Lawrence Berkeley National Laboratory
 LBL Publications

Title
Notes on Quadrupole Focusing
Permalink
https://escholarship.org/uc/item/4x72s9kj
Author
McMillan, Edwin M
Publication Date
1956-02-01

University of California

Ernest O. Lawrence Radiation Laboratory

Berkeley, California

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNLA
 Radiation Laboratory Berkeley, California

Contract No. W-7405-eng-48

NOTES ON QUADRUPOLE FOCUSING
 Edwin M. McMillan

February 9。1956

Printed for the U.S.Atomic Energy Commission

NOTES ON QUADRUPOLE FOCUSING Edwin M. McMillan Radiation Laboratory
University of California Berkeley, California

February 9. 1956

A. General Considerations

1. Consider two planes perpendicular to the axis of the systern, with coordinates x and y in these planes lying along the principal directions of the quadrupoles. Let x_{1} and x_{1} ' be the x displacement and slope of an orbit at the first plane while x_{2} and x_{2} ' are the corresponding quantities at the second plane. Then the most general linear relations between these quantities are

$$
\begin{aligned}
& x_{2}=a x_{1}+b x_{1}^{\prime} \\
& x_{2}^{\prime}=c x_{1}+d x_{1}^{\prime}
\end{aligned}
$$

This pair of equations can be represented by the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
2. In all matrices encountered in this application the determinant $a d-b c=1$. This fact can be used either to simplify the calculations, or as a check on calculations made without specifically using this fact.
3. If the orbit goes in succession through two regions for which the matrices are known the matrix for the whole system is the product of the individual matrices. The matrix for the region traversed first appears at the right in the product.
4. If all elements of a region with matrix $\left\langle a_{0} b_{0} c_{0}\right.$ d) are physically inverted along the axiss as if by reflection in a plane midway between the planes described in (A. I) the matrix represeating the new situation is: $\left(\begin{array}{ll}d & b \\ c & a\end{array}\right)$. A corollary of this is that if a region has a plane of symmetry then $2=d$
5. 喽 a region with matrix $\left(a_{8} b_{8} c_{8} d\right)$ is followed by she same region inverted as in ($A, 4$), the resultant matrix is

$$
\left(\begin{array}{cc}
a d+b c & 2 a b \\
2 a c & a d+b c
\end{array}\right)
$$

(Note that $a d+b c=2 a d-1=2 b c+1$.
6. Matrices for the y direction are obtained from those for the x direction by simply changing the sign of the magnetic field gradient throughout.
7. Signiaicance of vanishing matrix elements: From the equations in (A. 1). it is apparent that if the coefficient $a=0$, parallel rays incident at the left are focused to a point at the second plane; if $d=0$, a point source at the first plane gives a parallel beam at the right; if $b=0$, a point source at the first plane gives a point focus at the second; if $c=0$, an incident parallel beam gives an emergent parallel beam.

B. Analogy with Geometrical Optics

8. The matris for a field-free region of length L is

$$
\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)
$$

9. The matrix for a thin lens of focal length $£$ is

$$
\left(\begin{array}{rr}
1 & 0 \\
-1 / E & 1
\end{array}\right)
$$

10. Make the following combination: Field-free region of length L_{1}. followed by region of matrix ($a b c d$), followed by field-free region of length $L_{2^{\circ}}$ The resulting matrix is

$$
\left(\begin{array}{cc}
a+c L_{2} & b+a L_{1}+d L_{2}+c L_{1} L_{2} \\
c & d+c L_{1}
\end{array}\right)
$$

