
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Cognition in reach: continuous statistical inference 
in optimal motor planning

Permalink
https://escholarship.org/uc/item/4x88b75n

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 37(0)

Authors
Alonso-Diaz, Santiago
Cantlon, Jessica F
Piantadosi, Steven T

Publication Date
2015
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4x88b75n
https://escholarship.org
http://www.cdlib.org/


Cognition in reach: continuous statistical inference
in optimal motor planning

Santiago Alonso-Diaz, Jessica F. Cantlon, and Steven T. Piantadosi
Department of Brain and Cognitive Sciences, University of Rochester, 358 Meliora Hall, Rochester, NY, 14627

{sadiaz,spiantadosi}@bcs.rochester.edu; jcantlon@rcbi.rochester.edu

Abstract

We study the projection of cognitive representations into
continuous motor (reaching) responses with a computa-
tional model that unifies three influential approaches: ac-
cumulation of evidence, statistical inference, and optimal
feedback control. We modeled a number comparison task
that asked participants to respond with a reaching ges-
ture which of two side had more dots. The model suc-
cessfully reproduced subjects’ pattern of reach and per-
formance across varying difficulties of numerical compari-
son. Our model parameterized several potentially relevant
cognitive variables, including a threshold, memory decay,
and mental sampling rate. Remarkably, a threshold for
movement was not needed for modeling human behavior
when statistical inference is combined with optimal mo-
tor planning. Overall, the model indicates that the motor-
system positions the effectors optimally, both biomechan-
ically through an optimal feedback controller, and cogni-
tively by means of continuous statistical inference on the
available evidence.
Keywords: Number Cognition; Threshold; Bayesian; Op-
timality; Continuous Responses

Introduction
Movement carries rich information about internal cogni-
tive states (Song & Nakayama, 2009). Imagine a profes-
sional musician, with their movements and postures. The
external motor signals that you observe are indicative of
mental states and processes like feelings, moods, compe-
tence, and anxiousness. More quantitatively, recent re-
search has been able to measure ongoing cognitive pro-
cesses with continuous motor responses, mostly through
reaching paradigms (e.g. Santens, Goossens, & Verguts,
2011).

One lingering question, though, is how motor struc-
tures integrate cognitive information into their plans.
Here we present a computational model that uses devel-
oping cognitive states to update concurrent motor com-
mands. Specifically, we model subjects’ trajectories in a
number comparison task (see Fig. 1) in which movements
were modulated by the numerical ratio between the op-
tions while qualitatively maintaining an optimal profile.
i.e. sigmoid positions, inverted u-shaped velocities, and
sinusoidal-like accelerations (Fig. 3, first row). In brief,
the model uses evidence from the approximate number
system (ANS) to statistically infer the relative weighting
of two parallel optimal reaching plans: one to the left and
another to the right target (Fig. 2). It is parametrized
with four cognitive variables, each of which has been in-
dependently proposed in this and other domains: thresh-
old, numerical acuity, sampling rate, and sampling mem-
ory. The model reproduced human patterns in reaching,

including their overall trajectories, performance, reac-
tion time, and changes of mind. Interestingly, thresholds
were not critical for capturing human behavior. Rather,
our results suggest that biomechanically optimal behav-
ior likely employs continuous, online, and immediate sta-
tistical inference, rather than thresholded accumulation
of evidence.

Experiment: methods and results

Methods

22 right handed participants (13 female; Mean age: 20.5
yrs, SD: 2.2 yrs) completed 420 trials of a number com-
parison task without feedback. They were asked to report
the side with more dots by reaching to large clear targets
on a screen with their index finger (Fig. 1). Recording
was done with a Northern Digital Optotrak 3020, sam-
pling at 200 Hz, and stopped 4 cm from the screen on the
depth coordinate. Time was normalized to 101 points and
only correct trials were considered. Movement started
approximately 29 cm from the screen. Dots stayed on-
screen for 200 ms and subjects were free to respond as
soon as they appeared. Five numerical ratios were used
(0.1, 0.25, 0.5, 0.75 and 0.9) equally distributed among
the 420 trials. For example, a ratio of 0.1 is a trial with
1 dot vs. 10 dots (we used maximum 25 dots). The side
with more dots was counterbalanced. In half of the tri-
als both sides had equal cumulative dot area. Trials were
separated into 4 blocks. Decision reaction time and move-
ment time were defined as shown in (Fig. 1).

