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Abstract

Background—For people with epilepsy, much suffering stems from the apparent 

unpredictability of seizures. Recently, converging evidence from studies using chronic 

electroencephalography (cEEG) revealed that brain activity in epilepsy demonstrates robust cycles, 

operating over hours (circadian) and days (multidien), which help determine fluctuating seizure 

risk. We hypothesized that cycles of brain activity can be leveraged to estimate future seizure 

probability, and we tested the feasibility of forecasting seizures days in advance.

Methods—This feasibility study involved retrospective analysis of cEEG (≥ 6 months; recorded 

between January 2004 and May 2018) collected with an FDA-approved implanted device in 175 

adults with drug-resistant focal epilepsy followed at 35 centers across the USA. In distinct 

development and validation cohorts, subjects had ≥ 20 electrographic and disabling clinical (self-
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reported) seizures, respectively. In all subjects, the device stored interictal epileptiform activity 

(IEA) that revealed cycles of abnormal brain activity. Point process statistical models trained on 

initial portions of each subject’s data generated forecasts of seizure probability that were tested on 

subsequent unseen data and evaluated against surrogate time-series. The primary outcome was the 

percentage of subjects with forecasts showing improvement over chance (IoC).

Findings—Models incorporating information about IEA cycles generated daily seizure forecasts 

with IoC in 15/18 (83%) subjects and 104/157 (66%) subjects in the development and validation 

cohorts, respectively. In many subjects, the forecasting horizon could be extended up to three days. 

Hourly forecasts, possible only in the development cohort, showed IoC in 18/18 (100%) subjects.

Interpretation—Seizure probability can be reliably forecasted days in advance using data from 

an approved device. For adults with focal epilepsy, personalized risk-stratification over days is 

unprecedented and may enable novel seizure prevention strategies. This study paves the way for 

prospective clinical trials that will establish how people with epilepsy may benefit from long-

horizon seizure forecasting.

Funding—None.

Introduction

Epilepsy is defined by the seemingly random occurrence of spontaneous seizures. Although 

seizures are typically brief events that cumulatively amount to a small fraction of time, their 

unpredictability necessitates standing treatments and causes significant disability.1 People 

with epilepsy are plagued by constant uncertainty, and the looming threat of seizures has 

implications for personal safety, independence, and psychological well-being. Reliable 

methods to anticipate seizures would mark a paradigm shift in clinical epilepsy, mitigating 

this uncertainty and enabling time-varying, risk-based seizure prevention strategies.

Despite decades of progress in the field of seizure prediction, such methods remain elusive.2 

The landmark NeuroVista trial3 demonstrated feasibility of a cEEG-based advisory system 

that warned of seizures minutes in advance. Subsequent analyses4–10 of data from this trial 

yielded numerous transformative insights that propelled the field for years. However, 

limitations of these pioneering efforts include the relatively small size of the trial—ten 

subjects participated in the seizure advisory phase—and the fact that the implanted device 

used is no longer available.

In the decade since the NeuroVista trial, cEEG from another device (RNS® System), one 

that is FDA-approved and increasingly used in clinical care for epilepsy,11 revealed 

pervasive daily (circadian12,13) and multi-day (multidien13) cycles of interictal epileptiform 

activity (IEA) that are biomarkers of seizure risk.13 With these long-timescale biomarkers,
14–16 interest has recently shifted to probabilistic approaches to seizure forecasting,5,17,18 

akin to weather forecasting, which leverage prior knowledge about cyclical patterns of 

seizure risk to estimate seizure probability over future time horizons. Since most prior work 

in the field has sought to identify seizure precursors in the minutes preceding seizure onset,
2,8 an unresolved question concerns whether periods of heightened seizure risk (pro-ictal 

states18) can be anticipated over longer horizons. We hypothesized that seizure probability is 

determined by alignment of cyclical influences at multiple timescales as well as the temporal 
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distribution of recent seizures.4,9,10,18 Models that incorporate these factors to generate 

seizure risk forecasts will ultimately require validation in large, prospective clinical trials. 

Imminent feasibility of such trials hinges on evaluating how generalizable and valuable the 

approach may be on existing cEEG data, using a probabilistic framework that accounts for 

the fact that seizures may not occur every time risk is accurately forecasted to be high.

