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Abstract

Social neuroscience research has demonstrated that those who are like-minded are also ‘like-brained.’ Studies have shown
that people who share similar viewpoints have greater neural synchrony with one another, and less synchrony with people
who ‘see things differently.’ Although these effects have been demonstrated at the ‘group level,’ little work has been done to
predict the viewpoints of specific ‘individuals’ using neural synchrony measures. Furthermore, the studies that have made
predictions using synchrony-based classification at the individual level used expensive and immobile neuroimaging equip-
ment (e.g. functional magnetic resonance imaging) in highly controlled laboratory settings, which may not generalize to
real-world contexts. Thus, this study uses a simple synchrony-based classification method, which we refer to as the ‘neural
reference groups’ approach, to predict individuals’ dispositional attitudes from data collected in a mobile ‘pop-up neuro-
science’ lab. Using functional near-infrared spectroscopy data, we predicted individuals’ partisan stances on a sociopolitical
issue by comparing their neural timecourses to data from two partisan neural reference groups.We found that partisan stance
could be identified at above-chance levels using data from dorsomedial prefrontal cortex. These results indicate that the neu-
ral reference groups approach can be used to investigate naturally occurring, dispositional differences anywhere in the world.

Key words: neural reference groups; neural synchrony; intersubject correlation; fNIRS; dmPFC

When people share similar ideas and opinions, they are often
referred to as being ‘like-minded.’ In support of this metaphor,
recent research demonstrates that people show greater neural

synchrony (i.e. correlated neural fluctuations over time) with
others who hold similar psychological perspectives and less
neural synchrony with those who ‘see’ things differently. Thus,
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studies have also identified distinguishable neural signatures
between people who hold different perspectives at the group
level (Nummenmaa et al., 2018). Taking this idea one step fur-
ther, recent studies have also shown that it is possible to
predict the perspective that particular ‘individuals’ hold by com-
paring the amount of synchrony they show with groups of
people who hold one perspective versus another, and then clas-
sifying them into whichever group they more closely resemble
(Lahnakoski et al., 2014; Yeshurun et al., 2017). These studies
applied synchrony-based classification approaches to predict
differing mindsets that were experimentally induced. However,
no published research has yet attempted to use a synchrony-
based approach to predict naturally occurring, dispositional
differences (i.e. longstanding psychological characteristics).

Furthermore, the synchrony-based classification studies
conducted to date used functional magnetic resonance imag-
ing (fMRI), which is expensive and immobile. Given that MRI
machines are located in limited areas of the world (e.g. urban
and mostly western locations), this imaging modality can only
reach certain populations, which limits its generalizability and
potential to study particular populations of interest. Thus, more
work is needed to determine whether the same classification-
based approaches used in the fMRI literature can be applied to
data collected from portable neuroimaging devices, which are
able to reach a broader population (Burns clustering to identify
small group, 2019).

Therefore, in this study, we used a simple synchrony-based
classification method, which we refer to as the ‘neural refer-
ence groups’ approach, to predict dispositional attitudes at the
individual level. Furthermore, we applied this method to neural
time series data collected using functional near infrared spec-
troscopy (fNIRS), a portable neuroimaging device. This research
was conducted in the Middle East to demonstrate the possibility
of conducting simple, naturalistic viewing studies anywhere in
the world and also the feasibility of analyzing their data using a
computationally accessible classification method.

The neural reference groups approach involves comparing
an individual’s brain data to data from groups of people with
pre-identified distinct mindsets, and then ‘matching’ the indi-
vidual into the group with which they have greater neural
synchrony. Neural synchrony analyses were first developed to
localize universal cognitive processes that occur during the
processing of naturalistic stimuli. For instance, intersubject
correlation is a neural synchrony approach that is commonly
used for understanding which regions and networks of the
brain are active across individuals during narrative comprehen-
sion (Hasson et al., 2004; Nastase et al., 2019). Such work has
demonstrated strong synchronization in both low-level sensory
regions and high-level association cortices, suggesting that indi-
viduals show similarities in their processing of both low- and
high-level information features (Hasson et al., 2004, 2010). Fur-
thermore, regardless of the modality in which a narrative is
presented, comprehension of its content tends to be associ-
ated with activation in the brain’s default mode network (DMN;
Wilson et al., 2007; Jääskeläinen et al., 2008; Honey et al., 2012;
Regev et al., 2013).

Research using the intersubject correlation approach has
also examined how neural responses differ across individuals
who ‘see things differently,’ or are interpreting the same stimuli
according to different frameworks. For instance, when individu-
als are told to attend to different aspects of a scene (e.g. scenery
versus plot) while watching a movie, they show distinguish-
able differences in regions associated with attention and the
processing of objects and scenes (parahippocampal gyrus, pos-
terior parietal cortex and lateral occipital cortex; Lahnakoski

et al., 2014), such that people sharing a perspective show greater
synchrony than those asked to see things differently. Further,
individuals who are given alternative frames for interpreting an
ambiguous narrative show differential neural responding in the
brain’s mentalizing network, language areas and subsets of the
mirror neuron system (Yeshurun et al., 2017).

Building on the group differences that they identified,
these studies also applied classification-basedmachine learning
and could reliably distinguish between individuals who inter-
preted the same information through two different frameworks.
Lahnakoski et al. (2014) use a k-nearest neighbors machine
learning approach, classifying participants based on the group
membership of the participantswithwhom they show the great-
est synchrony. In contrast, Yeshurun et al. (2017) use a k-nearest
centroid approach, in which participants are classified based
on showing greater synchrony with the average of one group
of participants versus another. In this article, we refer to the
approach used by Yeshurun et al. (2017) as the neural reference
groups approach. This approach is simple to implement com-
putationally and requires making few analytic choices, thus
limiting ‘researcher degrees of freedom’ (Botvinik-Nezer et al.,
2020). In addition, it involves comparing new participants’ data
to group average timecourses, which are less noisy references
for classification than neighboring individuals’ timecourses.

