate
when the nanosphere is subwavelength and not far from its
first Fröhlich resonance,23 so that the electric dipolar term is
dominant compared with the field due to higher multipolar
terms. Once the dipole moment px of the nanosphere is
determined, its scattered power toward the upper (free space,
P s

u ) and lower (P s
d ) spaces is evaluated by using Eq. (4). The

advantage of this semi-analytical method is that it breaks down
each scattering process into its basic components and provides
a clear physical insight.

The total scattered power P s
tot = P s

u + P s
d due to a silver

nanosphere located on top of six possible substrates (HMd,
HMm, HM EMA, bulk silver, bulk silica, and free space)
under linearly polarized, normally incident plane wave Einc

x

(with 1 V/m electric field amplitude) is shown in Fig. 8(a) for
a nanosphere with radius r = 15 nm versus frequency, and
in Fig. 8(b) versus the nanosphere’s radius r at 400 THz. The
passive silver nanosphere on top of HMd and HMm apparently
scatters one or two orders of magnitude more total power than
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FIG. 8. (Color online) Total power P s
tot scattered by a silver

nanosphere located on the surface of six kinds of media: bulk silver,
bulk silica (εSiO2 = 2.2), free space, HMm, HMd, and HM EMA
composed of silver and silica layers of thickness 5 nm, under plane
wave incidence (|Einc

x | = 1 V/m) when (a) r = 15 nm and frequency
is varied and (b) at 400 THz varying the nanosphere radius r .

when on top of bulk silica, free space, or bulk silver, between
200 and 700 THz [in agreement with the total power emitted by
an elementary transverse dipole shown in Fig. 4(a)]. Note also
that HM EMA gives overestimated scattered power amounts
for smaller frequency/radius ranges in agreement with the
discussion in Sec. III. The difference in scattered power among
all substrate cases is less evident when the nanosphere radius
is increased, as shown in Fig. 8(b), though the total power
scattered by the nanosphere in the case of the HM substrates is
still significantly larger than in the other bulk substrate cases.
In Fig. 9, the ratio P s

d /P s
u is plotted (a) for a nanosphere with
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FIG. 9. (Color online) Ratio of downward over upward power
P s

d /P s
u , for the same case considered in Fig. 8.

r = 15 nm versus frequency, and (b) at 400 THz versus the
nanosphere radius r . One shall notice a remarkable effect—
that the scattered power into the bottom space P s

d is much larger
than the power scattered into the upper space (P s

d � P s
u ) for

HMm and HMd (where HMm has a larger ratio), indicating
that the nanosphere’s scattered field is mainly absorbed by the
HM (and giving direct proof of super absorption capabilities).
Note that HM EMA gives overestimated results for smaller
frequencies or radii, as explained in Sec. III. The case with
bulk silver bottom space yields the lowest P s

d /P s
u ratio in most

of the shown frequency band when compared with all other
substrates except free space, where power is evenly scattered
and thus P s

d /P s
u = 1. When the radius of the metal nanosphere

is decreased, the ratio P s
d /P s

u increases for cases with HMd,
HMm, HM EMA, and bulk silver bottom spaces because the
power coupled to these media is related to a wide kt spectrum
that is purely evanescent in free space (where HM hosts mainly
propagating waves, and bulk silver hosts mainly evanescent
waves related to losses), whereas the case with bulk silica
bottom space is slightly affected. For small nanospheres, e.g.,
r = 15 nm or smaller, the downward power exceeds the upward
power by at least two orders of magnitude. Therefore, we can
observe that a proper distance and size shall be selected for
the nanosphere to enhance its scattered power, and direct it
toward the HM: If the nanosphere is much smaller than the
wavelength, it will not scatter light efficiently; whereas if it
is too large, it does not couple efficiently to the HM’s high
density of states, and the scattering directed toward the HM is
weak (i.e., less power will be coupled into the HM). For the
sake of completeness, we show in Fig. 10 the power scattered
by the nanosphere into the upper space for the cases reported
in Fig. 8 and Fig. 9. When looking at Fig. 10(a), we note that
in the HM cases, the nanosphere scatters less power (up to
two orders of magnitude) into the upper space until 450 THz.
For the remaining frequency range, as well as for the result in
Fig. 10(b), the power scattered in the upper half-space in the
presence of the HM is comparable to the one scattered when
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FIG. 10. (Color online) The upward scattered power P s
u for the

same case considered in Fig. 8.
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FIG. 11. (Color online) Total power P s
tot scattered by silver (Ag),

silica (SiO2), silicon carbide (SiC), and gallium phosphide (GaP)
nanospheres (r = 15 nm) located on top of the HMd in Fig. 8
composed of silver and silica layers of thickness 5 nm, varying
frequency under plane wave incidence (|Einc

x | = 1 V/m).

the nanosphere is in free space. Moreover, the amount of the
scattered power into the upper space increases as the radius is
increased. We however know from Fig. 8 that the total scattered
power is about 1 to 2 orders of magnitude larger than the one
in free space. This is a promising quality of the metamaterial
under study: Not only is the downward power scattered by the
nanosphere on top of HM increased (dictating suitability to
absorption capabilities), but also the upward scattered power
is reduced or comparable to the one scattered in free space
over a wide frequency band.

