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Maximum a posteriori classification of multifrequency,
multilook, synthetic aperture radar intensity data
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We present a maximum a posteriori (MAP) classifier for classifying multifrequency, multilook, single polariza-
tion, synthetic aperture radar (SAR) intensity data into regions or ensembles of pixels of homogeneous and
similar radar backscatter characteristics. A model for the prior joint distribution of the multifrequency SAR
intensity data is combined with a Markov random field for representing the interactions between region labels
to obtain an expression for the posterior distribution of the region labels given the multifrequency SAR observa-
tions. The maximization of the posterior distribution yields Bayes's optimum region labeling or classification
of the SAR data or its MAP estimate. The performance of the MAP classifier is evaluated by using computer-
simulated multilook SAR intensity data as a function of the parameters in the classification process. Multilook
SAR intensity data are shown to yield higher classification accuracies than one-look SAR complex amplitude
data. Examples using actual two-frequency, four-look, SAR intensity data acquired by the NASA/Jet Propul-
sion Laboratory airborne polarimetric SAR are presented. The MAP classifier is extended to the case in which
the radar backscatter from the remotely sensed surface varies within the SAR image because of incidence angle
effects. The results obtained illustrate the practicality of the method for combining SAR intensity observations
acquired at two different frequencies and for improving classification accuracy of SAR data.

1. INTRODUCTION

Techniques for segmenting synthetic aperture radar (SAR)
images are essential for the development of automated
computer systems capable of handling and analyzing, at
high data rates, a large volume of SAR observations of the
Earth and other planets from a spaceborne sensor. Seg-
mentation techniques help to condense the information
contained in the SAR images, help to detect and map
scene features of interest for subsequent image analysis
and scene description, and facilitate the inference of geo-
physical and biophysical parameters of various types of
surfaces from SAR data by using inversion techniques.'

In this paper we present a technique for classifying
multifrequency, multilook SAR intensity data into regions
or ensembles of pixels of homogeneous and similar radar
backscatter properties. Given multifrequency, multilook
SAR intensity measurements at each pixel location of a
data array and a model describing the statistical distribu-
tion of these measurements, we want to label, in some op-
timum fashion, each image pixel s with a region label
L. E {1, ... , K}, where K is the number of regions and
where, for instance, L, = 2 means that the image pixel
indexed s belongs to region 2. The radar backscatter
characteristics of each region are assumed to be known
in advance, from a supervised selection of the regions of
interest, from a multidimensional clustering analysis of
the SAR data, or from a combination of both.

Rignot and Chellappa2 presented a maximum a poste-
riori (MAP) Bayesian classification technique for classify-
ing single-frequency, single polarization, one-look SAR

complex amplitude data into homogeneous regions. It
was shown that the inherent high-order statistics of the
SAR signal (namely, the correlation properties of the com-
lex amplitudes) could be successfully incorporated into a
statistical model for representing the SAR complex mea-
surements and that the combination of this model with a
Markov random field (MRF) for representing the prior
distribution of the region labels of the data could yield
an algorithm with high classification quality and accu-
racy. In this paper we extend the technique developed for
one-look SAR complex amplitudes to the case of multilook
SAR intensity data for which the statistics of the signal
are significantly different and modeling requires major
modifications.

SAR complex amplitudes (that is, amplitude and phase
of the radar return) are produced in the last stage of SAR
processing following compression of the data in both the
range and azimuth directions3 and correspond to a single
sample or a so-called look of the scene. At each pixel loca-
tion s, the complex amplitude, denoted a3, may be detected
to generate a one-look intensity image, where the intensity
at each pixel location is the squared magnitude of the am-
plitude (that is, where I, = la.,2). One inconvenience of
one-look intensity data is that the variance of the inten-
sity is large and proportional to the squared mean inten-
sity level because of the presence of image speckle, a
consequence of the interference of returns from indepen-
dent scatterers within a resolution cell of the coherent
imaging system. The large variance of one-look SAR
intensity data renders their visual analysis difficult. One-
look SAR data are therefore often considered intermediate
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products, and postprocessing techniques, called multilook-
ing techniques, are applied to them to produce multilook
SAR intensity data. The idea is to form an image that
represents the average of several independent samples
or looks of the scene. There are several ways to obtain
multilook images.4 5 The multilooking techniques imple-
mented in practice involve only one data take. Typically,
N single-look complex amplitudes ap with p E {1, .. , N}
are selected from either time or spectral division of the
one-look SAR data, detected (that is, compute Ip = apI2)

and incoherently averaged (that is, I = 7 I-Ip1N). N is
the number of looks. The process is done at the expense
of spatial resolution, which is degraded by a factor N45

In addition, the phase of the radar return is lost during
multilooking because of detection and incoherent averag-
ing. The advantages of multilooking are that the variance
of the intensity is reduced by a factor N, visual analysis
of the SAR images is facilitated, and the data volume is
divided by 8N because multilook intensity data can be
coded on 8 bits (instead of 64 bits for complex amplitude
data) with minimal information loss.

