
UCLA
UCLA Electronic Theses and Dissertations

Title
Statistical Techniques for Analyzing Irregular and Sparse Cyclical Longitudinal Data with 
Applications to Bipolar Disorder

Permalink
https://escholarship.org/uc/item/4x73r27m

Author
Calimlim, Brian Manalo

Publication Date
2014
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4x73r27m
https://escholarship.org
http://www.cdlib.org/


University of California

Los Angeles

Statistical Techniques for Analyzing Irregular and

Sparse Cyclical Longitudinal Data with Applications to

Bipolar Disorder

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Public Health

by

Brian Manalo Calimlim

2014



c© Copyright by

Brian Manalo Calimlim

2014



Abstract of the Dissertation

Statistical Techniques for Analyzing Irregular and

Sparse Cyclical Longitudinal Data with Applications to

Bipolar Disorder

by

Brian Manalo Calimlim

Doctor of Public Health

University of California, Los Angeles, 2014

Professor Catherine A. Sugar, Chair

Bipolar disorder is an illness characterized by abnormal mood swings encompassing both

mania and depression, often with irregular longitudinal patterns. The variable and cycli-

cal episodic nature of the disease presents many challenges for statistical analyses. These

complex features make it difficult to characterize the data, define disease improvement mea-

sures, and develop appropriate statistical models. This is particularly problematic among

rapid cycling bipolar disorder patients whose disease is defined by highly erratic and frequent

mood shifts. In this dissertation, I present two approaches to analyzing data from bipolar

disorder studies. The first approach focuses on the time spent in various mood states. Us-

ing longitudinal mood severity rating scale scores, data are transformed into a sequence

of mood states. These sequences are analyzed as a Markov chain and stationary distri-

butions are used to measure within- and between-group differences. The non-parametric

bootstrap is employed to test for differences. The second approach focuses on features of the

mood episodes. Mood severity rating scale scores are modeled as a longitudinal function of

episodes and patient-specific characteristics. Episodes are parameterized by their durations,

peak severities (amplitudes), and times of occurrence (locations). This flexible parametric

model is fit to the data using a global iterative search algorithm known as Particle Swarm

Optimization. To reduce the dimensional space of the search algorithm, an episode detec-
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tion method is proposed. Estimates are derived for each patient and are used as inputs in

secondary statistical models. These approaches are applied to a three-arm randomized trial

of rapid cycling bipolar disorder patients. Mechanisms of these approaches are tailored to

address sparsity and small sample size issues present in the data. Simulations are used to

assess the statistical performance and agreement of these approaches, and recommendations

for clinical application are presented.
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CHAPTER 1

Introduction

The purpose of this dissertation is to develop statistical methods for the analysis of data from

studies of bipolar disorder, an illness characterized by abnormal and irregular mood swings.

Its highly variable and cyclical nature presents challenges for statistical analyses, making

it difficult to characterize the data and develop appropriate models. The multidimensional

nature of the disease, encompassing both mania and depression, complicates the definition of

disease improvement measures. Moreover, as the nature of the disease is episodic, data are

generally longitudinal which adds another dimension of complexity, especially as the patterns

of mood changes across time are not regular. These challenges present many barriers in data

analysis but also provide avenues for developing innovative approaches.

The approaches developed here are motivated by data from a three-arm randomized

trial comparing two different thyroid hormone treatments against a placebo in a treatment-

refractory population. The patients in the trial exhibit an increased frequency of mood

swings, and are thus classified as rapid cycling. This adds an additional layer of complexity

by making it difficult to distinguish between random fluctuation and the true underlying data

mechanism. Furthermore, the study suffers from challenges in sample size and data sparsity.

A total of 32 patients are observed at approximately two-week intervals which may be long

relative to their cycling rate. The aim of this dissertation is to address these challenges by

developing unique, clinically-based analytical approaches. Because this is a treatment trial,

efforts are focused on detecting improvements in various dimensions of disease severity, such

as episode severity, frequency, and duration, and comparing the effects among groups.
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Chapter 2 provides an introduction to bipolar disorder and the clinical setting of ap-

plication. Basic mechanisms of the disease, diagnosis, and available treatments are discussed,

as well as instruments used to quantitatively measure symptom severity. Issues concerning

the statistical analysis of bipolar disorder data are also discussed in the context of defining

and measuring treatment effects. Chapter 3 presents the details of the three-arm random-

ized trial. Results from the originally proposed analysis are given and the shortcomings of

the approach are discussed. Chapter 4 presents a state-based approach to the problem by

adopting a perspective focused on the mood states of bipolar disorder. Data are formulated

as sequences of mood episodes and are analyzed as a Markov chain. This is combined with

a bootstrap procedure to facilitate hypothesis testing. Chapter 5 presents an approach that

focuses on episode characteristics. Longitudinal data are modeled as episode combinations

characterized by severity and duration. A grid-based search is adopted to detect episodic

regions and data are fit to the model using particle swarm optimization, an iterative global

search algorithm. Resulting estimates are analyzed in a repeated measures framework to

assess group differences. Chapter 6 presents simulation studies of these two approaches.

Chapter 7 outlines areas of future work.
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CHAPTER 2

Literature Review

2.1 Bipolar Disorder

2.1.1 Overview

Bipolar disorder is a psychiatric illness characterized by abnormal mood shifts and behavior.

These mood swings result in inconsistent and unpredictable energy, activity, and productivity

levels. While it is normal for people to experience mood shifts in daily life, bipolar disorder

patients exhibit mood severities and irregularities to a degree that obstructs normal living,

functionality, and social interaction. Mood can generally be categorized by four states:

euthymia, mania, depression, and mixed. A period of elevated mood and energy level is

known as a manic episode and the person is said to be in a manic state. A period of lowered

mood and interest level is known as a depressive episode and the person is said to be in the

depressed state. A period with a mood that is reflective of both the manic and depressed

states is known as a mixed episode and the person is said to be in the mixed state. Times

of normal mood are referred to as euthymia and the person is said to be in the euthymic

state. Formal definitions and criteria of manic, depressive, and mixed episodes do exist are

described later.

United States population statistics suggest a persistent prevalence of bipolar disorder.

Based on data collected from 1980 to 1985, the lifetime prevalence of bipolar disorder in

3



the adult United States population was estimated to be approximately 1.3%1,2, while data

collected from 2000 to 2003 suggest a prevalence of ranging from 1% to 4%3,4. Data from

the later survey also indicated a median age of onset of 25 years; the mean age varied

by bipolar disorder subtypes with younger ages of onset being observed in more severe

subtypes. Treatment effectiveness remains an issue. Based on a United States national

survey, only 48.8% of bipolar disorder patients received treatment in the previous twelve

months while 18.8% received adequate treatment (two or more months of pharmacotherapy

plus four or more physician visits in the past year)5. Furthermore, the economic burden of

the disease is substantial. For 2009, the total direct and indirect cost of bipolar disorder in

the United States was estimated to be $151 billion6. Variation in symptom severity profiles

among bipolar disorder patients present further challenges in effective disease treatment

and management. These statistics underscore the continuing need for treatment research in

bipolar disorder.

2.1.2 Diagnosis

Bipolar disorder is diagnosed by examining a patient’s mood history and identifying episodes

suggestive of the disease. Guidelines defining and characterizing mood episodes are outlined

in The Diagnostic and Statistical Manual for Mental Disorders (DSM), currently in its fifth

edition7. The DSM classifies episodes according to abnormal mood severity and duration,

associated psychological symptoms, and functional impairment. Episodes are generally clas-

sified as manic, major depressive, and mixed, although subtypes do exist. Episode severity is

determined by the number of associated symptoms, the degree of impairment, and whether

psychotic features are present. Symptoms must not be the result of substance-related phys-

iological effects.

Manic episodes are characterized by an abnormally elevated euphoric or irritable

mood that persists for at least a week (or for any duration if associated with a hospitaliza-

tion). To be considered a manic episode, the DSM requires that at least three associated

4



symptoms (four if the mood is only irritable) persist during this period and be present to

a significant degree. These associated symptoms are: inflated self-esteem, decreased need

for sleep, talkativeness, racing thoughts, distractibility, increased goal-directed activity, and

excessive involvement in pleasure-oriented activities without regard for consequences. Ad-

ditionally, these symptoms must be severe enough to cause a distinct impairment in work

activity or social functioning, require hospitalization, or have psychotic features.

Also used to diagnose bipolar disorder are hypomanic episodes, which share the same

characterizations and symptoms as manic episodes. Although symptom severities required

for this categorization are not great enough to cause significant impairment or lead to a

hospitalization, mood disturbance and changes in functionality should be great enough to

be observable to others and considered to be uncharacteristic of the patient in the absence

of symptoms. Moreover, the DSM requires a duration of at least four days.

Major depressive episodes are also a defining feature of bipolar disorder and are char-

acterized by a depressed mood and an overall lack of interest or pleasure (anhedonia). The

DSM considers a major depressive episode as lasting for at least two weeks and requires the

presence of at least five associated symptoms. These associated symptoms are: depressed

mood for most of the day, anhedonia in nearly all activities for most of the day, significant

weight loss or change in appetite, insomnia or hypersomnia, observable psychomotor agi-

tation or retardation, fatigue, feelings of worthlessness, diminished concentration abilities,

and recurrent suicidal thoughts. All symptoms must present nearly every day during the

mood disturbance (with the exception of the suicidal thoughts), and symptoms must exhibit

severities great enough to cause clinically significant distress or impairment in social and

occupational functionality.

Periods with both manic and major depressive symptoms are classified as mixed

episodes. To meet the DSM criteria for a mixed episode, the symptom criteria of manic

and major depressive episodes must be met simultaneously and the associated symptoms

must persist nearly every day for at least a week. Similarly, symptom severity must be

5



great enough to cause marked impairment in occupational and social functioning, require

hospitalization, or have psychotic features.

Patients are diagnosed according to their lifetime episode history and are further

classified into subtypes of the disease. The two major classifications of bipolar disorder are

Bipolar I Disorder and Bipolar II Disorder. Patients with a clinical history of at least one

manic or mixed episode are diagnosed as having Bipolar I Disorder. Although it is not

included in the criteria for diagnosis, it is common for Bipolar I Disorder patients to have a

clinical history that includes major depressive episodes. Patients with a history of at least one

major depressive and one hypomanic episode are diagnosed as having Bipolar II Disorder.

It is possible for a patient diagnosed with Bipolar II Disorder to progress into Bipolar I

Disorder by later experiencing a manic or mixed episode: In a longitudinal study examining

the conversion of bipolar disorders, 17.4% of Bipolar II Disorder patients progressed into

Bipolar I Disorder8. Other classifications exist, such as Cyclothymic Disorder and Bipolar

Disorder Not Otherwise Specified, though these classes are not central to the approaches

described here.

First specified in the fourth edition of the DSM is a feature of bipolar disorder known

as rapid cyling, which occurs in a subset of both Bipolar I Disorder and Bipolar II Disorder.

Rapid cycling bipolar disorder is characterized by shorter and more frequent mood swings.

To formally be a rapid cycler according to the DSM, a subject must meet the Dunner-Fieve

criterion9 of four or more mood episodes in a twelve month period. On average, bipolar

subjects who are non-rapid cyclers experience one manic/hypomanic and one depressive

episode in a twelve month period, while rapid cyclers experience approximately eight times

as many10,11. Studies suggest that approximately 15% to 20% of bipolar disorder patients

meet the Dunner-Fieve criterion9,12,10.
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2.1.3 Disease Mechanisms

The mechanisms that underlie mood-related illnesses such as bipolar disorder encompass

a broad spectrum, including environmental stressors, genetic predispositions, and cellular

biology. Treatment research has focused on the neurobiology underlying bipolar disorder,

particularly biochemical abnormalities and complex pathways involved in regulatory pro-

cesses related to mood. This includes the study of neurotransmitters such as serotonin

and dopamine, thyroid hormones triiodothyronine (T3) and thyroxine (T4), and associated

signaling networks.

Neurobiological research in mood disorders has primarily focused on neurotransmitter

systems. Neurotransmitters are chemicals within nerve cells that, when released, trigger a

response within a neighboring cell. These target cells have neurotransmitter-specific recep-

tors and are involved in other processes. Neurotransmitter release is caused by a cascade of

stimuli. This creates a signaling framework that allows neurons to regulate systems within

the body. Of particular interest in the study of mood disorders is the limbic system, a set of

brain structures associated with the regulation of behavioral, emotional, and cognitive func-

tions related to mood. Neurotransmitter systems modulate this regulation. Attention has

largely focused on the neurotransmitters norepinephrine, dopamine, and serotonin. Because

increased levels of norepinephrine and dopamine are positively correlated with alertness,

arousal, and motivation, research suggests that low levels of these transmitters are asso-

ciated with depression, while high levels are tied to mania. Research has also implicated

serotonin transport systems with depression and mania which are synergistic with nore-

pinephrine and dopamine regulation. However, neurotransmitter level is only one of several

influential factors influencing the signaling pathway. Other factors of influence include post-

synaptic receptor sensitivity, intracellular signaling pathways, cellular plasticity, and genetic

predisposition13,14. Bipolar disorder and its symptom manifestations are believed to be

driven by such a cascade of neurobiological systems15,16.
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2.1.4 The Role of Thyroid Hormones

Biochemical abnormalities in thyroid hormones and dysfunction of the hypothalamo-pituitary-

thyroid (HPT) axis have also received attention in bipolar disorder. Thyroid hormones are

involved in the signaling and regulation of many processes throughout the body such as

metabolism, protein synthesis, and neural development. The production of thyroid hor-

mones is controlled by the HPT axis, which consists of the hypothalamus, pituitary gland,

and thyroid gland. The pituitary gland – located adjacent to the hypothalamus – manages

a multitude of biological mechanisms through hormone production and serves as a link be-

tween the nervous system and the endocrine system, which includes the thyroid gland. To

increase levels of thyroid hormone, the hypothalamus produces thyrotropin releasing hor-

mone (TRH). Increased levels of TRH cause the pituitary gland to produce thyrotropin

stimulating hormone (TSH), which in turn triggers the thyroid gland to produce triiodothy-

ronine (T3) and thyroxine (T4). Serum levels of T3 and T4 serve as a negative feedback signal

to the hypothalamus and regulate TRH production.

T4 is a precursor of the biologically active T3, which enter cells and affect cellular

mechanisms through binding with nuclear receptors17. The binding of T3 can impact nu-

clear transcription, protein synthesis, and other cellular pathways18,19. These changes then

influence other functions throughout the body. T4 is predominantly the hormone of transport

in the blood and is converted to the active hormone T3. Conversion from T4 to T3 principally

occurs outside the thyroid gland and provides a means of maintaining a localized level of

active thyroid hormone. Converted T3 makes up about 80% of the T3 present in the blood20.

The remaining 20% are produced by the thyroid gland. T4, on the other hand, can only be

produced by the thyroid gland.

The relationship between thyroid hormone production, T3 cellular transporters, T3

nuclear receptors, T4 to T3 conversion, and the feedback system within the HPT axis create

a complex thyroid regulation system. Breakpoints along this cascade can lead to imbalances

8



and cause biological irregularities. Of particular interest is the association of thyroid func-

tion with mood and behavioral disturbances21,22. Much like the neurotransmitter systems,

thyroid hormone receptors are widely distributed in brain regions and limbic system struc-

tures associated with mood disorders. This suggests that thyroid hormones may influence

mood regulation and interact with neurotransmitter systems. This relationship is supported

by mood-related neurotransmitter interactions with thyroid hormones, such as the increased

serotonin system responsiveness associated with T3 replacement therapy in hypothyroid pa-

tients23. Additional evidence linking thyroid hormones and mood include animal studies

where T3-receptor knocked-out mice were found to exhibit behavior suggestive of cognitive

dysfunction and anxiety24,25. Further evidence includes mood disruptions in hyper- and

hypothyroid patients26 that link hypothyroidism with depression and hyperthyroidism with

anxiety and irritability. These findings suggest that thyroid hormone regulation is involved

with mechanisms related to mood and its symptomatic manifestations.

Patient studies implicate thyroid hormone dysfunction as a possible underlying mech-

anism of mood disorders. In major depressive patients, research suggests a correlation be-

tween episode recurrence and decreases in serum T3
27. Low T4 levels have been associated

with greater frequency of episodes among bipolar disorder patients28 and longer hospitaliza-

tions in individuals with mood disorders29. T4 levels also reflect a positive correlation with

depressive episode onset and remission30. Additional evidence associating HPT axis dys-

regulation with mood include a diminished TSH response to TRH stimulation in bipolar31

and unipolar depression patients32, and a diminished response to T4 treatment (measured

by thyroid hormone serum levels) among depressed patients compared to healthy controls33.

These findings implicate thyroid hormone dysfunction as a risk factor in mood disorders,

though the inherent mechanisms connecting HPT dysfunction and mood disorders have yet

to be fully elucidated.
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2.1.5 Pharmacotherapies in Bipolar Disorder

There is currently no cure for bipolar disorder, although medical treatments are available for

managing and controlling mood symptoms. The American Psychiatric Association (APA)

practice guidelines34 – and the more recently updated University of South Florida (USF)

practice guidelines35 – outline treatment protocols according to episode type and phase.

These recommendations specify strategies classified by acute and maintenance treatments.

Acute treatments are prescribed when a patient is in a mood episode. The objective of

acute treatments is to rapidly reduce symptoms and return the patient to the euthymic

state. Maintenance treatments are prescribed when a patient is not in a mood episode, with

the intention of preventing episode recurrence, eliminating symptoms or reducing severity

increases during the non-episode period, and improving mood stability.

Pharmacological treatments currently approved by the Food and Drug Administra-

tion (FDA) for the treatment of bipolar disorder can be categorized into two classes: mood

stabilizers and antipsychotics. Mood stabilizers are treatments that aim to reduce symptoms

without triggering a mood episode. Lithium was the first mood stabilizer to receive FDA

approval in 1970. Other FDA-approved mood stabilizers include anticonvulsants, which are

antiepileptic drugs that aim to reduce hyperactive brain activity. These are divalproex,

carbamazepine, and lamotrigine. Research investigating the mechanisms behind mood sta-

bilizers have focused on their impact on various signaling pathways within and between

cells13.

Antipsychotics are drugs designed to combat the symptoms associated with mental

cognition that sometimes accompany bipolar disorder. Antipsychotics approved by the FDA

are chlorpromazine, olanzapine, risperidone, quetiapine, ziprasidone, aripiprazole, and ase-

napine. Also approved is the combination treatment of olanzapine and fluoxetine, a selective

serotonin reuptake inhibitor (SSRI) which is used to treat depression. In general, these an-

tipsychotics aim to inhibit dopamine activity by blocking dopamine receptors. and, in some
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cases, certain serotonin receptors as well13.

Currently, there are only eleven pharmacological agents currently approved by the

FDA for the treatment of bipolar disorder. These drugs are approved for specific episode

types, phase (acute treatment versus maintenance treatment), and treatment combinations

(monotherapy versus adjunctive therapy). In practice, treatment protocols involving these

drugs may include adjunctive treatments with other pharmacotherapies, or be used in a

different phase.

Treatment guidelines from the APA and USF suggest that treatment for acute manic

and mixed episodes begin with mood stabilizer monotherapy, commonly lithium or dival-

proex. For more severe cases, specific antipsychotics may be added to the regimen. If the

treatment is still ineffective, other treatment combinations are considered and dosages may

be increased. Nearly all FDA-approved treatments have been indicated for the treatment

of acute mania. For acute depressive episodes, only two treatments have received FDA ap-

proval: quetiapine monotherapy and olanzapine taken in combination with fluoxetine. USF

guidelines suggest these treatments as first-line therapy. If the treatment is ineffective, the

USF recommends treatment with mood stabilizers, potentially in combination with other

SSRI’s. Both the APA and USF guidelines do not recommend antidepressant monotherapy

for the treatment of bipolar disorder depression due to the risk of potentially triggering a

mood shift into mania.

Maintenance treatments indicated by the FDA are limited to lithium, lamotrigine,

olanzapine, and aripiprazole. Quetiapine has also been indicated for long term management,

though only as an adjunctive treatment. For long term management, the APA guidelines

recommend treatment with lithium or divalproex. USF guidelines make different recommen-

dations based on remission status. If full remission has been achieved, the USF guidelines

recommend the continuation of effective and well-tolerated acute treatments. If only partial

remission is achieved, treatment recommendations are dependent on whether the residual

symptoms are reflective of mania or depression, although both recommendations include
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mood stabilizers in conjunction with antipsychotics.

While these pharmacological agents have been found to improve symptoms and assist

with disease management, some patients – such as rapid cyclers – have a malignant form of

bipolar disorder and are refractory to traditional treatments. There have been no treatments

formally approved specifically for rapid cycling. While the APA guidelines suggest the use

of mood stabilizers as an initial treatment, they also indicate that combination treatments

may be necessary and do not make any specific recommendations. While some treatment

efficacy has been demonstrated with mood stabilizers and antipsychotics, treatment response

in general appears to be lower in rapid cycling patients compared to non-rapid cyclers36.

In particular, studies have observed persistent depressive symptoms among rapid cyclers,

so much so as to implicate treatment resistant depression as a hallmark feature of rapid

cycling37. While antidepressants may be used to address this issue, they are thought to

trigger a mood switch into mania which is especially problematic in a population already

susceptible to cycling.

2.1.6 Thyroid Metabolism and Rapid Cycling Bipolar Disorder

To address the unmet therapeutic needs in the rapid cycling population, treatment research

has focused on systems interacting with neurotransmitter systems, particularly the HPT axis

and thyroid hormones21,38. While the literature examining adjunctive T3 and T4 treatments

is not as extensive as that on mood stabilizers and antipsychotics, findings suggest that

thyroid hormone treatments may provide therapeutic benefits.

One of the first studies of T4 found that supraphysiological doses induced remission

in 5 out of 7 female rapid cycling patients39. Positive effects of T4 treatment were observed

in 12 case reports40 and suggested that the addition of T4 to mood stabilizers prevented

rapid cycling. A later study further confirmed the effects of adjunctive T4 treatment and

observed a response in 10 of 11 rapid cycling patients41. This included a decreased severity
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and frequency in both depressive and manic symptoms. Of the four patients who later

participated in single or double-blind placebo substitution, three relapsed, further supporting

the effectiveness of adjunctive T4 treatment. Other studies implicate adjunctive T4 treatment

as an effective acute treatment for major depressive episodes among a treatment resistant

population, and may be an effective option among treatment refractory rapid cyclers41,42.

Favorable effects of T3 treatment have also been reported. A meta-analysis that

included studies with both unipolar depression and bipolar patients implicated T3 as a viable

adjunctive treatment among patients resistant to tricyclic antidepressants43,44. Other studies

suggest that T3 may accelerate the response to tricyclic antidepressants45 and augment the

effect of sertraline46.

The relationship between thyroid metabolism and treatment refractory rapid cycling

bipolar disorder is further discussed in Chapter 3.

2.1.7 Measures

There is vast literature concerning the appropriate measurement instruments of bipolar dis-

order for the purposes of phenotype assessment and clinical study47,48,49. The most common

quantitative traits in bipolar disorder are measures of symptom severities associated with

particular episode types. These scales aim to characterize the global impression of mood and

can potentially be used to classify subjects into clinically meaningful mood states. These

measures are also helpful in evaluating treatment response and clinical remission. Due to

the dual nature of bipolar disorder, separate scales are often used to evaluate depression and

mania.

One of the most widely used scales for depression is the Hamilton Depression Rat-

ing Scale (HDRS)50. The HDRS consists of items that assess the severity of depressive

symptoms. These include: depressed mood, feelings of guilt, suicide, insomnia, anhedonia,
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impaired speech and concentration, agitation, anxiety, loss of appetite, fatigue, hypochon-

dria, weight loss, and cognizance of the illness. The original version of the HDRS was

comprised of 17 items which were rated by a clinician. Additional items have been added in

subsequent versions of the HDRS, to be used for subtyping depression. Each item consists

of ordered categorical responses, scored on a numeric scale (ranging from either zero to four

or zero to two); the sum of item scores is used as the overall measure of depression severity.

HDRS scores range from 0 to 52. Guidelines suggest that scores less than 8 indicate eu-

thymia/normal mood51,52,53, although there is some variation in the cutoffs for subthreshold

depression and higher severity categories54. The APA51 classifies scores between 8 and 13 as

mild, 14 to 18 as moderate, 19 to 23 as severe, and 23 and above as very severe. Other in-

struments used to measure depression severity include the Beck Depression Inventory (BDI)

and the Montgomery Asberg Depression Rating Scale (MADRS).

The rating scale most wide used to measure mania severity is the Young Mania

Rating Scale (YMRS)55. Like the HDRS, the YMRS is composed of items which assess

various symptoms on an ordinal categorical scale. The instrument is comprised of eleven

items covering the following domains: elevated mood, increased motor activity, increased

sexual interest, decreased sleep, irritability, talkativeness, racing thoughts, grandiose ideas,

aggressive behavior, unkempt appearance, and cognizance of the illness. Items are rated by

a clinician and the sum of item scores are used as a summary measure of mania severity.

Scores for the YMRS range from 0 to 60. The original paper/scale developers suggested

cut-off scores of 13, 20, 26, and 30 to categorize euthymia, hypomanic, manic, and severely

manic, respectively, although the literature reflects variability in classification. For example,

previous studies have used more conservative scores of 856,57 and 658,59 as the threshold for

euthymia. Other instruments used to measure mania severity include the Bech-Rafaelsen

Mania Assessment Scalse (MAS) and the Clinician-Administered Rating Scale for Mania

(CARS-M).