Whereas these studies looked at experimentally manipu-
lated differences in perspective, other research has examined
how naturally occurring, dispositional differences influence
neural synchrony (Finn et al., 2020). For instance, researchers
found that individuals with similar levels of trait paranoia
(high or low) showed more similar neural responding in regions
of the DMN (Finn et al., 2018). Other researchers have found
that individuals with similar sexual desire and self-control pref-
erences have similar neural fluctuations in several brain net-
works, including the DMN (Chen et al., 2020). Furthermore,
individuals with the same cognitive style (analytical or holistic
thinking) show synchrony in several cortical regions, including
prefrontal cortex (Bacha-Trams et al., 2018). Finally, other stud-
ies of have also found a strong relationship between similarities
in self-reported experiences of narratives and neural responses
(Jääskeläinen et al., 2008; Nummenmaa et al., 2012; Nguyen et al.,
2019; Saalasti et al., 2019; Tei et al., 2019).

Although this nascent body of research has examined the
neural correlates of individual differences, no researchers have
used a classification approach to make predictions about the
dispositions of specific individuals using neural synchronymea-
sures. From a basic science perspective, classification-based
analyses have the advantage of being driven by reverse-
inference rather than forward-inference, drawing a stronger
link between brain activity and particular psychological func-
tionality (Poldrack, 2011). From an applied science perspective,
classification-based research can move beyond simply explain-
ing differences in dispositional experience (i.e. what tradi-
tional, forward-inference studies do) to actuallymake real-world
predictions about individuals whose dispositional characteris-
tics are not known in advance.

To be clear, there is also significant literature on how differ-
ences in dispositional tendencies are associated with different
neural responses to short, repeatable events (in contrast tomore
naturalistic timecourse data). For instance, many studies have
shown that liberals and conservatives show differential neural
responding in a number of regions, including the DMN, dorso-
lateral prefrontal cortex (dlPFC), anterior cingulate, amygdala
and insula (Knutson et al., 2006; Westen et al., 2006; Kaplan
et al., 2007; Kanai et al., 2011; Jost and Amodio, 2012; Ahn
et al., 2014; Van Bavel and Pereira, 2018). Other studies have
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applied machine learning to univariate data to make predic-
tions about other real-world characteristics, including physical
and psychological well-being (Memarian et al., 2017) and polit-
ical orientation (Ahn et al., 2014). Although these studies have
been useful in illuminating naturally occurring differences in
brain functioning, their use of event-based paradigms limits the
ecological validity of their findings. In contrast, measuring brain
fluctuations during unstructured experiences, such as watching
a video or having a conversation, yields findings that are more
likely to be generalizable to real-world experience. Furthermore,
these naturalistic paradigms are simple to design and conduct,
which is useful in terms of being able to use them to study awide
range of dispositional differences in a variety of contexts.

In summary, previous synchrony-based studies have taken
a forward-inference approach, showing that individuals who
share similar traits also show similar neural responses. Two syn-
chrony studies to date have taken a reverse-inference approach
to predict participants’ temporary mindsets, which were exper-
imentally induced, based on their neural fluctuations. The only
studies that have made predictions about naturally occurring,
‘dispositional’ differences have been event-based, which can be
limited in terms of their generalizability. Thus, there have been
no classification-based synchrony studies that attempt to use
naturalistic timecourse data to predict individuals’ dispositional
tendencies to process or experience the world differently. Fur-
thermore, most research using a classification-based approach
to predict dispositional tendencies has been conducted in highly
controlled laboratory settings using fMRI, which is costly and
limited in terms of the populations it can reach. Although fMRI
research has been important in advancing classification-based
methods, further work is needed to demonstrate the efficacy
of conducting classification analyses on data acquired in more
naturalistic, real-world settings. Therefore, we set out to exam-
ine whether it was possible to use a synchrony-based clas-
sification approach on neural timecourse data acquired in a
non-standard lab setting using fNIRS, which is a less expensive
and more portable neuroimaging modality than fMRI. Further-
more, we attempted to do so in a ‘non-WEIRD population’ in the
Middle East, an area of the world in which neuroscience studies
are rarely conducted outside of Israel (Burns et al., 2019).

The present study

In this study, our goal was to predict individuals’ dispositional
attitudes on a sociopolitical topic in a pop-up lab that was set up
in an office space in Amman, Jordan. Given that attitudes can
serve as interpretive frames that affect attention, mentalizing,
counterarguing and other cognitive processes, we predicted that
individuals with different attitudes should show differential
neural responding in regions associated with these processes
(i.e. lateral prefrontal cortex [lPFC] and medial prefrontal cortex
[mPFC]). If this is the case, then it is possible to create neu-
ral reference group data by averaging across neural timecourses
from the same brain region in participants who share similar
attitudes or other hidden psychological characteristics. When
two or more neural reference groups are obtained, new individ-
uals whose attitudes or characteristics are not already known
can be classified into one of the groups by comparing whether
they show greater synchrony with one group versus another. In
other words, two groups of people who have different attitudes
about, for example, abortion, are likely to have different neural
responses when listening to an anti-abortion message. A new
individual listening to the samemessage will reveal greater sim-
ilarity to one group (e.g. the pro-choice group) than to the other
(e.g. pro-life group), indicating whether the new individual is

likely to be pro-choice or pro-life. In tests of such classification
strategies, the true dispositional attitude of the ‘new individual’
is actually known, but the classification process is blind to this
information and only compared to this criterion in the final step
to determine the accuracy of the classification method.