Lastly, we inspect the influence of the nanosphere’s material
on the scattered power. We consider the HMd substrate in Fig. 8
and nanospheres with radius r = 15 nm made of four materials,
namely, silver (Ag, with negative and large permittivity17),

silica (SiO2 with small and positive permittivity εSiO2 = 2.2),
silicon carbide (SiC, positive and moderate permittivity25),
and gallium phosphide (GaP, large positive permittivity with
losses25,26), and we show their scattered total power in Fig. 11.
Apparently, when the permittivity of the nanosphere’s material
increases in absolute value (Ag, GaP), the total power scattered
by the nanosphere increases as well. Although the P s

d /P s
u ratio

does not depend on the excitation of the dipole itself, the mate-
rial of the scatterer effectively determines how much power of
the incident plane wave is scattered. Further conclusions about
the usage of sets of scatterers on top of HM for achieving low
reflectance need modeling of distributed scatterers on a HM
surface and will be the object of future work.

V. CONCLUSION

We have shown via spectral theory that: (i) the power
scattered by a passive nanosphere located in the proximity
of a HM is increased; and (ii) scatterers located on top of
HMs scatter almost all power toward the HM. Both HM
EMA and multilayer implementations (HMm, HMd) lead to
similar super absorption properties (in some frequency ranges,
EMA overestimates absorption). Therefore, HMs have a clear
potential of enhancing the decay rate of emitters near its surface
and also for designing efficient and innovative absorbers. A
list of foreseen applications of this “super absorber” with
unprecedented performance in terms of bandwidth and wide
angle of operations includes radar cross section reduction,
near-field absorbers, improved solar spectrum absorption, and
infrared absorbers.
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9R. Kotyński, T. Stefaniuk, and A. Pastuszczak, Appl. Phys. A 103,
905 (2011).

10Z. Liu, Z. Liang, X. Jiang, X. Hu, X. Li, and J. Zi, Appl. Phys. Lett.
96, 113507 (2010).

11X. Ni, G. Naik, A. Kildishev, Y. Barnakov, A. Boltasseva, and
V. Shalaev, Appl. Phys. B 103, 553 (2011).

12H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar,
and V. M. Menon, Science 336, 205 (2012).

13T. U. Tumkur, L. Gu, J. K. Kitur, E. E. Narimanov, and M. A.
Noginov, Appl. Phys. Lett. 100, 161103 (2012).

14E. E. Narimanov, H. Li, Y. A. Barnakov, T. U. Tumkur, and M. A.
Noginov, arXiv:1109.5469.

15P. A. Belov and Y. Hao, Phys. Rev. B 73, 113110 (2006).
16L. D. Landau, E. M. Lifshitz, and L. P. Ptaevskii, Electrodynamics

of Continuous Media, 2nd ed. (Butterworth-Heinemann, Oxford,
UK, 1984), p. 339.

17P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
18O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, Opt. Lett. 36, 2530

(2011).
19D. M. Pozar, Microwave Engineering, 3rd ed. (Wiley, Hoboken,

NJ, 2005).
20S. Campione, S. Steshenko, M. Albani, and F. Capolino, Opt.

Express 19, 26027 (2011).
21S. Campione, S. Steshenko, and F. Capolino, Opt. Express 19, 18345

(2011).
22T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E.

Narimanov, and M. A. Noginov, Appl. Phys. Lett. 101, 091105
(2012).

23C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light
by Small Particles (Wiley, New York, 1983).

24S. Steshenko and F. Capolino, in Theory and Phenomena of
Metamaterials, edited by F. Capolino (CRC Press, Boca Raton,
FL, 2009).

25E. Palik, Handbook of Optical Constants of Solids (Academic Press,
New York, 1985).

26D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983).

205130-7

http://dx.doi.org/10.1103/PhysRevLett.90.077405
http://dx.doi.org/10.1103/PhysRevLett.90.077405
http://dx.doi.org/10.1073/pnas.1121517109
http://dx.doi.org/10.1016/j.physb.2003.08.014
http://dx.doi.org/10.1016/j.physb.2003.08.014
http://dx.doi.org/10.1364/OL.31.002130
http://dx.doi.org/10.1364/JOSAA.26.002521
http://dx.doi.org/10.1364/JOSAA.26.002521
http://dx.doi.org/10.2528/PIER10051309
http://dx.doi.org/10.1007/s00339-011-6286-3
http://dx.doi.org/10.1007/s00339-011-6286-3
http://dx.doi.org/10.1063/1.3280383
http://dx.doi.org/10.1063/1.3280383
http://dx.doi.org/10.1007/s00340-011-4468-5
http://dx.doi.org/10.1126/science.1219171
http://dx.doi.org/10.1063/1.4703931
http://arXiv.org/abs/1109.5469
http://dx.doi.org/10.1103/PhysRevB.73.113110
http://dx.doi.org/10.1103/PhysRevB.6.4370
http://dx.doi.org/10.1364/OL.36.002530
http://dx.doi.org/10.1364/OL.36.002530
http://dx.doi.org/10.1364/OE.19.026027
http://dx.doi.org/10.1364/OE.19.026027
http://dx.doi.org/10.1364/OE.19.018345
http://dx.doi.org/10.1364/OE.19.018345
http://dx.doi.org/10.1063/1.4746387
http://dx.doi.org/10.1063/1.4746387
http://dx.doi.org/10.1103/PhysRevB.27.985