Here, we address these questions in a feasibility study aimed at developing and validating 

statistical models to forecast the individual risk for electrographic and self-reported seizures 

based on temporal features extracted from up to ten years of cEEG data. The primary study 

outcome was the percentage of subjects for whom forecasting models demonstrated 

Improvement over Chance (IoC) at different forecasting horizons. Secondary outcomes 

involved quantifying model performance using statistical methods suitable for probabilistic 

forecasts.

Methods

Study design and participants

This feasibility study involved development of seizure forecasting models in a ‘development 

cohort’ of 18 subjects who were implanted with the RNS® System (NeuroPace, Inc., 

Mountain View, CA, USA) for clinical indications and followed at two centers (University 

of California, San Francisco, and California Pacific Medical Center, USA). Forecasting 

models were subsequently validated by including cEEG data and self-reported seizures 

obtained from a ‘validation cohort’ of 157 participants in the nine-year long-term treatment 

trial (LTT) of the RNS System11,19 that took place between January 2004 and May 2018 

across 34 centers in the USA (appendix, pp 10–11; ClinicalTrials.gov identifiers: 

NCT00079781, NCT00264810, and NCT00572195). All involved centers obtained 

authorization from their institutional review board to recruit adults with medically-refractory 

focal epilepsy in the original trials and for subsequent data analysis. Existing cEEG data and 

seizure logs were screened for eligibility: > 6 months of continuous hourly IEA count data 

without large gaps and ≥ 20 electrographic or self-reported seizures but < 50% days with 

seizures, as the utility of forecasting in individuals with very frequent seizures is likely low.3 

All 175 included subjects provided written informed consent for analysis of their data.

Procedure

The RNS System utilizes customizable algorithms to detect pathological brain activity, as 

previously detailed.13 For each subject, IEA time-series from two RNS System detectors 

(appendix, pp 10–16) were selected for periods of continuous data with stable detection 

settings > 6 months. For all subjects, the first few months of cEEG (median [range] 222 d 

[28–362 d]) after device implantation were discarded to account for time needed by 

clinicians to optimize detection parameters.

Self-reported seizures are the current gold-standard for clinical trials in epilepsy, but 

electrographic seizures evident on cEEG are more objective and obviate subjects’ reporting 

biases.20 Therefore, we examined two types of seizures drawn from distinct, non-

overlapping cohorts of subjects: (1) Timestamps of electrographic seizures from cEEG in the 
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development cohort (N=18), identified through detections of prolonged epileptiform activity 

exceeding a clinically pre-specified duration, typically 15–40s. For each subject and each 

period of stable detection settings, a Board-certified epileptologist (V.R.R.) verified visually 

that ≥90% of these detections corresponded to electrographic seizures in stored 

electrocorticograms, as described in detail previously13; (2) Diaries of self-reported seizures 

in the validation cohort (N=157), recorded by participants in the LTT as number of seizures 

(‘simple motor’, ‘simple other’, ‘complex partial’, and ‘generalized tonic-clonic’) per 

calendar day. According to the 2017 International League Against Epilepsy classification, 

we considered ‘complex partial’ and ‘generalized tonic-clonic’ as the disabling ‘seizures 

with impaired awareness’ studied here and excluded subjects without disabling seizures. As 

subjects did not report the time of day for their seizures, these data could only be used for 

daily and not for hourly forecasts.

Statistical analysis

Forecasting models: To forecast seizure probabilities—continuous values between 0 (no 

risk of seizure occurrence) and 1 (seizure occurrence is certain)—we used past IEA, 

occurrence times of past seizures, and cyclical variables (hereafter, collectively referred to as 

‘temporal features’, appendix, p 13) as inputs for point process generalized linear models 