Only one other known study has used this neural reference
groupsmethod, predicting the experimentally manipulated per-
spective from which participants were understanding a narra-
tive (Yeshurun et al., 2017). The present study was a first test
of this method on dispositional attitudinal differences. Partici-
pants in the Middle East who held opposing views on a sociopo-
litical issue came to a pop-up neuroscience lab and viewed
two videos in which other individuals expressed their opinions
about the issue. While watching the videos, participants were
scanned using fNIRS. Data were collected from channels posi-
tioned in lPFC andmPFC regions. Lateral prefrontal regions were
selected due to previous associations of dlPFCwith counterargu-
ing behavior (O’Donnell et al., 2018; Liu et al., 2020). As part of the
DMN, mPFC was selected due its association with social cogni-
tive processes: A large body of evidence suggests that ventrome-
dial cortex is associated with affective processing, anteromedial
prefrontal cortex with self-referential thinking and dorsomedial
cortex (dmPFC) with mentalizing and judgments about others,
(Lieberman et al., 2019). Furthermore, prior work has shown that
dmPFC synchrony can detect when individuals have more sim-
ilar spontaneous interpretations of a narrative (Finn et al., 2018;
Nguyen et al., 2019). Finally, collecting data from mPFC and lPFC
regions minimized the chance of signal drop-out, as they are
conveniently located beneath areas of the scalp that have less
hair (i.e. the forehead).

We conducted analyses in two stages to determine whether
members of the opposing ideological groups showed differ-
entiable neural responses to the videos. First, we examined
whether there were group-level differences. On a channel-by-
channel basis, we averaged across the neural timecourses of
all members within each ideological group, which created two
group average timecourses per channel. We then conducted
Euclidean distance analyses between these average timecourses
to detect group-level differences. We hypothesized that we
would find group differences between the timecourses of the
two neural reference groups.

Second, we used the neural reference groups approach to
make predictions about ideological stance at the individual level.
The neural reference groups approach utilizes a leave-two-out
procedure: the timecourses from pairs of participants are ‘left
out’ from the dataset and are then compared to the timecourses
of each neural reference group formed from the remaining data.
Participants were classified as holding one ideological stance or
the other based on which neural reference group their neural
responsesmore closely resembled (i.e. which group they showed
greater synchrony with). This process was repeated, holding
out a different pair of participants in each iteration, until all
participants have received predictions. In order to assess the
accuracy of the neural reference groups approach, participants’
true attitudes were compared to the model’s predictions. Given
that individuals who hold different ideological stances are likely
to process sociopolitical content differentially, we hypothesized
that we would be able to accurately predict participants’ stances
at the individual level.

Method

Participants

Participants (N=72) were adult males who were recruited in
Amman Jordan, for a video marketing study, from which the
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authors obtained the data for analysis. All participants were
screened over the phone in Arabic and were asked for their con-
sent to participate. Total sample size was determined by how
many participants could be scanned with the resources and
time allotted to collecting data in a 10-day timespan. Partici-
pants were recruited such that half of the sample would hold
one political stance and half would hold the opposite stance
(n=36 for each group). During pre-screening, participants used a
7-point scale (1= ‘strongly disagree,’ 7= ‘strongly agree’) to indi-
cate their agreementwith the following statement: ‘Womenwho
are raped should be allowed to have abortions.’ This item was
developed by the research team to assess attitudes on a facet
of the abortion debate that was salient to the population being
studied. In this article, we will refer to those in support of this
sub-issue of abortion as being pro-choice and those who oppose
it as pro-life, though the reader should consider that these terms
are simplifications of a complex issue and, importantly, do not
correspond directly to pro-choice and pro-life views as they are
often defined in Western countries. Individuals who answered
between 1 and 3 on the scale above were classified as being pro-
life, and individuals who answered between 5 and 7 were classi-
fied as being pro-choice. Individualswho answered a ‘4’ were not
admitted into the study. For the final sample of participants who
completed the study, the average opinion for pro-choice group
memberswas a 6.47 (SD=0.71) on the scale, whereas the opinion
for pro-life group members was 1.67 (SD=0.80).

Procedure

Participants came into an office space at the Independent Insti-
tute & Administration Civil Society Studies Research Group
polling firm, where a pop-up fNIRS laboratory had been set up.
After providing consent, participants’ heads weremeasured and
then fitted with an appropriately sized stretchy cap, which held
the fNIRS optodes against the skull. The fNIRS equipment was
then calibrated to ensure good signal quality between sources
and detectors. During the fitting and calibration process, par-
ticipants completed a questionnaire to assess their attitudes
toward the abortion issue. This questionnaire included the orig-
inal pre-screening item (i.e. whether women who are raped
should be allowed to have abortions), whichwas used to confirm
the participant’s ideological stance on the day of the scan. The
questionnaire also included a question that assessed whether
participants thought abortion should be allowed in a series of
different circumstances (‘Do you agree or disagree with each of
the following reasons for having an abortion?’) For this question,
participants rated a series of items, answering ‘Agree,’ ‘Disagree’
or ‘No Opinion.’ This question was included as a nuanced atti-
tude measure for the purposes of tracking attitude change over
time, although it was not analyzed in this study.

Next, participants completed the scanning portion of the
study. During scanning, participants watched two 4- to 5-minute
YouTube-style videos of Arabic speakers discussing their stance
on the abortion issue in 2 separate functional runs. The order
of the videos was counterbalanced across participants. The
speaker in one video expressed a pro-choice stance, and the
other expressed a pro-life stance. Scripts for the videos were
written by the research team, translated into Arabic and then
recorded by actors. After watching each video, participants
completed a questionnaire in which they evaluated the qual-
ity of the speaker’s arguments using a subset of items that
were adapted from a validated scale of perceived argument
strength (Zhao et al., 2011). Participants used a Likert scale to
indicate the extent to which they agreed with the following

(translated) questions (1= ‘strongly disagree,’ 3= ‘neither agree
nor disagree,’ 5= ‘strongly agree’): ‘The person in the video gives
convincing reasons for [increasing access to/preventing] abor-
tion for women who are raped’ and ‘The reasons provided in
the video are strong for [increasing access to/preventing abor-
tion] for women who are raped.’ Following the video portion
of the scan, participants completed two functional localizers,
which were translated into Arabic: the ‘Why-How task,’ a well-
validated localizer of the brain’s mentalizing system (Spunt and
Adolphs, 2014), and a ‘counter-arguing task’ developed by our
team (O’Donnell, in prep). The data from these localizer tasks
were not used in the present analyses.