Methods that were developed previously for classifying
multilook SAR intensity data suffer many drawbacks.
These techniques are basically divided into two categories:
(1) techniques based on speckle removal as a preprocess-
ing step and thresholding of the intensity level for classi-
fication6 and (2) the gray level co-occurrence matrix
(GLCM) method,7 a statistical approach based on the first-
and second-order statistics of the signal. A variety of
filters for removing image speckel have been proposed.
These filters decrease speckle by using statistics calcu-
lated from a local support neighborhood, assuming homo-
geneous scattering characteristics. However, speckle
removal, originally developed for display purposes and
based on an approximate image model, degrades spatial
resolution and the information content of the data, some-
times in a nonuniform manner across the image. The
GLCM method, in contrast, ignores image speckle that
dominates the statistics of the signal and is falsely in-
terpreted as a natural textural variability of the radar
response from the imaged surface, which varies propor-
tionally to the mean intensity level of the radar return.
The selection and estimation of the classification parame-
ters in the GLCM method are also scene dependent and
computationally expensive. Segmentation results based
on either technique appear noisy and are not satisfactory
for practical applications.

In this paper we present a MAP Bayesian classifier
adapted to the first- and second-order statistical charac-
teristics of multilook, single polarization, SAR intensity
data. The classification technique is extended to the case
in which SAR observations are made at different frequen-
cies of the radar electromagnetic signal. Several space-
borne SAR instruments will be launched in upcoming
years to gather radar data about the Earth's surface and
environment at a single frequency and polarization but
with radars operating at distinct frequencies and polar-
izations. It is possible that those SAR data could be used
in a synergistic manner. Multifrequency SAR observa-
tions significantly increase our capability to separate and
to characterize different types of natural surfaces com-
pared with single-frequency measurements in geology,
sea-ice monitoring, and forestry studies.8 The technique

presented in this paper could be of direct use for classify-
ing SAR data acquired by several of these spaceborne sen-
sors, provided that the multifrequency SAR data are first
spatially coregistered on a pixel-by-pixel basis.'

In addition to the multifrequency capability, the clas-
sifier presented in this paper has a multiple incidence
angle capability, that is, it is adapted to the case in which
the radar backscatter from natural surfaces varies within
the image because of incidence angle effects. This situ-
ation is commonly encountered in SAR imagery, and any
type of classifier must account for incidence angle effects
to operate correctly on the data. The incidence angle of
the radar electromagnetic signal onto the surface varies
within one scene because of the SAR imaging geometry
and of spatial variations in surface slopes owing to the
presence of topography. The radar cross section of natu-
ral surfaces decreases significantly with an increasing in-
cidence angle,'0 and the rate of decrease depends on the
type of surface cover.

The paper is organized as follows. In Section 2 the
first- and second-order statistics of the multilook SAR in-
tensity data are duscussed, a model for their prior joint
distribution is proposed, and an MRF model for the prior
distribution of the region labels is given. In Section 3 an
expression for the posterior distribution of the region
labels given the SAR observations is derived, and the MAP
criterion is formulated. In Section 4 we discuss the effects
on classification accuracy of the number of looks and of
the spatial variability of the radar cross section of natural
surfaces (that is, texture), using computer-simulated
multilook SAR intensity data. A generalization of the
MAP technique to the multifrequency case is given in
Section 5. Its adaptation to incidence angle dependent
backscatter characteristics is discussed in Section 6. In
Section 7 an example of the application of the MAP classi-
fication technique by using actual, two-frequency, four-
look, SAR intensity data of sea ice acquired by AIRSAR is
presented. Section 8 concludes the paper.

2. IMAGE MODEL AND MATHEMATICAL
ASSUMPTIONS

A. Image Model for the SAR Intensity Data
A Bayesian approach requires a model of a prior knowledge
of the distribution of the observed variables. Although
an expression for the prior marginal distribution of the
intensity data would suffice for that purpose, it is better
to obtain an expression for the prior joint distribution of
M intensity values contained in a neighborhood N8 whose
center is pixel s, where s is an element of the data array fQ.
In this manner, additional correlated information from
neighboring pixels is incorporated into the statistical
model, and better classification results are subsequently
obtained.2 In this section we successively examine the
marginal distribution, the correlation properties, and the
joint distribution of multilook SAR intensity data.

1. Marginal Distributions
In contrast to the case of one-look, SAR complex ampli-
tudes, the marginal distribution of multilook, SAR inten-
sity data is not accurately known because multilooking is
a nonlinear process often performed on one-look data
samples that are slightly correlated. When one-look com-
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plex samples selected for multilooking are independent
random variables and the backscatter cross section of the
imaged surface, denoted a', is locally uniform, it is well
known that the multilook intensities are gamma distrib-
uted 1 as

(1)

where the angle brackets denote the spatial average opera-
tor and N is the number of independent one-look samples
used to form each multilook intensity sample I. The spa-
tial average of the intensity in region , denoted (I),, is a
constant proportional to the value of or° in region 1.