The HDRS and YMRS must be administered by a clinician. This has the drawback

14



of making it impractical to track rapid shifts in mood as data collection requires scheduled

clinical appointments. The ChronoRecord60 was developed to capture daily fluctuations in

mood to finely chart the course of disease. The ChronoRecord is a self-report measure of a

patient’s overall mood during a 24-hour time period using a 100-point visual analog scale.

The lowest point is anchored to the most severe depression level the patient has experienced,

while the highest point is anchored to the most severe mania level the patient has experienced.

While the ChronoRecord can be measured frequently, a potential drawback is that it is a

subjective measure anchored by a patient’s disease experience. In contrast, the HDRS and

YMRS offer an objective clinical rating based on the entire spectrum of the disease. There

is some evidence that ChronoRecord scores correlate well with HDRS and YMRS scores61,

and that the instrument is able to discriminate between mania and hypomania62.

2.2 Statistical Considerations

The complex nature of bipolar disorder presents many challenges for data analysis. These

challenges must be considered to appropriately characterize the course of the disease, and

determine the efficacy of an intervention. These considerations affect study design, modeling,

and inference choices. Below I present several considerations which will be the focus of this

dissertation.

2.2.1 Defining and Measuring a Treatment Effect

Improvements in mood symptom stabilization can be characterized in multiple dimensions.

This makes it difficult to define a treatment effect that is both comprehensive and sim-

ple. Investigators must choose specific characteristics when defining a treatment response.

One characteristic is episode severity. This “amplitude” may be the worst score within an

episode experienced, the average episode severity, variability of episode severity, or trends
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in episode severity over time. Another dimension is temporal episode patterns, including

frequency (rate) and duration (length). As with severity, there are multiple formulations in-

cluding the longest episode experienced, the average episode duration, variability of episode

duration, proportion of time spent in a mood state, trends in episode duration, and time

between episodes. Treatment effects may also be multidimensional. For example, it is un-

clear whether a decreases in episode severity and increases in duration are favored over an

unchanged severity with decreases in frequency. Although a multidimensional definition

may be more comprehensive, it may require more complex statistical methods and models.

The interpretation of the treatment effect must also consider the heterogeneity within the

study population, as the disease course can vary widely from patient to patient. For exam-

ple, two patients may be characterized as rapid cyclers, though their episode frequencies,

severities, and types may differ. Moreover, this presents complications in defining a single

quantitative measure of treatment effect. While scales capturing both depressive and manic

symptom severities provide a comprehensive picture of mood and mood patterns, methods

for combining this information – and developing metrics for measurement – remain unclear.

2.2.2 Irregular Patterns

The complications of defining and measuring a treatment effect are further exacerbated by

the irregular mood patterns present in bipolar disorder. The disease is episodic and described

as cyclic in nature, yet the collection of episodes themselves are not necessarily constrained to

a predictable, steady pattern. This presents challenges in developing a mathematical model

that provides enough structure to capture key components of the disease, yet is flexible

enough to allow for irregularities. Additionally, statistical models must also distinguish a

true signal from the surrounding noise, which is also complicated by these irregularities. This

affects the precision of parameter estimates and reduces statistical power.
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2.3 Motivating Study: Three-Arm Randomized Trial

The next chapter presents my motivating example, a three-arm randomized thyroid hormone

treatment trial aimed at assessing treatment effects of T3 and T4 compared to a placebo. This

study reflects the challenges outlined above as well as trial-specific issues. The study’s pro-

posed analysis plan is presented and its inadequacies are highlighted and discussed. Chapter

4 presents a state-based approach to the data and outlines a procedure for analyzing the

data as mood state sequences using the bootstrap resampling technique to test for treatment

effects. Chapter 5 presents a flexible mood-based approach for describing mood trajectories

using key episode characteristics, and fits the model using an iterative optimization tech-

nique known as particle swarm optimization. Chapter 6 evaluates the statistical properties

of these two methods through simulation studies. Future work is outlined in Chapter 7.
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CHAPTER 3

Three-Arm Randomized Trial

3.1 Background

Though advances have been made in the pharmacological therapies for bipolar disorder, a

subgroup of treatment-refractory rapid cycling bipolar disorder patients persists. Previous

research has identified a disproportionate amount of hypothyroidism among rapid cyclers

compared to non-rapid cyclers63,64. This association poses a unique dilemma as lithium

treatment can induce hypothyroidism65, suggesting that lithium may inadvertently obstruct

mood stabilization. Rapid cycling has also been associated with gender, with rapid cy-

clers more common in women than men12,10. This may partially explain the association

between hypothyroidism and rapid cycling, as women have an increased risk of developing

hypothyroidism compared to men66. While these findings suggest thyroid dysfunction as a

contributing factor to treatment-refractory rapid cycling, it is unclear whether the associa-

tion is confounded by gender effects or lithium treatment.

To address these uncertainties, an open-label trial of supraphysiological doses of thy-

roxine (T4) in treatment-refractory rapid cycling bipolar disorder was conducted41. The

study found that gender and prior lithium treatment were not enough to account for the

association between rapid cycling and hypothyroidism. This identifies a relationship between

rapid cycling and thyroid dysfunction and suggests that thyroid hormone availability may

need to be restored among rapid cyclers.
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Though the open-label trial identifies a link between rapid cycling and thyroid dys-

function, it is unclear whether diminished thyroid levels are due to low thyroid hormone

supplies or thyroid hormone uptake obstructions. In the trial, nearly all responders exhib-

ited serum total T4 level and free T4 index increases at the time of clinical response. However,

increases in triiodothyronine (T3) were minor. Therefore, it is unclear whether T4 supple-

mentation induces a response on its own, or if it rectifies a breakdown in the T3 conversion

pathway.

To help identify the possible thyroid hormone dysfunction, a randomized three-arm

trial compared the effects of T3 and T4 to a placebo (PL). High-level doses of T4 were

administered, while the T3 dosing regiment was structured to achieve normal levels. It

was hypothesized that, if both T4 and T3 treatments were effective, then the metabolism

dysfunction involves T4-to-T3 conversion impairments. However, if T4 alone elicited an effect,

then the impairment is either due to mechanisms that do not involve T3 or thyroid hormone

imbalances within the brain. Details of the trial are presented next.

3.2 Study Description

Treatment refractory rapid cycling bipolar disorder patients participating in a larger study of

patient sensitivity to lithium’s antithyroid effects were recruited into a three-arm randomized

trial that aimed to evaluate the efficacy of T3 and T4 as an adjunct to lithium monotherapy.

Participants of the larger study were required to meet the bipolar disorder criteria outlined

in the third edition of the DSM67 and be rapid cyclers. Rapid cycling status was determined

by the Dunner-Fieve criterion of four or more episodes of depression and/or mania in the

previous twelve month period9. Immediately prior to enrollment in the larger study, subjects

also had to be refractory to lithium as indicated by continued rapid cycling after four weeks

of treatment. Prior to randomization, all patients received lithium treatment and under-

went an evaluation period in which at least one mood episode was experienced. Patients
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were randomized to receive one of the following treatments in addition to lithium and their

current medication: PL, T3, or T4. Mood behavior was longitudinally tracked during the

evaluation period and after treatment randomization. Blood chemistry measurements were

also collected longitudinally to monitor thyroid hormone and lithium levels. Investigators

were primarily interested in the effects of T4 relative to T3 and PL.

3.3 Measures

Mood symptoms were tracked using three primary instruments. Depressive symptoms were

monitored using the HDRS50, while mania symptoms were measured using the YMRS55.

Because these scales required a structured clinical interview, depression and mania data

were collected during the same clinical visit. The study protocol outlined aims to collect

data in weekly intervals, although due to variability in appointment scheduling, visits oc-

curred approximately every two weeks on average. Overall mood was tracked daily using the

ChronoRecord60.

To monitor thyroid hormone levels, measurements of thyrotropin (TSH) and T4 hor-

mones were collected. TSH is a hormone released by the pituitary gland which stimulates T3

and T4 production by the thyroid gland. Through a negative feedback control mechanism,

elevated levels of T3 and T4 in the blood signal TSH production decreases and therefore T3

and T4 production levels drop. In the randomized trial, a diminished TSH level served as an

indicator of chemical response to thyroid hormone supplementation. Because TSH level cor-

relates to both T3 and T4 levels, TSH measurements were used to capture the overall thyroid

response. T4 values were also collected to measure the chemical response to T4 specifically.

In the T3 group, TSH and T4 levels were expected to decrease due to T3 supplementation.

In the T4 group, TSH levels were also expected to decrease, but T4 levels were expected to

increase due to T4 supplementation.
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3.4 Proposed Analysis Plan

This study assessed treatment efficacy by measuring HDRS and YMRS scores over three

time periods: (1) pre-randomization, (2) treatment stabilization, and (3) post treatment-

stabilization. Pre-randomization encompassed the period prior to treatment assignment.

The treatment stabilization period began at the time of randomization and ended four

weeks after TSH reached a level below 0.1µIU/mL. This allowed treatment effects to fully

engage after thyroid hormone supplementation had elicited a chemical response. The post

treatment-stabilization period was intended to encompass the period where treatment ef-

fects were in full force. Similarly, due to variability in TSH nadir times, the post treatment-

stabilization period differed across patients. Because patients were recruited from a larger

study, the length of the pre-randomization period varied across patients. In the PL group,

a TSH response was not expected and the average post treatment-stabilization start time

of the T3 and T4 patients was selected as the post treatment-stabilization period for group

comparisons.

As originally proposed by the investigators, treatment efficacy was evaluated by mea-

suring mood scale differences between the pre-randomization and post treatment-stabilization

periods. Two different criteria were used to determine a treatment response. Criterion 1 took

the most severe scores recorded within each of the two study periods (pre-randomization and

post treatment-stabilization), and defined a treatment response as a 50% reduction in those

scores on both scales. Additionally, Criterion 1 required that the most severe HDRS and

YMRS score during the post treatment-stabilization period to be less than or equal to 10

and 5, respectively. Patients who met both of these conditions were classified as treatment

responders. Criterion 2 focused on the average mood scale severity measures, and defined

a treatment response as a 50% reduction in the mean mood scores between the two study

periods on both scales. Patients who met this condition were classified as treatment respon-

ders according to Criterion 2. Fisher’s exact test was used to detect statistical differences in

rates of treatment response among the groups.
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3.5 Results

A total of n=32 participants were recruited into the trial, of whom 9 were randomized to

the PL group, 10 to the T3 group, and 13 to the T4 group. The durations of the pre-

randomization, treatment stabilization, and post treatment-stabilization periods for each

group are summarized in Table 3.1. The median pre-randomization period durations were

comparable across the three study groups: 80 days, 80 days, and 78 days for the PL, T3,

and T4 groups, respectively. Median post treatment-stabilization period durations were also

comparable: 109 days, 112 days, and 112 days for the PL, T3, and T4 groups, respectively.

One patient who received T3 was lost to follow-up before the treatment stabilization period

ended and could therefore provide no information about treatment effects. This individual

was removed from further analysis. Because TSH levels were expected to remain unchanged

in the PL group, the mean treatment stabilization time of non-PL patients (70 days) was

used to define the study intervals for all PL patients.

Maximum mood scale score values during the pre-randomization and post treatment-

stabilization periods were compared to determine whether the 50%+ reduction condition of

Criterion 1 was met for each scale. These findings are summarized in Table 3.2. Improve-

ments in HDRS scores were minimal. Only one patient in the PL group and two patients

in each of the T3 and T4 groups met the response criteron. The response rate for mania

was somewhat higher. Improvements were observed in three, four, and two patients in the

PL, T3, and T4 groups, respectively. Only one patient in each of the PL and T3 groups and

none in the T4 group met the improvement and threshold conditions of Criterion 1 for both

mania and depression. There were no statistically significant differences between the groups

in terms of response.

Results based on the 50%+ reduction in mean scale scores of Criterion 2 are described

in Table 3.3. As would be expected, Criterion 2 yielded higher response rates. However,

this higher response rate is expected because the maximum-based measures of Criterion 1
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Table 3.1: Study Period Durations (days)

group statistic pre-randomization stabilization post stabilization

median 80 70 109
PL

mean 92.89 70 97.67
n = 9

SD 64.24 — 44.27

median 80 53 112
T3 mean 98.70 60.80 119.11

n = 9
SD 74.12 24.95 36.30

median 78 70 112
T4 mean 86.54 75.77 135.54

n = 13
SD 44.30 21.30 98.33

Because TSH levels were expected to remain unchanged in the PL group, we imputed a fixed value of 70

days (the mean treatment stabilization duration of non-placebo patients) to define the post treatment period

for all placebo patients. One of the ten patients in the T3 group was lost to follow-up before the treatment

stabilization period ended and was removed from the analysis.
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Table 3.2: Criterion 1: Maximum Mood Scale Score Improvements by Study Group

responders non-responders

Criterion group
n % n %

p-value

PL 1 11.1 8 88.9

HDRS T3 2 22.2 7 77.8 1.0000

T4 2 15.4 11 84.6

PL 3 33.3 6 66.7

YMRS T3 4 44.4 5 55.6 0.3774

T4 2 15.4 11 84.6

PL 1 11.1 8 88.9

Criterion 1 T3 1 11.1 8 88.9 0.4968

T4 0 0.0 13 100.0

Improvements were defined as a 50%+ reduction in the most severe mood scale scores observed during the post

treatment-stabilization period relative to the pre-randomization period. Criterion 1 required an improvement

reduction along both scales and the maximum HDRS and YMRS scores during the post treatment-stabilization

period had to be ≤ 10 and ≤ 5, respectively. Percentages are given within group by response status. The

P-value corresponds to a Fisher’s exact test for group differences in response rate.
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Table 3.3: Criterion 2: Mean Mood Scale Score Improvements by Study Group

responders non-responders

Criterion group
n % n %

p-value

PL 1 11.1 8 88.9

HDRS T3 3 33.3 6 66.7 0.5985

T4 4 30.8 9 69.2

PL 3 33.3 6 66.7

YMRS T3 4 44.4 5 55.6 1.0000

T4 5 38.5 8 61.5

PL 0 0.0 9 100.0

Criterion 2 T3 2 22.2 7 88.9 0.5315

T4 2 15.4 11 84.6

Improvements were defined as a 50%+ reduction in the mean mood scale scores observed during the post

treatment-stabilization period relative to the pre-randomization period. Criterion 2 required an improvement

reduction along both scales. Percentages are given within group by response status. The P-value corresponds

to a Fisher’s exact test for group differences in response rate.

are sensitive to outliers, while the mean-based measures of Criterion 2 are robust. A 50%+

improvement in mean HDRS score was observed in one, three, and four patients in the PL,

T3, and T4 groups, respectively. Improvements were again more frequent in mean YMRS

scores, with three, four, and five patients meeting the response criteria in the PL, T3, and T4

groups, respectively. However, only two patients in each of the T3 and T4 groups experienced

sufficient improvements along both scales, and Criterion 2 was not satisfied by any patients

in the PL group. These observations did not indicate statistically significant differences

between groups in response rates.

Investigations of treatment improvement based on a 50%+ reduction and meeting an

absolute severity threshold did not suggest differences between the treatment arms by either

criterion metric. Overall, more patients exhibited a response in terms of mania symptoms
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than in depressive symptoms. However, due to the lack of differences between groups,

it is unclear whether this was associated with the administered treatment. Furthermore,

treatment improvements frequently occurred in only one dimension. This suggests that the

original two-scale criteria may have been too stringent to detect modest treatment effects.

For both criteria, few patients demonstrated a treatment response (Tables 3.2 and 3.3): two

by Criterion 1, and four using Criterion 2. Moreover, the results indicate a lack of agreement

between the criteria as the patients classified as responders differed between the two metrics.

3.6 Issues with the Original Analysis Plan

This trial highlighted many of the challenges inherent in both the implementation of data

and from analysis studies of bipolar disorder. While some of the issues were specific to this

particular trial, others were the result of common features of the disease. In this section I

discuss these features and how they impact statistical analyses in greater detail.

One challenge in this study is data sparsity. While the HRDS and YMRS are well-

studied instruments and provide reliable metrics for severity of depression and mania symp-

toms, they both require a structured interview by a clinician. For longitudinal studies, the

logistics of physician appointments make frequent data sampling impractical. Depending on

the study’s objectives, the data may be too sparse to capture important features of mood dy-

namics. This is particularly crucial when studying rapid cyclers who may experience frequent

and acute shifts in mood polarity. With limited data granularity, these local fluctuations

in mood episode severity may not be captured, and indeed whole episodes may be missed,

resulting in a misrepresentation of the treatment response. Data sparsity makes it difficult

to detect a true underlying signal from an already complex and irregular mood pattern and

negatively affects precision and statistical power.

The data sparsity problem in this study was further compounded by irregularities in
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data sampling, resulting from missed visits, imperfect scheduling, and inconsistencies in the

length of follow-up during the pre-randomization and post treatment-stabilization periods.

Many standard analytical approaches are unable to accommodate such sampling irregulari-

ties. While the treatment efficacy measures originally proposed in this study do not directly

rely on sampling regularity, the irregularities may still have an impact if they are associated

with the patient’s mood. For example, participants experiencing a depressive episode may

not keep scheduled clinical appointments compared to participants in the euthymic state,

resulting in a downward bias in HDRS scores. Similarly, patient follow-up times may be

longer if the treatment is successful and have more scheduled visits, causing a bias toward

a favorable treatment effect. A thorough statistical analysis must consider these potential

bias and tailor analytical decisions according to the granularity of the data.

The varying patient-to-patient study period times in this study (as indicated by

the high standard deviations in Table 3.1) reflect the challenge of obtaining a sufficient

amount of data. Because bipolar disorder is inherently complex, it is important to obtain

multiple data elements to properly characterize key features of the illness, preferably over

time. Additionally, due to differences in the course of the disease, it is important for an

analysis to consider the high degree of patient variability and weight the findings accordingly.

The originally proposed analysis does not weigh the findings according to the amount of data

available, and by using only a single summary score per time period, gives up much of the

power of the longitudinal measures.

In addition to the challenges presented by the study measures, data collection pro-

cesses, and the inherent nature of the disorder, this study highlights the difficulties associated

with defining a treatment response. The original protocol defined a treatment response as a

50%+ reduction in both the HDRS and YMRS scores along with maximum score thresholds

during the post treatment-stabilization period. This definition does not account for the pos-

sibility that a patient may improve in only one symptom or mood rating scale, nor does it

makes concessions for patients who experience mood levels that improve along one criterion
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and not the other. For example, patients may exhibit mood severity levels below the spec-

ified HDRS and YMRS thresholds, but that may not reflect a 50%+ reduction. Similarly,

patients who experience dramatic reductions in mood severity may be overlooked if their

mood levels are still above the thresholds. The lack of apparent treatment response in the

randomized trial using these strict criteria suggests that clinically-relevant treatment effects

may be more subtle and that analyses with less restrictive definitions should be considered.

Related to the treatment effect definition are the statistical issues associated with

using a maximum- or mean-based approach. Longer periods provide a greater likelihood

of observing higher mood levels, making a treatment response based on maximum values

susceptible to outliers. For example, a patient experiencing one early episode followed by a

prolonged period of minimal scores may be counted as a non-responder despite the apparent

symptom severity decrease. Though a mean-based approach would address cases such as

these, the lengths of patient follow-up times vary and averaging over a different number of

visits leads to differences in estimate precision. The criteria of the original analysis pland

do not consider differential follow-up times among patients and may result in ineffective

characterizations of treatment response.

Another shortcoming of the proposed analysis plan is its failure to consider the lon-

gitudinal structure of the data. As noted above, this leads to a reduction in power, but just

as importantly, cyclicity is a key feature of the disorder. By examining the data over time,

mood dynamics can be captured and key features of the illness can be characterized. This

is especially crucial in small sample studies where most of the power comes from repeated

measurements. The proposed plan does not account for longitudinal disease attributes, such

as trends in mood severity or changes in episode frequency and duration. Ignoring the lon-

gitudinal data structure also ignores correlations that may exist between the scale scores

and their properties over time. Relationships between mania and depression are not inves-

tigated in the proposed framework as the scales are analyzed independently. In particular,

this masks periods when subjects are in the highly undesirable mixed state. The original
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analysis plan summarizes treatment efficacy to a single value for each study period and,

given the challenges presented earlier, may not be an accurate characterization of a patient’s

longitudinal mood severity patterns.

3.7 Proposed Approaches

To better analyze the data from this and similar studies, the challenges outlined above require

more sophisticated statistical methods. In the following chapters, two new approaches are

presented to address these issues. The first approach reformulates mood data into clinically

relevant states to form a Markov chain in an effort to both overcome data sparsity and

irregularities and reflect the episodic nature of the illness. It then uses a bootstrap procedure

for inference. The second approach aims to reconstruct the underlying process giving rise to

mood episodes by proposing a flexible parametric model to describe depressive and manic

symptom severity scores using an iterative optimization algorithm to determine estimates

of the amplitude, duration, and frequency of mood episodes. These approaches represent

refinements which attempt to maximize the information present in the data while generating

results that address clinically relevant questions.
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CHAPTER 4

Approach 1: Markov Chain with Bootstrap

4.1 Background

The three-arm randomized trial results highlight some of the statistical challenges present in

analyzing bipolar disorder data. Some of the challenges arise from the sampling process and

measures. Data were collected at doctor’s appointments, leading to sparse and irregularly

spaced observations. This makes it difficult to capture key local features of the mood data

such as highly acute episodes. Another issue is low data volume. Mood cycles in bipolar

disorder are erratic and irregular by nature and a higher data volume is required to fully

capture the disease’s dynamics, specifically episode start and end, peak severity, and rate.

Limited data make it difficult to piece together the underlying features that are observed

over time.

The power to detect treatment effects was limited not only by the sparse and irregular

structure of the data but also by the original definition of efficacy and the corresponding

analytical approach. Specifically, treatment efficacy was assessed by threshold-based im-

provements along both the HDRS and YMRS arcs. In order to be classified as a treatment

responder, patients had to experience a 50% decrease (as measured by peak or average

scores) in both depressive (HDRS) and manic (YMRS) symptom severity scores during the

post treatment-stabilization period relative to the pre-randomization period. Additionally,

the HDRS and YMRS scores during the post treatment-stabilization period had to be no
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greater than 10 and 5, respectively. While improvements on both scales are desirable, the

proposed thresholds resulted in only a few treatment responders (two patients total based on

Criterion 1 and four patients total based on Criterion 2). This suggests that the criteria may

have been too stringent in the sense that few people were full responders. Partial responses

are not detected by these methods but may still be of high clinical importance. Additionally,

these measures may not detect clinically relevant patterns in mood episodes. For example,

it is possible for peak severities to be identical, though episode durations and frequency may

have dramatically decreased. By not considering temporal patterns and trends in the mood

scale scores, key characteristics of bipolar disorder are not captured including episode dura-

tion, episode frequency, and episode severity. For this purpose, it might be better to define

treatment efficacy more broadly. This might include examining improvements along each

scale separately, considering decreases in symptom severity that are less than 50%, counting

very large mood decreases that remain above the outlined post treatment-stabilization period

thresholds, or focusing on the amplitude, duration, and spacing shape of mood levels within

an episode. Due to the complex multidimensional nature of bipolar disorder, treatment ef-

ficacy definitions may need to consider both nuanced levels of improvement, and multiple

metrics.

Another issue in the analytical approach relates to how the data are used to extract

key pieces of information. Bipolar disorder is a lifelong condition and symptoms are episodic,

requiring studies to collect data over time to capture all facets of the disease. It is not obvious

how to process the longitudinal information to best summarize characteristics of the illness.

In the original analysis, data for each mood scale were reduced to a single HDRS and YMRS

score for each of the pre-randomization period and post treatment-stabilization periods. For

determining treatment response using Criterion 1, the maximum mood scale score during

each period was used; for Criterion 2, the average score was used. While easy to interpret,

this approach completely ignores the rich longitudinal structure of the data.

Another challenge in processing the data is developing a method of combining the
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information contained in the two mood scale scores. The original analysis plan evaluated

HDRS and YMRS scores separately rather than attempting to describe their joint mecha-

nisms. While this may sufficiently describe depressive and manic symptom severity, it fails to

capture periods of euthymia and mixed episodes which may result in misleading conclusions.

For example, depressive and manic symptom severity may remain constant after treatment,

but the joint analysis of HDRS and YMRS scores may reveal that fewer mixed episodes are

occurring.

Compounding these challenges is the study’s sample size. A small sample size reduces

statistical power and diminishes the ability to detect a treatment effect. In the three-arm

randomized trial, the PL, T3, and T4 groups have 9, 10, and 13 patients, respectively. Because

the sample size is small, large differences, on the order of 50% in treatment response rates,

would have been necessary to obtain statistically significant findings if one only considers

the global measure, and neglects the repeated observations of actual mood scores. Indeed,

even if all patients in the PL group had been classified as non-responders, at least 5 of the

10 patients in the T3 group and 6 of the 13 patients in the T4 group would have needed to be

classified as treatment responders to obtain a statistically significant difference in response

rate using α = 0.05. This is an even bigger problem when comparing the two active thyroid

hormone treatment groups. With these sample size limitations it is even more important to

use methods that take advantage of all available data.