Data analysis

fNIRS acquisition and pre-processing

Acquisition. Participants were scanned using two NIRSport
fNIRS units (NIRx, Los Angeles, CA), with a layout of 20 chan-
nels, composed of 8 light sources and 7 detectors (Figure 1). The
NIRSport systems were selected due to their portability and
compact size, as themachines were transported in carry-on lug-
gage from the United States to Jordan and back. The layout was
standardized using the 10-10 UI external positioning system.
Channels were placed in medial and lateral prefrontal areas,
which are associated with mentalizing (mPFC) and counterar-
guing (dlPFC) processes (Denny et al., 2012; O’Donnell et al., in
prep). Data were collected at a sampling rate of 7.81 Hz at wave-
lengths of 760 and 850 nm. Given this high sampling rate, the
timecourses for each video consisted a large number of time-
points (2195 for the pro-choice video, and 2531 for the pro-life
video).

Pre-processing. Prior to data pre-processing, participants were
excluded from all analyses if their answers on the primary
attitudinal pre-screening question, indicated they had a neu-
tral political stance when it was re-administered on the day
of the scanning session (i.e. 4 on the 7-point scale; n=2 par-
ticipants recruited as pro-life). Participants were also excluded
if their stance on the day of the scanning session conflicted
with the stance they had been assigned during pre-screening
(n=2 recruited pro-life, n=1 recruited as pro-choice). Partic-
ipants were also excluded from analyses on a video-by-video
basis if technical issues occurred during acquisition for that
video (n=3 pro-choice watching the pro-choice video; n=2 pro-
life watching pro-choice; n=2 pro-life watching pro-life; n=2
pro-choice watching pro-life). Following these exclusions, the
following sample sizes remained for each political group watch-
ing each video type: n=32 pro-choice Ps watching pro-choice
videos, n=30 pro-life Ps watching pro-choice videos, n=33 pro-
choice Pswatching pro-life videos and n=30 pro-life Pswatching
pro-life videos.

The remaining data were pre-processed using a customized
fNIRS pre-processing pipeline that utilizes the HOMER2 anal-
ysis package (Huppert et al., 2009). For each scan, data chan-
nels were marked as having usable signal if detector satu-
ration did not occur for longer than 2 seconds at a time,
and if the variation of the signal’s power spectrum did not
exceed a quartile coefficient of dispersion of 0.1 over the course
of the scan. Then, the raw NIRS data were filtered using a
bandpass filter of 0.005–0.5 Hz and corrected for motion arti-
facts using a PCA algorithm, converted into hemoglobin con-
centrations using the Modified Beer–Lambert Law, and then
z-scored. Timecourses were truncated prior to the analyses,
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Fig. 1. (a) Locations of 20 NIRS channels, which are formed between adjacent sources and detectors. (b) Experimental setup, showing participant fitted with fNIRS cap

in the mobile laboratory, which was established in a market research company’s office space.

which included trimming off any scan time that occurred
before or after the stimuli were displayed and removing the
first 12 seconds of scan time during the video to account
for delay in the hemodynamic response function. Analyses
were conducted on oxygenated hemoglobin in accordance with
our lab’s prior work (Burns et al., 2018, 2019). Research has
shown that oxygenated hemoglobin has a stronger signal-to-
noise ratio compared to deoxygenated hemoglobin (Strang-
man et al., 2002). Furthermore, the oxygenated hemoglobin
signal is more closely correlated with the fMRI BOLD signal
(Cui et al., 2011), which was relevant given that this study
was replicating a method conducted on fMRI data (Yeshurun
et al., 2017).

In order to localize the data within a common brain space
such that the present results could be compared with results
from fMRI studies, approximate MNI coordinates were iden-
tified for each 10-10 channel position using a probabilistic
registration method (Singh et al., 2005). For visualization pur-
poses, NIRS data were converted to *.img files using xjView
(http://www.alivelearn.net/xjview/), and then overlaid on a 3D
cortical surface using the software Surf Ice.

Measuring group-level neural differences

As a first analysis step, we examined whether participants in
the pro-life and pro-choice groups showed distinguishable dif-
ferences in their neural responses to the videos. We conducted
this analysis on a channel-by-channel basis and for each video
separately. First, we created average timecourses for each attitu-
dinal group by calculating themean across participants within a
group at each timepoint (t). Then, to test for differences between
the groups, we computed the Euclidean distance between the
group average timecourses using the following formula:

D=

√
Σt (choice(t)− life(t))2

Wedeterminedwhether the Euclidean distances obtained for
each channel were significantly different from chance through a
permutation testing procedure (see Yeshurun et al., 2017). Partic-
ipants’ groupmembership was shuffled, while ensuring that the
sample sizes of the shuffled groups were matched to the origi-
nal groups. Then, Euclidean distances were computed between
the shuffled groups. This procedure was repeated 10000 times,
such that the observed Euclidean distance values could be com-
pared to a null distribution of 10 000 shuffled Euclidean distance
values. For each channel and video, P values were calculat-
ing by dividing the number of shuffled values that exceeded
the observed Euclidean distance by the number of repetitions
(number exceeding the observed values+ 1/10 000).

Synchrony-based classification analyses using ‘neural
reference groups’

Subsequent to the Euclidean distance group analyses, we used
a classification-based machine learning approach to investigate
whether participants’ partisan stance (pro-life or pro-choice)
could be predicted at the individual level. These classifica-
tion analyses, which were conducted on individual channels,
involved comparing a participant’s neural timecourse to aver-
age timecourses from the two partisan neural reference groups
(Figure 2). In other words, the reference group averages, which
excluded the participant’s own data, served as benchmarks to
which the participants’ neural data could be compared. Partici-
pants were classified as belonging to a group based on showing
greater similarity to (as in greater synchrony with) one reference
group over the other. For this analysis, Euclidean distance was
used as a measure of neural synchrony.