If the backscatter cross section o is nonuniform but
spatially varying (that is, textured) within each region,
(I), is a random variable. When (I), is gamma distrib-
uted with parameter a, the multilook intensities are
K distributed' 2 "1:

2ajN (aNfsI~+N-212
p(15/L5) = F(aj)r(N)(Iz \ (I), 

X K,-N[2(al I/(I)1)"12] (2)

regions we assume the existence of a spatial mean value
(Is) of the signal and of a spatial average autocorrelation
function of the intensity [R,(s, s + r) = (I Is+r)] where r
is a two-dimensional displacement vector in the image
plane. To account for the spatial variability of (Is), the
spatial mean value of the signal is modeled as

(Is) = T(s)(I)I, (3)

where (I), is a constant in region I and T is a normalized
texture random variable (E[T1 ] = 1, where E denotes the
expected value), with stationary statistics. T represents
the random fluctuations of the backscatter cross section
0.0 of the surface owing to local inhomogeneities in
region 1. The autocorrelation function of the N-look in-
tensity is, in region 1,

R1 (s, s + r) = K E , Ip(s) E Iq(s + r)
p,q-N

E E (Iap(s)L'jaq(s + r) 2)
p,q=1
p, q-N

= 12 [(jaP(s)j2)(jaq(s + r)12)
p,q-1

where K,-N() is the modified Bessel function of the third
kind of order (ag - N). K distributions describe the sta-
tistics of SAR data better in the presence of texture. 4

1
5

However, if the number of looks N in Eq. (1) is arbi-
trarily modified to match the observed larger-than-
expected variance of the intensity (owing to the textural
variability of 0.0), gamma distributions still model the sta-
tistics of multilook SAR intensity data reasonably well'6

and have the advantage of a simpler analytical expression.
When the one-look samples selected for multilooking

are correlated, and they often are because of sampling of
the SAR data versus the spatial width of the SAR coherent
impulse response, Eqs. (1) and (2) are not mathematically
correct. The exact form of the distribution does not have
a simple closed-form expression." A computationally
convenient alternative is to adapt the number of looks N in
Eqs. (1) and (2) to model the slightly larger-than-expected
variance of the signal. Again, gamma distributions have
the advantage of a simpler analytical expression.

+ (a,(s)aq*(s + r))12], (4)

where we used a fundamental property of zero-mean cir-
cular symmetric Gaussian processes in the third equality,
and the intensities I,(s), with p E {1,...,N}, and Iq(s + r),
with q E {1,.. , N}, are the one-look intensities used to
form the N-look intensities I, and IS+r, respectively. The
corresponding one-look complex amplitudes a, and aq are
such that

(Iap(s)j2) = (I)f IJhp(x)I'Tz(s - x)dx, (5)

where dx is an elementary displacement in the image
plane and hp is the product of convolution of the system
coherent impulse response h with the multilooking filter fp
used to select the one-look complex sample a, from the
available SAR bandwidth. By using Eq. (5), we see that
from Eq. (4)

2. Correlation Properties of Multilook Intensity Data
The correlation properties of one-look complex amplitude
data depend only on the coherent impulse response h of the
SAR imaging and processing systems.' They are not af-
fected by the focusing of the SAR system or by the spatial
variability of the backscatter cross section of the surface.'7

The situation is completely different in the case of multi-
look SAR intensity data, as both focusing of the SAR in-
strument and the natural textural variability of the surface
have an effect. In this section we derive a simple expres-
sion to quantify the effects of texture on the correlation
properties of multilook intensity data. The effects of
misfocusing the radar are also briefly discussed.

Let us consider the general case of a nonstationary
scene. We view the scene as composed of a set of regions
or ensembles of contiguous pixels for which the average
backscatter characteristics are similar. In each of these

Rh,(s,s + r) = (I- I [(~hp (X) 2hq (Y)12
N ' p,q= [ J I ~ P

x T,(s - x)T,(s + r - y)dxdY)

+ KI hp(x)hp*(x - r)hq*(y)h(y - r)

x T(s + r - x)T,(s + r - y)dxdy)]- (6)

Although in practice the impulse responses h with
p E {1, .. , N}, may differ slightly in magnitude, we as-
sume that they are nearly all equal to an impulse response
denoted hN. When the one-look complex samples used for
multilooking are independent, ap and a, are independent
zero-mean random processes, unless p equals q, and Eq. (6)

E. Rignot and R. Chellappa
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becomes

R,,(s,s + r) = (I)12KffJhn(x)I2ihN(y)J2

X T1(s - x)T1 (s + r - y)dxdy)

+ () (fJf hN(a)hN*(a - r)hN*(b)hN(b - r)

x T1(s + r - a)TI(s + r - b)dadb). (7)

Similar expressions were derived previously.'8"9 We will
go further by examining the case in which T varies slowly
compared with the spatial width of the impulse response
hN. In any case, if the texture features of interest in the
scene are spatially smaller than the width of hN, multi-
looking will probably smooth them out. By using this
assumption and dropping the index s for simplicity (T has
stationary statistics), we rewrite Eq. (7) as

R 1 1(r) = (I)L2RTI(r)IRhN(O) 2
+ (I)1

2
RT(O) RhN(r)J* (8)

As RhN(0)12 is one and RT,(r) may be replaced by
(1 + pTl(r)o-T2), where PT is the texture autocorrelation co-
efficient and orT2 is the variance of texture, the autocovari-
ance of the intensity C1, [that is, C11(r) = RI(r) - (I),2] is

CI(r) = (I)12 [pT(r)o-T2 + (1 + T12) N ] (9)

When there is no texture in the SAR scene, TI is zero in
Eq. (9). As RhN(r)12 is nearly zero after a displacement of
one to two pixels2 because of sampling of the SAR data
versus the spatial width of hN, C11(r) is nearly zero for a
displacement r greater than or equal to one pixel spacing
and N greater than one, and the multilook SAR intensities
are nearly uncorrelated. Hence, Eq. (9) shows that the
contribution of image speckle to the correlation of multi-
look SAR intensity data decreases rapidly and significantly
with an increasing number of looks and an increasing dis-
placement in pixels.