(PP-GLMs). Models were estimated on training data and evaluated on chronologically 

subsequent test data. PP-GLMs are established tools in neuroscience research21,22 that 

provide a flexible statistical framework to evaluate the association between sequences of 

event (seizure) times represented as binary (or count) time-series and temporal features upon 

which event probability may depend. Hourly IEA time-series were available for 

electrographic and self-reported seizure cohorts, allowing determination of circadian and 

multidien cycles of epileptic brain activity in all subjects (N=175).13 We trained PP-GLMs 

with a log-link function and a conditionally Poisson distribution22 to output the probability 

of a seizure as a function of these cycles and other temporal features (appendix, pp 9–10, 13) 

from subject-specific datasets comprising the shorter of 480 d or 60% of the subject’s total 

data. To prevent inflation of our performance metrics (see below) through the well-known 

phenomenon of seizure clustering, we defined ‘seizure-days’ or ‘seizure-hours’ as binary 

events regardless of the seizure count and used these as training labels. The large amount of 

previously unseen testing data (Individually: minimum of 40% of data, >800 d in most 

subjects and up to 8 y; In total: 73% of data with 211,005 d) ensured that the models were 

not overfit for a small number of seizures and enabled assessment of forecasting 

performance in a probabilistic framework.

Outcomes: Subject-specific forecast performance was quantified on held-out test datasets 

(i.e. index test) containing unseen seizures (i.e. reference standard: days or hours with self-

reported or electrographic seizures) using two complementary metrics that are fully 

described in the appendix (pp 1–9): (i) for various seizure warning threshold probabilities, 

the area under the curve (AUC) of sensitivity (proportion of all seizures captured during 

warning) vs. corrected proportion of time in warning;23 (ii) Brier skill score (BSS), adapted 

from meteorology,5,17 which evaluates performance in relation to a naïve predictor (here, a 

randomly shuffled forecast).
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Based on these metrics, the primary outcome was Improvement over Chance (IoC), a binary 

outcome defined at the individual level through comparison of the original AUC to chance-

level AUC, calculated from forecasts issued on surrogate data (see Statistical significance).
2,5,8,23 In addition, secondary outcomes involved quantifying individual forecast 

performance. We calculated the median AUC across subjects with IoC (and the entire 

cohort) to evaluate discrimination, the goal of a deterministic forecast (do forecasts differ 

when their corresponding observations differ? see appendix, pp 1–9). AUC depends heavily 

on forecast horizon and pro-ictal state duration, and AUC is less than 1 even for a reliable 

forecast (appendix, p 8). This motivated the additional use of the BSS, which assesses model 

resolution (are different forecasts associated with different outcomes?) and calibration (how 

close are forecasted probabilities to observed probabilities?), the goals of a probabilistic 

forecast (appendix, pp 1–9). Reliability diagrams5 were used to compare observed and 

forecasted seizure probabilities.

Post-hoc analyses: To characterize individualized forecasts in terms of time-varying risk, 

we defined pro-ictal states as periods of time with forecasted probability above the 

individual expected seizure probability (appendix, pp 1–9). Based on these adjusted values, 

we report the average duration of pro-ictal states and the relative risk for seizures in pro-ictal 

as compared to low-risk states. We evaluated the overlap between forecasted probabilities 

and observed seizures as a function of circadian and multidien cycle phases and AUC as a 

function of the strength of seizure cycles, quantified as the phase-locking value (appendix, p 

25).13

Sensitivity analyses: Robustness of our results was assessed by systematically varying 

the amount of training data and the retraining interval (appendix, pp 21–24).

Statistical significance: To determine individual chance-level AUCs, 200 surrogates 

were generated for each temporal feature: (1) for the recent seizure, circadian, and weekly 

distribution models, by randomly shuffling the seizure time-series under the null hypothesis 

that the seizure process is memoryless (i.e. events are independent of one another); (2) for 

the IEA-based features, by randomizing phases of underlying cycles, under the null 

hypothesis that seizure timing does not depend on trends in IEA.24,25 Significance was 

assessed with a false discovery rate (FDR) at α = 0·05 across all subjects to correct for 

multiple testing. As a supplementary statistical analysis, significance of AUC was assessed 

by comparing the number of seizures correctly identified by the model and by chance for a 

given fraction of time under warning (appendix, p 27).23,26 Analyses were performed with 

MATLAB R2019a, R 3·4·4, and Python 3·7·4.

Role of funding source

This study received no targeted funding. All authors had full access to data and had 

responsibility for the decision to submit for publication.

Data sharing

Deidentified individual data in the form of IEA counts and electrographic seizures from the 

18 subjects in the development cohort, as well as code created and used for this paper, will 
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be freely available at DOI: 10.5281/zenodo.4274624 as of July 1, 2021 for at least 20 years. 