Following Yeshurun et al. (2017), classification analyses were
conducted on a channel-by-channel basis in regions of interest
(ROIs) selected based on the results of the Euclidean distance
analysis. Classifications were conducted on fNIRS timecourses
for each video separately. For each channel’s analysis, the sam-
ple size for each partisan group ranged from n=18 to n=29,

http://www.alivelearn.net/xjview/
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Fig. 2. Depiction of the neural reference group classification approach. (a) Neural timecourses from channel 9 for participants holding a pro-life stance are averaged

together to form a pro-life neural reference group timecourse. (b) Timecourses for participants holding a pro-choice stance are averaged together to form a pro-choice

neural reference group timecourse. (c) A participant’s timecourse, whose data were not included in the reference group timecourses, is compared to the timecourses of

the two neural reference groups. The participant is then categorized as belonging to one group or the other by demonstrating greater similarity with one group over the

other, as measured by a distance metric (Euclidean distance in this case, though Pearson correlation might also be used). Areas that are shaded in purple demonstrate

overlap where the participant‘s timecourse differed from both reference groups. Areas shaded blue or red correspond to where the participant’s timecourse diverged

more from one of the reference groups (blue=diverging further from pro-choice, red=diverging further from pro-life). These red and blue areas are key to determining

which reference group the participant differs from most in order to match the participant as being likely to belong to one group or the other. Blue and red bars shown

above the graph indicate sections of the timecourse where the participant differed more than (i.e. had a greater Euclidean distance from) one group or the other. For

the participant shown here, a larger blue area than red area across all timepoints indicates that the participant differed more from the pro-choice group, and thus this

participant was classified as being pro-life. In future studies, it may be valuable to examine regions of the timecourse when most participants tend to show similarity

to one group over the other and identify moments in the video to which those timepoints correspond.

depending on howmany participants had usable datawithin the
channel. This sample size was deemed to be adequate based
on the constraints of the study and previous classification-
based neuroimaging work using similar sample sizes (Yeshurun
et al., 2017). For channels that had imbalanced data, such
that there were different numbers of participants within each
partisan group (or in machine learning terms, different num-
bers of ‘samples’ within each ‘class’), we used a prototype

generation algorithm to reduce the number of participants in the
majority partisan group. This downsampling procedure, which
was implemented using the imbalanced-learn Python package,
utilizes k-means clustering to identify small groups of indi-
vidual timecourses that cluster together within the majority
partisan group (Lemaître et al., 2017). It computes the average
timecourse across participants within the identified clusters,
and then replaces the original participant data with that newly
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generated average. This process yielded an equal number of
participants within each partisan group for each classification
analysis.

To conduct the classification, a nearest centroid classifierwas
selected due to the study’s small sample size, because it does
not require the cross-validation procedure that is necessary for
tuning hyper-parameters (see Yeshurun et al., 2017). The classifi-
cation procedure was implemented in Python using scikit-learn
(Pedregosa et al., 2011), where the accuracy of the classifier was
tested using a leave-two-out process (i.e. leaving out one sample
from each reference group to maintain equal numbers of sam-
ples within the two reference groups), with each sample being
left out once. The model was tested on the left-out samples,
having been trained on the remaining data.

We selected Euclidean distance to serve as the classifier’s
similarity index (i.e. the model’s synchrony measure) and we
selected the mean to represent the centroid, in accordance with
standard defaults for the nearest centroid classifier and its use
in previous work (Yeshurun et al., 2017). During the classifica-
tion procedure, for each fold in the leave-two out procedure,
the Euclidean distance was computed separately between the
neural timecourses of each of the two left-out samples and the
mean timecourses of the remaining samples for the two par-
tisan groups. Participants were classified as being a member
of one group or the other based on which Euclidean distance
value was lower. In other words, a participant was categorized
as being likely to belong to whichever group’s neural timecourse
was more similar to their own timecourse within a given chan-
nel. For instance, if a participant’s timecourse within a given
channel was closer in Euclidean space to the average pro-life
timecourse, that participantwould be classified as being pro-life.
In contrast, if a participant’s timecourse was closer to the pro-
choice timecourse, the participant would be classified as being
pro-choice.

To obtain a measure of classification accuracy, the classifier’s
predictionswere compared participants’ true partisan positions,
as measured by self-report. While the partisan position of each
participant was known to the experimenters, the classification
algorithm was blinded to the partisan position of the partici-
pants left out in any particular iteration. Classification accuracy
scores were computed by dividing the number of participants
that were classified correctly by the total number of participants
included (number of participants correctly classified/number of
classifications made). To obtain stable accuracy values, since
different combinations of participants could be left-out in the
leave-two-out procedure, the classification procedure was per-
formed 1000 times within each channel. Final classification
accuracy scores were computed as the average accuracy score
from all 1000 repetitions. Permutation tests, where group mem-
bership labels were shuffled, were then used to test the signif-
icance of these accuracy scores. Classification accuracy scores
were obtained for data shuffled over 10 000 repetitions and com-
pared to the accuracy scores for the real dataset (number of null
values larger than the real value+1/10 000), an approach used
by Yeshurun et al. (2017)

Results

Group-level behavioral differences

Prior to investigating for neural differences between the
group, we first investigated whether there were differences
in how members of the groups rated the videos. Specifically,

we examined participants’ perceptions about the argument
strength of the videos. The two items used to assess the
videos’ perceived argument strengthwere highly correlated, and
thus were combined into a composite variable for each video
(αpro-choice =0.86 [0.79, 0.93]); (αpro-life =0.89 [0.83,0.94]).