When texture is present, the first term on the right-
hand side of Eq. (9) becomes dominant, provided that

N 1 + T,2 (10)

This is expected because, for N large, image speckle does
not dominate the statistics of the signal, and the SAR in-
tensity image resembles an incoherent image of the radar
cross section of the remotely sensed surface. The auto-
covariance of the intensity C11(r) is then equal to the auto-
covariance of texture modulated by (I)12.

In the case of the actual SAR data used in this study (see
Section 8), N is 3.2 and UT 2 is much smaller than 0.3 in all
regions. The multilook intensities are therefore nearly
uncorrelated according to Eq. (9). Direct measurements
of the autocovariance of the intensity C1l(r) (not shown in
this paper) confirm this result. One reason for this is that
the number of looks is not large enough to reduce image
speckle sufficiently and to reveal the natural textural
variability of the backscatter cross section of the surface.
Another reason is that the measured low values of U-T1

2 in-

icate that the spatial resolution of the SAR data, -15 m on
the ground, is not fine enough to sample correctly the tex-
ture features that might be present in the scene.

We conclude that, unless the number of looks is large or
the variance of texture is large, the spatial correlation of
the multilook SAR intensity data in each homogeneous re-
gion of the scene is negligible. This conclusion does not
mean that the scene itself is textureless because a spatial
variability of the intensity is still present at the transition
boundary between different regions (that is, change in the
region labeled 1).

When the SAR imaging and processing systems are out
of focus because of processing errors, the processed SAR
image is blurred. However, misfocusing affects only the
coherency of the imaged scene, and image speckle remains
the same.'7 Misfocusing is hence equivalent to a spatial
smoothing of the texture random variable T, in Eq. (9),
that is, texture features are less visible in the SAR scene,
UT1

2 decreases, PTI is more nearly uniform, and C 1 is closer
to zero.

When the one-look complex samples used for multilook-
ing are uncorrelated, the detected intensity samples are
independent and so are the multilook intensity samples.
When the single-look complex amplitude data are corre-
lated, in the limit of an infinite number of looks, uncorre-
lated multilook intensity samples are independent because
they are Gaussian distributed. In the case of a finite
number of looks, although the assumption is not mathe-
matically correct for gamma distributions, we assume
that uncorrelated multilook intensity samples are also
mathematically independent. The joint distribution of
I, = {Ii}iivN is hence approximated by the product of the
marginal distributions as

p(I./L) c exp[-MU1(I(/L)], (11)

where M is the number of pixel elements contained in Ns
and, with the use of Eq. (1), the energy function U is

U .(I8/L.) = M , I' - (N - 1)log(Ii)]

+ N log((IL,). (12)

In the actual SAR data used in this study (see Section 8),
N is constant and independent of the regions so that each
region of the image is uniquely characterized by its mean
intensity level (I),.

A valid concern is to verify that using an uncorrelated
statistical model of the multilook intensity data negligibly
reduces classification accuracy compared with using a
correlated image model. We consider the case of one-look
intensity data because errors caused by simplifying model
assumptions are expected to be greatest in that case since
one-look SAR complex amplitudes are strongly correlated.
The one-look SAR complex observations of sea ice used in
Rignot and Chellappa2 are detected and classified by as-
suming uncorrelated intensity samples, as proposed in
this paper. The classification results are shown in Fig. 1.
The maximum likelihood (ML) classification map, shown
in Fig. 1(a), is comparable with the minimum distance
(MD) classification map (Fig. 5b of Ref. 2). This result is
expected because the one-look intensity samples are
strongly correlated. However, when the MAP classifier is

E. Rignot and R. Chellappa
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pixel site s given the region labels L, of the neighbors of s
contained in N, is modeled as

p(Ls/L,, r E N8) = - exp[-MU2 (Ls/Lr, r G N8)],
Z 2

where the Gibbs energy function U2 is

U2(Ls/Lr, r E N,) = - > E (Ls-Lr),M r

(13)

(14)

(a)

(b)

Fig. 1. Classification map of one-look SAR observations of sea
ice at L-band HH polarization assuming uncorrelated samples
and using (a) a ML classifier, (b) a MAP classifier. In decreasing
order of brightness are ice ridges, multiyear ice, first-year ice,
and thin ice.

used, the resulting classification map [Fig. 1(b)] resembles
quite well the classification map obtained when a fully
correlated model is used (Fig. 5f of Ref. 2). Only 5% of the
pixels are labeled differently in the two results. As the
difference in classification quality is expected to decrease
with an increasing number of looks because neighboring
samples will be less correlated, this example illustrates
that the uncorrelated assumption does not significantly
reduce the performance of the MAP classifier on multilook
intensity data. In fact, this assumption may be a reason-
able approach even with one-look intensity data.