These issues indicate that many challenges are unaddressed by the originally proposed

analysis plan. While some challenges – such as data sparsity, data irregularity, and the

underlying erratic nature of bipolar disorder – are unavoidable, other obstacles may be

addressed by changes to the analytical approach. Information present in the data may

be better analyzed by adopting a perspective that provides a flexible treatment efficacy

definition, intelligently processes and combines the mood scale score measures, and takes

advantage of the longitudinal structure of the data. Presented next is an approach that

incorporates these ideas by creating an analytical framework centered around the mood
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episodes and the transitions among them.

4.2 Proposed Approach

4.2.1 Overview

Rather than framing the analysis around the pre-post changes of the HDRS and YMRS

scores, the approach proposed here focuses on the underlying construct that the scores are

trying to measure: the mood states themselves. Bipolar disorder is clinically described

in terms of depressive, manic, mixed, and euthymic periods, with subcategories such as

hypomania and subthreshold depression also sometimes considered. During these periods,

patients are perceived to be in a mood state with separate states specified for each period

type. For example, patients in a major depressive episode are said to be in a depressed mood

or in a state of depression. These mood states form the foundation of the proposed approach.

By using the mood states as the building blocks of the analysis, the clinical perspective of

episode types is maintained, which has the advantage of making the results more directly

clinically relevant, interpretable, and applicative.

It should be noted that there are formal clinical criteria to identify depressive, manic,

mixed, and euthymic periods (as described in the previous chapter), but unfortunately these

ratings were not available in the three-arm trial. Therefore, to construct mood state equiva-

lents, the quantitative symptom measures are processed to extract the underlying qualitative

mood states. In the three-arm randomized trial, mood is captured by two measures: the

HDRS measures depressive symptom severity while the YMRS captures manic symptom

severity. Using these two measures, we create four “mood states” – euthymic, mixed, de-

pressed, and manic – as follows. Euthymia is characterized by normal mood levels. Low

symptom scores on both the HDRS and YMRS measures indicate an absence of depression

and mania, respectively, and therefore imply a euthymic mood state. Depressive episodes are
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naturally characterized by elevated HDRS scores, and are differentiated from mixed episodes

by the absence of manic symptoms. Therefore, high HDRS and low YMRS scores imply a

depressed mood state. Similarly, low HDRS and high YMRS scores imply a manic mood

state. Finally, a mixed episode is characterized by the presence of both depressive and manic

symptoms. Therefore, elevated mood symptom scores on both the HDRS and YMRS indi-

cate a mixed mood state. This approach naturally combines the outcomes from two separate

rating scales into a single measure. This process as applied to the three-arm randomized

trial is summarized in Figure 4.1.

It is important to note that while I refer to these states as euthymic, mixed, depressed,

and manic, they are categories derived from symptom levels and not clinically defined criteria.

Therefore, caution must be exercised when interpreting the results and applying them in a

strict, clinical setting.

The obvious question for the above approach is what threshold values to use to dif-

ferentiate low scores from high scores. Absolute thresholds outlining the interpretation of

mood rating scale scores have been recommended by the American Psychiatric Association51

and the National Institute for Health and Clinical Excellence52, although consensus in the

literature is unclear49,54. A review suggests that there is a general agreement that HDRS

scores less than 8 indicate a non-depressed state53. Absolute thresholds for mania are more

uncertain, with some studies interpreting YMRS scores less than 8 as a non-manic state56,57,

while others are more conservative and use a threshold of less than 658,59. It is also possible to

use thresholds based on other severity levels depending on sensitivity desired. For example,

if the primary concern was severe depression, a higher HDRS cut-off can be employed. Simi-

larly, lower values can be used to favor the detection of less severe forms, such as hypomania

or subthreshold depression. Moreover, there is tremendous variation from patient to patient

in the mood scores of our study, raising the question of whether an absolute threshold value

is even appropriate. For example, two individuals may both exhibit HDRS scores less than

8 when in euthymia, but one patient may naturally register a score of 6 while the other
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may register a score of 2. Furthermore, patients in this study are treatment-refractory and

may be subject to both greater severity and more erraticness of mood swings. In this case,

the importance of detecting incremental mood changes (symptom reduction) may super-

sede the goal of episode remission (symptom elimination). In light of these considerations,

patient-specific thresholds may be preferable to absolute thresholds. This has the advantage

of focusing the analysis on change relative to the patient’s unique mood episode history and

accounts for the high patient-to-patient variability. However, it comes at the cost of being

unable to directly match the results to clinical definitions of the four mood states in rela-

tion to absolute HDRS and YMRS thresholds. Therefore, careful interpretation is necessary

before extending the findings to strict clinically-defined settings.

To maintain the longitudinal structure of the data, mood states are inferred from all

available data across time. This results in the determination of a mood state at each obser-

vation point. However, due to data sparsity and irregularity, the amount of time between

each observation may vary and it is unclear how long a patient may be in a particular mood

state. To overcome these issues and to impose data regularity, I first linearly interpolated

between the available depression and mania mood scores for each subject. After this inter-

polation, mood states were determined at fixed intervals using the interpolated data. This

data processing resulted in a continuous chain of mood states for each patient, summarizing

the longitudinal depression and mania scores into a mood state sequence. Full details of the

procedure are given in Section 4.3.

With the symptom scale scores reconstructed as mood state sequences, a state-based

analytical framework can be adopted to describe the underlying mood dynamics. Data in this

structure lend themselves to a Markov chain approach68. Details of Markov chain theory

are presented later, but the basic idea is as follows. Under the Markov chain paradigm,

subjects are assumed to be moving among a fixed set of states over time. Using a counting

process, state-shifting patterns are described as probabilities of transitioning from one state

to another. These probabilities are then used to characterize the underlying dynamics of the
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data. Such state-based approaches have been used previously to examine movements among

health states in schizophrenia and unipolar depression69 and have inspired the approach

discussed here.

One challenge that is not addressed by the Markov chain approach is the study’s

small sample size and the barrier it presents in statistical inference. While the Markov

chain describes the mechanisms underlying the mood-transitioning dynamics, it does not

automatically provide a means of statistically identifying mood differences. Therefore, it is

up to the investigator to determine the treatment efficacy measure and how to appropri-

ately detect group differences. The small sample size coupled with the bipolar disorder’s

inherent complexities makes it difficult to identify and validate an appropriate theoretical

sampling distribution for hypothesis testing. To overcome this barrier, I chose to employ

a bootstrap resampling technique70 to approximate the underlying sampling distribution.

Details of bootstrap theory are presented later, but a brief outline is as follows. In the boot-

strap method, same-size replicates of the dataset (called bootstrap samples) are created by

randomly sampling from the data with replacement. These datasets are analyzed and sum-

mary statistics of interest – in this case, the treatment efficacy measures – are obtained for

each dataset (called bootstrap estimates). Collectively, these estimates form the underlying

sampling distribution. In the bootstrap method, inference is based on the available data

and does not rely on an assumed, and possibly incorrect, distributions. Additionally, the

bootstrap easily accommodates complex and multidimensional treatment efficacy measures

since the analysis performed on the original dataset is identical to that used on the bootstrap

samples. This is especially beneficial in bipolar disorder studies because improvements may

manifest in many ways and across multiple mood states.

In summary, the proposed approach adopts a state-based perspective and processes

the HDRS and YMRS scores using patient-specific thresholds to extract the underlying

mood state sequences over time. This preserves the longitudinal structure of the data and

the underlying mood dynamics. The sequences and mood-shifting behavior are summarized
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using Markov chain principles. To detect differences in mood, a bootstrap approach is

used to obtain the underlying sampling distribution and provides a means of determining

statistical significance. Discussed next are the theoretical foundations and implementation

details behind Markov chains and the bootstrap, followed by their application to the three-

arm randomized trial.

4.2.2 Markov Chains

A Markov chain is a mechanistic model of a stochastic process characterized by three pieces

of information: (1) the set of possible states, (2) the transition probabilities, and (3) the

Markov chain time unit. Each of these components are described in detail below, followed

by model assumptions and the key measures we will derive from them to examine treatment

effects.

In a Markov chain, data are assumed to be generated by a mechanism that is encom-

passed by a finite set of discrete states. The data may consist of direct observations of the

states themselves, or they may be complex or indirect manifestations of the states. A natural

choice for the state set in bipolar disorder is the mood episodes: euthymia, depressed, manic,

and mixed. Symptom data collected in bipolar disorder studies are manifestations of these

mood periods and can be used to classify patients in states across time. In the case of the

three-arm randomized trial, the mood states manifest through the HDRS and YMRS scores.

I reversed-engineered the symptom score trajectories into mood state sequences. Full details

of the procedure are given in Section 4.3.

The main interest of the Markov chain model is the dynamic behavior among the

states. While the states may describe the structure of the underlying data mechanism, the

dynamic behavior among the states describes how that mechanism operates. The dynamics

of the Markov chain are summarized by transition probabilities. These describe the likelihood

of shifting from one state to another – or remaining in the same state – conditional on the
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current state. The formulation of these probabilities is based on the memoryless property of

Markov chains, which is described in detail later. In the case of bipolar disorder, these values

describe the likelihood of switching from one mood state to another. This naturally translates

into important characteristics of mood. For example, the probability of transitioning from

the euthymic state to the depressed state describes the onset probability of a depressive

episode and inherently the expected amount of time that elapses between episodes. Similarly,

the probability of transitioning from the manic state to the euthymic state describes the

probability of remission from a manic episode. Similar interpretations can be made for all

other transition probabilities, including the probability of remaining in a specific mood state.

Because the state set is finite, these probabilities can be summarized as a matrix whose entry

at row i and column j corresponds to the probability of transitioning from state i to state j

in a given time window.

Implicit to these probabilities is the time frame in which the transitions occur. The

likelihood of transitioning from one state to the next depends on the length of the observa-

tion period. Therefore, specification of the Markov chain requires the transition time frame

to be specified. This time frame is referred to here as the chain time unit. Choosing the

chain time unit requires careful consideration. For very stable systems, transitions between

states may be less likely to occur and are not efficiently described by short time frames.

Conversely, highly active systems may experience multiple transitions in a short time span.

Such systems are inadequately described by long time frames. Selection of an appropriate

chain time unit depends on the scientific nature of the underlying mechanisms, the granu-

larity of the data available, and the research question of interest. As an example, weather

patterns in tropical climates may be highly volatile and a chain time unit of one hour may

be theoretically appropriate. However, weather data may only be available on a day-to-day

basis, preventing an hour-by-hour analysis. Unlike weather reporters, meteorologists may

be interested in weekly patterns, suggesting that a chain time unit of one week is best.

Similar considerations must be made when selecting a chain time unit in the analysis of

bipolar disorder data. In the three-arm randomized trial, factors to consider include the
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study population (treatment-refractory rapid cycling bipolar disorder patients), the degree

of data sparsity and irregularity, and the overall data volume. Choosing the chain time unit

for rapid cycling patients is especially tricky since cycling rates can vary dramatically from

person to person. Once the chain time unit is selected, the data can be processed to con-

struct state sequences and transition probabilities can be calculated by counting the number

of transition types.

The Markov chain approach makes two important assumptions. First, it assumes that

the specified state set is exhaustive. That is, all possible states of interest are encompassed

by the state set. With an exhaustive state set, all possible transition probabilities are

specified and the process can theoretically continue for an indefinite period of time. Second,

it assumes that the mechanism is memoryless68, namely that, the transition behavior at any

point depends only on the current state and not on prior states. We will assume such a

“first-order” chain structure in subsequent analysis. The memoryless property assures that

the mechanism is sufficiently described by a single transition matrix and mechanisms based

on prior states need not be specified.

These assumptions carry important implications in applying a Markov chain model to

bipolar disorder data. The construction of an exhaustive state set is straightforward as the

disease can be sufficiently described by the four mood states, but alternative configurations

for the state set are possible. For example, each of the non-euthymic states may be further

divided into severity levels, such as subthreshold depression or hypomania, and each level

may be treated as a separate state. The memoryless property assumes that state transitions

depend only on the current state and not on prior states. This may not hold, especially

when states are subdivided by severity levels, as certain patterns may be informative of

transition behavior. For example, a moderately depressed state that is preceded by a mildly

depressed state may be informative of an escalating episode, thereby making a severely

depressed state more probable. Alternatively, the data may be characterized into two states:

euthymic and non-euthymic. While this provides a simpler structure, the specifics of the
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non-euthymic states are lost. These examples suggest that careful attention must be applied

when specifying the mood state set.

A similar issue arises when considering episode duration. The memoryless property

indicates that the transition probabilities do not depend on the mood state sequence pre-

ceding the current state. This implies that mood-shifting dynamics are not dependent on

the duration of the current mood state. As an example, this assumption suggests that a

person in the manic state has an equal probability of transitioning to the euthymic state

regardless of how long he or she has been in the manic state. That is, a person who has been

in the manic state for 10 weeks has an equal probability of shifting to the euthymic state

as a person who has been in the manic state for only 1 week. The appropriateness of these

assumptions must be considered when performing a Markov chain analysis.

If these assumptions hold, then the Markov chain model can be used to describe the

data’s state dynamics in a variety of ways. In addition to the transition probabilities, one can

obtain the average time it takes to transition from state i to state j (referred to as the mean

first passage time) and the average time it takes to return to state i (referred to as the mean

recurrence time)71. Of particular interest in the analysis discussed here is the stationary

distribution. The stationary distribution describes the long-run total proportion of time

subjects will spend in each state if the transition process described by the Markov chain

model continues indefinitely68. Such distributions exists for a class of Markov chains knowns

as ergodic chains71. For ergodic chains, the possibility of state i preceding state j in a state

sequence exists for all pairwise combinations of states. That is, it is possible to eventually

arrive at state j after departing from state i. This is immediately apparent for a transition

matrix with all non-zero entries, but may be less obvious for transition matrices with multiple

zero entries. If a Markov chain is ergodic, then the stationary distribution is obtained by

solving a system of equations based on the transition probabilities. It can be approximated

by repeatedly multiplying the transition matrix by itself until the desired precision is reached.

In the context of our treatment trial, the stationary distribution describes the proportion of
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time spent in each mood state if the observed mood-shifting dynamics continue indefinitely,

that is, no change in treatment or life circumstances. This provides a measure for comparing

the transition processes of mood among groups of interest, and for seeing the effects of

treatment.

4.2.3 Bootstrap

Next we present details of the bootstrap method. In the approach presented here, the

bootstrap technique is used to construct multiple bootstrap samples. Each sample is analyzed

as a Markov chain and measures of mood dynamics are obtained to form the underlying

sampling distribution.

The bootstrap72 is a non-parametric simulation method developed to assess the ac-

curacy of a parameter estimate by empirically approximating its underlying sampling distri-

bution. For many standard statistical approaches, the accuracy of an estimate is evaluated

on the basis of distributional assumptions. For example, in classical mean estimation, the

sampling distribution of the mean is assumed to be normally distributed and forms the

foundation for hypothesis testing. This normality assumption is based on the Central Limit

theorem which states that the sampling distribution of the mean asymptotically converges

to a normal distribution for sufficiently large samples. While distributional assumptions

such as this may be statistically appropriate in many scenarios, in others the assumptions

may be questionable. In these cases it is difficult to evaluate the accuracy of the parameter

estimate. Simple examples that demonstrate this are median estimation and the estimation

of ratio-based estimates73. For more complex estimators, the distribution may not even be

analytically derivable. In such cases, choosing to impose distributional assumptions may

misrepresent the true accuracy of the estimate and can potentially confound the study’s

findings. In situations such as these, the bootstrap provides a means of constructing a pa-

rameter’s estimated sampling distribution to fairly assess the estimate’s accuracy. In our

study we will use the bootstrap to evaluate the accuracy of parameters describing the mood-
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shifting mechanisms, such as those obtained under the Markov chain model. Due to the

complexity of the disease, the distributions of such parameters are unknown. In the three-

arm randomized trial, the bootstrap is especially useful because the appropriateness of an

assumed distribution is difficult to evaluate in a small sample size setting.

Although the bootstrap can be applied to very complex scenarios, the method itself

is relatively simple. The bootstrap involves three steps: (1) creating a bootstrap sample,

(2) computing a bootstrap estimate, and (3) repeating steps 1 and 2 multiple times to form

the parameter estimate distribution. The creation of a bootstrap sample involves sampling

from the data with replacement. Conceptually, the bootstrap treats the current sample as a

representative surrogate of the population and redraws samples from it. For a sample of size

n, a new sample is created by drawing a single observation, then replacing it back into the

original sample, then repeating this process until a full sample of size n is created. This new

sample is referred to as a bootstrap sample. Because sampling is done with replacement, it

is possible for an observation to appear multiple times within the bootstrap sample, while

other observations may be omitted. The parameter of interest is then estimated for the

bootstrap sample and is referred to as a bootstrap estimate. A virtue of the bootstrap lies

in the fact that only the point estimate needs to be calculated. For many analyses, the

point estimate is easy to calculate whereas the distribution of the estimate is difficult to

obtain. The process of creating a bootstrap sample and obtaining a bootstrap estimate is

repeated a large number of times (typically in the order of hundreds or thousands) to form

a distribution. This distribution can be used to estimate the standard error of the original

estimate, determine confidence intervals, or test hypotheses. This version of the bootstrap

technique is known as the non-parametric bootstrap because the algorithm depends only on

the data themselves and not on pre-specified population parameters or distributions.

Another version of the bootstrap, aptly known as the parametric bootstrap technique,

aims to obtain the sampling distribution if pre-specified population parameters were known.

Rather than resampling from the data to create bootstrap samples, the parametric bootstrap
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generates bootstrap samples based on population parameters. This often includes distribu-

tional parameters such as means, variances, and correlations, as well as sampling restrictions

such as sample size or follow-up time. Once a bootstrap sample is created, the parametric

bootstrap algorithm follows the same steps as the non-parametric version: parameters of

interests are calculated for each bootstrap sample and those estimates are collectively ana-

lyzed to describe the estimate’s distribution. As a simple example, consider a sample of n

numbers that are assumed to be drawn from a normal distribution. The mean µ̂ and variance

σ̂2 can be estimated from this sample, and parametric bootstrap samples can be drawn from

a normal distribution parameterized by these estimates. The parametric bootstrap draws

observations similar in distribution (though not necessarily identical in value) to that of the

original sample. This makes use of the distributional assumptions imposed which, if correct,

result in greater accuracy.

Though its simplicity and ease of implementation are appealing, care must be exer-

cised when using the bootstrap and its underlying assumptions must be considered74. First,

the method assumes that the originally drawn sample properly represents the population of

interest. The method relies on the idea that the original sample is drawn from the popula-

tion without bias and that it appropriately encompasses the breadth of information present

in the population. Because the bootstrap draws from the original sample and creates new

samples that are intended to be representative of the population, it is important that the

parameter estimates, underlying relationships, and distributions present in the original sam-

ple appropriately and sufficiently reflect the characteristics of the population. Therefore,

careful attention must be placed on ensuring that the original sampling procedure is free

from bias. This assumption presents challenges for small samples – as is the case our study –

since the data may not adequately represent the breadth of information or may be sensitive

to spurious results. In such cases, the investigator must either assume that the information

of interest is indeed contained within the small sample or accept the limitations attached to

small samples. In the case of the parametric bootstrap, it is assumed that the underlying

data-generating structure is sufficiently described by the parameters used to generate boot-
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strap samples and all specified values are correct. Second, application of the bootstrap must

carefully consider the nature of the data, the parameter of interest, and how it is constructed.

This includes the complexities of the sampling procedure, structural dependencies within the

data, distributions with unique characteristics, and the choice of what unit to resample (e.g.,

subjects, single observations, single variables, etc.). This suggests that application of the

bootstrap must respect the confines of the underlying data mechanisms and the limitations

associated with the study’s methodology. Examples of these scenarios and the associated

shortcomings are discussed in further detail in other texts, as well as adaptations to the

bootstrap to overcome some of these issues73.

4.3 Application

Next we present the methodological details regarding the application of the Markov chain

and bootstrap techniques to treatment studies in general and the three-arm randomized

trial in particular. Modeling the three-arm randomized trial data as a Markov chain first

requires the state set to be defined. Using the HDRS and YMRS scores, data are classified

into the following four states: (1) diminished depressive and manic symptom severity levels,

(2) elevated depressive symptom severity levels only, (3) elevated manic symptom severity

levels only, and (4) elevated depressive and manic symptom severity levels. These states are

intended to qualitatively correspond to the four standard mood states of bipolar disorder:

euthymic, depressive, manic, and mixed, respectively. We will loosely use those terms in

what follows.

Because the sample describes a treatment-refractory population and exhibits a high

degree of between subject heterogeneity, patient-specific thresholds for determining mood

states are used rather than absolute thresholds. Specifically, the results presented in this

chapter use each patient’s median HDRS and YMRS scores during the pre-randomization

period as the cut-off. This provides an easily interpretable cut-point for describing the mood
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severity levels of patients before receiving treatment. Based on these thresholds, data are

classified into the four states. Though this method of mood classification does not match

clinically defined standards, for the sake of simplicity these four states are referred to as

euthymic, depressed, manic, and mixed for the duration of this chapter. The classification

process is summarized in Figure 4.1.

Although the median is used as the threshold in this analysis, it is important to note

that any threshold can be used in this analytical framework. The threshold can be as simple

as the mean pre-randomization score, or more complex, such as the midpoint of the mediods

based on a clustering algorithm. This offers flexibility in appropriately characterizing features

based on research interest or the nature of the disease. For example, using the mean score

suggests that research interests lie in changes in a patient’s average severity, while using a

clustering-based threshold suggests that symptom severities are reflective of an underlying

categorical structure. For this particular study, investigations into these other thresholds

yielded qualitatively similar results as the median-based threshold.

To address the sparsity and irregularity present in the data, the HDRS and YMRS

scores of each patient are linearly interpolated. Based on this interpolation, patients are

classified into mood states at one-week intervals. This results in a sequence of mood states

with a chain time unit of one week. Two state sequences are formed for each patient. The

first sequence corresponds to the pre-randomization period, while the second sequence corre-

sponds to the post treatment-stabilization period. These sequences serve as the underlying

signal describing each patient’s unique mood-shifting dynamics with and without thyroid

hormones.

The selection of a Markov chain time unit of one week is based on the study’s protocol

and the granularity of the data. The study was originally designed to collect data on a

weekly basis. Although weekly data are unavailable due to limitations described earlier, data

are available approximately every two weeks. It is assumed that weekly mood states can

reasonably be inferred with bi-weekly data because mood will change relatively smoothly and
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Figure 4.1: Mood State Classification

Thresholds are based on the median of the pre-randomization period data and are patient-specific. Data are

classified into mood states relative to this threshold. Dots represent observation points and how they are

classified according to their placement relative to the threshold.
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continuously. Furthermore, while it is acknowledged that other interpolation methods may

be used, the choice of linear interpolation in this analysis is selected based on its simplicity.

The basic analytical framework is not restricted to linear interpolation and other methods

may be employed, although investigations into these methods suggest that the degree of

data sparsity and irregularity present in the three-arm randomized trial present its own set

of challenges in the application of more complex shapes. Additionally, with data points

spaced two weeks apart on average, it is reasonable based on our experience with these data

that linear interpolation does not grossly overstate data granularity and that the potential

bias introduced by this interpolation method for inferring mood states at one week intervals

is not significant.

To capture the mood-shifting dynamics of the patients within a treatment group, state

sequences are aggregated to form a transition matrix in order to examine efficacy. This matrix

is constructed by tallying the number of times patients transition from one state to another,

as well as the frequency with which they remain in the same state from week to week. These

counts are used to form conditional probabilities describing the weekly transition behavior.

Separate transition matrices are formed for each study period and treatment group. With

three study arms in the trial, this results in three transition matrices describing the mood

dynamics during the pre-randomization period and three transition matrices describing these

mood dynamics during the post treatment-stabilization period. This information can also be

globally summarized by the stationary distribution of each group for each of the two study

periods. The stationary distribution describes the proportion of time spent in each mood

state if the mood patterns described by the transition matrix continue indefinitely.

To test whether the memoryless property of first-order Markov chains is violated,

a χ2-based goodness-of-fit test is employed to detect second-order dependency75. First-

order chains assume that the transition probabilities into the next state depend only on the

current state. Second-order chains allow dependencies on the current state and the state

immediately prior. This is tested by comparing the observed frequencies of triplet sequences
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(i.e., a sequence that is three chain units in length) to the expected frequencies based on the

first-order transition matrix. The test statistic is calculated as follows:

χ2
df=s(s−1)2 =

∑
ijk

(nijk − nijPjk)
2

nijPjk
(4.1)

In equation (4.1), nijk is the observed frequency count of a triplet sequence that goes from

state i to state j to state k. Similarly, nij is the observed frequency count of sequence pairs

that go from state i to state j. Pjk is the entry in the transition matrix that describes the

probability of transitioning from state j into state k. Asymptotically, this test statistic has

a χ2 distribution with s(s − 1)2 degrees of freedom where s is the number of states in the

state set. Tests are conducted separately for each treatment group and by study period. a

statistically significant p-value suggests that there is evidence of second-order dependencies

and the memoryless property for first-order chains is violated.