If shis combination is to give a point-to-point focus, then actording to (A. 1) the upiwer right element must vanish. Using (A. 2), we can write this condicion in the Sorm

$$
\left(L_{1}+d / c\right)\left(L_{2}+a / c\right)=1 / c^{2}
$$

A plot of L_{1} against L_{2} is thus a hyperbole. This can also be writien

$$
\frac{1}{L_{1}+(d-1) / c}+\frac{1}{L_{2}+(a-1) / c}=-c
$$

which has the form of the standard lens formulas if $-1 / c$ is taken for the focal length and $\left(\mathrm{d}-1 \mathrm{~V} / \mathrm{c}_{\mathrm{s}}(\mathrm{a}-1) / \mathrm{c}\right.$ are taken for the distances of the primeipal planes inward from the ends of the leas. Note that if the coefficiente $a_{8} b, c_{8} d$ given for the thin leas in (B.9) are substituted into this, it gives

$$
1 / L_{1}+1 / L_{2}=1 / f_{0}
$$

If L_{1} and L_{2} satisfy the conditions given above, the linear magnification is equal to the upper left element in the matrix. a $+\mathrm{cL}_{2}$. The ratio of angular spreads is the reciprocal of this. These are negative if the image is inverted.
11. If $L_{1}=L_{2}=L$ in the above.

$$
L=-\frac{1}{c}\left[\frac{a+d}{2}+\sqrt{\left(\frac{a-d}{2}\right)^{2}+1}\right]
$$

linear magnificasion $=\frac{a-a}{\varepsilon}-\sqrt{\left(\frac{a-d}{2}\right)^{2}+1 \text { 。 } . ~ . ~}$
(The general solution has a a k sign in front of the square roots but since the +3 ign is to be chosen in most practical cases. it is written this way to avoid confusion.
C. Basic Quadrupoie Formulas
12. Let ρ be the radius of curvature of the particle in the field at a distance r from the axis, and let $\&$ be the length of the region considered.

Define

$$
\phi=\frac{\ell}{\sqrt{\rho r}} .
$$

Then the matrix for a focusing section is

$$
\left(\begin{array}{lr}
\cos \phi & \frac{\ell}{\phi} \sin \phi \\
-\frac{\phi}{\ell} \sin \phi & \cos \phi
\end{array}\right) .
$$

For a defocusing section, replace ϕ by i ϕ to get

$$
\left(\begin{array}{lr}
\cosh \phi & \frac{\ell}{\phi} \sinh \phi \\
\frac{\phi}{\phi} \sinh \phi & \\
\cosh \phi
\end{array}\right)
$$

13. A focusing section of strength ϕ_{1} followed by a defocusing section of strength ϕ_{2}, both having the same length ℓ_{0} has the matrix
$\left(\begin{array}{ll}\cos \phi_{1} \cosh \phi_{2}-\frac{\phi_{1}}{\phi_{2}} \sin \phi_{1} \sinh \phi_{2} & \ell \frac{1}{\phi_{1}} \sin \phi_{1} \cosh \phi_{2}+\frac{1}{\phi_{2}} \cos \phi_{1} \sin k i \\ \frac{1}{I}\left(-\phi_{1} \sin \phi_{1} \cosh \phi_{2}+\phi_{2} \cos \phi_{1} \sinh \phi_{2}\right) & \cos \phi_{1} \cosh \phi_{2}+\frac{\phi_{2}}{\phi_{1}} \sin \phi_{1} \sinh \phi_{2}\end{array}\right.$
The corresponding matrix for the y-direction is derived from this by replacing ϕ by i ϕ. This combination will be called a symmetrical doublet if $\phi_{1}=\phi_{2}$ 。 A useful approximation is obtained by letting $\phi_{1}=\phi(1+a) \phi_{2}=\phi(1-a)$, and expanding to order ϕ^{2} the coefficients of terms of order $Q_{\text {. Then }}$ for $a \ll 1$ and ϕ not too large, the above matrix is represented approximately by
$\left(\begin{array}{l}\cos \phi \cosh \phi-\sin \phi \sinh \phi-4 \phi^{2} a \\ \frac{\phi}{2}(-\sin \phi \cosh \phi+\cos \phi \sinh \phi-4 \phi c)\end{array}\right.$
$\left.\begin{array}{l}\frac{\ell}{\phi} \| \sin \phi \cosh \phi+\cos \phi \sinh \phi \\ \cos \phi \cosh \phi+\sin \phi \sinh \phi-4 \phi^{2} \alpha\end{array}\right)$