Further arguments justify the use of a simple analytical
model for the joint distribution of multilook SAR intensity
data. In most current and future multilooking SAR pro-
cessors for spaceborne SAR instruments, multilook SAR
intensity data will be resampled automatically and mapped
onto an Earth-fixed grid. These resampling and geo-
referencing processes, known as geocoding,20 facilitate the
incorporation and registration of SAR data with data ac-
quired by other sensors that are complementary to SAR
and necessary to science applications. 8 As SAR geocod-
ing is a nonlinear and range-variant process, it introduces
severe nonlinearities in the first- and second-order statis-
tics of the multilook intensity data. Thus the accurate
analytical modeling of the autocorrelation function of the
multilook intensities becomes too complicated for practical
image classification."i

B. Prior Distribution of the Region Labels
An MRF model is used for representing the spatial inter-
actions between neighboring region labels as in Ref. 2.
The conditional prior distribution of region label Ls of

, is a clustering parameter equal to 1.4, Z2 is a normaliz-
ing constant independent of Ls, and Bk(Ls - Lr) is the
Kronecker delta. Equation (13) models region labeling as
an isotropic process, with local dependences only, and with
a degree of clustering of the region labels, parametrized
by /3, independent of the regions. The conditional prior
distribution of L, is an exponential function of the number
of like pairs of region labels within Ns. In Rignot,2 ' the
results obtained with this kind of distribution are nearly
identical to those obtained when using a conditional prior
distribution of L, directly proportional to the number of
like pairs of region labels in Ns. This observation indi-
cates that the most physically relevant feature of Eq. (13)
is not so much the particular shape of the prior distribu-
tion of L, but the level of spatial dependence assumed for
the region labels, that is, the parameters ,P and M. The
advantage of an exponential distribution is that it subse-
quently yields a simpler expression of the MAP criterion.

3. MAXIMUM A POSTERIORI CLASSIFIER
From Bayes's theorem, the posterior distribution of the re-
gion label array L = (L8)8en given the SAR intensity array
I = (Is is

(15)p(L/I) - p(L)p(I/L)
p(I)

As I is known, the denominator is just a positive constant.
If the intensity array Ql is viewed as composed of a set of
overlapping windows N, centered at each pixel location s
such that each window is homogeneous (that is, all pixels
have the same region label), given that the multilook SAR
intensities are independent, the prior distribution of the
intensity array is

p(I/L) = rlp(I/Ls). (16)

With proportionality (11) and Eqs. (13) and (16), Eq. (15)
becomes

p(L/I) ca exp -{ME [U1(s1/LJ + U2 (Ls/Lr)]}- (17)

The estimate of L that maximizes p(L/I), is Bayes's opti-
mum or most likely estimate of the region labels given the
SAR data or its MAP estimate. In our model, the MAP
estimate minimizes the energy function

EMAp = E [Ui(I8/L + U2(Ls/L,)]. (18)

The minimization of Eq. (18) is performed on a parallel

E. Rignot and R. Chellappa
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Table 1. Percentage Error of the MAP Classifier
for N-look Intensity SAR Data versus the Texture

Parameter a
N look ML (a = o) MAP (a = ) ML (a = 1) MAP (a = 1)

1 30.8 4.0 33.0 12.2
2 24.3 0.8 29.5 3.6
4 18.7 0.7 24.9 1.6
8 11.2 0.6 16.7 1.0

optimization network identical to the one described by
Rignot and Chellappa2 when either the iterated condi-
tional modes algorithm for fast convergence to an approxi-
mate solution or the simulated annealing technique for
slower convergence to a more accurate solution is used.

4. PERFORMANCE USING COMPUTER-
SIMULATED SAR IMAGERY

Multilook SAR intensity data are simulated on the com-
puter by using the technique described by Rignot and
Chellappa 2 for generating one-look SAR complex amplitude
data. To form an N-look intensity sample, we incoherently
average N independent one-look DAR complex amplitudes.
The mean intensity level (I), is a gamma-distributed
random variable of parameter a to simulate the texture
variability of the radar cross section of the surface. The
simulated N-look images are 128 X 128 pixels in size and
comprise two regions, 64 X 128 pixels in size, correspond-
ing to two different intensity levels Io and I,.

Table 1 gives the classification error (that is, the per-
centage of misclassified pixels in the image) of the simu-
lated SAR intensity data as a function of the number of
independent looks N for several intensity classifiers when
the contrast between the regions is 2 dB. These intensity
classifiers are an MD classifier, an ML classifier [equiva-
lent to /3 = 0 in Eq. (14)] and a MAP classifier. The clas-
sification error is shown to decrease significantly with an
increasing number of looks in all cases. This decrease
is expected because when the number of looks increases,
the variance of the SAR signal decreases, and so does the
probability of error of the classifier.2 2 Hence, multilook
intensity data yield better classification accuracies than
one-look complex amplitude data when the regions are
homogeneous. Increasing the number of looks, however,
decreases spatial resolution and the relevance of the syn-
thetic aperture technique. The results in Table 1 also
show that the MAP technique performs 10-25% better
than does the ML technique when the contrast between
regions is 2 dB. This significant difference justifies the
use of the MAP technique, as in many real applications

the contrast between surfaces of importance is only of
the order of a few decibels. Finally, the results obtained
with the one-look complex amplitude data, also shown in
Table 1, indicate that using the correlation of the complex
amplitudes (ML complex) decreases the classification error
by 5% compared with the case when the one-look SAR in-
tensity data are assumed uncorrelated (ML intensity) but
that little or no difference exists between the two methods
when the MAP classifier is used.