Two types of measures of treatment efficacy are calculated based on the stationary

distributions. The first type is the within-group change from the pre-randomization period

to the post treatment-stabilization period. This is calculated as the difference in the time

spent per the stationary distribution for a given treatment group and state and is measured

in percentage-points. That is, for each state, the proportion of time spent in that state

according to the pre-randomization mood pattern is subtracted from the proportion of time

spent in that state according to the post treatment-stabilization mood pattern. This results

in a difference of proportions. A within-group difference of zero indicates no treatment effect

within the group. A difference greater than zero indicates that more time is spent in the

given mood state during the post treatment-stabilization period. A difference less than zero

indicates that less time spent in the given mood state during the post treatment-stabilization

period. For example, suppose that the stationary distribution results indicate that the T4

group spends 30% of the time in the depressed state based on the pre-randomization data,

whereas the post treatment-stabilization data indicates 10%. This results in a within-group

difference of -20%, meaning that T4 participants experience a 20 percentage-point decrease

in the time spent in the depressed state. For the euthymic state, an increase in within-

group difference indicates a favorable treatment effect. For non-euthymic states, decreases
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in within-group differences indicate a favorable treatment effect.

The second type of efficacy measure is the between-group difference in treatment

effects. This is calculated by subtracting the within-group change for one study arm from

the within-group change of another study arm for a given state and is again measured in

percentage-points. This measure represents a group by time interaction designed to get at

differential treatment effects. A value of zero indicates no difference in treatment effects

between the two groups. A value greater than zero indicates that the change observed in

the first group is positively greater than the change observed in the second group. A value

less than zero indicates that the change observed in the first group is negatively greater than

the change observed in the second group. For consistency, the thyroid treatment group is

always selected as the first group in these comparisons. When comparing the two thyroid

treatment groups, T4 is selected as the first group. Building on the previous example, suppose

that a within-group difference of -5% is observed in the PL group for the depressed state.

Comparing the T4 group (with a within-group difference of -20%) to the PL group results

in a between-group difference of -15%. This indicates that the change observed in the T4

group is negatively greater than the change observed in the PL group. This implies that

more T4 patients have a greater improvement (decrease in time spent) in the depressed state

than PL patients. For comparisons between the treatment groups and the PL group, a

value less than zero (a negatively greater difference) is favored for the depressed, manic, and

mixed states because it indicates that the treatment group is shifting out of these states

to a greater degree or at a greater rate than PL patients. Similarly, a value greater than

zero (a positively greater difference) is favored for the euthymic state as it indicates that the

treatment group is shifting into a euthymic state at a higher rate than PL patients and also

implies a beneficial treatment effect.

While the examples described above compare the mood states individually, it must be

noted that these comparisons are not truly independent. Changes in one state is suggestive

of changes in other states. These relationships may be lost when analyzing the stationary
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distribution separately by state. For example, significant increases in the euthymic state sug-

gest significant decreases in the non-euthymic states. However, this corresponding decrease

may be spread throughout the other states, which may result in smaller, less-detectable dif-

ferences in state-by-state comparisons. Therefore, these dependencies must be considered

when interpreting results.

We use a non-parametric bootstrap approach to evaluate statistical significance. A

total of 10,000 bootstrap samples are created. Treatment efficacy measures are calculated for

each bootstrap sample and distributions for each measure are constructed using the bootstrap

estimates. Statistical significance is determined as follows. For distributions that are largely

to the right of zero, the proportion of bootstrap estimates less than zero is calculated. For

distributions largely to the left of zero, the proportion of bootstrap estimates greater than

zero is calculated. These proportions are then multiplied by two to denote a two-sided

test, and the resulting value reflects the p-value of the estimated effect. For within-group

changes, a statistically significant result implies a treatment effect for the given mood state.

For between-group differences, a statistically significant result implies a differential treatment

effect between the two groups for the given mood state. Because the thyroid treatment group

is always selected as the first group when measuring between-group differences, bootstrap

interpretations are similar for both within-group changes and between-group differences.

For the euthymic state, within-group changes and between-group differences greater than

zero imply positive treatment effects and are depicted by a distribution that is largely to

the right of zero. Similarly, for the non-euthymic states, values less than zero for both

efficacy measures imply beneficial treatment effects and are depicted by a distribution that

is largely to the left of zero. Additionally, the parametric bootstrap is employed using the

observed transition matrices of each study period for each treatment group to generate mood

state sequence data. Each bootstrap sample generated by the parametric bootstrap reflect

the treatment group sample sizes and follow-up times of the original data. An agreement

between the non-parametric and parametric bootstrap results suggest that the underlying

sampling distribution of the original data is reflective of the distribution described by the
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observe transition matrices.

4.4 Results

The goodness-of-fit test described by equation (4.1) for the mood state sequences resulting

from the process described by Figure 4.1 did not show violations of the memoryless property

of first-order Markov chains (p > .05 for all comparisons). Table 4.1 summarizes the amount

of time spent in each mood state according to treatment group by study period. The observed

time is measured in weeks and is calculated by tallying the mood states along the mood state

sequences. Although there is some variability, the proportions of time spent in each state

during the pre-randomization period are roughly equal for all three study groups. The largest

difference observed is in the T4 group. According to the frequency counts, T4 patients spend

slightly more time in non-euthymic states (81.1%) compared to the PL and T3 groups (72.0%

and 72.1%, respectively). Differences appear when examining the time spent in the mood

states during the post treatment-stabilization period. Both the T3 and T4 groups spend the

majority of the time in the euthymic state (45.5% and 50.4%, respectively), while the PL

group is largely unchanged (28.0% during the pre-randomization period versus 26.6% during

the post treatment-stabilization period). These observed increases in the time spent in the

euthymic state suggest that T3 and T4 may carry a favorable treatment effect.

The observed times in Table 4.1 summarize the actual amount of time spent by sub-

jects in each mood state, but this does not provide information about transition rates or the

evolution of the dynamic mood process. The observed proportions reflect the starting distri-

bution which may not be equivalent to the one that arises from transitioning dynamics. To

incorporate the mood-shifting mechanisms in the evaluation of the time spent in each mood

state, we compute the transition matrix and from it the long-run stationary distribution. For

the pre-randomization period, the long-run behavior describes the eventual mood patterns

with no treatment intervention. For the post treatment-stabilization period, the long-run
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Table 4.1: Time Spent in Mood States

pre-randomization post tx-stabilization

PL T3 T4 PL T3 T4

Eut 33 39 30 34 71 128

Dep 25 30 51 18 29 33

observed time (weeks) Man 31 41 48 48 35 77

Mix 29 30 30 28 20 16

total 118 140 159 128 155 254

Eut 28.0 27.9 18.9 26.6 45.8 50.4

Dep 21.2 21.4 32.1 14.1 18.7 13.0
observed time (%)

Man 26.3 29.3 30.2 37.5 22.6 30.3

Mix 24.6 21.4 18.9 21.9 12.9 6.3

Eut 27.7 29.8 14.7 21.2 45.8 47.8

Dep 21.9 19.3 29.1 14.6 16.6 11.0
stationary distribution (%)

Man 23.7 29.3 35.3 28.1 23.7 33.6

Mix 26.8 21.6 20.9 36.0 13.9 7.6

The observed time is calculated by tallying the number of weeks subjects spent in each mood states from

their derived mood state sequences. The stationary distributions are calculated using the transition matrices

resulting from the mood state sequences.

behavior describes the eventual mood patterns under continued treatment. The stationary

distributions are displayed in Table 4.1. Note that there are indeed some differences between

the observed times and the stationary long-run distribution results, particularly the time

spent in the mixed state during the post treatment-stabilization period for the PL group

(21.9% based on the observed time versus 36.0% based on the stationary distribution). As

would be hoped, the results of the stationary distribution analysis indicates increases in the

time spent in the euthymic state within the thyroid hormone treatment groups, suggesting

that T3 and T4 may carry a favorable treatment effect.
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Displayed in Table 4.2 are the transition matrices for each group by study period.

Transition matrix comparisons within the PL group suggest that subjects are even more

likely to persist in manic and mixed states during the post treatment-stabilization period

than pre-randomization. The probability of remaining in the manic state in the following

week increases from 67.7% to 82.6% according to the pre-randomization and post treatment-

stabilization transition matrices. For the mixed state, an increase from 70.8% to 88.0%

is observed. Within the T3 group, changes in mood patterns are mostly beneficial. The

probability of remaining in the euthymic state increases from 64.9% to 76.5%, while the

chance of transitioning from the depressed state to the euthymic state increases from 17.2%

to 30.8%. However, an increase in mixed state persistence is also observed, from 51.9% to

61.1%. Favorable differences are observed within the T4 group, particularly for the euthymic

state. Persistence of the euthymic state increases (+39.7%), while shifts to the depressed

and manic state decrease (-21.9% and -16.0%, respectively). Additionally, shifts from the

mixed state to the euthymic state increase from 3.3% to 15.4%. An increased manic state

persistence is observed (+11.5%), although this may be offset by a decrease in shifts to the

mixed state (-13.0%). Overall, these findings suggest that the PL group may be experiencing

prolonged manic and mixed episodes, while the treatment impact of the T3 group may be

related to increased periods of euthymia and shifts from the depressed state to the euthymic

state. For the T4 group, the treatment impact appears to be related to a highly persistent

euthymic state and a tendency to shift out of the mixed state and into the euthymic state.

However, it must be acknowledged that some transitions are rare and the observed estimates

presented in Table 4.2 may be unstable.

Treatment efficacy measures based on stationary distribution differences are sum-

marized in Table 4.3. Sampling distributions of these measures resulting from the non-

parametric bootstrap method are displayed in Figures 4.2 and 4.3. Results provide no

evidence of a placebo effect (i.e. a within-PL group change) for any of the mood states.

Within-group changes for the PL group range from -6.5 to 9.3 percentage-point and none of

the differences are not statistically significant. This suggests that the mood-shifting dynam-
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Table 4.2: Mood State Transition Matrices

pre-randomization post tx-stabilization

Eut Dep Man Mix Eut Dep Man Mix

Eut 67.7 16.1 16.1 0.0 68.8 9.4 18.8 3.1

Dep 21.7 52.2 4.3 21.7 18.8 62.5 6.3 12.5
PL

Man 12.9 6.5 67.7 12.9 8.7 2.2 82.6 6.5

Mix 4.2 16.7 8.3 70.8 4.0 8.0 0.0 88.0

Eut 64.9 10.8 16.2 8.1 76.5 10.3 13.2 0.0

Dep 17.2 58.6 3.4 20.7 30.8 57.7 0.0 11.5
T3 Man 18.9 2.7 64.9 13.5 20.6 0.0 64.7 14.7

Mix 7.4 18.5 22.2 51.9 5.6 16.7 16.7 61.1

Eut 44.8 27.6 24.1 3.4 84.6 5.7 8.1 1.6

Dep 19.6 65.2 6.5 8.7 18.8 65.6 3.1 12.5
T4 Man 4.9 7.3 70.7 17.1 12.3 1.4 82.2 4.1

Mix 3.3 16.7 23.3 56.7 15.4 7.7 23.1 53.8

These values represent the probability of transitioning from the state indicated by the row to the state in-

dicated by the column. Separate transition matrices are provided for each study group according to the

pre-randomization and post treatment-stabilization periods. Values are presented as percentages.
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ics within the PL group during the pre-randomization period are not significantly different

from those during the post treatment-stabilization period.

Within-group results are similar for the T3 group. The within-group changes for non-

euthymic states range from -2.7 to -7.7 percentage-point differences. While these decreases

are favorable for non-euthymic states, they are too small to establish statistical significance.

The within-group difference is most dramatic for the euthymic state with an observed increase

of 16.0 percentage-points. Although this increase suggests that more time is spent in the

euthymic state after T3 treatment administration, the non-parametric bootstrap results fail to

reflect statistical significance (p=.1834). However, with the majority of the non-parametric

bootstrap distribution (90.8%) to the right of zero for the euthymic state (Figure 4.2), T3

may prove to be a worthwhile treatment in a larger study setting.

The most dramatic within-group changes are observed within the T4 group. Sta-

tistically significant effects are observed in the proportion of time spent in the euthymic,

depressed, and mixed states (p=0.0022, 0.0022, and 0.0312, respectively). For the euthymic

state, there is an estimated 33.1 percentage-point increase based on the original sample,

with more time spent in the euthymic state after T4 treatment administration. For the de-

pressed state, there is an estimated 18.1 percentage-point pre-post decrease indicating that

significantly less time is spent in depression. For the mixed state, there is a 13.3 percentage-

point decrease post treatment, indicating that significantly less time is spent in the mixed

state as well. Results for the manic state are inconclusive: the estimated decrease is only 1.6

percentage-points and the non-parametric bootstrap distribution does not indicate statistical

significance.

Between-group differences and the corresponding sampling distributions resulting

from the non-parametric bootstrap method are displayed in Table 4.3 and Figure 4.3. Results

comparing the T3 group to the PL group yield statistically inconclusive results. Neverthe-

less, the non-parametric bootstrap distributions suggest that T3 may have a favorable effect

over PL, as demonstrated by a euthymic state distribution that is largely to the right of
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Table 4.3: Non-Parametric Bootstrap Treatment Efficacy Measures

within-group differences

PL p-value T3 p-value T4 p-value

Eut -6.5 0.5246 16.0 0.1834 33.1 0.0022

Dep -7.2 0.3358 -2.7 0.5348 -18.1 0.0022

Man 4.4 0.9532 -5.6 0.6458 -1.6 0.8590

Mix 9.3 0.3248 -7.7 0.3934 -13.3 0.0312

between-group differences

T3 vs PL p-value T4 vs PL p-value T4 vs T3 p-value

Eut 22.4 0.2194 39.5 0.0328 17.1 0.1958

Dep 4.5 0.6930 -10.9 0.3840 -15.4 0.1216

Man -10.0 0.7500 -6.1 0.8622 3.9 0.8988

Mix -16.9 0.2160 -22.5 0.0454 -5.6 0.5402

Within- and between-group differences are based on the stationary distribution results calculated from the

state sequences of the original sample and are measured as percentage-point differences. P-values are based

on 10,000 non-parametric bootstrap samples.
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Figure 4.2: Bootstrap Distributions of Within-Group Differences
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The non-parametric bootstrap distributions are based on the stationary distribution results of 10,000 bootstrap

samples. The dashed lines represent the stationary distribution results of the original sample. For the

euthymic state, a distribution to the right of zero suggests a favorable treatment effect. For non-euthymic

states, a distribution to the left of zero suggests a favorable treatment effect. A significant result is obtained

if the zero-line falls in the extreme tail of the bootstrap distribution.
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Figure 4.3: Bootstrap Distributions of Between-Group Differences
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The non-parametric bootstrap distributions are based on the stationary distribution results of 10,000 bootstrap

samples. The dashed lines represent the stationary distribution results of the original sample. The competing

treatment is the treatment that is listed second. For the euthymic state, a distribution to the right of zero

suggests a favorable treatment effect that is greater than the competing treatment. For non-euthymic states,

a distribution to the left of zero suggests a favorable treatment effect that is greater than the competing

treatment. A significant result is obtained if the zero-line falls in the extreme tail of the bootstrap distribution.
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zero (indicating more time spent in the euthymic state for the T3 group compared to the PL

group) and a mixed state distribution that is largely to the left of zero (indicating less time

spent in mixed state for the T3 group compared to the PL group). This suggests that further

study is needed in a larger sample size setting to elucidate the impact of T3 treatment.

Between-group comparisons of the T4 group to the PL group reveal statistically sig-

nificant differences. This is indicated by positively greater differences in the euthymic state

(p=0.0328) and negatively greater differences in the mixed state (p=0.0454). This suggests

that the changes observed in T4 patients are more favorable than the changes observed in PL

patients for the euthymic and mixed states. Comparisons involving the other mood states

are suggestive of a positive treatment effect, but are not statistically significant.

Comparisons between T4 and T3 do not yield statistical significance for any mood

state. However, the depressed state distribution is suggestive of an effect that favors T4

over T3. A similarly favorable distribution pattern is also observed in the euthymic state

distribution. This suggests that T4 may potentially carry an effect over T3 for these mood

states, although further study is needed.

Displayed in Table 4.4 are the results of the parametric bootstrap. These results

reflect the p-values of bootstrap samples generated from the transition matrices of the original

sample (Table 4.2). In general, these results confirm the findings based on Table 4.3 and

support the efficacy patterns of T3 and T4. However, unlike the non-parametric bootstrap

results, the treatment effect of T4 over PL for the mixed state (a 22.5 percentage-point

decrease) is no longer statistically significant (p=.2196 versus p=.0454). This suggests that

the underlying sampling distribution may not fully match the distribution described by the

original sample’s transition matrices. The non-parametric bootstrap estimates the empirical

distribution free of parametric assumptions, and is therefore the favored result in this setting,

but the parametric bootstrap findings suggest that there may be interesting relationships that

are not completely apparent in the transition matrices themselves, particularly in dynamics

involving the mixed state and T4 treatment, and requires further study.
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Table 4.4: Parametric Bootstrap Treatment Efficacy Measures

within-group differences

PL p-value T3 p-value T4 p-value

Eut -6.5 0.5600 16.0 0.1574 33.1 0.0002

Dep -7.2 0.4014 -2.7 0.7274 -18.1 0.0260

Man 4.4 0.7802 -5.6 0.5642 -1.6 0.8764

Mix 9.3 0.6052 -7.7 0.3408 -13.3 0.0290

between-group differences

T3 vs PL p-value T4 vs PL p-value T4 vs T3 p-value

Eut 22.4 0.1622 39.5 0.0092 17.1 0.2296

Dep 4.5 0.7174 -10.9 0.3802 -15.4 0.1894

Man -10.0 0.5974 -6.1 0.7480 3.9 0.7942

Mix -16.9 0.3818 -22.5 0.2196 -5.6 0.5812

Within- and between-group differences are based on the estimated transition matrices for the original sample

and are measured as percentage-point differences. P-values are based on 10,000 parametric bootstrap samples.
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In summary, within-group effects indicate statistically significant improvements in the

T4 group in the time spent in the euthymic, depressed, and mixed states. Potential within-

group effects are also observed in the T3 group for the euthymic and mixed states, although

these findings are not statistically significant. Between-group effects favor T4 over PL for the

euthymic state and possibly for the mixed state as well, although due to the conflicting results

between the non-parametric and parametric bootstrap, the latter effect requires further

investigation. Comparisons between the T3 and PL group are also suggestive of a favorable

thyroid treatment effect in the time spent in the euthymic and mixed states, although these

findings are statistically inconclusive and a larger study is necessary to increase statistical

power. Comparisons of T4 to T3 suggest that an effect favoring T4 may be present in the time

spent in the depressed state, although this finding also fails to reach statistical significance.

It must be reiterated that, although comparisons are performed separately for each

state, the effects based on the stationary distribution are not truly independent. Increases

observed in one state are suggestive of decreases in another (potentially multiple). There-

fore, while a large difference may be observed for individual state, corresponding minor or

moderate differences may exist across other states.

4.5 Conclusions

The Markov chain results suggest that T4 treatment positively affects the mood dynamics

among treatment-refractory rapid cycling bipolar disorder patients. However, the treatment

effect varies depending on the mood state. The results suggest that T4 treatment may

be most influential in increasing the time spent in the euthymic state. Of the four mood

states, this is the most favorable, suggesting that adjunctive T4 treatment may carry a highly

desirable impact. The results also suggest a corresponding decrease in the time spent in the

mixed and depressed states. Results suggest that the impact of T4 on the manic state may

be minimal, implicating that T4 treatment maybe be less effective for patients whose disease
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is mainly characterized by periods of mania. However, interpreting these results as a whole

indicate an overall shift into the euthymic state.

While statistically significant differences are observed within the T4 group, differences

are less pronounced when comparing the effects between treatment groups. This may be a

result of the increased variance when comparing two highly variable measures. This makes

the detection of differences between treatment groups more difficult and limits the statistical

power to the detection of dramatically large differences. This is further exacerbated by

the high variance and small sample size of the PL group. Nevertheless, patterns suggest

potential effects than lend itself to further study. This includes the additional impact of T4

over PL on the depressed state and the impact of T3 over PL on the euthymic and mixed

states. Patterns also suggest a possible edge that T4 may have over T3 in the time spent in

the euthymic and depressed states.

The approach presented here offers a novel means of analyzing bipolar disorder data.

By adopting an episode-based perspective, data can be translated into mood state sequences

and mood-shifting dynamics can be modeled as a Markov chain. To detect treatment dif-

ferences, the bootstrap can be employed and offers a means of statistically testing hypothe-

ses that are free of distributional assumptions. However, this approach only describes the

amount of time spent in the mood states. Though some timing information may be inferred

from the transition matrices, specific characteristics of the mood episodes themselves are not

directly captured by this approach. These include the degree of symptom severity, episode

duration, episode frequency, and changes over time. Information containing these character-

istics are lost when the data are translated into mood states and collapsed into a transition

matrix. In the next chapter, I present an approach that aims to specifically capture these

elements by developing a flexible model parameterized by these episode characteristics and

fitting it to the HDRS and YMRS data using an iterative alogorithm known as particle

swarm optimization.
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CHAPTER 5

Approach 2: Particle Swarm Optimization

5.1 Background

In the Markov chain approach, data from bipolar disorder patients are translated into a

sequence of mood states. This provides insight about the mood-shifting patterns of the

patients and the proportion of time spent in each state. While the Markov chain perspective

centers the analysis on the mood states, certain aspects of the underlying mood episodes

themselves are lost in this approach. These include episode duration, severity, frequency,

and changes in dynamics occurring over time.

The following approach focuses the analysis on the more detailed characterization of

the mood symptoms within each episode. The aim of this approach is to create a model

that directly speaks to clinically important treatment targets of the disorder – namely the

duration, severity, and frequency of mood episodes. In particular, this approach aims to

identify periods when a patient is in an episode and to describe attributes of those episodes.

Mood symptom data are described using a flexible function that is specifically parameterized

to identify these features and the course of the illness for an individual patient. These

parameters are then used to assess treatment effects and evaluate group differences. By

characterizing the longitudinal patterns in symptom severities, the complete volume of data

is leveraged to detect treatment effects and time-dependent nuances, such as trends in episode

duration or changes in episode frequency.
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This model-based approach has three key steps. The first step is to parameterize

longitudinal symptom severity scale scores as a function of key mood episode characteristics.

This mood function must take a form that is flexible enough to fit general symptom severity

patterns of the disease (such as increases and decreases in severity), while also accommodat-

ing a range of specific episode manifestations, such as severe acute episodes and mild chronic

episodes. Additionally, the function must maintain clinical relevance and interpretability.

The second step is to fit the function to the data and obtain parameter estimates describing

episode characteristics specific to a patient. The method proposed here uses a stochastic

technique known as particle swarm optimization (PSO)76, a metaheuristic algorithm based

on using swarm intelligence to inform the search and discovery of a globally optimal solu-

tion. The third step involves using the individual mood function parameter estimates to

characterize features present across a group of patients and to test for differences in those

features between groups of patients. The method proposed here uses a series of generalized

linear models to detect pre-post differences between treatment groups.

In the next section, I present the theoretical foundations of this approach, specifically

mood function specification and the PSO algorithm. This is followed by the application of

this approach to the three-arm randomized trial data, with adaptations to address study-

specific challenges. The chapter concludes with interpretations of the results and important

precautions.

5.2 Proposed Approach

The particle swarm approach centers around the estimation of mood duration, severity,

and frequency over time by modeling the longitudinal trajectory of mood symptom severity

scores as a time-dependent function. This function – the mood function – must appropriately

describe the salient mood trends and features of bipolar disorder, yet be flexible enough to

capture patient-specific variances. Described next is the construction of the mood function
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and how it is specifically parameterized to capture mood episode features. This is followed

by details of the PSO algorithm, including its components and required specifications.

5.2.1 Mood Function Specification

The key to parameterizing the mood symptom severity scores is to focus on the structural

form of an individual episode. The basic characteristics of interest for a particular episode

are its severity (statistically amplitude) and duration. We assume that an episode k, has

a functional form that is uniquely described by its duration parameter σk and severity pa-

rameter αk, where σk describes the episode duration in units of time and αk describes the

severity of an episode as measured in the corresponding mood scale units. Because the data

are longitudinal and episodes occur at specific moments in time, the episode’s location must

also be specified. In the following formulation, an episode’s location is parameterized as µk.

The episode’s influence on a patient’s mood scale score at time t is therefore captured by the

episode function ek(σk, αk, µk, t). In the three-arm randomized trial, mood symptom severi-

ties for depressive and manic episodes are measured by the HDRS and YMRS, respectively,

while time is measured in days. The set of parameters describing episode k is abbreviated as

ψk. The duration, severity, and location parameters describing a set of episodes is denoted

as σ, α, and µ, respectively, and is abbreviated as ψ.

In addition to the episodes themselves, symptom severity scores are influenced by a

patient’s baseline mood severity, b(t) during non-episode periods (i.e., periods of euthymia)

over time. Additionally, symptom ratings are subject to random noise, such as typical

mood fluctuations due to local events and measurement error. It is assumed that this noise

fluctuates around zero and is parameterized as ε (τ(t)) where τ(t) measures the variance of

the noise over time. For now, it is assumed for simplicity that the noise variation is constant

regardless of whether a patient is in an episode or non-episode period, though this could be

modified to allow for greater noise during mood episodes since possible scores encompass

a larger range. These components can be combined as follows to form the following mood
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function:

m(σ, α, µ, t) = b(t) +
∑
k

ek(σk, αk, µk, t) + ε (τ(t)) (5.1)

In (5.1), k indexes episodes and αk, σk, and µk are the shape and location parameters of the

corresponding episode. This equation captures the basic mood severity influences in bipolar

disorder. During a period of euthymia, a patient registers an inherent mood level captured

by b(t). When a patient is in an episode, mood symptom severity levels are impacted at

time t by amounts described by ek(σk, αk, µk, t). Additionally, patients are subject to random

fluctuations and measurement error reflected by ε (τ(t)).