We then conducted a repeated-measures ANOVA, with par-
tisan group as a between-subjects factor and video type as
a within-subjects factor. As predicted, there was a signifi-
cant interaction in how participants from the two groups rated
the perceived argument strength of the videos, F(1,62)=57.43,
P<0.001, η2

p =0.48. Pro-choice participants rated the pro-
choice argument as being of higher quality, (M=3.69, SD=1.02)
than the pro-life participants (M=2.43, SD=1.10), t(62)=−4.73,
P<0.001. On the other hand, pro-life participants gave a
higher rating to the pro-life argument (M=4.2, SD=0.71) than
pro-choice participants (M=2.26, SD=1.13), t(56.49)=−8.29,
P<0.001. This indicated that the partisan groups were signifi-
cantly different in terms of the extent to which they thought the
videos contained strong, high-quality arguments.

Group-level neural differences

Given that behavioral differences were seen between the groups
for the ratings of the arguments in the videos, we first exam-
ined whether there were also differences between the average
neural timecourses of the two groups. For both videos, the great-
est differences in neural responding between the pro-life and
pro-choice groups were seen in channels located within the
dmPFC, a region of the mentalizing network (Figure 3). In other
words, participants in the two groups tended to respond more
differently to the videos in this region. The largest Euclidean
distance value, which was seen in channel 9 for the pro-life
video, was marginally significant at P<0.06. However, this effect
was not significantly different from chance following False Dis-
covery Rate (FDR) correction with a q criterion of 0.05 (Ben-
jamini and Hochberg, 1995), which was used due to the large
number of tests across videos and channels (2 videos × 20
channels=40 tests). No other channels for either video showed
significantly different Euclidean distances between the two
groups.

Although these differences between the two partisan groups
did not reach statistical significance at the group level, we also
investigatedwhether it would be possible tomake above-chance
predictions about groupmembership at the individual level. Pre-
vious work has shown that in some instances, individual-level
classification can achieve greater discriminatory power than
group-level analyses due to inherent differences between the
two methods (Arbabshirani et al., 2017). Whereas the group-
based difference analysis attempts to determine whether the
partisan groups show different neural responses ‘on average,’
the individual-based classification analysis takes a slightly dif-
ferent approach. It investigates whether it is possible to cate-
gorize an individual as being likely to belong to one group or
the other.

For the classification analyses, we began by implementing
a simple ranked feature selection procedure to narrow down
which channels would be used in order to reduce the number of
statistical tests conducted. We selected the channels in which
the group average timecourses were the farthest apart (>mean
Euclidean distance value+1SD) to serve as ROIs. The channels
that passed this threshold were all located in dmPFC (channel
9 for the pro-choice video, channels 8, 9 and 10 for the pro-life
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Fig. 3. For each video within each channel, group-level differences between pro-life and pro-choice participants were computed as the Euclidean distance between the

mean timecourse for each group. These Euclidean distance values are shown projected onto a 3D cortical surface for each video: pro-life (left) and pro-choice (right).

These maps were used to identify ROIs for conducting the classification-based analyses.

video). We modeled this ROI-based approach off of the proce-
dure conducted by Yeshurun et al. (2017), which is analogous to
the standard searchlight procedure developed by Kriegeskorte
et al. (2006). In the majority of multivariate studies, a ‘search-
light’ is used to identify regions that show different levels of
mean activity across conditions at the group level. Then, a clas-
sification analysis is applied on the same data at the individual
level. This searchlight procedure was developed by the same
research group that first raised methodological concerns about
double dipping (Kriegeskorte et al., 2009). According to Etzel
et al. (2013), the searchlight procedure is not susceptible to the
issues of double dipping given that the group- and individual-
level analyses address fundamentally different questions: the
group-level analyses examine mean differences, whereas the
individual-level analyses examine individual differences. Fur-
thermore, in our study, the ROIs were selected based on ranked
distance values as opposed to using P-values generated through
significance testing.

Synchrony-based classification results

To conduct the individual-level analyses, we trained a classi-
fier in the selected ROIs within dmPFC for each video separately
(Figure 4). For the pro-life video, only channel 9 passed the
Euclidian distance threshold set, and hence we conducted the
classification analysis within this channel only (dmPFC, [MNI:
2, 54, 38]). We found that participants’ neural timecourses in
channel 9 successfully predicted their attitudinal stance 66.52%
of the time at above-chance levels (P= 0.028). Thus, it was pos-
sible to identify whether participants identified as being ‘pro-
choice’ or ‘pro-life’ above chance based on how their dmPFC
responded to an individual talking about his pro-life views.
(Figure 4, left).

For the pro-choice video, we conducted analyses in chan-
nels 8, 9 and 10 of dmPFC, as all three surpassed the Euclidean
distance threshold that we had set. We found that channel 8
(left dmPFC, [MNI:−10, 44, 48]) predicted group membership

63.68% of the time, which was above chance (P=0.050). There-
fore, it was possible to identify participants’ views based on
how another region in dmPFC responded to an individual talking
about his pro-choice views at better-than-chance rates (Figure 4,
right). The classification analyses in channels 9 and 10 did not
produce predictions at above-chance levels: the classification
accuracy level was 62.31% (P=0.106) for channel 9 and 50.33%
(P=0.238) for channel 10.

Therefore, we observed effects of dmPFC predicting partisan
stance across both videos. Given this finding, we conducted an
exploratory follow-up analysis to examine whether including
data from both videos in a single analysis would improve the
classifier’s predictive ability. Channel 9 was selected as an ROI
for this exploratory analysis given that its classification accu-
racy was greater than 60% for both videos. Participants were
included in this analysis if they had usable data in channel 9
for at least one of the videos, which yielded a sample size of
N=51 (npro-choice = 25, npro-life = 26). For each video, a participant’s
time series data obtained in channel 9 was compared to the
time series from the two reference groups. For participants who
had quality data for both videos, this yielded four Euclidean
distance values: (1) pro-life video time series (video) compared
with pro-life reference group (ref); (2) pro-life video, pro-choice
ref; (3) pro-choice video, pro-life ref and (4) pro-choice video,
pro-choice ref. To calculate an average distance score relative to
each reference group, we averaged the distance scores that were
calculated relative to the same reference group across videos
(i.e. 1 and 3, 2 and 4). Participants who had quality data for only
one video had only 2 Euclidean distance value scores (one rela-
tive to each reference group for only one video), and thus, these
were used to represent their average distance scores. Finally,
a difference score between the average distances was used to
classify participants as matching more closely with one refer-
ence group or the other. For instance, if a participant’s average
Euclidean distance from the pro-choice reference group was
smaller than their distance from the pro-life group, they were
classified as being pro-choice.