Table 2 shows the classification error of the ML and
MAP classifiers for two values of the texture parameter
a,. a infinite corresponds to (I), being a constant, and a,
equal to one corresponds to (I), being exponentially dis-
tributed. The results show that the presence of texture
does not significantly decrease the performance of the
MAP classifier, even in the presence of a strong spatial
variability of the signal (a = 1).

The effect on classification error of an underestimation
of N is equivalent to that of the selection of a larger value
of 13, that is, to more smoothing of the region labels [see
Eq. (18)]. When N is overestimated, less smoothing is op-
erated on the region labels. As ,f may vary by as much as
30% without significant effects on classification accuracy,2

N does not need to be known with an accuracy better than
30% in real applications.

5. GENERALIZATION TO THE
MULTIFREQUENCY CASE

The complex amplitudes of radar returns from the same
resolution cell acquired at two different operating frequen-
cies of the radar system are uncorrelated. One reason for
this is that the radar signal is sensitive to scatterers of a
different nature. The penetration depth of the radar sig-
nal changes with frequency. Longer wavelengths pene-
trate deeper into the surface cover (soil or vegetation).
The penetration of the signal is accompanied by a change
in the dielectric constant of the reflecting material be-
cause the surface composition changes with depth, by a
change in the roughness scale of the reflecting surface be-
cause of a change in the radar wavelength, and by a change
in incidence angle because of refraction.2 3 As a result,
the observed backscatter cross sections are uncorrelated.
Furthermore, image speckle (which modulates the back-
scatter cross sections in the received signal) is uncor-
related between the two frequencies because the spectra
corresponding to the two data takes do not overlap, re-
sulting in a product of the spectra equal to zero, that is,
uncorrelated data. It is for the same reason that multi-
looking based on spectral division4 works for reducing
image speckle. In effect, the one-look spectra selected for

Table 2. Percentage Error of Several Classifiers versus the Number of Looks N When Using
Computer-Simulated SAR Data: Minimum Distance Using Intensities (MD Intensity),

Maximum Likelihood Using Intensities (ML Intensity), Maximum a Posteriori Using Intensities
(MAP Intensity), Maximum Likelihood Using Complex Amplitudes (ML Complex),

and Maximum a Posteriori Using Complex Amplitudes (MAP Complex)
N MD Intensity ML Intensity MAP Intensity ML Complex MAP Complex

1 30.7 30.8 4.0 25.1 4.0
2 29.5 24.3 0.8 - -
4 24.9 18.7 0.7
8 16.7 11.2 0.6
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multilooking do not overlap, resulting in independent
sample images or looks of the scene. Therefore, the fre-
quency separation criterion for obtaining uncorrelated
SAR measurements is that the difference in frequency
between fi and f2 must be larger than the SAR bandwidth
of each data take. In practice, multifrequency remote-
sensing radars operate at frequencies that are separated
by several gigahertz, whereas typical SAR bandwidth are
less than 1 GHz. So the frequency separation criterion is
always verified.

Because uncorrelated circular Gaussian complex am-
plitudes are also independent, the joint distribution of M
multifrequency measurements is the product of the M
marginal distributions for each frequency. In the case of
multilook SAR intensity data acquired at two frequencies,
fi and f2, we assume that the uncorrelated multifrequency
intensity samples are also independent and that

p(IS1,IS2/Ls) x exp -{M[U(Ifi1/L 8 ) + U(I2/L,)]}. (19)

The resulting energy function is the sum of the energy
functions for each frequency. As the model for the region
labels remains the same, the MAP estimate of the region
labels minimizes

EMAP [U(I!Sf/Ls) + Ul(I2/L,)] + U2(Ls/Lr)]. (20)

In Eq. (20), each additional frequency considered during
classification of the SAR scene adds a bias input current to
each node of the optimization network,2 minimizing EmAp.
If the additional channels are indeed informative, the
energy function U will increase compared with U2 in
Eq. (20), that is, less smoothing of the region labels will be
effected. This is expected, as the MAP labeling tech-
nique uses the information content of the data and does
not perform a simple blind smoothing of the region labels.

6. ADAPTATION TO INCIDENCE ANGLE
EFFECTS

The radar cross section of natural surfaces depends on the
incidence angle Oi of the radar electromagnetic wave onto
the surface. The incidence angle varies over the surface
to be imaged because of the SAR imaging geometry (areas
nearer the radar will be imaged at a steeper incidence
angle) and because of spatial variations in surface slopes
owing to the presence of topography (surface slopes facing
the radar will correspond to steeper incidence angles than
surface slopes away from the radar). In the case of
the SAR data acquired by the NASA/JPL airborne SAR
(AIRSAR), Oi typically varies between 220 and 520 across
range when a surface with negligible variations in surface
slopes is imaged, and typical variations in radar back-
scatter may easily exceed 6 dB across range. For any
classifier to work correctly on SAR imagery, it is therefore
essential to incorporate incidence angle effects.