Although this formulation of the mood function is rather general, it is not without its

implicit assumptions. First, it characterizes the effects of each component as additive, with

an episode’s effect upon a patient’s mood symptom severity simply added to the baseline

mood severity measure. Similarly, it suggests that an episode’s effect is in addition to

remnant effects of adjacent episodes. For example, in theory a patient’s first episode may

begin on day 0 and end on day 15, while a second episode may begin on day 10 and end on

day 20. This means that there is an overlap of these two episodes from day 10 to day 15.

During this time interval, the effects of both episodes are added on top of each other and the

baseline mood severity. This allows for the flexibility in potentially capturing partial episode

remission and relapse, as well as nuances of within-episode fluctuation. However, in settings

where episodes are indeed distinct, restrictions to the mood function are necessary. Second,

this formulation assumes that episodes are uniquely identified by episode location µk. That

is, the episode locations of any two episodes are assumed to be non-identical. This means

that at most only one episode can be located at a specified time, although due to additivity

the effects of multiple episodes may be at play at a single time point. Lastly, it assumes

the functional form b(t) is distinct relative to the functional form of the episode function

ek(σk, αk, µk, t). This maintains model identifiability by keeping episode effects distinct from

baseline mood severity patterns. Depending on the research setting and longitudinal mood

features of interest, restrictions may need to be imposed to create an appropriate mood

function.
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5.2.2 Particle Swarm Optimization

Particle swarm optimization (PSO) is a stochastic technique that aims to identify the global

maximum or minimum of a function. It is generally applied in cases where the function

is mathematically complex or contains multiple local optima. Intricate functions such as

these pose problems for traditional deterministic approaches which rely on the mathemati-

cal form of the function to enable minimum/maximum identification through differentiation

techniques and which may have difficulty distinguishing between local optima and global

optima. While brute force techniques can be employed to search the entire parameter space,

they can be inefficient, especially in large multidimensional spaces. Rather than system-

atically searching for the solution, stochastic optimization techniques iteratively search the

parameter space by a random process.

Particle swarm optimization is a member of the class of stochastic optimization tech-

niques known as neighborhood search algorithms, or local search algorithms77. Neighbor-

hood search algorithms can be generally described as follows. Suppose we have a complex

function f(θ) where θ is the characterizing parameter, and we are interested in finding the

optimal estimate of that paragon, θ̂. The optimality of a candidate solution θ̃i is described

by an objective function g(θ) such that g(θ̂) = min [g(θ)]. Neighborhood search algorithms

aim to find θ̂ by iteratively searching the parameter space of θ. Like many iterative search

approaches, the procedure begins with an initial solution, θ̃0. Next, a candidate solution, θ̃0
∗
,

is randomly drawn from the region of the parameter space neighboring θ̃0. The optimality

of the current solution, g(θ̃0), and the candidate solution, g(θ̃0
∗
), are compared to determine

which provides a better result. Based on this evaluation process, a new candidate solution

θ̃1 is generated. This process is repeated and candidate solutions are updated until a set of

criteria are met. Because the search is stochastic, it cannot be guaranteed that the process

will indeed identify the true global optimum. However, such algorithms provide a means of

efficiently searching the parameter space and identifying near-global (and often sufficient)

solutions in mathematically complex settings.
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The PSO algorithm takes the basic iterative principles of neighborhood search algo-

rithms and adds two refinements: (1) search space dynamics and (2) swarm-based intelli-

gence. The foundational component in PSO is the particle. A particle represents a candidate

set of parameter values, θ̃i, for the function being optimized. In this context, θ corresponds

to the entire parameter vector of the mood function, which includes the baseline severity

and the durations, amplitudes, and locations of all episodes. Much like other neighborhood

search algorithms, this particle iteratively searches the solution space and seeks the global

optimum. A particle is thought of as our entity that moves about the search space with

a speed and direction referred to as its velocity. PSO differs from the basic neighborhood

search algorithm in that it initiates a set of particles – referred to as the particle swarm –

which all search the space simultaneously. This carries the advantage of creating a profile of

solutions across the search space in a single iteration. This information – the swarm-based

intelligence – is leveraged to determine more promising regions of the search space and guide

the dynamics of each particle to these areas. This is accomplished by keeping a record of

two key types of values: (1) a particle’s best solution across all previous iterations, and (2)

the global best solution seen so far by any particle. These values serve as attractors and

influence the particle velocities, directing the swarm to its next iteration and eventually to

the global optimum. Details behind these mechanisms and its required specifications are

described next.

5.2.2.1 Search Space

Before the PSO algorithm can be implemented, initial specifications relating to the search

space are in order. First, the objective function to be optimized, g(θ), must be specified

and θ must be restricted to a fixed dimensional space. Second, boundaries of the search

space, θbound, must be specified to prevent swarm velocities from driving particles to regions

with nonsensical candidate solutions. These boundaries are usually determined by phenom-

ena underlying the data generating mechanisms and serve as a means of introducing prior
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knowledge into the search specifications. The last required specification is the swarm size s.

Complex spaces may require a larger swarm size to adequately cover the area and identify

nuanced optimal regions. However, this comes at the expense of additional computational

power and total algorithm run time. Therefore, adequate solution accuracy and practical

limitations must be appropriately balanced.

5.2.2.2 Particle Velocity and Position Update

The next set of required specifications relate to the procedure for updating particle velocities

and candidate solutions. Letting xji represent particle i’s position xi at iteration j, the

location of the particle at the next iteration is determined by:

xj+1
i = xji + vj+1

i (5.2)

Here, vj+1
i is referred to as the update velocity and guides where the particle will look next.

The update velocity consists of three components: (1) a particle’s current velocity, (2) its

personal influence, and (3) the swarm’s influence. The personal influence represents the

impact that the particle’s best solution has on the particle. Similarly, the swarm’s influence

represents the effect of the global best solution. Velocity updating is summarized by the

following equation:

vj+1
i = wvji + c1r

j
1(B

j
i − xji ) + c2r

j
2(B

j − xji ) (5.3)

In equation (5.3), the current velocity of particle i at iteration t is represented by vji and its

position in the search space is xji . The particle’s best and global best solution at iteration t

are represented by Bj
i and Bj, respectively.

The personal influence – described by c1r
j
1(B

j
i−x

j
i ) – is a function of a local exploration

constant c1, a local stochastic element rj1, and the distance between the particle’s best solution

and its current position (Bj
i − xji ). The local exploration constant is a positive number that

controls the degree of influence of the particle’s best solution. It is sometimes referred to as

an acceleration coefficient because it determines how quickly a particle accelerates toward
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the best solution. The local stochastic element is a random variable and adds an element

of randomness to the search. To illustrate the impact of these values, suppose c1 = 1 and

rj1 = 1. This would result in a personal influence of (Bj
i − xji ). Since this describes the

distance between the particle and it’s best solution, this would direct the particle to head

directly toward Bj
i . If the product c1r

j
1 = 2, the personal influence would be 2(Bj

i − xji ) and

the particle would overshoot it’s personal best solution by two-fold. Similarly, a product of

c1r
j
1 = 0.5 would cause the particle to undershoot it by 50%. In the original formulation,

the local stochastic element was drawn from a uniform distribution ranging from 0 to 1 and

the local exploration constant was set to 2. Taken together, these velocity settings suggest

that the particle will overshoot the particle’s best solution about half the time on average.

The swarm’s influence – described by c2r
j
2(B

j − xji ) – is a function of the global

exploration constant c2, a global stochastic element rj2, and the distance between the global

best solution and the particle’s current position (Bj − xji ). It has a structure analogous to

the personal influence and carries a similar interpretation: c2 controls the degree of influence

of the global best solution and rj2 adds a random element to the search.

The parameter w is referred to as the inertia weight and was proposed as a modi-

fication to the original PSO algorithm78. It is a constant that controls the influence of a

particle’s current velocity upon its updated velocity. A high inertia weight suggests that a

particle’s current velocity carries high influence, so the particle is less swayed by the personal

and swarm influence. A low inertia weight suggests that a particle is eagerly drawn toward

the personal and/or global best solutions. As an example, suppose w = 0. This would

suggest that the particle is completely directed by the personal influence and the swarm’s

influence. Values greater than zero diminishes the impact of the personal and swarm’s in-

fluence, while very high values may negate it completely. The original research on inertia

weight suggested values in the range of 0.9 to 1.2 based on simulation studies.

Standard versions of the PSO algorithm and its velocity parameter specifications

have been proposed79. The most recent is the Standardized Particle Swarm Optimization
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2011 (SPSO-2011) which is the version used in this analysis. Its parameters are as follows:

c1 = c2 = 5 + log(2) = 1.193, w = 1
2log(2)

= .721, and s = 40. While these are presented

as standard values reflective of theoretical research available at the time of its development,

new findings may recommend features and adjustments that lead to an updated standard

version.

Note that a particle’s position will always be updated at each iteration. This differs

from other local search algorithms which incorporate acception or rejection of candidate

estimates based their optimality measures. In the PSO algorithm, a particle will always be

updated even if the resulting new position is less optimal. However, because the particle’s

best and global best solutions are incorporated in the update process, even though particles

are allowed to roam to less optimal regions they have an inclination to return to previously-

encountered optimal solutions unless a more optimal solution is found. Additionally, if a

particle’s best solution, global solution, and current position are identical, then the update

velocity will be very low and the particle will have a tendency to stay at that position. As

the process evolves, particles will eventually swarm at the same position in the search space.

In summary, the dynamics of the PSO algorithm are controlled by the local and global

exploration constants which are used to tune the balance between intensive local searching

versus favored global searching. Low values translate to a weak influence, allowing the parti-

cle to venture far from the current best solutions. High values translate to a strong influence,

restricting the particle’s exploration range to nearby regions. The overall speed of the algo-

rithm is tuned by the inertia weight. Lower inertia weights translate to easier acceleration

toward the best solutions, although this may result in premature convergence. Higher inertia

weights translate to slower convergence, but allow for a more thorough search before being

influenced by the best solutions. Particles explore the search space by these mechanisms and

are eventually drawn to an optimum. Having many widely dispersed particles at the start

helps ensure adequate coverage.
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5.2.2.3 Stopping Criteria

The last set of required specifications relates to stopping the search. The easiest criteria

to implement are based on the number of iterations. The simplest would be to restrict

the total number of iterations for the search. This assumes that the specified number of

iterations is sufficient enough to identify the global optimum. Another option is to specify

the maximum number of stagnate iterations. This assumes that the search has arrived at

least at a local optimum, with only less optimal solutions in its neighboring regions and

therefore stagnates. Depending on the research setting, convergence may be determined by

an absolute tolerance level. This stops the search after the calculated objective function

value has reached an acceptable level of optimality specified by a threshold. Choices for

stopping criteria depend on the objective function used, the interpretation of its calculated

values, and what is deemed to be an acceptable solution. This allows the algorithm to be

applied across a variety of research settings, but the investigator is faced with defining and

determining a solution’s sufficiency.

5.3 Application

In this section, I outline specifications and modifications made to apply these methods to

treatment trials for bipolar disorder. Described first is the functional form of the mood

function, its parameterization, and its associated definitions and interpretations. Next I

describe details of a grid-based approach I employ to detect time intervals that are likely to

contain mood episodes. This creates search space restrictions and boosts the efficiency of

the PSO algorithm. Next I outline parameter specifications of the PSO algorithm. Finally,

I present statistical models used to detect treatment differences based on the results of the

PSO algorithm.
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5.3.1 Adaptations to the Mood Function

For the implementation of this approach, I make some simplifying restrictions to the mood

function described by equation (5.1). First, I restrict the baseline mood severity function

b(t) to be constant over time. This explicitly assumes that there are no fluctuations in the

baseline mood severity, and also implicitly assumes that the baseline mood severity remains

unchanged after treatment initiation. This suggests that treatment effects are only manifest

in the episode-specific parameters σ and α. Second, I restrict the random noise variance τ(t)

to also be constant over time. Next, I specify the functional form of the episode function as

a Gaussian curve such that for a given episode:

ek(σk, αk, µk, t) = αk exp

(
−(t− µk)

2

2σ2
k

)
(5.4)

Here, αk describes the maximum the mood symptom severity score for episode k and can be

interpreted as the amplitude of the episode, while µk, the location parameter, corresponds to

the time when the influence of episode k is at its greatest. While other functional forms can

be used, Gaussian curves have mathematical properties well suited to describe increasing

and decreasing processes. It exhibits a rise and fall pattern – a qualitative feature of mood

episodes – but does so in a smooth, exponential fashion. Modeling episodes as Gaussian

curves assumes that they are symmetric and unimodal. While there is no marked beginning

and end to an episode under this parameterization scheme, the degree of an episode’s duration

is captured by σk. This is similar to normal distributions and how standard deviations are

use to describe an interval surrounding the curve’s peak. With these adjustments, the mood

function described in equation (5.1) reduces to:

m(σk, αk, µk, t) = b+
∑
k

αk exp

(
−(t− µk)

2

2σ2
k

)
+ ε(τ) (5.5)

For purposes of interpretation, duration is measured by the size of the interval (µk ± 2σk)

and is referred to as the duration window. Similarly, σ can also be used to describe the peak

region of an episode. In this analysis, I define this interval as (µk ± .75σk) and is referred to

as the peak window. The choice of .75 was loosely based on the idea that it approximately
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covers the middle three-eighths of the duration window and reflects a reasonably restrictive

region when implementing penalties (described later in Section 5.3.3). Note that under this

formulation, the number of parameters increase as k increases and may vary across patients.

Due to this varying dimensional space, the PSO algorithm with be used to fit each patient

separately.

5.3.2 Episode Region Detection

One challenge in applying the PSO algorithm to episode-based data is the specification of

the search space. According to the mood function described in equation (5.1), the number

of episodes determines the size of the dimensional space. This requires that the number

of episodes be determined before applying the PSO algorithm. Additionally, the episodic

structure of the mood function implies a grouping to the parameter estimates. That is,

episode k is described by the parameters σk, αk, and µk. To properly characterize the

mood function, these parameters must be considered as a set corresponding to episode k and

must be distinguished from the parameters σk+1, αk+1, and µk+1, which form the parameter

set of episode k + 1. Permuting these parameters without respecting the grouping will

result in a completely different mood function. Furthermore, the mood function implies

that a curve may be described by multiple parameter orderings. This presents issues of

statistical identifiability. For example, suppose ψ1, ψ2, and ψ3 correspond to a patient’s

episode parameters (i.e., σk, αk, and µk) of episodes 1, 2, and 3, respectively. Based on

the formulation of the mood function, a parameter vector of (ψ1, ψ2, ψ3) corresponds to

a mood curve that is identical to (ψ3, ψ2, ψ1) or (ψ2, ψ1, ψ3). This label-switching problem

presents ambiguities in parameter estimation and requires a system that keeps track of which

parameters correspond to specific episodes.

To address these challenges, I used a grid-based approach to identify regions of prob-

able episode locations. This is done by proposing a set of episodes spanning a range of

durations and amplitudes and fitting them across multiple time points that span the data.
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The fit of each episode is evaluated by a fitness function and the collection of these fitness

values are plotted across time. This takes advantage of the one-dimensional nature of time

and how episodes are distinct across time. If the set of episodes do not fit well across a

time interval, then that region will exhibit poor fitness values and will be interpreted as

a non-episode region. However, time intervals with well-fitting episodes will exhibit favor-

able fitness values and will be interpreted as probable episode regions. By identifying these

regions, the time dimension is divided into mutually exclusive intervals with each one cor-

responding to a unique episode. This allows episode parameters to be grouped according to

these regions and presents a means of uniquely identifying episodes. Additionally, it reduces

the parameter space and restricts the PSO search to episode-probable locations.

For the proposed set of episodes, I selected a total of 100 different episode shapes

by varying α and σ across ten different values for each parameter, resulting in 100 possible

combinations. For α, the episode set ranged from 1 to 35 for HDRS data and 1 to 25 for

YMRS data and encompassed the entire range observed in the trial data. For σ, the episode

set ranged from 1.75 to 21 for both the HDRS and YMRS data. Recall that an episode’s

duration is equivalent to 4σ. Therefore, this range corresponds to episodes ranging from 7

to 84 days (i.e., 1 to 12 weeks). These values were selected based on the intended sampling

rate of the study (1 week) and the minimum frequency required for rapid cycling (at least

4 episodes per year). The selected values for both α and σ were equally spaced along their

corresponding intervals. For the episode location parameter µ, points spanned the entire

range of the data at intervals of 1.75 days, resulting in 4 time points per week.

The fitness function used to evaluate episode fit consists of three components: (1) data

fit with no episode present, (2) data fit with the episode present, and (3) fit restrictions. For

episode k, fit is evaluated according to data within the interval µk ± 2σk, the peak window.

The data points spanning this region are denoted by the vector Yk and consists of time points

(t1k, t2k, ..., tdk) and its mood scale scores (y1k, y2k, ..., ydk). Denoting the average mood scale

score within the interval as y.k, we take a sum of squares approach and evaluate as the data
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fit in the absence of an episode:

f0(Yk) =
d∑
i=1

(yik − y.k)
2 (5.6)

This value represents the total variance within the interval. To evaluate the fit with the

episode present, a similar approach is used. Using the mood function specified in equation

(5.5), this fit is specified by:

f1(Yk, σk, αk, µk) =
d∑
i=1

(yik −m(σk, αk, µk, tik))
2 (5.7)

This value is the episode’s sum of squares error and represents the residual variance that is

unexplained by the episode. Note that the function m(σk, αk, µk, tik) requires the baseline

severity b to be specified. The parameter b is chosen such that the function f1(Yk, σk, αk, µk)

is minimized. Taking the results of equations (5.6) and (5.7), the episode fitness value is

calculated as:

Fk(Yk, σk, αk, µk) =
f1(Yk, σk, αk, µk)

f0(Yk)
(5.8)

This value is interpreted as the proportion of variance unexplained by episode k and is

expected to have a range between 0 (an episode that fits the data perfectly) and 1 (an

episode that fits equally as well as a constant value). This suggests that better-fitting

episodes correspond to lower values, while higher values equate to episodes that do not fit

the data well. However, for very poorly-fitting episodes, it is possible to obtain a value

greater than 1. This indicates an interval whose data variance is better explained by a

constant value rather than the candidate episode’s bell-shaped curve. For these instances,

the maximum value of 1 is imputed. Additionally, the selected baseline severity parameter

b may lie outside the range of possible values of the mood severity scale. Moreover, it is

also possible that Yk may not contain any data within the episode’s peak window (defined

as µk± .75σk), suggesting that the calculated fit is based on points along the episode’s edges

only and is not reflective of the episode’s bell-shaped curve. To address these issues, episodes

meeting any of the latter two criteria are removed from the episode detection analysis.

After episode fitness values are calculated across the entire spectra of the data, they

are plotted across time. Data are fit by a cubic smoothing spline with the degree of smoothing
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determined by the leave-one-out cross-validation method80. While other smoothing tech-

niques can be employed in this approach, the cubic smoothing splines method is chosen

because its formulation consists of piecewise cubic curves with a smooth second derivative.

This facilitates the identification of curve minima and inflection points. These form the

basis of episode region detection. Locations exhibiting favorable fitness values are identified

by the curve’s minima and episode-probable intervals are marked by the inflection points

containing the minima. It is assumed that each region contains a single episode. To filter out

spurious regions that may result from random noise, the mean episode fitness value across

the entire curve is calculated as a threshold and the identified minima must be less than this

value. This suggests that the region is exhibiting episode fitness values that are better than

average. In cases where episode profiles may change across time, separate thresholds may

be set. Similarly, values other than the average can be selected, allowing the threshold to be

properly tuned to the research setting. In applying this method to the three-arm randomized

trial data, thresholds are calculated separately according to the pre-randomization and post

treatment-stabilization periods. An example of this episode detection process is shown in

Figure 5.1.

Identifying these regions provides three main benefits. First, it identifies the number

of episodes to be fit, fixing the parameter space of the search and allowing the PSO algorithm

to be applied. Second, it provides a labeling mechanism to identify which parameters corre-

spond to a given episode as an episode can now be identified according to the interval that

encompasses location parameter µk. This addresses the label-switching ambiguity discussed

earlier. Third, it restricts the dimensional space and ensures that the search efforts are fo-

cused on promising regions. Discussed next are the details of applying the PSO algorithm

to the three-arm randomized trial data and how the episode detection results are used.
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Figure 5.1: Episode Region Detection Plot
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The first panel is a plot of a patient’s HDRS data versus time. The second panel reflects the results of

the episode region detection. Episode fitness values are plotted across time and data are smoothed by cubic

smoothing splines. Lower values correspond to better fitness values. The horizontal lines are the thresholds of

each study period to determine favorable fitness values and the highlighted intervals are the resulting regions.

The dashed line at zero indicates the point of randomization.

78



5.3.3 Objective Function

Before the PSO algorithm can be applied, the objective function must be defined. The

algorithm is flexible enough to accommodate a variety of objective functions and allows the

investigator to evaluate optimality over multiple components. However, because optimality is

calculated for multiple particles at each iteration, complex objective functions often translate

to longer run times. Therefore, it is necessary to select an objective function that is simple

enough to minimize computational complexity, yet is sophisticated enough to incorporate

key features indicative of optimality.

The challenge in using the PSO approach for the three-arm randomized trial centers

around data sparsity and the associated difficulty in distinguishing a true signal from back-

ground noise. The objective function I developed to fit the data addresses these concerns

by incorporating penalties. The function is developed as follows. Following the approach

used in episode region detection and equation (5.7), overall fit is measured by the sum of

squared differences between the data values and the candidate solution’s predicted values.

The fit value is interpreted as the unexplained variance with lower values indicating a better

overall fit. To address issues introduced by data sparsity, each fitted episode is inspected to

check whether the following criteria are met. First, the episode’s amplitude αk is compared

to the noise level resulting from the fit. This noise level, described by τ in equation (5.5),

is estimated by the root mean squared error of the fit. Second, the number of data points

encompassed by an episode’s estimated peak window region µk± .75σk is counted. Episodes

with amplitudes less than twice the estimated noise level or containing no points within their

peak window regions are flagged as poorly-fitting episodes. The overall fit calculated earlier

is inflated by the proportion of episodes not meeting the criteria. For example, if a candidate

solution composed of 5 episodes results in an overall fit of 100, yet has 1 episode failing to

meet the criteria, the overall fit value is inflated by 20% and results in a value of 120. At

best, all episodes meet the criteria and no inflation occurs. At worst, all episodes violate

the criteria and the initial overall fit value is doubled. This adjusted overall fit is the final
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objective function value.

5.3.4 Particle Swarm Optimization Parameters

To fit the randomized trial data using the PSO algorithm, the parameter space boundaries,

velocity parameter values, and stopping criteria must be defined. The algorithm is applied to

each patient individually as the number of episodes – and consequently the parameter space

– differ across patients. The number of episodes to fit and the boundaries of µ are determined

by the episode region detection results. The boundaries for α are dependent on the range

of the patient’s mood scale scores. The minimum amplitude is set to 1 and the maximum

amplitude is the difference between the highest and lowest scale scores observed. Duration

estimates are allowed to range from 1 to 12 weeks and correspond to σ values of 1.75 and

21 days, respectively. Similar to the rationale behind the episode set in the region detection

method, these values were selected based on the intended sampling rate of the study (1 week)

and the minimum frequency required for rapid cycling (at least 4 episodes per year). The

baseline severity b is allowed to range from 0 to the highest scale score observed. For the

PSO velocity parameters, the values recommended by SPSO-2011 are used: c1 = c2 = 1.193,

w = .721, and s = 40. The algorithm is stopped after 500 iterations or after no improvement

in the optimal solution is observed for 100 iterations.

5.3.5 Filtering

Although the objective function penalizes episodes that are unreliable due to data sparsity

issues, there is no guarantee that the resulting fit is free of such episodes. This may arise

when a detected episode region is deemed favorable when considered as a single interval,

but is poor when considering the fit of all other episodes simultaneously. In its search, the

algorithm must fit an episode in this region and the optimal fit may specify a penalized

episode. To safeguard against this, a filter is imposed on the resulting PSO fit. If the

80



resulting fit contains penalized episodes, their corresponding episode regions are removed

and the data are refitted with this updated search space. This provides a mechanism of

refining the episode regions in instances where the episode region detection method resulted

in false-positives.

5.3.6 Modeling Episode Characteristics

To test for differences in episode characteristics across treatment groups over time, a linear

mixed effects model is fit to the subject level episode parameters resulting from the PSO

algorithm. This model is used to fit episode duration and amplitude data because multiple

episodes per subject occur within a single study time period, necessitating a within-subject

repeated measures framework. Data are assumed to be normally distributed conditional on

treatment assignment, study time period, and the treatment-time interaction effect. Data

within a patient are assumed to be correlated and patient effects are modeled as having a

random intercept. Data between patients are assumed to be independent. The model is

specified in matrix notation as follows:

yi = Xiβ + Zibi + εi (5.9)

The data for patient i is captured by the set of episode characteristics yi, the fixed-effect

design matrix Xi, and the random-effect design matrix Zi. The fixed-effect parameter vector,

β, consists of an intercept term, treatment effects, and treatment by time interaction effects.