A short explanation of the data is also provided. Original study protocols, statistical analysis 

plan, and informed consent forms are not available for this retrospective study. Data for the 

validation (self-reported seizure) cohort is property of NeuroPace, Inc. and is not available.

Results

We collected retrospective cEEG data from two cohorts of subjects implanted with the RNS 

System (Fig. 1a, mean duration per subject 1484 d, range 227–3502 d). Between January 1, 

2018 and October 1, 2019, we screened 72 and 256 subjects, and we included 18 and 157 

subjects in distinct cohorts for forecasting model development and validation, respectively 

(flow diagram). The development cohort comprised 10 subjects whose cEEG data we 

previously published13 but here extended to include two years of subsequent recordings, plus 

8 new subjects. The validation cohort comprised a subset of participants in the nine-year 

RNS System Long-term Treatment Trial (LTT)19, from which only limited cEEG data has 

been published12. cEEG data (Fig. 1b) from this cohort was used to validate forecasting 

models, which were then tested against the published dataset of self-reported seizures from 

the LTT19. Baseline characteristics for the two cohorts were similar, with median age 38 

[IQR 32–51] and 35 [IQR 25–43], and 44% (8/18) and 47% (74/157) females, respectively, 

with a preponderance of multifocal and mesio-temporal epilepsies (Table 1).

In both cohorts, forecasting models were individually estimated on the first portion of each 

subject’s data, the ‘training datasets’, and tested on non-overlapping individual ‘testing 

datasets’ containing a total of 767 electrographic (median 19% [IQR 13–29] days with 

seizures) and 27,658 self-reported seizures (median 9% [IQR 5–16] days with seizures) that 

were previously unseen (see Methods). To forecast seizure probability with horizons of 

hours to days, models incorporated past IEA, occurrence times of past seizures, and cyclical 

variables as inputs (hereafter, ‘temporal features;’ Fig. 1c, Table 2). Individual subjects had 

excellent correspondence between forecasts and seizures (Fig. 1d–h).

As a primary outcome, and for each temporal feature, we determined which subjects might 

benefit from forecasting with our models by calculating improvement over chance (IoC: 

AUC relative to chance-level, Table 2). Daily forecasts incorporating information only about 

recent seizures, weekly seizure distribution, or recent IEA produced IoC less often than 

models using information from multidien IEA cycles, for which IoC was observed in 15/18 

(83%) and 104/157 (66%) subjects for electrographic and self-reported seizures, respectively 

(Fig. 2a; Table 2). With multidien IEA cycles alone, the forecast horizon could be extended 

up to three days while maintaining IoC in 2/18 (11%) and 61/157 (39%) subjects for 

electrographic and self-reported seizures, respectively (Fig. 2b).

As secondary outcomes, we quantified forecast performance for subjects with IoC using two 

complementary metrics, each addressing a distinct question (appendix, pp 1–9): (i) Area 

under the curve (AUC, sensitivity vs. corrected time in warning)—How valuable is a 

forecast given the amount of time spent in warning?, and (ii) Brier skill score5,17—How well 

does the forecast perform relative to a reference strategy (BSS = 1 for perfect forecast; BSS 

= 0 for no improvement over a random predictor)? Median AUC was 0·74 [IQR 0·70–0.79] 
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and 0·70 [IQR 0·65–0·75], and median BSS was 0·23 [IQR 0·18–0·30] and 0·13 [IQR 0·05–

0·20] in the development (electrographic seizures) and validation (self-reported seizures) 

cohorts, respectively (Fig. 2a, c; all median values in Table 2; appendix, pp 17–18). A 

reliability diagram5 showed that resolution (Fig. 2d, highest bin average is below 1) and 

calibration were good, but not perfect, with forecasted probabilities above 25% being 

overconfident (i.e. below the diagonal line of perfect calibration, Fig. 2d).

As a post-hoc analysis, we characterized the durations of forecasted pro-ictal states, i.e. the 

tendency for daily forecasts to remain high over consecutive days (Fig. 1f). To allow for 

comparison across subjects, we averaged peak-aligned forecasts centered within subjects 

around expected seizure probability (appendix, pp 1–9). This enabled visualization of pro-

ictal states as contiguous periods of heightened seizure probability lasting 3–9 d and aligning 

well with the distributions of observed electrographic and self-reported seizures (Fig. 3). 