In Eq. (12), (I), depends on Oi. Hence, to compute the
energy function U1, we must generate a lookup table of the
values of (I)l as a function of O, and Oi must be computed
for each image pixel to use the correct value of (I)1. All
pixels in the neighborhood N, of pixel s are assumed to
have the same value of (I), as i varies only by fractions of
a degree within N. When the changes in incidence angle

owing to local surface slopes produce negligible changes in
radar cross section (flat surface), 6i is constant for each
range line, and the process of accounting for changes in
incidence angle does not significantly increase the compu-
tation time. The energy function U2 of the region labels
does not depend on Oi. As U is computed once during the
classification process and U2 is the only function that is
iteratively adjusted during optimization of the region
labels, the computation time of the MAP classifier is
nearly unchanged when the image characteristics are
varying within the image owing to incidence angle effects.

7. EXAMPLES USING AIRSAR DATA

Multilook SAR intensity images of sea ice acquired by
AIRSAR in March 1988 in the Beaufort Sea, north of
Alaska, are shown in Fig. 2. Near range is on top, the air-
craft flying from right to left in the figure. The images
are 1024 X 750 pixels in size; pixel spacing is 6.7 m in
slant range and 12.1 m in azimuth. The SAR data are
processed four looks, but the effective reduction in vari-
ance of image speckel is approximately N = 3.2 because
the one-look data used for multilooking are slightly corre-
lated. The value of N is computed accurately from the

(a)

(b)
Fig. 2. Total power image of four-look SAR intensity observa-
tions of sea ice acquired by AIRSAR over the Beaufort Sea, north
of Alaska, at (a) L-band frequency, HH polarization, (b) C-band
frequency, VV polarization.
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Fig. 3. Classification map of the SAR intensity data of Fig. 2 by
using a MAP classifier. (a) C-band VV polarization: MY and
CFY are white, FYR is light gray, FYS is dark gray, ThI is black.
(b) L-band HH polarization: CFY is white, MY and FYR are
light gray, FYS is dark gray, and ThI is black. Abbreviations are
defined in text.

correlation of the one-look complex samples used to form
the multilook image by using an expression given by
Zelenka.4 The incidence angle Oi varies between 220
(near range, top in Fig. 2) and 520 (far range, bottom in
Fig. 2). Figure 2(a) shows the SAR image at L-band fre-
quency (24-cm wavelength) and HH polarization (that is,
horizontal transmit and horizontal receive polarizations).
Figure 3 shows the same scene at C-band frequency
(5.6-cm wavelength) and VV polarization (that is, vertical
transmit and vertical receive polarizations). The data
were processed such that the multifrequency SAR mea-
surements are spatially registered. These two modes of
radar operation correspond, respectively, to that of the
Japanese First Earth Resources Satellite J ERS-1 (L-band
HH) launched in February 1992 and of the European First
Remote Sensing Satellite ERS-1 (C-band VV) launched in
July 1991. C-band VV separates well the multiyear-old
sea ice [bright floes in Fig. 2(b)] and first-year sea ice
[darker ice in Fig. 2(b)] but does not quite show the pres-
sure ridges in the ice. L-band HH reveals pressure ridges
an4kridge lines in the ice [bright linear features in
Fig. 2(a)] but confuses ridges and multiyear sea ice. Thin
ice appears dark at both frequencies in a frozen lead run-

ning across the image from top to bottom. Separation of
these different sea-ice types is important, as each ice type
is related to a typical range of ice thickness and ice thick-
ness is a major control parameter in the modeling of the
heat flux between the oceans and the atmosphere.8 The
distribution of sea-ice pressure ridges is useful when one
is estimating the surface atmospheric drag coefficient in
climate modeling over the polar regions, studying acoustic
sources in the ice sheet, or guiding ships through safer
routes since ice breakers often cannot go through pressure
ridges without damaging the ship.2 4

A detail mapping of the different sea-ice types present
in the scene is given by Rignot and Drinkwater2 5 on the
basis of a combination of multifrequency and multipolar-
ization SAR data, passive microwave data, limited surface
observations of the ice, and meteorological observations
collected at a nearby ice camp. The backscatter charac-
teristics of five sea-ice types were extracted across range.
These ice types are compressed first-year sea ice (CFY);
multiyear sea ice (MY); first-year ridge and rubble ice
(FYR); first-year smooth sea ice (FYS); and thin ice (ThI).
A summary of the radar backscatter characteristics of
these ice types is given in Table 3 at L-band HH and
C-band VV and Oi equal to 45. Measurements of the spa-
tial variability of the signal (not shown in the paper but
available in Ref. 21) indicate only a small texture vari-
ability of the signal (Tr2 << 1) and an autocovariance of
the intensity CI close to zero. Hence, despite the highly
textured appearance of the SAR images, most of the signal
variability is due only to image speckle or to transitions to
a different sea-ice type, and the intensity samples are
nearly uncorrelated.