The random-effect parameter bi is patient-specific and consists of an intercept term. The

primary parameter of interest is the treatment by time interaction effect which measures

differential changes associated with treatment initiation.

Episode frequency is modeled using negative binomial regression. This model is used

to model count variables exhibiting a high degree of variance. Episode frequency is modeled

as follows:

log(yi1) = log(yi0) − log(φ0) + log(φ1) + β0 + β1xi (5.10)
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In this model, yi0 and yi1 correspond to the number of episodes for patient i during the

pre-randomization and post treatment-stabilization period, respectively. Treatment group

assignment is represented by xi. The model parameters β0 and β1 correspond to the intercept

and treatment effects, respectively. When exponentiated, these parameters are interpreted

as rate ratios. The primary parameter of interest is β1 which captures the association

between treatment assignment and episode frequency changes. Because of varying follow-

up times, offsets for the pre-randomization and post treatment-stabilization periods are

included, represented by log(φ0) and log(φ1) respectively.

5.4 Results

The quality of the PSO algorithm’s fit to the data is summarized by the root mean squared

error (RMSE). RMSE is calculated for each patient and mood scale. These values are

averaged across patients by treatment group. Summary statistics of RMSE are displayed

in Table 5.1. The results suggest a fair degree of unexplained variance in the HDRS data.

The greatest discrepancies are observed in the T4 group with RMSE = 3.03. Fits for the

other treatment groups are more favorable with RMSE = 1.23 and 1.90 for the PL and T3

groups, respectively. Errors are less pronounced in the YMRS data with RMSE values of

0.82, 0.92, and 0.78 for the PL, T3, and T4 groups, respectively, and exhibit relatively less

variance. Visual inspection of the patients with higher RMSE values indicate that poor fit

may be due to undetected highly-acute episodes and an attenuated baseline severity. An

example of this is shown in Figure 5.2. This shows the possibility of over-smoothing the

episode fitness values or overly-restrictive thresholds, leading to the undetected episodes.

This suggest that the failed detection of acute severe episodes may bias both amplitude and

duration estimates. Therefore, this method requires finer tuning to detect sudden shifts in

sparse data settings.

The average episode duration is calculated for each patient by mood scale and study
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Figure 5.2: PSO Fit Example

time

H
D

R
S

10

20

30

40

0 50 100

time

ep
is

od
e 

fit
ne

ss

0.2

0.4

0.6

0.8

0 50 100

The first panel is a plot of a patient’s HDRS data versus time with the predicted fit by the PSO algorithm

in blue. The second panel reflects the results of the episode region detection method. Although there is an

elevated HDRS measure at approximately time = 80 days, an episode region is not specified for this interval.

This suggests that the detection method may be not be robust to acute episodes due to possible over-smoothing

when data are sparse.
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Table 5.1: PSO Fit by Group

HDRS YMRS

group mean SD mean SD

PL 1.23 0.88 0.82 0.38

T3 1.90 1.33 0.92 0.36

T4 3.03 1.23 0.78 0.37

The RMSE comparing the PSO fit and the observed values is calculated for each patient. Listed here are the

mean and SD across patients for each treatment group for HDRS and YMRS data.

Table 5.2: Episode Duration in Days by Group and Study Period

HDRS YMRS

pre post pre post

group mean SD mean SD mean SD mean SD

PL 38.17 19.93 42.26 20.70 31.54 14.63 27.73 11.67

T3 31.10 15.48 37.96 27.22 30.79 20.88 24.41 10.24

T4 42.60 25.89 25.31 13.13 33.40 21.87 30.69 20.36

The average episode duration in days is calculated for each patient by study period. Listed here are the mean

and standard deviation (SD) across patients for each treatment group by mood scale.

period. Summary statistics are calculated for these values across patients by treatment

group and are presented in Table 5.2. Recall that an episode’s duration is interpreted

as 4σ. In general, episodes estimated along the depression axis (HDRS) are longer than

those estimated along the mania axis (YMRS), although estimates on both scales are highly

variable. These summary statistics suggest that the T4 group may be exhibiting a decrease in

average depressive episode duration (42.6 days versus 25.3 days). Changes in average mania

episode duration are comparable across treatment groups, although the largest difference is

observed in the T3 group (30.8 versus 24.4 days).
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Table 5.3: Episode Amplitude by Group and Study Period

HDRS YMRS

pre post pre post

group mean SD mean SD mean SD mean SD

PL 15.00 6.40 14.23 4.09 5.86 2.85 4.31 2.21

T3 14.19 4.16 10.91 6.57 8.43 3.02 7.18 3.11

T4 17.59 4.20 14.32 6.12 6.91 5.75 7.02 4.58

The average episode amplitude is calculated for each patient by study period. Listed here are the mean and

standard deviation (SD) across patients for each treatment group by mood scale.

Like episode duration, the average episode amplitude is calculated for each patient

by mood scale and study period, and summary statistics are calculated across patients by

treatment group. These statistics are shown in Table 5.3. Results indicate that the typical

peak severity for depressive episodes is 10 to 20 units. For manic episodes, the typical peak

severities were estimated to be around 4 to 9 units. Within-group differences suggest that

the T3 and T4 groups may be experiencing a decrease in episode amplitude of depression

symptoms, although the observed differences are not large relative to the observed standard

deviations. The estimated mania episode amplitudes exhibit substantial variance. While the

estimated means may suggest minor changes within the PL and T3 groups, high variability

casts doubt on these effects.

Due to variable follow-up times, episode frequencies are annualized to describe the

12-month episode rate. Summary statistics of these observed rates by treatment group,

mood scale, and study period are presented in Table 5.4. Results indicate a high degree

of between-subject variability, but the average episode rates are roughly comparable across

treatment groups by study period. The estimates do suggest some possible within group

differences: decreases in the average episode rate are observed within PL group along the

HDRS (11.1 versus 7.1 per year) and within the T3 group along the YMRS (8.9 versus 3.3 per

year), but much like the other episode characteristics, high variances mean these differences
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Table 5.4: 12-Month Episode Rate by Group and Study Period

HDRS YMRS

pre post pre post

group mean SD mean SD mean SD mean SD

PL 11.09 5.33 7.06 3.89 6.89 3.33 5.61 3.79

T3 8.41 3.07 5.92 4.69 8.90 4.01 3.29 2.79

T4 6.69 3.93 5.09 4.29 5.57 3.69 6.86 5.98

The annualized episode rate is calculated for each patient by study period. Listed here are the mean and SD

across patients for each treatment group by mood scale.

are not statistically significant.

Overall, summary statistics of episode duration, amplitude, and rate reflect a high de-

gree of variability. Additionally, these statistics are based on values that have been averaged

within a patient and glosses over patient-level variability. Although the results may be sug-

gestive of some trends, large variances suggest more refined approaches to detect differences

while addressing data uncertainties, such as the models presented next.

Results of the linear mixed-effect models of episode duration are presented in Ta-

ble 5.5. For the HDRS data, the model estimates an average episode duration of 36.3 days

for the PL group for the pre-randomization period. A lower duration is estimated for the T3

group (31.1 days), and a higher duration for the T4 group (43.3 days), although these dif-

ferences are not statistically different than the pre-randomization period duration of the PL

group (p=.5610 and .4182, respectively). For the PL group, the model estimates an increase

in duration of 6.6 days, although this pre-post treatment result is not statistically significant

(p=.3500). The model estimates a smaller increase in duration for the T3 group (2.6 days),

although not statistically different from the PL group. A statistically significant difference

is observed for the T4 group with an estimated decrease in duration of 17.6 days (p=.0172).

This suggests that T4 is associated with a significant decrease in depressive episode duration
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Table 5.5: Parameter Estimates: Episode Duration Model

HDRS YMRS

effect β SE p-value β SE p-value

Intercept 36.29 6.13 <.0001 32.10 6.35 <.0001

T3 -5.15 8.62 .5610 -0.22 8.38 .9792

T4 7.00 8.42 .4182 1.70 8.63 .8448

time 6.58 7.19 .3500 -3.55 7.73 .6478

T3 × time -3.95 10.29 .6675 -1.22 10.87 .9108

T4 × time -24.15 10.08 .0172 3.22 10.23 .7540

The fixed effects parameter estimates of the episode duration linear mixed effects regression models. Separate

models are fit to the HDRS and YMRS data. Estimates and standard errors (SE) are in days.

relative to the PL group.

Results of the episode duration model for YMRS are inconclusive. The estimated

pre-randomization period episode durations for the T3 and T4 groups are 31.9 and 33.8 days,

respectively, and are not statistically different from that of the PL group (32.1 days; p=.9792

and .8448, respectively). A decrease in duration is estimated for the PL group (3.6 days),

but is not statistically significant. Decreases of 4.8 days and 0.3 days are estimated for the

T3 and T4 groups, respectively, which also are not significantly different from that of the PL

group (p=.9108 and .7540, respectively). Overall, these results suggest that adjunctive T4

treatment is associated with shorter depressive episode durations as measured by the HDRS,

while the impact of T3 or T4 on episode durations measured by the YMRS are inconclusive.

Results of the linear mixed-effect models of episode amplitude are presented in Ta-

ble 5.6. Recall that the amplitude is defined as the increase in mood scale score relative

to the estimated baseline score. For the HDRS data, the estimated amplitude for the PL

group during the pre-randomization period is 14.7 points on the HDRS scale. The estimated

amplitudes for the T3 and T4 groups are 14.1 and 16.9 points, respectively, and did not signif-

icantly differ from the PL group (p=.8122 and .3910, respectively). A decrease of 1.1 points
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Table 5.6: Parameter Estimates: Episode Amplitude Model

HDRS YMRS

effect β SE p-value β SE p-value

Intercept 14.73 1.64 <.0001 6.05 1.36 <.0001

T3 -0.61 2.30 .8122 2.30 1.79 .2093

T4 2.18 2.24 .3910 0.90 1.85 .6298

time -1.10 1.92 .4566 -1.44 1.70 .4002

T3 × time -1.43 2.76 .6879 0.99 2.39 .6788

T4 × time -1.55 2.66 .6065 1.41 2.25 .5314

The fixed effects parameter estimates of the episode amplitude linear mixed effects regression models. Separate

models are fit to the HDRS and YMRS data. Estimates and standard errors (SE) are in units of the respective

mood scales.

is estimated for the PL group, although this result is not statistically significant. Although

greater decreases are estimated for the T3 and T4 groups (2.5 and 2.7 points, respectively),

these effects are also not large enough to claim superiority over the PL group (p=.6879 and

.6065, respectively).

Results of the episode amplitude model for YMRS are also inconclusive. The esti-

mated pre-randomization period episode amplitudes for the T3 and T4 groups are 8.4 and

7.0 points on the YMRS scale, respectively, and do not differ from the amplitude estimate

of 6.1 points for the PL group (p=.2093 and .6298, respectively). The estimated change in

amplitude is greatest for the PL group (-1.4 points) followed by the T3 (.5 points) and T4

(.01 points) groups, not close to statistically significant effects. Overall, these results suggest

that are no treatment effects in peak severities in mania episodes.

Results of the negative binomial regression model for episode rate are presented in

Table 5.7. Episode frequencies are mathematically modeled as the logarithm of the episode

rate and the effects of the covariates are described as the logarithm of the rate ratio. To

facilitate interpretation, the exponentiated parameter estimates are also given in Table 5.7.
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Table 5.7: Parameter Estimates: Episode Rate Model

HDRS YMRS

effect β SE eβ p-value β SE eβ p-value

Intercept -.412 .182 — .0232 -.366 .193 — .0580

T3 .029 .257 1.030 .9090 -.021 .279 .979 .9390

T4 -.178 .250 .837 .4772 -.414 .260 .661 .1120

The parameter estimates of the episode rate negative binomial regression models. Separate models are fit to

the HDRS and YMRS data. The parameter estimate β is exponentiated to reflect the estimated rate ratio

comparing the thyroid treatment arms with the placebo arm.

For the HDRS data, the model does not detect any significant post-treatment rate differences

in the T3 or T4 groups relative to the PL group. The model estimates an episode rate for the

T3 group that is only 3.0% greater than the PL group and is not statistically significant. A

larger effect is estimated for the T4 group with an episode rate that is 16.3% lower than the

PL group, but this difference does not achieve statistical significance. For the YMRS data,

results suggest a possible effect in the T4 group. While the model estimates a 2% decrease in

episode rate for the T3 group relative to the PL group (p=.9390), the estimated decrease for

the T4 group is 33.9% (p=.1120). Though this effect does not achieve statistical significance,

it is suggestive of a possible effect that may be detected in a larger sample setting.

5.5 Conclusions

The results described above indicate a high degree of variability present in the three-arm

randomized trial data. This may be a consequence of the small sample size and data spar-

sity. Although many estimates are in the expected direction, the large variances preclude

statistical significance. Modeling episode characteristics in a repeated measures framework

addresses some of this variance and reveals some group differences in the three-arm random-
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ized trial data. The episode duration model of the HDRS data suggests that T4 is associated

with shorter episode durations relative to PL (21.4 less days; p=.0188). Furthermore, the

episode rate model of the YMRS data point toward a possible association between T4 and

a decreased episode rate relative to PL (33.9% decrease; p=.1120). However, these findings

are contingent upon the appropriateness of the episode region detection and PSO algorithm

elements. Visual inspection of the PSO fit suggests that highly acute episodes and fluctua-

tions in baseline severity may lead to undetected episodes and bias the subsequent results.

This may be problematic in certain research settings and must be fully addressed by tuning

the components of the episode detection method and the PSO algorithm accordingly.

This approach presents a novel method of estimating the mood scale score trajectories

of bipolar disorder patients. It incorporates a flexible function to describe longitudinal mood

dynamics that is characterized by episode features. Through the grid-based episode detection

approach, data can be explored in ways that address study-specific challenges such as sparsity

and key regions of clinical interest can be identified. By using the PSO algorithm, data

described by a complex function can be fit in an efficient manner and parameter estimates

can be obtained. These extracted parameters can then be used as inputs to a variety of

models. Because of the generality of the approach described here, components can be tailored

according to specific study settings. However, the performance of this approach is driven by

the decisions of the investigator. This includes the functional form of the mood function,

objective function formulation, and the models used to process the estimates selected by the

PSO algorithm. The appropriateness of this approach hinge on whether the assumptions

truly represent the underlying data processes. In the next chapter, I evaluate the strengths

and weaknesses of this and the Markov Chain with Bootstrap approach through simulation

studies.
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CHAPTER 6

Simulation Studies and Application Recommendations

While the approaches presented here have addressed some of the analytical problems that

arise when working with bipolar disorder data, the statistical performance properties of

these methods are unknown. In this chapter, I evaluate the strengths and weaknesses of

these approaches through simulation studies to identify the settings in which they should

most appropriately be used. I first present the results of the Markov chain with bootstrap

approach, testing scenarios with varying data sampling frequencies, noise, sample size, and

chain time units. Performance is evaluated based on the method’s ability to correctly classify

states and properly detect within- and between-group differences. A similar evaluation is

done for the particle swarm optimization approach, looking at the overall fit to the data,

correct episode detection, parameter estimate precision, and the proper detection of treat-

ment differences. In both simulation studies, pre-treatment and post-treatment data are

generated for a placebo (PL) and a treatment (TX) group. The agreement between the

two methods is analyzed through two sets of cross-method simulation studies. In the first

set, data are generated using a Markov chain mechanism and are analyzed using the particle

swarm optimization approach. In the second set, data are generated based on a function of

episode parameters and are analyzed using the Markov chain with bootstrap approach. This

chapter concludes with recommendations for the application of these two methods.
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6.1 Markov Chain with Bootstrap

The Markov chain with bootstrap approach requires specific parameters be set before its

application to bipolar disorder data: (1) the threshold values (or method) for determining the

mood states, (2) the data interpolation or imputation method, (3) the number of bootstrap

replicates for inference, and (4) the chain time unit for analysis. Choices of these parameters

for the simulation study are outlined below. I tested the method’s sensitivity in settings

with different data sampling frequencies, noise levels, and sample sizes. Described next are

details of the data simulation process, followed by measures for evaluating performance, and

finally the results.

6.1.1 Simulation Process

6.1.1.1 Data Generating Specifications

In the Markov chain framework, data are generated according to a transition matrix. The

transition matrices used in the simulation study are listed in Table 6.1. The structure of these

matrices restricts mood transitions between non-euthymic states. This results in episodes

that are distinctively flanked by euthymic periods. Additionally, the transition probabilities

of all non-euthymic mood states are equal and therefore exhibit identical behavior. While

these structural restrictions may not reflect the real world patterns,especially for rapid cy-

clers, they create regularity in the data that is useful in testing performance properties which

might otherwise be confounded with complexities of the disease process.

Pre- and post-treatment data for the PL group were generated by Matrix 1 (see

Table 6.1), corresponding to no pre-post changes. For scenarios involving treatment effects

for the TX group, pre-treatment data were generated by Matrix 1 (representing no baseline

differences between TX and PL), while post-treatment data were generated by Matrix 2.
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Table 6.1: Markov Chain with Bootstrap: Simulation Transition Matrices

Matrix 1 Matrix 2

Eut Dep Man Mix Eut Dep Man Mix

Eut 41.7 33.3 8.3 16.7 83.3 8.3 4.2 4.2

Dep 25.0 75.0 0 0 25.0 75.0 0 0

Man 25.0 0 75.0 0 25.0 0 75.0 0

Mix 25.0 0 0 75.0 25.0 0 0 75.0

stationary distribution 30.0 40.0 10.0 20.0 60.0 20.0 10.0 10.0

These values represent the probability of transitioning from the state indicated by the row to the state indicated

by the column. Values are presented as percentages.

In scenarios testing the null case, both the pre-treatment and post-treatment data of the

PL and TX groups were generated by Matrix 1. The stationary distributions of Matrix

1 and 2 result in a within-TX difference of +30, -20, 0, and -10 percentage-points for the

euthymic, depressed, manic, and mixed states, respectively. These values also correspond

to the expected between-group differences. These values were chosen for simulation because

they incorporate a variety of effect sizes that reflect a favorable treatment outcome. In all

scenarios, both the pre- and post-treatment follow-up times were set to 24 weeks each.

Mood scale scores were generated to match the simulated mood sequences using

the function described in Equation (5.5). For HDRS data, the baseline severity was set

to b = 6 and the amplitudes during a depressive or mixed episode were set to αk = 15.

This corresponds to a baseline severity that is within a normal range (HDRS=6) and an

episode peak severity that is within the severely depressed range (HDRS=6+15=21). For

YMRS data, the baseline severity was set to b = 6 and the amplitudes were set to αk = 7

during a manic or mixed episode, corresponding to a baseline severity within a normal range

(YMRS=6) and a peak severity that is within a mildly manic range (YMRS=6+7=13).

Episode durations were automatically determined by generated mood sequence. The episode
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duration parameter σ was specified by the convention from Chapter 5 (see Section 5.3.1) that

episode duration is equivalent to 4σ. For example, if the mood sequence indicated that an

episode lasted for 28 days, then the matching σk was set to 7. These specifications were

applied to both patient groups for the two study periods.

In these simulations, fixed thresholds were used to categorize subjects’ mood states.

For HDRS data, the threshold for being in a depressed state was 8 and was based on the

cut-off commonly used in the literature54 to describe a severity level corresponding to minor

depression. A threshold of 7 was used for YMRS data corresponding to hypomania; this

was also the cut-off value proposed in the three-arm randomized trial. Fixed thresholds

were chosen to maintain a similar structure across all scenarios. However, the approach can

accommodate other thresholding methods and this is an important area of future study.

6.1.1.2 Simulation Scenario Specifications

Simulation scenarios varied according to data sampling frequency, chain time unit, and noise.

Data sampling rates were either weekly or once every two weeks. These were chosen based

on the intended sampling frequency of the three-arm randomized trial (one week) and its

observed frequency (approximately every two weeks). For similar reasons, chain time units

of (a) seven days and (b) fourteen days were tested. Linear interpolation was used to impute

data for scenarios with a seven-day chain time unit and a bi-weekly sampling rate.

To evaluate the effects of noise, five different levels were investigated. All noise

introduced were normally distributed with mean zero, but varied according to standard

deviation: 0, 0.25, 0.5, 1, and 2. For a given simulation scenario, the same degree of noise

was added to both the HDRS and YMRS data. The choice of these noise levels was based

on the differences between the baseline severities of the scales and the thresholds used, with

higher noise levels expected to cause mood state misclassification.
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Two sample sizes were selected for simulation study: n = 10 and n = 50. These

reflect the sample sizes for each group. In all scenarios, the sample sizes of the PL and TX

groups were equal. The smaller sample size choice was based on the number of patients in

the three-arm randomized trial.

For each simulation scenario, 200 replicates were created. Inference for each replicate

was based on 400 bootstrap samples. These values were selected based on computation time

and limitations. Further in-depth study may require more replicates.

6.1.2 Measures

Three measures are used to evaluate performance: (1) correct state classification, (2) sta-

tistical power, and (3) Type I error. Correct state classification compares the generated

mood state sequence to the one inferred by the Markov chain with bootstrap approach. The

denominator for this measure is based on the generated sequence and the numerator is the

number of matches found by the inferred sequence. For example, if the generated sequence

contains 20 euthymic mood states and the inferred sequence matches 15 of them, then the

calculated value is 75% for the euthymic state. Correct state classification is calculated

by treatment group, study period, and mood state. Reported values are averaged across

replicates.

Statistical power and Type I error calculations are based on the within- and between-

group test results for the Markov chain with bootstrap approach applied to the replicate

simulation data sets. Statistical significance is based on a p-value of p < .05. For each

simulation scenario, the proportion of replicates resulting in statistical significance is cal-

culated. For comparisons where a difference is expected, the proportion corresponds to

statistical power. These comparisons are the within-group differences in the TX group and

the between-group differences (excluding manic state comparisons). For comparisons where

no difference is expected, the proportion corresponds to Type I error. These include the
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within-group differences in the PL group, the within-group difference of the manic state in

the TX group, the between-group difference of the manic state, and all comparisons of the

null case scenarios.

6.1.3 Results

6.1.3.1 Correct State Classification

The correct state classification results are summarized in Table 6.2. Only the results of the

TX group are shown because that is the only group for which the pre- and post-treatment

mood-shifting dynamics differed by study period and thus provides a better summary of

the effects of sampling frequency, chain time unit, and noise under varying data generating

mechanisms. Moreover, because classification is done at the level of the individual, it is

not dependent on sample size. Therefore, only the simulation scenarios with n = 50 per

group are displayed. Results indicate sensitivity to noise. Across all states, classification

performance decreases as noise increases. Overall, the euthymic state exhibits the greatest

sensitivity to noise. Closer inspection reveals that this pattern is a result of multiple factors.

One factor influencing euthymic state misclassification is threshold selection. For

these simulated data, the selected HDRS and YMRS thresholds (8 and 7, respectively)

are closer to the baseline severity value of 6 than the episode peak values (21 and 13,

respectively). With thresholds closer to baseline severity values, the introduced noise is more

likely to cause euthymic HDRS and YMRS data points to cross threshold values compared

to non-euthymic data points, resulting in higher misclassification for the euthymic state.

Another factor driving euthymic state misclassification is data interpolation. In these

scenarios, data are linearly interpolated. For a missing data point that lies in between a

euthymic and non-euthymic point, the interpolated value will be the mean of these two

values. However, because the threshold is closer to baseline severity value, the interpolated
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value is more likely to be classified as a non-euthymic data point. This classification bias

leads to greater misclassification rates for euthymic data points. This is demonstrated by

poorer euthymic state classification for scenarios involving interpolation relative to non-

interpolation scenarios. Furthermore, because shifting out of the euthymic state is more

probable, more episodes (and consequently more misclassification due to interpolation bias)

are expected during the pre-treatment period relative to the post-treatment period. This

pattern is observed in Table 6.2 and demonstrates an effect of episode frequency.

6.1.3.2 Power

The statistical power results for scenarios with a sample size of n = 50 per group are sum-

marized in Table 6.3. Shown in the table are the TX within-group comparisons and the

between-group comparisons. The underlying differences are +30, -20, 0, and -10 percentage-

points for euthymic, depressed, manic, and mixed states, respectively, for both within- and

between-group comparisons. Results indicate that, for a fixed noise level, a bi-weekly sam-

pling rate with a 14-day chain time unit results in the lowest power. This suggests that the

statistical power of this approach is impaired by low data volume and poor data granularity.

Scenarios with a bi-weekly sampling rate and a 7-day chain time unit have a comparatively

higher power, suggesting that interpolating points may be an effective method of recoup-

ing statistical power. Mood state comparisons indicate that euthymic state differences are

well detected for both within- and between-group comparisons, although this result is ex-

pected because of the large underlying difference. Depressed state differences are also well

detected, but performance suffers at high noise levels. This suggests that noise may be a

factor in detecting moderate differences. For the mixed state, performance is reasonable for

the within-group comparison, but not detectable for the between-group comparison. This

suggests that smaller between-group differences may be difficult to detect.