Average relative risk (RR) for self-reported and electrographic seizures occurring during 

forecasted pro-ictal versus low-risk states was 9·4 [95% CI 4·5–14·9] and 3·7 [95% CI 2·8–

4·7]) across subjects with IoC. Model performance also correlated with phase-locking values 

between seizures and multidien IEA cycles13 (Pearson r=0·6547±2·7×10−3, Wald test, 

p<0·0001; appendix, p 25), suggesting that the most forecastable individuals can be 

identified in advance.

To further characterize performance of daily forecasts, we carried out sensitivity analyses to 

inclusion criteria (appendix, pp 19–20) and to training conditions. In both cohorts, longer 

training duration and iterative retraining (appendix, p 23), improved model performance and 

the calibration of output forecast probability (Fig. 2d; appendix, pp 21–23).

Forecasting days-long pro-ictal states over long horizons may not be ideal for all patients,
27,28 so we asked whether our approach allows refinement of forecasts to shorter horizons. 

Equivalent outcomes were obtained for hourly forecasting, which was only possible for 

electrographic seizures, as subjects in the validation cohort reported seizure days but not 

hours. Multivariate models incorporating instantaneous phases of circadian and multidien 

cycles and the recent circadian distribution of seizures5 yielded the best-performing hourly 

forecasts of electrographic seizures (Fig. 4a, c; appendix, p 26), and IoC was observed in 

18/18 subjects (100%; Table 2; appendix, pp 26–27). The forecasting horizon could be 

extended up to 14 h while maintaining IoC in 8/18 subjects (44%; Fig. 4b). Across subjects, 

highest forecasted seizure probabilities occurred when critical phases of multidien and 

circadian cycles aligned (Fig. 4d).

Discussion

Here, we forecasted electrographic seizures and self-reported seizures—a gold standard 

metric for clinical trials in epilepsy—up to three days in advance. To our knowledge, this 

represents an unprecedented horizon for personalized seizure risk-stratification. Daily 

forecasts were above chance in the majority of the 175 adults with focal epilepsy involved in 

this feasibility study (15/18 and 104/157 in development and validation cohorts, 

respectively). In all subjects for whom it was possible (18/18), forecasts of electrographic 

seizures achieved finer temporal resolution on the scale of hours. Included subjects were 

Proix et al. Page 7

Lancet Neurol. Author manuscript; available in PMC 2021 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



treated with an implanted neurostimulation device and may not be representative of all 

people with epilepsy, though diverse focal epilepsies were represented in our cohorts, and 

seizure cycles are independent of brain stimulation.13,15

To date, there has been only one prospective trial (NeuroVista3) of a seizure advisory 

system, which provided short-term (minutes) warnings of imminent seizures demonstrating 

above-chance accuracy in 9 out of 15 (60%) enrolled subjects (10 of these subjects 

completed a 4-month testing period). Subsequent analyses on the same dataset showed that 

even the most difficult cases were predictable to some extent through crowd-sourced 

computational efforts.6–8 In comparison, our feasibility study involved ten times more 

subjects, testing and validating a single computational approach for periods up to 10 years, 

and forecast horizons several orders of magnitude longer (hours to days).

To evaluate forecasting model performance rigorously, we comprehensively report 

measurements of risk, discrimination, resolution, and calibration (explained in appendix, pp 

1–9). During forecasted pro-ictal states, the average RR of occurrence of electrographic and 

self-reported seizures was 9·4 and 3·7, respectively, placing cycles of epileptic brain activity 

among the strongest predictors of seizures discovered to date. While RR is a well-

established metric in medicine, it is limited to the evaluation of probabilistic forecasts at a 

single threshold value, whereas the BSS circumvents this limitation, offering a refined 

interpretation of forecast performance as a continuum (appendix, pp 1–9). A recent study in 

nine subjects employed probabilistic methods similar to ours within a circadian framework 

and yielded BSS ranging 0·02–0·2 at a forecast horizon of one minute.5 In comparison, our 

study provided well-calibrated forecasts, as illustrated in a reliability diagram (Fig. 2b), and 

median BSS of 0·23 [IQR 0·18–0·30] (electrographic seizures) and 0·13 [IQR 0·05–0·20] 