The computation of the energy function U1(I/L) for
the different classes at each pixel location is performed by
using Eq. (12) with (I), being dependent on the incidence
angle. During optimization of the region labels, U2(Ls/Lr)
is computed for each pixel and iteratively adjusted by using
an optimization network.2 The MAP classification maps
corresponding, respectively, to L-band HH and C-band VV
are shown in Fig. 3. The classification accuracy of the dif-

Table 3. Backscatter Characteristics
Expressed in Decibels of Five Different

Sea-Ice Types at L-Band HH Polarization and
C-Band VV Polarization and for 0i = 450

Ice Type °o at L-band HH (dB) ao at C-band VV (dB)

ThI -35.9 -26.0
FYS -26.2 -20.6
FYR -23.2 -19.1
MY -23.0 -11.8
CFY -17.7 -12.1

Table 4. Confusion Matrix in Percentage Points of
Different Sea-Ice Types at C-Band VV Polarization

When the MAP Classifier Is Used

Ice Type ThI FYS FYR MY CFY

ThI 97 17 1 0 0

FYS 3 54 15 0 0
FYR 0 29 83 1 16
MY 0 0 1 51 35
CFY 0 0 0 48 49
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Table 5. Confusion Matrix in Percentage Points
of Different Ice Types at L-Band HH Polarization

When the MAP Classifier Is Used

Ice Type ThI FYS FYR MY CFY

ThI 98 13 0 0 0
FYS 2 83 8 1 0
FYR 0 3 65 32 31
MY 0 1 21 68 4
CFY 0 0 6 0 64

Fig. 4. Classification map of the SAR intensity data of Fig. 2 by
using a MAP classifier at L-band HH polarization and C-band
VV polarization combined: CFY is white, FYR is light gray, MY
is gray, FYS is dark gray, and ThI is black.

Table 6. Confusion Matrix in Percentage Points of
Different Ice Types at L-Band HH Polarization and
C-Band VV Polarization Combined When the MAP

Classifier Is Used

Ice Type ThI FYS FYR MY CFY

ThI 99 11 0 0 0
FYS 1 84 7 0 0
FYR 0 5 91 0 12
MY 0 0 1 98 10
CFY 0 0 1 1 78

ferent ice types is recorded in confusion matrices, which
are shown in Table 4. Each confusion matrix indicates
how classification inaccuracy results in labeling of pixels
in the wrong ice classes, along with the percentage of mis-
classified pixels. Vertical columns indicate how, for a par-
ticular ice class, various pixels are misclassified. Each
vertical column totals 100%, and components of each verti-
cal column denote the percentage of misclassification as
other classes relative to the correct classification.25 The
MAP classifier is 15-20% better than the ML classifier
(not shown in Fig. 3), which ignores spatial context and as-
sumes equal apriori probabilities for the regions and there-
fore a significant improvement in classification accuracy.

The results in Table 4 show that C-band VV separates
ThI, FYS, and FYR but confuses CFY and MY CFY and
MY have been represented with the same gray level in
Fig. 3(a). As MY and CFY both correspond to thicker ice
types, the error introduced at C-band VV is not signifi-
cant for the thermodynamic balance of the area, but the
MY/FY ice fraction is overestimated by 15%. In Table 5,

L-band HH is shown to separate MY and CFY better but
confuses MY and FYR, which are represented with the
same gray level as in Fig. 3(b). The overall classification
accuracy (average of the diagonal terms of the confusion
matrix) for the entire scene is 68% at C-band VV and 75%
at L-band HH.

The MAP classification at L-band HH and C-band VV
combined is shown in Fig. 4. Pressure ridges are better
detected than in the single-frequency case, and MY and
FY are better separated. The confusion matrix, shown in
Table 6, gives an overall classification accuracy of the five
sea-ice types of 89%, that is, 15-22% higher than in the
single-frequency case. The distribution and geometric
characteristics of the MY ice floes appear clearly in the
classification map, and we can retrieve the spatial distri-
bution of pressure ridges.

8. CONCLUSIONS

This paper presents a Bayesian MAP classifier for multi-
frequency, multilook SAR intensity data based on a model
of the posterior distribution of the region labels of the im-
age, given multifrequency, multilook SAR observations.
We showed that the assumption of spatially uncorrelated
SAR intensity samples is a reasonable assumption that
does not significantly affect classification. accuracy.
Classification accuracy increases with an increasing num-
ber of looks and is robust to the presence of a texture vari-
ability of the radar cross section of natural surfaces. The
technique is applicable to incidence angle dependent image
characteristics. An example of application using actual
SAR data showed significant gain in classification accu-
racy resulting from the combination of several frequen-
cies. The technique could be used to classify spaceborne
SAR data collected by ERS-1 and J ERS-1. As a further
extension of this work, Rignot and Chellappa26 presented
a Bayesian MAP classifier for polarimetric SAR data
acquired at one frequency. In that case, the correlation
between the different polarimetric channels of the radar
system is essential to separate different types of natural
surfaces, and modeling of the statistical distribution of
the SAR measurements is significantly different.
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