The statistical power results for scenarios with a sample size of n = 10 per group

are displayed in Table 6.4. The overall pattern is the same as with the larger sample size
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Table 6.2: Markov Chain with Bootstrap: Correct State Classification

pre-treatment post-treatment

sampling freq chain time noise Eut Dep Man Mix Eut Dep Man Mix

weekly 7 days 0 92.9 100 98.9 98.9 99.4 100 99.2 99.2

bi-weekly 14 days 0 91.3 100 94.0 94.0 99.1 100 96.3 96.5

bi-weekly 7 days 0 68.1 96.4 93.1 93.1 91.6 97.2 94.4 94.7

weekly 7 days .25 85.6 98.0 93.4 92.2 95.7 98.1 93.7 93.2

bi-weekly 14 days .25 80.6 95.4 89.0 86.3 92.2 96.0 89.8 89.3

bi-weekly 7 days .25 63.3 94.7 91.3 90.0 89.2 95.4 91.5 91.4

weekly 7 days .5 77.5 93.3 90.7 88.2 91.0 93.5 90.6 89.9

bi-weekly 14 days .5 73.0 89.4 87.0 82.5 87.5 90.7 87.3 86.4

bi-weekly 7 days .5 58.4 91.4 89.0 87.1 85.8 92.6 89.6 89.0

weekly 7 days 1 61.7 77.5 85.4 82.9 75.2 77.9 84.6 84.9

bi-weekly 14 days 1 60.2 73.9 83.4 78.5 72.4 75.9 81.7 82.4

bi-weekly 7 days 1 48.0 79.8 85.5 83.5 73.4 80.6 86.1 85.5

weekly 7 days 2 45.4 61.2 69.2 76.4 53.3 61.6 69.1 78.3

bi-weekly 14 days 2 45.2 58.8 67.9 73.4 52.6 60.8 67.7 76.8

bi-weekly 7 days 2 36.4 63.9 71.7 78.0 54.2 64.8 72.7 80.0

These values represent the correct state classification results of the TX group with n = 50 averaged across

simulation replicates. Noise values correspond to the standard deviation of the normally distributed noise

introduced. Values represent the proportion of correct classifications where the denominator value is based

on the generated sequence. Values reported are given as percentages.
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simulations, but there is a marked decrease in statistical power. Only comparisons in the

euthymic state have acceptable levels of power, suggesting that only larger differences are

adequately detectable in smaller sample size studies. Additionally, the lower data volume

of scenarios with a bi-weekly sampling rate and a 14-day chain time unit results in poor

statistical power. This suggests that this method may be inappropriate in small sample

studies with infrequent sampling rates.

6.1.3.3 Type I Error

Type I error was assessed by testing null case scenarios in which Matrix 1 in Table 6.1 was

used to generate pre- and post-treatment data for both the PL and TX group. Results

are displayed in Table 6.5. Noise was not introduced in the null case scenarios to distill

Type I error properties from the effects of noise, therefore representing a best case situation.

Additionally, because the PL and TX data are generated by identical mechanisms, within-

group comparisons of the two groups are comparable. Therefore, only the within-treatment

comparisons for the PL group are presented. Results reflect a large degree of Type I error

across all scenarios with the greatest sensitivity to small sample size. There do not appear to

be clear patterns in Type I error as a function of sampling frequency, chain time, comparison

type (within or between), or interpolation. Overall, these results indicate that statistical

significance is being overstated and is particularly problematic in small sample size settings.

One potential source of inflated Type I errors is the lack of independence among the

mood states. The Markov chain with bootstrap approach tests each mood state individually.

However, the stationary distribution has an inherently dependent structure: increases in

one mood state must equate to decreases in other states. Investigations indicate that a

Bonferroni correction is sufficient to mitigate this inflation in most cases. The Markov chain

with bootstrap approach involves four mood state comparisons, although the stationary

distribution is a function of three independent components. Therefore, a correction factor

of 3 is applied, resulting in a corrected significance level threshold of p < .05
3

. Results with
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Table 6.3: Markov Chain with Bootstrap: Power Analysis (n=50 per group)

within-group between-group

sampling freq chain time noise Eut Dep Mix Eut Dep Mix

weekly 7 days 0 100 100 75.5 100 89.5 41.0

bi-weekly 14 days 0 100 87.0 45.0 99.5 54.5 24.0

bi-weekly 7 days 0 100 99.5 75.5 100 88.5 47.0

weekly 7 days .25 100 99.5 80.0 100 88.0 47.5

bi-weekly 14 days .25 100 86.5 58.0 100 60.5 22.0

bi-weekly 7 days .25 100 100 82.5 100 86.5 44.0

weekly 7 days .5 100 99.5 84.5 100 88.5 43.5

bi-weekly 14 days .5 100 86.0 66.5 99.5 61.5 27.0

bi-weekly 7 days .5 100 100 87.0 100 88.0 42.5

weekly 7 days 1 100 100 96.0 100 89.5 67.5

bi-weekly 14 days 1 100 90.5 79.0 100 60.0 42.0

bi-weekly 7 days 1 100 99.5 97.0 100 87.0 61.0

weekly 7 days 2 100 97.5 99.0 100 67.5 85.0

bi-weekly 14 days 2 100 70.0 82.5 95.5 40.5 47.0

bi-weekly 7 days 2 100 95.0 97.5 100 71.0 80.0

These values represent the percentage of replicates that result in statistical significance for the within-group

comparisons of the TX group and the between-group comparisons. Statistical significance is defined by p <

.05. These percentages correspond to statistical power for the euthymic, depressed, and mixed comparisons

with effect sizes of +30, -20, and -10 percentage-points, respectively, for both within- and between-group

comparisons. Differences in the manic state are not expected and are not shown.
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Table 6.4: Markov Chain with Bootstrap: Power Analysis (n=10)

within-group between-group

sampling freq chain time noise Eut Dep Mix Eut Dep Mix

weekly 7 days 0 89.5 58.0 30.0 79.5 29.0 16.0

bi-weekly 14 days 0 45.0 26.0 13.5 34.5 11.5 10.5

bi-weekly 7 days 0 83.5 64.0 27.5 75.0 32.0 16.5

weekly 7 days .25 92.5 56.5 30.5 82.5 33.5 18.5

bi-weekly 14 days .25 61.0 23.5 28.5 41.0 13.0 13.5

bi-weekly 7 days .25 87.0 58.5 34.5 79.0 32.5 16.0

weekly 7 days .5 98.0 60.0 35.5 90.5 41.0 19.0

bi-weekly 14 days .5 61.5 31.5 21.5 49.0 15.5 12.5

bi-weekly 7 days .5 92.5 57.5 31.5 85.5 34.5 17.0

weekly 7 days 1 97.5 63.5 52.5 85.0 35.0 29.5

bi-weekly 14 days 1 71.5 40.5 31.5 51.5 17.5 15.0

bi-weekly 7 days 1 95.0 57.5 46.5 84.0 30.5 20.0

weekly 7 days 2 88.5 40.5 61.0 71.5 21.5 39.5

bi-weekly 14 days 2 55.5 26.5 33.0 43.0 10.0 18.0

bi-weekly 7 days 2 86.5 45.5 57.0 69.5 21.0 29.0

These values represent the percentage of replicates that result in statistical significance for the within-group

comparisons of the TX group and the between-group comparisons. Statistical significance is defined by p <

.05. These percentages correspond to statistical power for the euthymic, depressed, and mixed comparisons

with effect sizes of +30, -20, and -10 percentage-points, respectively, for both within- and between-group

comparisons. Differences in the manic state are not expected and are not shown.
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Table 6.5: Markov Chain with Bootstrap: Type I Error: Null Case

within-group between-group

sampling freq chain time n Eut Dep Man Mix Eut Dep Man Mix

weekly 7 days 50 9.5 5.0 6.0 3.5 5.5 7.5 5.0 5.0

bi-weekly 14 days 50 8.0 7.5 5.5 7.0 5.0 7.0 6.5 4.5

bi-weekly 7 days 50 8.0 6.0 5.0 6.0 5.0 6.0 6.0 5.0

weekly 7 days 10 5.0 9.5 15.0 8.0 6.5 9.0 12.0 9.0

bi-weekly 14 days 10 9.5 10.0 12.5 13.0 6.5 7.5 9.5 8.5

bi-weekly 7 days 10 9.5 7.5 9.0 12.0 8.0 9.5 5.5 12.5

These values represent the percentage of replicates that result in statistical significance in the null case (i.e.,

within- and between-group differences of zero). Signifiance is defined by p < .05. For the within-group

comparisons, only the PL group is shown. Noise was not introduced in any of the scenarios.

the correction are displayed in Table 6.6. With the Bonferroni correction, Type I errors

for all comparisons in the larger sample setting are less than 5%. Errors in the smaller

sample setting are approximately 5%, with larger errors remaining for some within-group

comparisons.

6.1.4 Conclusions

Simulation results suggest that correct mood state classification is contingent upon noise

levels and threshold selection. If the euthymic state exhibits values that are closer to the

threshold compared to non-euthymic states (or vice versa), then misclassification bias may

be introduced. Related to this issue is the misclassification of interpolated data points. De-

pending on the interpolation method and the selected threshold, values imputed in between

euthymic and non-euthymic data points may favor one state over another. Therefore, in

addition to noise levels and threshold selection, the underlying episode frequency must be

considered.
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Table 6.6: Markov Chain with Bootstrap: Type I Error: Null Case (corrected)

within-group between-group

sampling freq chain time n Eut Dep Man Mix Eut Dep Man Mix

weekly 7 days 50 4.0 1.5 2.5 1.5 1.5 2.0 4.0 2.5

bi-weekly 14 days 50 4.0 3.5 2.5 4.5 2.5 4.0 3.0 2.0

bi-weekly 7 days 50 3.0 3.0 2.5 3.0 3.0 3.0 3.5 2.5

weekly 7 days 10 1.0 6.5 10.0 4.5 4.0 4.5 6.0 3.5

bi-weekly 14 days 10 5.0 6.5 8.5 8.0 2.0 3.0 4.5 5.0

bi-weekly 7 days 10 5.0 4.5 5.5 7.0 2.5 5.5 2.0 5.0

These values represent the percentage of replicates that result in statistical significance in the null case (i.e.,

within- and between-group differences of zero). Signifiance is Bonferroni corrected and is defined by p < .05
3 .

For the within-group comparisons, only the PL group is shown. Noise was not introduced in any of the

scenarios.

As expected, statistical power is related to sample size, data volume, and effect size.

Analyses suggest that the method performs well in larger sample settings with frequently

sampled measures. In cases where data are infrequently sampled, values may be imputed to

recoup some power, although potential misclassification bias resulting from imputation and

noise must be considered to ensure proper analysis. In small sample settings, the method

performs well in detecting large differences, although statistical power is limited when data

are infrequently sampled and values are not imputed.

Type I error analysis yields values higher than 5%, with substantially greater errors

in the smaller sample size setting. These results indicate that adjustments are necessary

to obtain nominal acceptance levels. The higher Type I error rates may be driven by the

dependent structure of the stationary distribution. Applying Bonferroni corrections yields

acceptable Type I errors for most comparisons, although further corrections may be necessary

for some cases in a smaller sample size setting.
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6.2 Particle Swarm Optimization

The particle swarm optimization approach can be summarized by four steps: (1) mood

function formulation, (2) episode region detection, (3) particle swarm optimization, and (4)

modeling to detect group differences. Each of these steps requires specifications that must

consider data characteristics such as sample size, data sparsity, and noise. In the simulation

studies presented here, I focus on a small sample setting and investigate the effects of data

sparsity and noise. Because episode region detection is a critical aspect to this approach,

I also investigate the impact of episode location and the impact of overlapping episodes.

Details of the data simulation process and performance metrics used are described next,

followed by simulation testing results.

6.2.1 Simulation Process

6.2.1.1 Mood Function Parameters

For the purpose of simulation study, attention is focused on the HDRS. Data for PL and

TX patients are generated according to the mood function described by Equation (5.5).

Data for n = 10 patients per group are simulated and a total of 200 replicates are used for

each simulation scenario. Follow-up times are set to 24 weeks for each of the study periods.

Within each patient, all simulated episode durations and amplitudes are identical by study

period. Mood function parameters are specified for each patient as follows. For both the PL

and TX groups, baseline severity is set to b = 6, corresponding to an HDRS score within

the normal range. For the PL group, episode amplitudes (αk) are drawn from a truncated

normal distribution with a mean of 15, standard deviation of 2, and truncation at 4 and

26. A truncated distribution is used to prevent the simulation of nonsensical values and to

ensure proposed values are within the particle swarm search space. The mean amplitude

value of 15 corresponds to an HDRS score of 21 at episode peak, which falls within the
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severely depressed range. Episode durations (4σk) are also drawn from a truncated normal

distribution with a mean of 28, standard deviation of 3.5, and truncation at 7 and 49. This

corresponds to a mean duration of 4 weeks and ranges from 1 to 7 weeks. For the TX group,

the same distributions as the PL group are used for episodes during the pre-treatment period,

while the post-treatment period distributions differ only in the means. Specifically for the

TX group, the mean post-treatment episode amplitude is 7 (corresponding to a mean peak

HDRS score of 13) and the mean episode duration is 21 days.

Two different episode location (µk) settings are studied. The first scenario – referred

to here as the fixed-episode setting – forced the episode locations for all patients to occur at

-126, -84, -42, 42, 84, and 126 days, where negative days correspond to the pre-treatment

period. In the second setting – the overlap-episode setting – the number of episodes and

their locations are allowed to vary. The number of episodes is determined by a truncated

Poisson distribution with a rate parameter of 8 episodes per year and truncation at 0 and

10. A truncated distribution is used to ensure that the number of episodes simulated are

within reason and can be identified for the time horizon and granularity of the data. For

the post-treatment period of the TX group, a rate parameter of 4 episodes per year is used.

Locations are determined by a Dirichlet process to allow variation in placement of individual

episodes (often resulting in episode overlap), even though on average they are equally spaced.

To assess Type I error, null case scenarios are studied. In these scenarios, mood

function parameters in the TX group are identical to those of the PL group.

6.2.1.2 Episode Region Detection Parameters

The collection of episodes used in the episode region detection process is specified as follows.

For episode amplitude, the specified range has a minimum of 4 and a maximum equivalent

to the patient’s largest HDRS score. Ten equally-spaced amplitudes spanning this range are

selected. For episode duration, the range is specified with a minimum equivalent to twice the
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sampling frequency and a maximum of 49 days. Ten equally-spaced durations spanning this

range are selected. This yields a total of 100 different episodes in the episode set. Episode

fitness values for this set is calculated at a weekly interval from -168 days (i.e., 168 days

before treatment randomization) to 168 days. Episode fitness is calculated using the formula

described by equation 5.8.

6.2.1.3 PSO Parameters, Sampling Rate, and Noise

The velocity updating parameters are identical to those specified by SPSO-2011 (see Section

5.3.4). Boundaries for episode amplitude and duration are identical to the ranges used in

the episode region detection process. To reduce computation run time, some simplifications

are made. First, the stopping criteria are reduced to a maximum of 100 total iterations and

25 stagnate iterations. Second, no penalties are incorporated into the objective function.

Three different sampling rates are studied: daily, weekly, and bi-weekly (i.e., every 2 weeks).

Noise levels are normally distributed with mean zero and vary in standard deviation values:

0, 1, and 2. Noise is not introduced in null case scenarios.

6.2.2 Measures

To assess overall fit, the root mean squared error (RMSE) is used. This is calculated by

comparing the true underlying HDRS scores with those predicted by the PSO fit. The

RMSE is calculated for each patient and is averaged across patients by treatment group for

each replicate. Descriptive statistics are used to summarize the overall fit across replicates.

To assess the accuracy of the episode region detection method, three rates are used:

(1) true positive detection, (2) false positive detection, and (3) false negative detection. True

positive detection counts the number of true episodes and calculates the proportion of these

episodes that are uniquely identified by an episode region. For an episode to be considered
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as uniquely identified, it must be the only episode in the specified region. False positive

detection counts the number of episode regions and calculates the proportion of regions that

do not encompass a true episode. This describes instances where the detection method

incorrectly suspects there to be an episode. False negative detection considers the set of

true episodes and calculates the proportion of true episodes that are not uniquely identified

by a detected episode region. This describes instances where the method fails to identify

an episode or specifies a single region that contains more than one episode. In cases where

multiple episodes are encompassed by a region, all but one of those episodes are counted

toward the false negative rate.

To evaluate the fit of episode durations and amplitudes, the RMSEs comparing the

predicted parameter estimates to the true parameters is calculated. These values are calcu-

lated for each patient and are averaged across patients by treatment group and study period

for each replicate. Descriptive statistics are used to summarize the fit across replicates.

To assess statistical power and Type I error, the same linear mixed-effect models

employed in the three-arm randomized trial are used. Both episode duration and amplitude

are modeled. Attention is focused on the treatment by time interaction. Using p < .05 as the

significance threshold, parameter estimates are examined and statistical power is calculated

as the proportion of replicates resulting in significance. This process is also applied to null

case scenarios and the calculated value is interpreted as Type I error.

6.2.3 Results

6.2.3.1 Overall Fit

Overall fit results are presented in Table 6.7. In general, the overall fit does not exhibit gross

errors. In the fixed-episode setting, the discrepancy between the true and predicted HDRS

scores is less than 1 point on average and is robust to noise. In the overlap-episode setting,
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Table 6.7: PSO: Overall Fit

fixed-episode overlap-episode

PL TX PL TX

sampling freq noise mean SD mean SD mean SD mean SD

daily 0 0.00 0.00 0.01 0.03 1.17 1.35 0.95 1.27

weekly 0 0.00 0.00 0.01 0.02 0.84 1.04 0.60 0.87

bi-weekly 0 0.24 0.21 0.31 0.13 0.74 0.96 0.62 0.75

daily 1 0.24 0.04 0.26 0.10 1.26 1.32 1.13 1.34

weekly 1 0.63 0.11 0.66 0.13 1.23 0.94 1.13 0.87

bi-weekly 1 0.23 0.21 0.31 0.13 0.75 0.96 0.63 0.76

daily 2 0.47 0.08 0.60 0.30 1.45 1.37 1.48 1.55

weekly 2 1.32 0.21 1.37 0.26 1.75 0.89 1.75 0.92

bi-weekly 2 0.23 0.20 0.32 0.13 0.73 0.96 0.63 0.77

These values represent the root mean squared error differences between the true underlying HDRS scores and

those predicted by the PSO fit averaged across patients by treatment group. Noise values correspond to the

standard deviation of the normally distributed noise introduced. These values are interpreted as the average

error of the fit.

the discrepancies are slightly higher, reaching values between 1 and 1.5. Moreover, standard

deviations are greater relative to their fixed-episode counterparts in scenarios with a higher

sampling rate. This suggests that, despite greater data granularity, the method is limited

in capturing the underlying mood curve in the overlap-episode setting. Instead of informing

the fit with greater data volume, the frequent sampling rate results in more data points that

are poorly captured by the fitted curve, equating to higher RMSE and standard deviation

values. These results suggest that the method overall is able to detect the underlying mood

function with a fair amount of precision, but performance suffers when episodes overlap. The

only anomaly in these findings is the scenario with a weekly sampling frequency and a noise

level of 2. This scenario represents a unique case and its performance is examined in further

detail later.
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6.2.3.2 Episode Region Detection

Episode region detection results are presented in Table 6.8. In the fixed-episode setting,

detection is near perfect. True positive detection rates are nearly 100%, while false positive

and false negative detection rates are less than 1%. The overlap-episode setting reflects poor

episode detection. Approximately 50% to 60% of the true episodes are uniquely identified

by the specified episode regions across all scenarios. In comparison, false positive detection

rates are lower, ranging from 2.9% to 9.6%, indicating that the method is conservative in

episode specification. However, the false negative rate is high, indicating that some episodes

are not being detected or regions are encompassing more than one true episode. Overall,

these findings indicate that distinct episodes across time is an important feature for proper

episode range detection. In cases where episodes are less distinct, the method is conservative

and specifies fewer episodes. While these episodes overlap according to their mathematical

specification by the mood function, it is unclear whether these overlapping episodes clinically

represent multiple periods of elevated mood. These episodes may collectively represent a

single episodic period and its characterization as a single episode may be a fair reflection of

the clinical trajectory of the patient. Once again, the only exception to these results is the

scenario with a weekly sampling frequency and a noise level of 2.

6.2.3.3 Episode Duration Estimation

Discrepancies in episode duration estimation are presented in Table 6.9. In general, episode

duration estimates are affected by both noise and sampling frequency, with the latter having

a much stronger effect. This is expected as data sparsity makes it difficult to pinpoint episode

onset and resolution. In the fixed-episode setting, RMSE values roughly range from 0 to 10

days with noticeably higher values for bi-weekly sampling rate scenarios. Post-treatment

estimates for the TX group indicate greater errors. Because the episode durations of the

TX group during this period are shorter, these larger RMSE values suggest that there may
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Table 6.8: PSO: Episode Range Detection

fixed-episode overlap-episode

sampling freq noise TP FP FN TP FP FN

daily 0 100 0.0 0.0 53.6 2.9 49.9

weekly 0 100 0.0 0.0 57.6 2.8 41.5

bi-weekly 0 100 0.0 0.0 57.9 7.4 43.5

daily 1 99.6 0.0 0.4 52.8 4.6 51.1

weekly 1 99.5 1.4 0.5 57.4 9.6 40.2

bi-weekly 1 100 0.0 0.0 56.7 7.5 44.8

daily 2 98.1 0.6 2.0 52.0 7.3 53.1

weekly 2 97.5 8.0 2.4 55.4 22.3 38.9

bi-weekly 2 100 0.0 0.0 56.6 7.9 44.9

These values represent the true positive (TP), false positive (FP), and false negative (FN) detection rates

averaged across simulation replicates. Noise values correspond to the standard deviation of the normally

distributed noise introduced. Values listed are in percentages.
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Table 6.9: PSO: Episode Duration Error

fixed-episode overlap-episode

PL TX PL TX

sampling freq noise pre post pre post pre post pre post

daily 0 0.00 0.00 0.04 0.41 7.87 8.17 8.01 6.41

weekly 0 0.00 0.00 0.02 0.13 7.79 7.62 7.31 5.71

bi-weekly 0 3.03 3.02 2.87 9.71 7.74 7.35 7.83 7.81

daily 1 0.99 0.99 0.99 2.15 8.05 7.97 7.94 6.59

weekly 1 3.03 3.27 2.89 4.97 8.33 8.57 8.33 7.11

bi-weekly 1 3.00 2.89 2.84 9.56 7.71 7.61 7.92 8.01

daily 2 2.36 2.40 2.05 4.78 8.54 8.45 8.48 8.22

weekly 2 7.30 7.79 6.71 10.11 10.11 10.53 10.41 9.92

bi-weekly 2 2.90 2.87 2.97 9.54 7.67 7.57 7.90 8.22

These values represent the root mean squared error differences between the true underlying episode durations

and those predicted by the PSO fit, averaged across patients by treatment group and study period, and averaged

across simulation scenario replicates. Noise values correspond to the standard deviation of the normally

distributed noise introduced. These values are interpreted as the average error of episode duration estimation

measured in days.

be a lower limit to estimation accuracy based on the sampling frequency. This is expected

as acute episodes are difficult to detect when data sparsity is high. Scenarios of the overlap-

episode setting reflect greater RMSE values compared to their fixed-episode counterparts.

The discrepancies within overlap-episode scenarios are roughly comparable with RMSE val-

ues approximately ranging from 6 to 9 days. Like the fixed-episode scenarios, slight patterns

across overlap-episode scenarios are observed for noise, although the sensitivity to sampling

frequency is less pronounced. This may indicate that the estimation errors associated with

episode overlap may supersede the effects of noise and sampling frequency.
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6.2.3.4 Episode Amplitude Estimation

Results presented in Table 6.10 indicate that amplitude estimation is sensitive to overlapping

episodes. In the fixed-episode setting, RMSE values are generally no more than 1 point and

performance during the pre-treatment and post-treatment periods are identical for each

treatment group. In the overlap-episode setting, performance is worse, with RMSE values

of approximately 7 points across most scenarios. Results also differ by treatment period for

the TX group, reflecting RMSE values of approximately 2 points during the post-treatment

period. Investigations suggest that this improved performance may be reflective of the

decreased episode rate during the post-treatment period. Although episodes may overlap

during this period, the decreased episode rate makes for fewer overlaps and episodes are

more distinct. This mimics the fixed-episode setting and results in improved estimation.

6.2.3.5 Episode Duration: Power and Type I Error

The statistical power and Type I error results of the episode duration model are summarized

in Table 6.11. Statistical power for detecting a treatment by time interaction is high in the

fixed-episode setting, except in scenarios with a bi-weekly sampling rate. A similar trend

is observed in the overlap-episode setting, although power is much lower overall. No clear

patterns are not observed across noise levels for either the fixed- or overlap-episode settings.

These results suggest that the statistical power to detect a difference in episode duration is

primarily dependent upon a sampling rate that is frequent enough to capture the difference

and non-overlapping episodes.