M. C. Dieffenbach et al. | 125

Fig. 4. Classification accuracy for channels (in dmPFC) that could distinguish between partisan groups at above-chance levels for the pro-life (left) and pro-choice

(right) videos. For each video, the observed classification accuracy is shown relative to a null distribution of accuracy scores generated for shuffled data.

This approach did not yield a higher accuracy rate than
what was achieved in channel 9 in the videos separately
(accuracy=54.90%, P=0.348). However, an interesting finding
emerged when we examined the extent to which there was
consistency in classification across the pro-life and pro-choice
videos. In other words, we investigated whether participants
‘matched with’ the same neural reference group for both videos.
For instance, if a participant’s timecourse for the pro-life video
looked more similar to the pro-life reference group, and their
timecourse for the pro-choice video also looked more similar
to the pro-life reference group, they would be classified consis-
tently as being pro-life. An inconsistently classified participant
might show greater similarity to the pro-life reference group
for one video, but greater similarity to the pro-choice refer-
ence group for the other, for instance. To be included in this
analysis, participants were required to have usable data in chan-
nel 9 for both videos, which yielded a sample size of N=37
(npro-choice =15, npro-life =22). Of the participantswhose classifica-
tion was consistent across videos (n=17), 82.35% were classified
accurately. In other words, if both classification tests yielded the
same result, this result was highly diagnostic of the participant’s
true attitude. Permutation testing, which created a null distribu-
tion of accuracy scores obtained by comparing shuffled group
assignments to the consistent participants’ classified groups,
indicated this was a significant result (P=0.001); however, this
analysis was conducted post hoc on a small sample and requires
replication.

Discussion

Previous fMRI research has established that those who are ‘like-
minded’ tend to show similarities based on how their brains
respond to external stimuli (Parkinson et al., 2018). Likewise,
fMRI studies have shown that individuals who demonstrate
differences in their internal states show differentiable neu-
ral responding (Lahnakoski et al., 2014; Yeshurun et al., 2017;
Bacha-Trams et al., 2018; Finn et al., 2018 2020; Nguyen et al.,

2019; Chen et al., 2020). Although studies have used neural
synchrony measures to make predictions about experimen-
tally induced psychological differences (Lahnakoski et al., 2014;
Yeshurun et al., 2017), no synchrony-based studies to date have
attempted to predict naturally occurring psychological char-
acteristics, such as dispositional attitudes. Furthermore, no
prior work has applied a classification-based approach to fNIRS
data, which can be collected in more naturalistic environ-
ments as well as across culturally and demographically inclu-
sive settings. Thus, the present study utilized fNIRS technol-
ogy in a pop-up laboratory, measuring the neural respond-
ing of participants with two different partisan stances as they
watched naturalistic video stimuli. The study’s primary aim
was to assess whether individuals’ views could be predicted by
applying a synchrony-based classification approach that com-
pared individuals’ neural data to data from neural reference
groups.

Our results showed that we could predict participants’ views
on a specific abortion issue at above-chance levels. For two sep-
arate videos, classification could be achieved with significant
accuracy using neural data acquired from dmPFC. In a sub-
sequent exploratory analysis, participants who matched with
the same neural reference group in dmPFC across both videos
were classified at an even higher rate. This region is a part of
the mentalizing network, a set of brain regions associated with
thinking about mental states (Frith and Frith, 2006; Mitchell,
2009; Lieberman et al., 2019). Prior fMRI and fNIRS studies have
also demonstrated a positive association between dmPFC activ-
ity and perceptions of the effectiveness of persuasive messages
(Klucharev et al., 2008; Falk et al., 2010 2013; Burns et al., 2019).
Thus, in the current study, participants in the two partisan
groups were differentially responding in a region that has previ-
ously been associated with mentalizing and being persuaded by
amessage. Such a finding would track with differences observed
in participants’ self-report data, in which there were significant
differences between the partisan groups in terms of how strong
they found the video arguments to be.
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For researchers who may be interested in conducting future
research on synchrony-based classification using fNIRS data, it
is worth noting that current fNIRS technology tends to have bet-
ter signal in regions with thinner or no hair, and thus regions
in prefrontal cortex, such as dmPFC, are optimal locations to
measure. Whereas equipment constraints limited the number
of regions that could be measured in the current study, future
studies might also consider measuring signal in other DMN
regions, such as the inferior parietal lobule and inferior pari-
etal and temporoparietal junction. In addition, recent research
has also demonstrated that friends, who tend to be similar to
one another in terms of how they ‘see’ the world, show greater
neural similarity in these regions (Parkinson et al., 2018).

Although the same general brain region (dmPFC) yielded
accurate classification across both videos in the current study,
it is worth noting that the exact location of the channels that
yielded the most accurate classifications for each video differed.
For the pro-life video, significant classification was achieved
using data from channel 9, but not from channel 8. The oppo-
site was found for the pro-choice video (though here, channel 9
did show a trend towards significance). It is unclear why such a
discrepancy may have occurred. It is possible that due to head
movement, the fNIRS cap may have shifted such that the chan-
nels were in slightly different locations between the videos.
However, we think this is unlikely given that the order of the
videos was counterbalanced across participants. It is also pos-
sible that an inherent difference between the stimuli yielded
differential activity in slightly different regions. We find it to be
promising that similar effects were seen across the two videos,
and yet we also would advocate for future research to attempt
to obtain accurate classification in a consistent set of regions.
Furthermore, we are encouraged by our finding that participants
whowere consistent inmatchingwith the same reference group
across stimuli within the same regionwere classifiedwith a high
degree of accuracy. This would suggest that future researchers
who intend to use the neural reference groups approach in
applied research might consider using ‘neural synchrony con-
sistency’ across stimuli as a proxy for degree of confidence in
predictions conducted at the individual level.