This is exact if a $=0$. A still further appromimation can be cbtaiand by expanding the functions in all terms. If this is carried out to two ordere above the leading term, taking account of the fact that in the cases wa zxe interested in a is of order ϕ^{4}. we get

$$
\left(\begin{array}{cc}
1-\phi^{2} & 2 l \\
\frac{2 \phi^{2}}{2}\left(-\frac{1}{3} \phi^{2}-2 a\right) & 1+\phi^{2}
\end{array}\right)
$$

(Note that in these approximate formulas the relation ad -bc $=1$ must not be used to compute elements given to higher order than the others.)
14. A symmetrical triplet is produced by placing in series a doublet and a reversed doublet of equal strength. Using (A.5) and the last form given in (C. 13), we get

$$
\left(\begin{array}{ccc}
1 & 4 \ell \\
\frac{4 \phi^{2}}{l}\left(-\frac{1}{3} \phi^{2}+\frac{1}{3} \phi^{4}-2 a\right) & 1
\end{array}\right)
$$

The more accurate matrix (exact for $a=0$) appears in its simplest form wher: functions of double angles are used:
$\left(\begin{array}{ll}\cos 2 \phi \cosh 2 \phi-16 \phi^{2} & \frac{2}{\phi}(\sinh 2 \phi+\sin 2 \phi \cosh 2 \phi \\ \frac{\phi}{\ell}(\sinh 2 \phi-\sin 2 \phi \cosh 2 \phi-8 \phi \theta) & \cos 2 \phi \cosh 2 \phi-16 \phi^{2} \theta\end{array}\right)$,

These matrices apply to the case with the focusing section at the ends; the change $\phi \sim 1 \phi$ fakes one to the case with the focusing section in the middle.
D. Applications

In a .11 cases given below, it will be required that the foci coincide for x and y displacements. In practice, astigmatic arrangements may nome* times be vanted, but this is a good starting point for examining the properties of quadrupole lenses. Arrangements for producing a parallel beam and for focusing between points at equal distances from the lens vill be considereci in some detail. and comparisons made between the doublet and triplet lenses. The comparisons will presumably hold in more general cases where the foca! distances are unequal.
15. Production of parallel beam from a point source. Refer to the formulas in $(B, 10)$ and note that a parallel beam on the right implies $L_{2}=\infty$. This leads to

$$
L_{1}=-d / c
$$

With the source at the distance L_{1}, the ratio of the width of the outgoing beam to the angular spread of the incident beam is $-1 / \mathrm{c}$. If the source is displaced laterally by a unit distance, the outgoing beam is deflected by an angle c. This displacement hae a further effect, since the principel planos are not necessarily at the ends of the lens section; this is a latexal dieplacemen of the ceutral ray the ray passing through the center of the lens entrance; by an amount $a-1 / d$ at the lens exit.
16. Use of symmetrical triplets for parallel beam from a point source. Start with the approximate matrix given in (C.14) and set up the condition that d/c is tnchanged when ϕ is changed to $i \phi$. This leads to the requirement

$$
a=\frac{1}{6} \phi^{4} .
$$

With this requirement satisfied, the matrix is very simple, and is the same for both x and y directions:

 ratios of deflections and angles has the seme value.
 culations made using the second form given in (C. 13). Ai p $=0.3: 1 . \operatorname{dia}$ agreemont is within the accuracy of a 6 -inch slide rule; at $\phi=0.3$ adis a_{c} the epproximation gives $0=0.02 Z_{0} L_{1}=5.8 l_{0}$ while the beticr caiemiation
 a $-1 / 0$ is equal to $-1,1$ and 0.6 , for the cses with the focusing cos ion in to: end and the midde, respectively. If $\phi=\pi / 4$, the approximetiot is matre $\because \because:$ an exact calculation shows that the foci coincide at the edge of the tins far $a=0$, writh $-1 / C$ equal to 2.8% and 1.3 L
17. Use of doublets for parallel beam from a point source. Thiat the 1ast form in (C. 13), we find chat the condition for coinciding foci is ageial $a=\phi^{4} / 6$. The matrix is then

$$
\left(\begin{array}{cc}
1-\phi^{2} & 2 \ell \\
-\left(2 \phi^{4} / 3 Q\right)\left(1+\phi^{2}\right) & 1+\phi^{2}
\end{array}\right)
$$

The length $L_{1}=3 \ell / 2 \phi^{4}$, The coefficients $-1 / c$ differ for the x ane y directions, but their product is equal to $L_{1}{ }^{2}$ to the order for which inis calculation is good.