Stimulus onset Stimulus offset Lift-off Target hit

200 ms

Decision RT Movement
Time

Figure 1: Task

A general measure of number sensitivity ω (or We-
ber fraction) was computed by fitting average error rate
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across participants to,
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er f c is the complementary error function, n1 and n2 are
the presented numbers (Pica, Lemer, Izard, & Dehaene,
2004).

Results
Average performance was 90%; by numerical ratio:
0.1=99%, SD=0.002; 0.25=99%, SD=0.003; 0.5=98%, SD
=0.010; 0.75=88%, SD =0.057; 0.9=65%, SD=0.065. The
Weber fraction ω for the group was 0.17 (er f c goodness of
fit: R2 = 0.99). Decision reaction times also varied by nu-
merical ratio (F(4, 84) = 6.89, p < 0.001, η2

g=0.091) as well
as movement time (F(4, 84) = 21.50, p < 0.001, η2

g=0.026).
Critically, there was a ratio-based gradient in spatial

positions, as revealed by differences in mean horizon-
tal positions (F(4,84)= 67.22, p<0.001, η2

g=0.14). There
was no effect of side of response (F(1,21)= 0.13, p=0.72,
η2

g=0.003) (contact the first author for more detailed anal-
ysis). This means that subjects produced trajectories
proximal to the midline in trials with close numerical dis-
tance between the dots (e.g. ratio 0.9, green trace in Fig.
3) and more lateral positions in trials with farther nu-
merical distance (e.g. ratio 0.25, black trace in Fig. 3).
Also, note how the overall kinematic profile resembles a
movement that minimizes a cost, such as jerk (Hogan,
1984). (velocity and acceleration do not end in zero be-
cause movement recording stopped 4 cm from the screen).

The model: evidence and controller
The model accumulates evidence, executes statistical in-
ference on the potential target of behavior given the ev-
idence, and positions the motor effector with an optimal
feedback controller. This set up allowed us to explore four
plausible cognitive variables involved in a decision mak-
ing task that requires a number judgment: an evidence
threshold (α), sample rate (λ), sample memory (ζ), and
numerical confidence/acuity (γ).

Evidence
The process of accumulation of evidence contains three
elements: 1) Evidence, 2) Memory, 3) Threshold. First,
evidence is assumed to be produced continuously by the
Approximate Number System (ANS). Specifically, evi-
dence is sampled from the internal representation of the
numerical difference |n1−n2| with a linear number map-
ping and scalar variability (Whalen, Gallistel, & Gelman,
1999),

s(i) ∼ N
(
|n1 −n2|,ω

√
n2

1 +n2
2

)
(2)

We assume that samples s = (s1, s2, s3, ..., si, ..., sn) are
taken every λ ms (a free parameter). The total number of

samples at a given time is denoted with n and the elapsed
time with tthr (the counter tthr stops when the threshold
is hit; the subscript is to differentiate it from movement
time t). A negative sample from Eq. (2) is evidence favor-
ing the wrong number.

Second, we introduce memory to the sample series with
an exponential moving average (EMA)

EMA(i)= ζ · s(i)+ (1−ζ) ·EMA(i−1) (3)

with EMA(0) = s(1) and ζ a free parameter between 0
and 1. Intuitively, a ζ close to zero is related to a strong
memory of early ANS samples, and if it is close to 1 this
memory effect is non-present in the sample series. Thus,
EMA is a generalized version of Eq. (2), in that with ζ= 1
the samples from Eq. (2) are unmodified. Alternatively,
an EMA close to 0 makes the series gravitate around the
initial sample, akin to a system with primacy effects in
memory (e.g. Shteingart, Neiman, & Loewenstein, 2013),
or that use only a few samples (e.g. Vul, Goodman, Grif-
fiths, & Tenenbaum, 2014).

Third, accumulated evidence (AE) towards a threshold
α is defined as follow,

AE =
n∑

i=1
EMA(i) (4)

if AE reaches ±α (a free-parameter), motor positioning
begins. Because subjects continued to accrue confidence,
as suggested by the trajectory gradient (Fig. 3), the model
also continues to accumulate evidence after the thresh-
old is hit (as paced by λ). We also tried an accumula-
tion based on the original, non-exponentiated, samples
but the results were practically identical. Thus, rather
than assuming different versions of evidence in the brain,
one affected by memory and the other not, it was decided
to keep the same exponentiated samples for the accumu-
lation process and the statistical inference that follows.