(self-reported seizures). Another key distinction of our work is that daily forecasts of higher 

seizure probabilities were aggregated over days-long pro-ictal states (Fig. 3), providing 

smooth forecasts rather than flickering alerts based on real-time detection of evanescent 

seizure precursors. This may improve the interpretability of forecasts for people with 

epilepsy.3

This study has limitations. Implanted devices are associated with surgical risks and may not 

be suitable for all people with epilepsy who desire seizure forecasts, motivating development 

of minimally-invasive methods to monitor seizure risk biomarkers.1,4 Cycles of IEA may be 

more tractable than biomarkers requiring high sampling rate intracranial EEG,29 opening the 

possibility that certain novel methods, like sub-scalp EEG,30 could be viable for forecasting. 

Our models did not incorporate common seizure triggers, such as medication non-

compliance, which could account for some apparent ‘false negatives.’ Self-reported seizure 

data was drawn from a large, prospective, nine-year clinical trial11,19—arguably the most 

well-curated clinical seizure dataset of this chronicity—but inaccuracy of seizure self-

reports3,20 and small gaps in the data could have led to under-estimation of model 

performance. Finally, to dissect the potential contribution of different temporal features, this 

feasibility study focused on explicit statistical models that are computationally efficient, 

modest in their training requirements, and incorporated cycles of IEA using an accurate but 

non-causal estimation of the instantaneous phases (appendix, p 13). Thus, conclusions 

should be regarded as hypothesis-generating rather than clinical evidence.8

Proix et al. Page 8

Lancet Neurol. Author manuscript; available in PMC 2021 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In summary, our results corroborate an emerging view that seizures are not entirely random 

events.8 Given the large sample size, these results validate and powerfully extend our 

previous findings based solely on electrographic seizures,13 and they suggest the 

generalizability of using multiscale cyclical biomarkers in epileptic brain activity to forecast 

clinically-relevant seizures over long horizons. Moreover, our study indicates that seizure 

forecasting is feasible with existing neurotechnology in widespread clinical use (~3,000 

patients currently implanted in the U.S.) and need not await novel industrial developments. 

Future prospective clinical trials should assess directly the ways in which people with 

epilepsy benefit from replacing constant uncertainty about seizures with “measured 

uncertainty” (forecasted risk) at different horizons, which has not been established by this or 

prior studies. To that end, we propose a nested approach to personalized seizure forecasting: 

(1) patient-specific multidien cycles reveal pro-ictal states days in advance; (2) circadian 

IEA cycles and peak seizure times reveal hours of high risk;5 and (3) real-time detections of 

seizure precursors2 provide imminent seizure warnings conditioned on prior probability 

from (1) and (2). Future work will also involve miniaturization of devices, integration of 

cEEG with multimodal physiological data,1 optimization of forecasting models, and 

elucidation of mechanisms underlying cycles in epilepsy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research in context

Evidence before this study:

We searched the literature on seizure prediction in MEDLINE from January 1, 1946, to 

June 1, 2020, in Embase from January 1, 1974, to June 1, 2020, and in Google Scholar 

(first 200 relevant references) using comprehensive electronic search strategies 

combining terms “epilepsy”, “seizures”, “prediction”, “forecasting”, “cycles”, “patterns”, 

“circadian”, and “multidien”, with no language restrictions. Identified studies used 

different outcome measures, but most involved analyses of electroencephalography 

(EEG) to predict seizures minutes in advance, with variable success. A single prospective 

trial of an implanted device for chronic EEG demonstrated above-chance accuracy of 

warnings for imminent seizures in 9 out of 15 enrolled subjects. Two studies in 

independent cohorts of subjects chronically implanted with intracranial electrodes 

showed that rates of interictal epileptiform activity oscillate in circadian and multiday 

(multidien) cycles that help determine seizure likelihood. Circadian cycles and seizure 

diaries were used in three studies to forecast seizures over short horizons, but we found 

no results on forecasting seizures several days in advance.

Added value of this study:

In a large cohort of people with drug-resistant focal epilepsy who had chronic EEG 

recorded by an approved clinical device, we demonstrate that circadian and multidien 

cycles can be leveraged to forecast seizures up to three days in advance in some subjects 

and 24 hours in advance in the majority of subjects. These results highlight the feasibility 

of seizure forecasting over horizons longer than previously possible.