A beticer calculation for $\phi=0.6$ radian gives better agrecnant chan with the triplet; L_{g} comes out to be 3% below the approximate vatue, whit the coefficients $-1 / \mathrm{c}$ are both correct to within 4%. At $\phi=\pi / \mathrm{c}$ 人 $\mathrm{H}=$ approximate value is still rather good; the correct values are given belove Ellowed by the approximate ones in purentheses:
 for casos witk the focusing section in the ends and in the midde, respectiv fyy
18. Socusiag between points at zqual distances from a symusorical \because 2lat, This eituation can be thoughe of as two equal doublete becis to be st.

Therefore the results of (D. 17) can be used directiy in this cane Tho linear magnification $=-1$.
19. Focusing between points at equal distances from a symmetrical doublet. Symmetry considerations show that a should be zero in inis case。 and that the foci will automatically coincide for the x and y displacements. To find the focal distance, use (B, 11) and the first form in (cil3) giving

$$
L=\frac{2}{\phi} \frac{\cos \phi \cosh \phi+\sqrt{\sin ^{2} \phi \sinh ^{2} \phi+1}}{\sin \phi \cosh \phi-\cos \phi \sinh \phi} .
$$

or approximately $L=31 / \phi^{4}$. To this approximation, the linear magnification is $-\left(1+\phi^{2}\right)$ when the focusing section is toward the source, and of $\left.-\phi^{2}\right)$ when it is away from the source; the ratios of angular spreads are the reciprocals of these.
20. Angular aperture. This is the angle of a ray from the source that just touches the boundary of the usable regioa in the magnetic field. Let the radius of this boundary be r; then the angular aperture for source distance L_{1} can be writien $2 s\left(r / L_{1}\right)$ fimes some function of ϕ. In all the cases discussed above, the product of the two functions of ϕ for the x and y direction. is equel to 1 - ϕ^{2} in an approximation good to this order in ϕ o More exact values can be computed without too much trouble, and some numerical examples will be given later.
21. Comparison of triplet and doublet. Collecting formulas givea earlier, to the simplest approximation, we have the following:

$$
\begin{aligned}
& \phi=\ell / \sqrt{r \rho} \\
& L_{1}=k \ell / \phi^{4}=k r^{2} \rho^{2} / l^{3} \\
& \text { Product of } x \text { and y angular apertures } \\
& \sim\left(r / L_{1}\right)^{2}\left(1-\phi^{2} \sim\left(l^{6} / k^{2} r^{2} \rho^{4}\right)\left(1=l^{2} / r \rho\right)\right.
\end{aligned}
$$

The numerical coefficient is $k=3 / 4$ for production of 2 parallel beam by a triptetis $3 / 2$ for the same case with a doublet, and twice these values for the cask of point-to-point focusing at equal distances by a triplet ene doublet, respectively. The comparison of doublet to triplet can now be made under several sets of assumed circumstances. The ratios of quantities in the doublet and eripiet arrangements do not depend on whether one is considering point-to-parallei or point-to-point focusing, to this approximation.
(a) Same total leagth and diameter of quadrupole magnet, same focal distance. Let the product of the angular apertures $=$ A. Then

$$
\begin{aligned}
& \frac{\rho \text { doublet }}{\text { Ptriplet }} \sim 2 \frac{\phi \text { doublet }}{\phi \text { triplet }} \sim \sqrt{2} \\
& \frac{\text { A doublet }}{\text { Atriplet }} \sim \frac{1-2 \phi t^{2}}{1-\phi_{t}{ }^{2}}
\end{aligned}
$$