Controller

The model uses an optimal feedback control, a frame-
work that has been successful at explaining a wide ar-
ray of motor behavior (Todorov, 2004). In general, this
framework proposes that motor commands try to mini-
mize a cost function along the movement, while concur-
rently taking into account the present state of the system
and task demands. This flexibility is essential for our
purposes of generating movements that are affected by
continuous number processing.

Specifically, we tackle the kinematic problem with a
criterion of jerk (third derivative of position) minimiza-
tion (Hogan, 1984) and an optimal feedback controller
derived by Hoff and Arbib (1993). At each time step t,
changes to the state q of the motor effector are deter-
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mined by,

q̇ =
 ẋ...x

....x

=
 0 1 0

0 0 1
−60
D3

−36
D2

−9
D

x
ẋ
ẍ

+
 0

0
60
D3

x f (5)

The controller uses the current position x, velocity ẋ,
acceleration ẍ, the remaining time D = t f − t, and the end
target x f , to update the effector state. Here t refers to
current movement time and t f to total movement time
(Fig. 1). As in the data, there will be different t f depend-
ing on the numerical ratio. They will be sampled from a
log-normal distribution with parameters determined by
the data of the appropriate ratio. The kinematic state q
is initialized at 0.

The motor system is capable of producing parallel mo-
tor plans (Cisek, 2007), and the model simultaneously
generates two distinct plans at each time t: one to the left
(q̇L; x f L =−1), and one to the right (q̇R; x f R = 1). Both are
generated with Eq. (5), using the current position, veloc-
ity and acceleration of the effector but with different end
targets. The overall kinematic state qO is updated with a
weighted sum of the left and right updates (Fig. 2),

qO(t+1)= qO(t)+wL q̇L+wR q̇R (6)

WR

Time

WL

WR

WL

Update of state qR or qL

L

R

Figure 2: Model diagram

The weights wL and wR can be interpreted as mea-
sures of confidence of where to point to and evolve ac-
cording to the sampling history. More concretely, we
assume that motor plans are trying to position the ef-
fector with the best possible estimate of the numerical
difference µ = n1 − n2, given all the samples e in EMA
taken up to time tthr + t. The numerical difference will
be inferred with an uniform prior p(µ), and normal like-
lihood p

(
e
∣∣µ,γ,n1,n2,

)
; with γ as a free parameter rep-

resenting the likelihood noise. The resulting posterior
p

(
µ
∣∣γ,n1,n2, e

)
is normally distributed (details in Gel-

man, Carlin, Stern, and Rubin, 2004),

∼ N

(
ē,

γ
|n1−n2|

n

)
(7)

where, ē is the mean of the EMA samples. The free
parameter γ scales with the magnitude of the numeri-
cal distance (Harvey, Klein, Petridou, & Dumoulin, 2013;
Whalen et al., 1999). This follows from the intuition
that large numerical distances enhance confidence, while
close numerical distances reduce it; thus γ can be inter-
preted as an overall confidence/acuity parameter.

To establish the weights in Eq. (6), we determined the
overall probability that µ≥ 0,

wR = p
(
µ> 0

∣∣γ,n1,n2, e
)
, (8)

wL = 1−wR (9)

If the right side has the larger number, Eq. (8) repre-
sents the probability of being correct.

Even though the model was designed for movement
trajectories, ideally it should also reproduce reaction
times, percentage of correct numerical discriminations,
and changes of mind. Reaction times were defined as time
to threshold (tthr) + non-decision times. Non-decision
times refer to stimulus encoding and output generation
(Ratcliff, 2014). For simplicity, we assumed encoding time
to be zero and we made a proxy of output generation
with lift-off time, defined as the time t when positions
were greater than a random value between the accuracy
(0.1mm) and resolution (0.01mm) of the recording device
(Optotrak 3020). This is a naïve approach for reaction
times, but it will be shown that it qualitatively replicates
data patterns. As for percentage of correct discrimina-
tions, it was computed with all the trajectories that had
at least 50% of points on the appropriate side, includ-
ing the end position (we only plot correct trajectories).
Finally, changes of mind were trajectories that fulfilled
these conditions: 1) at least one point penetrated more
than 1 cm of the other side; and 2) the end point was on
the opposite side of 1). The model can produce changes
of mind without a second post lift-off threshold (Resulaj,
Kiani, Wolpert, & Shadlen, 2009) because its initial tra-
jectory depends on the sampling history that can be mod-
ified as new samples arrive.