Implications of all the available evidence:

Seizures are not entirely random events. Using cyclical patterns of brain activity to 

forecast seizures hours to days in advance may enable novel seizure warning systems and 

prevention strategies. Convergence of findings from multiple independent datasets 

suggests the generalizability of this approach in people with epilepsy, though this will 

require direct testing in prospective clinical trials.
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Figure 1. Individual seizure risk forecasting in one subject.
(a) Responsive Neurostimulation (RNS®) System, comprising a cranially-implanted 

neurostimulator connected to two four-contact intracranial depth leads (shown, for example, 

in hippocampus, red) and/or cortical strip leads (shown unconnected) that provide chronic 

electroencephalography (cEEG). (b) From these recordings, the RNS System provides 

hourly counts of detections of interictal epileptiform activity (IEA) and electrographic 

seizures (not shown). (c-e) Entire test dataset from one subject (S7) showing input temporal 

features, output daily forecasts, and observed seizures. (c) Time-series of IEA averaged over 

one calendar day (‘daily IEA’), underlying multidien cycle, and electrographic seizures that 

serve as some of the input temporal features for the forecasting model. (d) Daily forecast of 

seizure probability (gradient-colored lines) at 24-hour horizon (D+1) generated by a model 

(grey arrow) trained on ten months of data (not shown) and run on seven months of held-out 

test data (shown here) using input variables from c. Higher forecasted probabilities (red) 

form days-long pro-ictal states (red shadow) during which daily probability of seizures is 

continuously above the expected probability, defined as the long-term average daily seizure 

frequency calculated over months of training data (‘E’, here 0·19 seizures per day). (e) 

Seizures observed during and outside of pro-ictal states over these seven months. (f) Average 

pro-ictal state illustrated by peak-aligned average probability forecasts (top) and 

corresponding temporal distribution of seizures (bottom, shown as stacked individual events 

and percentage of total count on y-axis). (g) Hourly forecasts of seizure probability based on 

hourly IEA and its circadian cycle (not shown) refining pro-ictal states into hours of 

relatively higher and lower seizure risk. BSS: Brier skill score. (h) Seizures observed over 

this period of nine days.
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Figure 2. Performance of daily forecasts of electrographic and self-reported seizures.
(a) Distributions of univariate daily forecast performance (at 24-h horizon) quantified as the 

area under the curve (AUC) across subjects. When models incorporated multidien phase 

information, AUC showed improvement over chance (IoC) for 83% and 66% of subjects 

(color dots, p<0.05) in the development cohort (with recorded electrographic seizures) and 

the validation cohort (with self-reported seizures), respectively. Shaded areas in these and 

subsequent violin plots show kernel density estimates to highlight the shape of the 

distribution of the entire cohort; darker shading is the interquartile range and horizontal 

white line is the median. (b) AUC as a function of forecasting horizon longer than 24-hour 

using multidien phase as the input variable, to be compared to forecast at 24-hour horizon in 

a. (c) As in (a), daily forecasts based on multidien phases of IEA yielded both higher AUC 

and Brier skill score (BSS) than other models. The BSS represents improvement (skill, color 

dots) of mean squared forecast error (Brier score) relative to a reference randomly shuffled 

forecast; BSS range is −∞ to 1, with 0 being no skill relative to reference forecast and 1 

being a perfect forecast. (d) Reliability diagram showing observed seizure probability vs. 

binned forecasted probabilities of electrographic seizures (green, N=18 subjects) and self-

reported seizures (orange, N=157 subjects). Empirical curves for a set of forecasts generated 
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by models before (empty dots) and after (filled dots) re-training after every seizure are 

compared to the dashed diagonal line of perfect calibration (shading indicates 95% 

confidence intervals (CI)).
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Figure 3. Pro-ictal states.
(a) Peak-aligned normalized average forecast probabilities for all subjects in the 

electrographic seizures (development) cohort (N=18, rows, ranked by width of pro-ictal 

state) reveal days-long periods of seizure probability higher than the expected seizure 

probability (E). (b) Distributions of observed seizure probabilities averaged in the same way 

align well with periods of high risk. (c) and (d) show data analogous to (a) and (b) from the 

self-reported seizures (validation) cohort (N=157). Cyan boundaries depict estimated 

durations of pro-ictal states, which range from three to five days in the majority of subjects 

and more than seven days in a minority of subjects. Most subjects whose forecasts did not 

show IoC reside at the bottom, outside of the cyan boundaries.
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Figure 4. Hourly forecasts of electrographic seizures.
Hourly forecasts were not possible for self-reported seizures because time resolution of 

these data was one day. (a) Distributions of univariate and multivariate hourly forecast 

performance (at 1-h horizon) quantified as the AUC across subjects. Multivariate models 

incorporated information from circadian and multidien phases of IEA, as well as the 

circadian distribution of seizures, yielding AUC with IoC in 18 out of 18 (100%) subjects 