Thus the triplet takes twice as great a magnetic field as the doublet while the doublet has a smaller aperture. In case $\phi_{\mathcal{E}}$ is large enough shat the aperture difference is important, and if the available field is great caough to achieve the triplet case, the triplet is better; however, the latter may not prevail in practice。
(b) Same diameter and field strength of magnet same focal distance.

$$
\frac{\text { tetal length of doublet }}{\text { cotal lenght of triplet }}-(1 / 4)^{1 / 3} \cdot \frac{\phi d}{\phi_{t}} \sim 2^{1 / 3}
$$

$$
\frac{A_{d}}{A_{t}} \sim \frac{1-2^{2 / 3} \phi_{t}^{2}}{1-\phi_{t}^{2}}
$$

Again the triplet gives a larger aperture。 but the triplet requires a magnet 1,59 times as long as the doubiet.
(c) Same diameter, totel length, and field strength of maguet.

$$
\begin{aligned}
& \frac{A}{2} \cdots 1 / 4-4 y^{2}
\end{aligned}
$$

The zonblet has a lexgex aperture than the triplat by a factor of it shan 3 ． is smat；however．if $\phi_{\text {e }}$ becomes too large，the triplet will evectabliy heve the larger aperture．The formula given here makes the apertures squal at $\phi_{\hat{E}}=0.49$ radian $\phi_{d}=0.98$ radian ${ }^{2}$ but the approximations us＇ad become rather bad for such large values of φ ．

22．Better calculation for（D．21ch Let $M=$ total length of raasict：A few values computed using the second form in（C． 13 ）and exact formulas for the orbit amplitudes are：

$\frac{M}{\sqrt{R} \rho}$	ϕ_{t}	ϕ_{d}	$\frac{L_{t}}{M}$	$\frac{L_{d}}{M}$	$\left(\frac{M}{r}\right)^{2} A_{t}$	$\left(\frac{M}{r}\right)^{2} A_{d}$	A_{d} / A_{t}
1.57	$\pi / 8$	$\pi / 4$	15.3	4.2	0.0036	0.032	8.7
3.14	$\pi / 4$	$\pi / 2$	0.92	0.32	0.50	1.02	2.04
4.70	$3 \pi / 8$	$3 \pi / 4$	0.133	0.002	7.0	2.9	0.41

This shows that the doublet has a larger aperture than the iriplet at lenst up to $\phi_{t}=0.79, \phi_{d}=1.57$ ，in the case where both doublet and triplet have the same total length and the same field strengeh．For larger values of ϕ the focal point comes uncornfortably close to the magnet for some uses．

The conclusion is that in many applicatione fparticularly where equality of the x and y magnifications is not important）the doublet will do a better job than the triplet arrangement．

23．Effect of Gaps．Gaps between focusing and defocising sections teri to increase the strength of quadrupole arrangements．As an illustretion． consider the case of a symmetrical doublet with a field－free gap of length G befween the two sections．The matrix elements for the case with the focusing section at the leftlare：
$a=\cos \phi \cosh \phi-\sin \phi \sinh \phi-\frac{L \phi}{L} \sin \phi \cosh \phi_{\theta}$
$\mathrm{b}=\frac{\ell}{\phi}\left(\sin \phi \cosh \phi 2 \cos \phi \sinh \phi+\frac{\frac{L}{1}}{\frac{1}{2}} \cos \phi \cosh \phi\right)^{\prime}$
$c:=\frac{\phi}{R}\left(-\sin \phi \cosh \phi+\cos \phi \sinh \phi \quad \frac{L \phi}{l} \sin \phi \sinh \phi\right)$ ．
$d=\cos \phi \cosh \phi+\sin \phi \sinh \phi+\frac{L \phi}{E} \cos \phi \sinh \phi$ 。
 to - point focus, gives the followiag result: The focal digsmen ty ivo 3 of thet for the corresponding case with $G=0$, while the aporture f_{0} ie increacue by a factor of 3.6 .