Type I error results for the null cases (rows 10 through 12 in Table 6.11) indicate

acceptable coverage in the fixed-episode setting. For the treatment by time interaction, Type

I error is approximately 5% across all sampling frequency scenarios, and the coverage for the

treatment and time effects are 5% on average. Nominal significance in the overlap-episode
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Table 6.10: PSO: Episode Amplitude Error

fixed-episode overlap-episode

PL TX PL TX

sampling freq noise pre post pre post pre post pre post

daily 0 0.00 0.00 0.01 0.04 6.59 6.58 6.58 1.75

weekly 0 0.00 0.00 0.01 0.01 6.75 6.73 6.49 1.78

bi-weekly 0 0.39 0.39 0.46 0.40 7.00 6.95 7.37 2.18

daily 1 0.44 0.43 0.44 0.50 6.84 6.69 6.64 1.88

weekly 1 1.51 1.83 1.41 1.45 7.20 7.18 6.95 2.30

bi-weekly 1 0.38 0.38 0.46 0.40 7.31 7.24 7.37 2.20

daily 2 1.02 1.05 0.89 1.05 6.68 6.76 6.44 1.93

weekly 2 4.18 4.71 3.60 2.93 8.00 8.22 8.40 3.31

bi-weekly 2 0.37 0.38 0.46 0.41 7.35 7.15 7.44 2.25

These values represent the root mean squared error differences between the true underlying episode amplitudes

and those predicted by the PSO fit, averaged across patients by treatment group and study period, and averaged

across simulation scenario replicates. Noise values correspond to the standard deviation of the normally

distributed noise introduced. These values are interpreted as the average error of episode amplitude estimation

measured in HDRS scale points.
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setting are inflated. For the treatment by time interaction, Type I error ranges from 7% to

9.5%, while the coverage for the main effects are 8% on average. There are no clear patterns

across sampling frequency for either the fixed- or overlap-episode settings. These results

suggest that Type I errors are not maintained when episodes overlap, but acceptable coverage

may be attainable if episodes are distinct. Achieving nominal significance in analyses with

data with episode overlap may involve modifications to the mood or objective function and

is a topic of further study.

6.2.3.6 Episode Amplitude: Power and Type I Error

Presented in Table 6.12 are the statistical power and Type I error results for the episode

amplitude model. Statistical power for the treatment by time interaction is high for both

fixed-episode and overlap-episode settings. Across all scenarios of the fixed-episode setting,

all replicates resulted in a statistically significant treatment by time interaction effect. For

scenarios in the overlap-episode setting, statistical power is 93.8% on average. These results

suggest that in spite of sampling frequency, noise, and potential episode overlap, the power to

detect an eight-point difference in amplitude between groups – an effect size large enough to

differentiate between mild and moderate or moderate and severe depression – is maintained.

However, further study is required to examine the performance of other effect sizes.

Type I error results for the null cases (rows 10 through 12 in Table 6.12) generally

reflect acceptable coverage in the fixed-episode setting. For the treatment by time interaction,

Type I error across all sampling frequency scenarios is 5.3% on average, while the mean

error for the treatment and time effects are both 4.8%. Nominal significance in the overlap-

episode setting are slightly inflated. For the treatment by time interaction, Type I error

is within 5% for only one scenario. While Type I error is mostly within limits for the

treatment effect, coverage is high for the time effect. No clear patterns are observed across

sampling frequency for either the fixed- or overlap-episode settings. These results suggest

that statistical significance may be overstated when episodes overlap.
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Table 6.11: PSO: Power and Type I Error: Episode Duration Model

fixed-episode overlap-episode

sampling freq noise TX time TX × time TX time TX × time

daily 0 5.0 5.5 87.5 5.0 8.5 62.5

weekly 0 7.0 5.0 90.0 5.5 6.5 52.5

bi-weekly 0 6.0 8.0 27.0 8.0 7.5 21.0

daily 1 6.5 5.0 87.0 8.0 7.0 63.5

weekly 1 7.0 7.5 86.0 4.5 8.0 60.0

bi-weekly 1 3.5 9.5 25.5 8.5 10.0 18.5

daily 2 8.5 8.0 90.0 8.0 9.0 63.5

weekly 2 8.0 4.0 67.5 5.0 8.0 48.2

bi-weekly 2 2.5 13.5 28.5 7.0 7.0 19.0

daily 0 3.0 7.0 5.5 4.5 10.0 9.5

weekly 0 5.0 6.0 4.5 9.0 7.0 7.0

bi-weekly 0 5.0 4.0 5.5 9.0 8.5 9.0

These values represent the proportion of replicates resulting in a statistically significant result for the given

effect. The first nine scenarios include a seven-day decrease in episode duration. For these scenarios, the

TX × time column reflects statistical power. The last three rows are null case scenarios and do not include

a difference in episode duration. For these scenarios, the TX × time column reflects Type I error. For all

scenarios, the TX and time columns reflect Type I error. Noise values correspond to the standard deviation

of the normally distributed noise introduced. Values are in percentages.
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Table 6.12: PSO: Power and Type I Error: Episode Amplitude Model

fixed-episode overlap-episode

sampling freq noise TX time TX × time TX time TX × time

daily 0 6.5 10.0 100 6.0 11.5 95.5

weekly 0 5.0 7.0 100 5.0 8.0 95.0

bi-weekly 0 8.0 5.5 100 8.0 12.0 94.5

daily 1 5.0 7.5 100 6.5 7.5 97.0

weekly 1 6.5 9.5 100 8.0 14.0 93.5

bi-weekly 1 8.5 7.0 100 8.0 10.0 95.0

daily 2 2.5 5.0 100 7.5 10.0 93.5

weekly 2 11.0 8.5 100 8.5 14.1 87.9

bi-weekly 2 4.5 7.0 100 8.0 11.5 92.0

daily 0 5.0 5.0 8.5 4.5 10.5 5.0

weekly 0 7.0 5.0 4.5 7.0 7.5 9.0

bi-weekly 0 2.5 4.5 3.0 3.5 11.5 9.0

These values represent the proportion of replicates resulting in a statistically significant result for the given

effect. The first nine scenarios include an eight-point decrease in episode amplitude. For these scenarios, the

TX × time column reflects statistical power. The last three rows are null case scenarios and do not include

a difference in episode amplitude. For these scenarios, the TX × time column reflects Type I error. For all

scenarios, the TX and time columns reflect Type I error. Noise values correspond to the standard deviation

of the normally distributed noise introduced. Values are in percentages.
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6.2.4 Conclusions

Simulation studies of the PSO approach reflect that it is robust to data sparsity and noise

when detecting the underlying signal. However, episode detection suffers dramatically when

episodes are not distinct over time. If two episodes are relatively close to each other, the

episode region detection method may identify a wide interval that encompasses both episodes

and choose to fit one episode in that space. Although this may indicate poor episode de-

tection in a statistical sense if episodes are viewed as coming from a mixture model, it

may actually reflect proper clinical interpretation. For example, if two episodes are close

to each other, the HDRS scores in between the two peak severities may still exceed thresh-

old levels. Even though the curve is in some sense generated by two episodes or events,

the lack of episode resolution in between them is suggestive of one continuing episode. For

example, two overlapping episodes may manifest as a bimodal curve whose intermediate

nadir point remains above the specified threshold levels and be clinically interpreted as a

single episode. This explains the poor performance in duration and amplitude estimation in

the overlap-episode setting, while greater precision is observed in the fixed-episode setting.

When detecting between-group differences, the method performs well for episode amplitude

changes, although significance may be overstated in the overlap-episode setting. Performance

in detecting episode duration differences is impacted by episode overlap, but is largely asso-

ciated with the sampling frequency. Further study is required to investigate the performance

for other effect sizes and sample sizes.

Throughout all investigations, the scenario with a weekly sampling rate and a noise

level of 2 exhibits consistently poor performance and represents a very unique case. Exami-

nation of this scenario’s replicates reveal that episode range detection is markedly poor. This

is driven by two things: (1) a data sampling rate that matches the episode region detection’s

time grid, and (2) high noise levels. At high noise levels, an elevated HDRS score due to

noise may cause this region to be interpreted as an episode-probable location. However,

because the sampling rate matches the episode region detection’s time grid exactly (i.e.,
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every 7 days), there are no intermediate points to smooth over this region and have it be

classified otherwise. This causes noise fluctuations to be detected as episodes. This error

cascades into all other analyses and explains the overall poor performance of this scenario.

This suggests that the episode region detection process should calculate episode fitness at an

interval that is more frequent than the data sampling rate and should not propose episodes

whose amplitude is less than the expected noise level.

6.3 Cross-Method Simulations

The bipolar disorder features that these two methods model are conceptually different. The

Markov chain with bootstrap approach models the mood-shifting dynamics and the amount

of time spent in each mood state. The PSO approach estimates a mood function parameter-

ized by episode characteristics and models differences across time. Although parameterized

differently these approaches are intrinsically related. For example, a decrease in the time

spent in the manic state may be related to decreases in episode duration or frequency. Sim-

ilarly, a decrease in episode severity may be related to less time spent above a mood state

threshold and be translated as a decrease in time spent in that mood state. To study the

relationships between these features and examine each method’s ability to detect changes,

cross-method simulations are used. In the first set of simulations, data are generated by a

Markov chain mechanism and are analyzed using the PSO approach. In the second set of

simulations, the roles are reversed: data are generated by a mood function and are analyzed

using the Markov chain with bootstrap approach. Data simulation details and results are

described next.
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6.3.1 Simulation Process

Markov chain cross-method data are generated by the processes described in Section 6.1.1

with a few differences. In summary, these changes restrict treatment effects to a reduction

in the time spent in the depressed state and an increase in the time spent in the euthymic

state through transition matrix modifications. Additionally, differences in baseline severity

and amplitude between the two scales are not implemented to simplify the analysis. The

baseline severity for both the HDRS and YMRS is set to 6 points, the amplitude during

the pre-treatment period is 15 points for both scales, and the amplitude during the post-

treatment period is set to 7 points for the TX group (amplitude remains at 15 points for the

PL group). The stationary distribution during the pre-treatment period for both groups is

set to one-half of the time spent in the depressed state and one-sixth of the time spent in each

of the remaining states. The PL group post-treatment stationary distribution is identical to

the pre-treatment stationary distribution. For the TX group, the post-treatment stationary

distribution is set to one-half of the time in the euthymic state and one-sixth of the time

spent in each of the remaining states, resulting in a 33% decrease in the time spent in the

depressed state and a 33% increase in the time spent in the euthymic state. No differences

are simulated for the manic and mixed states. The transition matrices used to simulate these

data are structurally similar to those described in Table 6.1, although for the post-treatment

period of the TX group, the probability of transitioning from the depressed state to the

euthymic state is increased from 25% to 45%, resulting in a decrease in depression duration.

A total of 100 replicates are simulated and data are analyzed using the PSO approach

with the algorithm parameters described in Section 6.2.1. The linear mixed-effect model

structure from the three-arm randomized trial analysis is used to detect group differences in

episode duration, amplitude, and frequency. Attention is focused on detecting between-group

differences.

Particle swarm cross-method data are generated by processes similar to those de-

scribed in Section 6.2.1. Both HDRS and YMRS data are simulated. Baseline severity
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and amplitude parameters are identical to those of the Markov chain cross-method data: a

baseline severity of 6 points, a pre-treatment amplitude of 15 points, and a post-treatment

amplitude of 15 and 7 points for the PL and TX group, respectively. Episode duration for

both groups and rating scales are set to 21 days, although the episode frequencies differ. For

the pre-treatment period of both groups, 6 depression and 2 manic episodes are simulated.

For the post-treatment period of the PL group, these parameters remain unchanged. For

the post-treatment period of the TX group, the number of depressed episodes is decreased

to 2 episodes. To prevent episode overlap, the locations of simulated episodes are restricted

to be at least 14 days apart. A total of 500 replicates are simulated and data are analyzed

using the Markov chain with bootstrap approach with the algorithm parameters described

in Section 6.1.1. A Bonferroni-correction is implemented and a p-value of p < .05
3

is used to

denote statistical significance.

For both cross-method simulations, data are generated at a weekly sampling rate for

n = 50 patients per group with a pre-treatment and post-treatment period of 252 days each.

To simplify cross-method analysis, noise is not added to the data.

6.3.2 Results

In the Markov chain cross-method data, patients in the TX group spend 33% less time in the

depressed state and have an increased probability of transitioning out of the depressed state.

Simulation results indicate that changes in episode amplitude are readily detectable. Signif-

icant amplitude differences are observed across 100% and 99% of replicates along the HDRS

and YMRS, respectively. Performance differed for episode duration and frequency. Statis-

tically significant between-group episode duration differences along the HDRS are observed

in 72% of the simulated replicates, while significant episode frequency differences along the

HDRS are observed in 49% of the replicates. These findings suggest that underlying mood-

shifting dynamics may be difficult to pinpoint by the PSO approach. Episode duration and

frequency are analyzed separately, but stationary distribution changes may manifest along
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both of these characteristics.

In the PSO cross-method data, patients in the TX group have a decreased frequency

of depressed episodes and decreased episode amplitudes in both mania and depression. Ap-

plication of the Markov chain with bootstrap approach to these data suggests that these de-

creases manifest as stationary distribution differences. For all replicates, significant between-

group differences of the euthymic, depressed, and mixed state are observed (significant dif-

ferences in the manic state are observed in 2.4% of the replicates). While this suggests high

agreement between the two methods, it also suggests that changes along one scale impact

multiple states. The PSO cross-method data for the TX group are designed to reflect less

time spent in the depressed state (and consequently more time in the euthymic state), but

based on the Markov chain with bootstrap results, such changes may also impact mixed

state results.

6.3.3 Conclusions

In general, these results suggest agreement between the two methods. Underlying differences

in the mood-shifting mechanisms manifest as differences in the PSO models. Similarly, differ-

ences in episode characteristics manifest as differences in mood state stationary distributions.

However, it is difficult to directly correlate features based on the results.

Significant differences in stationary distribution may imply differences in episode char-

acteristics, but do not indicate which characteristics are driving the results. Simulations

studied here only examined an underlying stationary distribution difference in the euthymic

and depressed states. Even in this simplified example, the cross-method simulation results

suggest that the difference may be driven by both episode duration and frequency. Because

these features are modeled separately in the PSO approach, the collective effect is not cap-

tured. More complex settings, such as differences involving the mixed state or a combination

of non-euthymic states, may further convolute the relationship between stationary distribu-
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tion and episode characteristics. This may result in significant findings according to the

Markov chain with bootstrap approach, but inconclusive findings when applying the particle

swarm optimization approach.

The PSO cross-method data simulation results indicate that changes in episode char-

acteristics coincide with stationary distribution differences, but it is unclear how these dif-

ferences manifest. In the simulations studied here, episode differences are mainly introduced

on the depression axis, but results indicate differences in the euthymic, depressed, and mixed

states. This highlights the dependent structure of the stationary distribution, but compli-

cates the relationship between changes in episode characteristics and mood-shifting dynam-

ics.

Overall, the cross-method simulation results suggest that there is a relationship be-

tween mood-shifting dynamics and episode characteristics, but separate analyses of these

features may not necessarily result in agreement. Mood-shifting dynamics may be complex

and not adequately described by analyzing the HDRS and YMRS separately. Similarly, a

mixture of episode features may be driving the changes in stationary distribution. While it

is reassuring that the results in the cross-method simulations reflect agreement between the

methods, further study is necessary to investigate more complex scenarios and effect sizes,

as well as approaches that jointly model the data.

6.4 Application Recommendations

6.4.1 Markov Chain with Bootstrap

Simulation studies suggest that the Markov chain with bootstrap approach adequately de-

tects stationary distribution mood state differences. Like many statistical methods, overall

performance of this approach improves with larger sample sizes. In particular, bigger samples
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allow for the detection of smaller effect sizes; small sample studies many only be adequately

powered to detect large differences. However, methodological choices can improve perfor-

mance in both small and large sample settings.

One consideration to make is the data sampling rate. This method assumes that

mood-shifting dynamics can sufficiently be characterized according to the specified sampling

interval. Therefore, it is important to select a sampling rate that best matches this interval

and to set this time period as the chain time unit. For example, if it is suspected that mood

can adequately be characterized at weekly intervals, then it is important to sample data at

this frequency and to select a chain time unit of seven days for the analysis. However, if

data cannot be sampled at this rate, then imputation is recommended to recoup statistical

power. The selection of an appropriate imputation method must consider the thresholds

used in determining mood states, and the potential for biased mood state misclassification

– particularly during episode onset and resolution – must be examined. If the imputation

method proposes data point values that are more likely to be on one side of the threshold than

the other, then results will be biased and another data interpolation method (or threshold)

must be used.

Related to the issue of misclassification bias are threshold selection and data mea-

surement noise levels. It is recommended that the selected threshold maximally discriminate

between typical euthymic state and non-euthymic state values. This ensures that classifi-

cation remains unbiased in light of noise fluctuations. If the threshold is more similar to

typical non-euthymic state values, then variance due to noise may favor data points to be

classified as a non-euthymic state (or vice versa). This recommendation, however, compli-

cates the selection of a fixed threshold in settings with a high degree of patient variability.

In these cases, patient-specific thresholds – such as the subject’s pre-treatment median – are

recommended to accommodate patient heterogeneity. Moreover, the interpolation method

used to impute data must also consider the selected threshold and facilitate bias reduction.

One challenge to this approach is the overstatement of statistical significance, as
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evidenced by the inflated Type I errors in the simulation studies. It is suspected that this

is a result of the dependent structure of the stationary distribution. This method compares

mood states individually, but the mood states are not independent: increases in one mood

state imply decreases in other mood states. To rectify this issue, it is recommended that a

Bonferroni-adjusted significance value of α = .05
3

be applied. The simulation studies suggest

that this corrects the Type I error for most comparisons.

6.4.2 Particle Swarm Optimization

The particle swarm optimization approach can be summarized by four steps: (1) mood

function formulation, (2) episode region detection, (3) particle swarm optimization, and (4)

modeling to detect group differences.

The first step to the PSO approach is mood function formulation. Therefore, the

application of this method hinges on proper episode characterization. The simulation results

indicate that statistical performance improves dramatically if episodes are distinguishable

across time and do not overlap. If episode overlap is a primary feature of interest, then

the episode functional form and parameterization must reflect this. This highlights the

importance of choosing an appropriate functional form of an episode, but also underscores

the method’s flexibility to accommodate various parameterizations. Moreover, it emphasizes

clinical relevance in the model building process. While overlap may present complications

in capturing nuanced fluctuations, the overall trend may be interpreted as a single episode

from a clinical perspective.

Like the Markov chain with bootstrap approach, sampling frequency is an important

consideration in applying the PSO approach. The sampling rate primarily impacts episode

duration estimation and the detection of duration changes. If data are sparse, then the data

may not adequately capture acute episodes or small changes in duration. If episode duration

is of primary interest, it is recommended that data be sampled frequently to capture subtle
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shifts in duration.

Unlike episode duration, the method is robust in estimating amplitude and detecting

amplitude changes. However, complex amplitude characterization is still possible and is

primarily driven by episode overlap and noise. If two episodes overlap, this region may

be characterized as a single episode and result in an averaged amplitude value. Therefore,

it is important to properly specify an episode’s functional form to accommodate for these

instances. It also highlights the importance of characterizing episodes as distinguishable

components across time. Additionally, amplitude estimation is impacted by noise levels. If

noise levels are high, some regions may be misinterpreted as an episode. To overcome this,

it is recommended to use a fine time grid in the episode detection process to potentially

smooth over these areas.

There may be some structural limitations that are not completely addressed by func-

tional form selection, sampling rate, or noise level accommodations. One example may be

the minimum amplitude necessary to be considered an episode or the number of data points

necessary to confidently describe a region as an episode. For these limitations, adjustments

can be incorporated into the objective function to ensure estimates are within desired limits.

Finally, it is important to consider the secondary models that will analyze the resulting

estimates. These models must be appropriate for the hypotheses of interest, the study’s

sample size, and the data’s underlying distributions.
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CHAPTER 7

Future Work

7.1 Refinements and Extensions to the Markov Chain with Boot-

strap Approach

Approach 1 focuses on marginal distributions of the mood states. That is, the treatment

efficacy measures focus on each mood state individually. An alternative approach may

extend the analysis to include the joint distribution of the mood states. This carries the

benefit of preserving correlations between the states and may provide deeper insight of

the mechanisms governing mood dynamics. It may also uncover specific scenarios where

one therapy outperforms another, providing a refined treatment prescription. One way to

investigate the joint mood state stationary distribution is to analyze the mood states as a

three-dimensional measure. Because the proportions must sum to one, only three of the four

mood states are needed to fully describe the stationary distribution. Data can be plotted

in a three-dimensional space and metrics can be developed to evaluate differences in the

multivariate distributions. Another possibility is to create a test statistic that evaluates

the overall differences between two stationary distributions. While details of changes within

specific mood states are lost in this omnibus measure, it provides the advantage of potentially

detecting the effect of multiple minor changes occurring simultaneously.

One limitation to Approach 1 is that it does not adjust for covariates. For example,

age and gender information are not incorporated into the analysis and differential treatment
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effects may be undetected. While analyses can be stratified by these variables, doing so

would further reduce an already small sample size. It may be possible to automatically and

efficiently incorporate other variables into the analysis in a unified manner, though additional

assumptions may be necessary. Future developments may focus on adapting the approach

to a multivariate setting.

Another limitation to Approach 1 is the implicit weighting of the data. In its present

formulation, data are weighed according to the amount of data available for each patient.

Patients with more data have longer mood state sequences and therefore provide greater

influence on the transition matrix relative to patients with little data. While this may be

appropriate in settings where patient-to-patient variability is acceptable, it may be problem-

atic in highly heterogeneous populations. Depending on the research question of interest,

a different weighting scheme may be more appropriate, such as a weight based on disease

severity, type, or prevalence. Future work may focus on adaptations to adjust for hetero-

geneity.

To partially address data sparsity issues, Approach 1 uses linear interpolation to

approximate intermediate points. However, other imputation methods are available. This

may include a smoothing algorithm, the PSO fit in Approach 2, or models that incorporates

other measures. In particular, the ChronoRecord and its correlations with HDRS and YMRS

scores may provide a means of informative imputation. Future developments may focus the

feasibility and effectiveness of model-based imputation methods.

Approach 1 focuses on the stationary distribution in characterizing treatment group

differences. However, other measures are available within the Markov chain framework. One

example are the transition matrices. These matrices directly describe the mood-shifting

dynamics. Based on these matrices, approaches can be developed that evaluate patterns of

episode onset or remission, switches between specific mood states, and the persistence of

mood states. Furthermore, other measures derived from the transition matrices can form

the basis of the analysis. For example, the mean recurrence time for the euthymic state may
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be used as a measure of mean episode duration. These measures may provide additional

insight on the dynamics of the illness.

Future work can also focus on applying Approach 1 to other longitudinal assessment

scales such as the ChronoRecord. With more frequent measures, mood-shifting dynamics can

be described for shorter intervals and capture acute features of the illness. This is especially

useful in rapid cycling bipolar disorder as episode rates are high and are better characterized

by data collected over frequent time intervals.

7.2 Refinements and Extensions to the Particle Swarm Optimiza-

tion Approach

Approach 2 focuses on a model-based approach to characterizing mood episode character-

istics from the HDRS and YMRS data. The foundational component of Approach 2 is the

mood function. Future research can focus on other functional forms that better characterize

symptom severity trajectories or capture other features of interest. This can include within-

episode fluctuations, partial remission, time trends in baseline severity, or the shape of the

episode itself.

Refinements can also be made to the episode region detection method. This can in-

volve the episode fitness function and adapting it to properly penalize poorly-fitting episodes

or incorporating adjustments to capture unique episodes. For example, sensitivity for acute

episodes may be increased by creating a weighting scheme that favors candidate episodes

with high amplitudes and short durations. Similarly, the smoothing method used to fit the

episode fitness values can be tuned to increase detection sensitivity. Other refinements may

focus on the thresholding method used to distinguish true episodes from random fluctuations.

Instead of using a fixed value, thresholds may vary according to time intervals. For example,

a moving window approach would define a threshold based on neighboring regions rather
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than the entire curve and may detect episodes that differ from previous ones. The episode

region detection method may also be refined by extending it into a multidimensional space

that includes episode amplitude and duration. This would assist in not only identifying time

intervals, but amplitude and duration intervals associated with those regions. This can help

with the efficiency of the PSO algorithm by restricting the search space even further.

Much like the episode fitness function, the objective function used in the PSO algo-

rithm may also be refined. The function used in Approach 2 uses the sums of square error

and penalizes according to characteristics of the fitted episodes. Adjustments may be incor-

porated that examine episode regions independently from non-episode intervals, allowing a

weighting scheme to be employed that can favor the fit in the regions of most interest. Other

options can incorporate the candidate estimates themselves. For example, settings where

estimates are believed to follow a specified distribution can include a likelihood component

into the objective function. Similarly, the objective function can also be adapted to favor

specific types of episodes. This can involve adjustments that create favorable objective val-

ues for candidate estimates that involve such episodes, or penalties for those that include

none.

In Approach 2, the estimates derived from the PSO fit are used as inputs in regression

models. Similarly, Approach 2 can be extended by using the entire curve as an input in a

functional data analysis setting. By using the entire curve trajectory, patterns over time

may be identified and reveal important temporal features of the illness. Additionally, the

functional data analysis approach naturally extends to a multivariate setting, allowing the

simultaneous analysis of both HDRS and YMRS data. Future work in this area would involve

proper curve registration as it is unclear how to appropriately align highly variable episodic

data on a unified time dimension.

A natural extension to Approach 2 is incorporating model fit within the PSO algo-

rithm. This would require fitting data across patients simultaneously and allow the fit of one

patient to be influenced that another. Recent research has incorporated the PSO algorithm
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into a nonlinear mixed effects setting81, though the use of PSO and other swarm-based global

search algorithms in statistical modeling is sparse.
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