(color dots, p<0.05). (b) AUC as a function of forecasting horizon hours in advance of 

seizures. (c) As in (a), multivariate models yielded both higher AUC and BSS than 

univariate models. (d) Phase-space map across 18 subjects showing alignment of critical 

phases of circadian and multidien cycles with observed seizures (contours represent 

percentiles), coinciding with times of highest forecasted seizure probability.
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Flow diagram
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Table 1.

Demographics and seizure characteristics of all subjects in the development and validation cohorts.

Development cohort Validation cohort

N 18 157

Age in years (median [IQR]) 38 [32–51] 35 [25–43]

Percent females 44% (8/18) 47% (74/157)

Percent males 56% (10/18) 53% (83/157)

Seizure studied Electrographic seizures Self-reported disabling seizures

Bilateral focus 50% (9/18) 46% (73/157)

Left-sided focus 33% (6/18) 39% (62/157)

Right-sided focus 17% (3/18) 14% (22/157)

Mesiotemporal lobe epilepsy 83% (15/18) 64% (101/157)

Frontal lobe epilepsy 0% (0/18) 9% (14/157)

Multilobar epilepsy 6% (1/18) 12% (19/157)

Other neocortical epilepsy 11% (2/18) 15% (23/157)

Percentage of days with seizures in training datasets (median [IQR]) 25% [17–29] 15% [10–25]

Percentage of days with seizures in testing datasets (median [IQR]) 19% [13–29] 9% [5–16]
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Table 2.
Primary and secondary study outcomes.

Percentage of subjects with Improvement over Chance (IoC) for different temporal features, where IoC was 

obtained by comparing the area under the curve (AUC) of the original data with the AUC of 200 surrogate 

time-series with alpha < 0.05 adjusted for false-discovery rate correction. Data are median AUC and median 

Brier skill score (BSS) among subjects with IoC (entire cohort). 1°: primary, 2°: secondary.

Forecasts

Horizon Daily Hourly

Cohort Development (N=18) Validation (N=157) Development (N=18)

Reference standard Electrographic seizures Self-reported disabling seizures Electrographic Seizures

Study outcome 1° 2° 1° 2° 1° 2°

Metric IoC AUC BSS IoC AUC BSS IoC AUC BSS

Temporal 
features

Recent 
seizures

2/18 
(11%)

0.62 
(0.60)

0.06 
(0.03)

43/157 
(27%)

0.58 
(0.57)

0.012 
(0.009)

6/18 
(33%)

0.57 
(0.52)

0.002 
(0.00)

Recent IEA 0/18 
(0%)

NA 
(0.61)

NA 
(0.02)

51/157 
(32%)

0.62 
(0.58)

0.04 
(0.01)

5/18 
(28%)

0.64 
(0.60)

0.008 
(0.006)

Circadian IEA 
phases

NA NA NA NA NA NA 8/18 
(44%)

0.65 
(0.62)

0.01 
(0.01)

Circadian 
seizure 

distribution

NA NA NA NA NA NA 11/18 
(61%)

0.62 
(0.59)

0.008 
(0.002)

Weekly 
seizure 

distribution

0/18 
(0%)

NA 
(0.54)

NA 
(0.00)

0/157 
(0%)

NA 
(0.56)

NA 
(0.004)

NA NA NA

Multidien 
phases

15/18 
(83%)

0.74 
(0.73)

0.23 
(0.17)

103/157 
(66%)

0.70 
(0.66)

0.13 
(0.07)

15/18 
(83%)

0.70 
(0.70)

0.024 
(0.018)

Multivariate NA NA NA NA NA NA 18/18 
(100%)

0.75 
(0.75)

0.036 
(0.035)
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