Despite it being possible to classify participants at the indi-
vidual level in dmPFC channels, there were no significant dif-
ferences in neural responses at the group level. Replications of
this research may help explain why this occurred. One expla-
nation for this could be that the partisan groups did not have
truly dissociable neural data. We find this explanation to be
unlikely due to a large body of evidence suggesting that individ-
uals who hold different political beliefs show differential neural
responding (Knutson et al., 2006; Westen et al., 2006; Kaplan
et al., 2007; Jost and Amodio, 2012; Ahn et al., 2014; Van Bavel and
Pereira, 2018).

An alternative explanation would be that the study was
underpowered, such that the individual-based classification
approach was more sensitive to neural differences than the
group-level analyses. Previous research has shown that discrep-
ancies can occur between these types of analyses due to differ-
ences in the research questions they attempt to address, and
how they measure ‘success’ using different statistics (Arbabshi-
rani et al., 2017). It is possible that the fNIRS data collected in the
pop-up lab in the Middle East were noisier than fNIRS or fMRI
data from a traditional, controlled lab setting. Data collection
was restricted to a 10-day timespan. Naturally, this meant that
we did not have as large a sample as we would have liked. We
are currently analyzing an analogous study run in our lab in the
United States which has a larger sample size.

Nevertheless, accuracy rates of 66% and 63% in a binary clas-
sification are extremely typical for successful classification stud-
ies in neuroimaging. With high in-group variance resulting from
a relatively small sample size and noisy data, it may be that we
were underpowered to be able to detect statistically significant
group-level differences. In contrast, the classification-based
analysis focuses on comparing an individual’s timecourse to the
mean of each group and may be less sensitive to the amount
of variance present. Even if both groups have high variance,
accurate prediction may still occur if enough signal is present in
the mean to facilitate the individual’s matching with the correct
group. Thus, further work examining the relationship between
group-level and individual-level classification analyses on time
series data may help explain why these discrepancies might
happen in the context of this particular classification approach.
In addition, future studies might consider collecting larger sam-
ple sizes, along with employing techniques to reduce statistical
noise caused by participants and/or equipment.

Furthermore, it is possible that the low-budget quality of
the stimuli used in the current experiment influenced statis-
tical power. Given the study’s time constraints, the actors in
the videos used in the stimulus set alternated between mak-
ing eye contact with the camera versus looking down at their
scripts, which may have elicited muted emotional responses
from participants. However, even if participants could recognize
that the speakers in the videos were actors, the videos’ political
content was enough to elicit distinguishable neural responses
between partisan groups. We believe that the limitations of our
stimuli make the study’s significant findings more impressive,
and expect that richer stimuli might yield stronger effects. For
instance, previous work has shown that highly engaging stim-
uli are more likely to evoke higher levels of neural synchrony
(Cohen et al., 2017). In terms of identifying distinguishable group
differences, an ideal stimulus would be one that is highly engag-
ing for individuals within a group and also polarizing between
two or more groups. Future researchers who wish to apply the
current classification approach should carefully consider the
selection of their stimuli to optimize statistical power.

Finally, this study should be seen as a ‘proof of concept,’
demonstrating that it is possible to predict attitudes by con-
ducting classification analyses on naturalistic timecourse data.
More work is needed to demonstrate that models using the
neural reference groups approach can make accurate out-of-
sample predictions. It remains an open question whether this
classification approach can generalize beyond a small sample
of individuals who share similar demographics or if it becomes
fine-tuned to the particularities of a specific population used
in a particular study. For instance, this study used a small
stimulus set focused on one sociopolitical issue, and it was
conducted only among Arab males living in Jordan. Additional
work will be required to replicate this work to ensure that
the findings generalize to attitudes on other issues among
other populations.

In summary, this study demonstrates that the neural refer-
ence groups approach can be used to make predictions about
real-world differences using data collected in naturalistic set-
tings around the world. Furthermore, such predictions can be
made by using a synchrony-based classification approach that
utilizes neural reference groups. The classification accuracy
scores obtained in our study were greater than those that would
be achieved by chance and are consistent with scores observed
in a prior, analogous fMRI study (Yeshurun et al., 2017). We find
this result to be encouraging, given the challenges that were
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posed by collecting data in a pop-up neuroscience lab with low-
budget stimuli and time constraints. We are hopeful that it may
be possible to obtain higher classification accuracies in fNIRS
research as more advanced equipment and analysis techniques
are developed, and as neuroimaging researchers learn how to
optimize experimental design in naturalistic contexts.

Having the ability to take neuroimaging ‘on the road,’ and
to make predictions about individuals based on their brain
responses, is likely to open up new opportunities for field
research in naturalistic settings with more diverse, non-WEIRD
samples (Burns et al., 2019). Recently, there has been growing
interest in using portable neuroimaging, in combination with
synchrony analyses, to understand social interactions in real-
world settings (Dumas et al., 2010; Dikker et al., 2017). However,
portable devices also afford the ability to conduct single-person
analyses on any population, anywhere in the world and at
low costs.

Using fNIRS or other neuroimaging modalities, it is at least
plausible that the neural reference groups approach could pre-
dictively identify any hidden state or trait that influences how
we process the world around us. For instance, one could
determine whether individuals respond better to one teach-
ing approach or another, resonate more or less with particular
versions of public health messages or show neural responses
more consistent with being open-minded or closed-minded in
particular contexts. It is our hope that researchers will con-
tinue to build upon the neural reference groups approach to use
neuroimaging in more applied and naturalistic settings.
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