The model: fit and results

The model has four parameters: threshold (α), sampling
rate (λ), confidence/acuity (γ), and memory (ζ). These
may be viewed as formalizing potentially relevant pro-
cesses. We fit the model to humans’ behavioral data in
order to determine which of these factors influence mea-
sured behavior.
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Figure 3: Kinematics and performance. First row has human data, second row model with best parameters: threshold
(α), sampling rate (λ), confidence/acuity (γ), and memory (ζ). Final plot in row 2 is proportions of correct responses

Fit

Fitting was done with a grid search. The range
of values for each parameter was selected heuris-
tically based on preliminary runs of the model:
α = [0,5,10,50,100,250,500]; λ = [1,5,10,50,150];
ζ = [0,0.005,0.25,0.5,1]; γ = [30,40,45,50,100]. For
each parameter combination, we ran 240 trajectories per
numerical ratio (1200 in total) and computed an average
trajectory. We normalized time to 101 points and use
positions up to 99% of the end target to account for the
4 cm gap in the depth axis that was not recorded and
that truncated accelerations and velocities in the data
(see methods and Fig. 3). A mean-squared error (MSE)
was calculated for each average trajectory and summed.
The best parameter combination was determined as the
one that minimized this overall sum. Intuitively, this
procedure just selects the best parameter combination
that worked best for all numerical ratios.

The grid procedure was taken as a first manual approx-
imation. We followed it by a finer sensitivity analysis by
fixing 3 out of 4 of the best fitted parameters and ran
the model with 300 values of the non-fixed parameter.
We did this for all parameters with the following ranges:
α = [0,1000]; λ = [1,1000]; ζ = [0,1]; γ = [1,1000]. The vec-
tors were more dense around the best fitted values. Due
to space constraints and its conceptual relevance we will
report the analysis on α (threshold).

Results
The first main result is that the model was successful at
reproducing the observed gradient in positions (and the
velocity and acceleration profiles, but that necessarily fol-
lowed given the selected controller; they are only shown
for a complete visual comparison) (Fig. 3). Even though
the model was only fitted to position data, the proportion
of correct numerical comparisons is also remarkably sim-
ilar (Fig. 3). Thus, the motor-system was rationally posi-
tioning its effector based on online cognitive information
produced by the approximate number system (ANS).

The second main result is the zero value for the thresh-
old parameter (Fig. 3). The amount of information or ev-
idence that the model required in order to emulate the
observed data was null. This means that as soon as the
first sample was received the model started to position
the effector.

To confirm that near-zero threshold values matched
human data, we computed the sensitivity of the model
to a large range of values, holding other parameters con-
stant. As the threshold value became larger the model
rapidly failed to reproduce the ratio-based gradient of the
positions (Fig. 4; right panel). This is explainable be-
cause higher thresholds increase the amount of samples
at lift-off, which in turn reduces the uncertainty of the
estimated numerical difference (Eq. (7)), and the move-
ment is clearly weighted in favor of one of the targets. It
is worth to emphasize that the zero value for the thresh-
old parameter is not the central argument. In fact, there
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were other good thresholds, the ones close to the blue dot
in Fig. 4. The critical finding here is that because the ev-
idence was in units of numerical difference (Eq. (4)) the
low threshold values in Fig. 4, including zero, indicate
that movement started as soon as the first evidence ar-
rived. This means that thresholds were irrelevant cogni-
tive constructs in our modeling approach. In fact, remov-
ing the threshold parameter and running the grid search
again produced similar results.

The model with the best parameters also captured, at
a qualitative level, two other relevant behavioral effects.
First, the mean and standard deviation of reaction times
increased as a function of numerical ratio (Fig. 5, first
row, but notice the scale difference). Though, for the
hardest ratio (0.9) the mean reaction time was slightly
faster than for the other hard ratio (0.75). This dip dis-
appears with simple tweaks to the model (e.g. small
changes to the best parameters or accumulating the orig-
inal samples rather than EMA samples). What is inter-
esting is that it confirms the presence of a central fea-
ture of models that accumulate evidence: RTs depend on
the quality of the evidence. Due to space constraints we
can not present a formal analysis of this feature but for
the hardest ratio, given the best parameters, initial sam-
pling was really favorable in correct trials and this re-
duced RTs for this ratio.

Second, the model produced changes of mind, but at a
lower proportion than in the data (Fig. 5, bar plot). They
were concentrated in the hardest ratios (0.75 and 0.9),
still present in the intermediate (0.5), and non-existent
for the easiest (0.1 and 0.25). Importantly, the trajecto-
ries for changes of mind were similar in the model and
the participants. We hand-picked two similar ones to
show that the model was able to produce changes of mind
when the effector was relatively deep or shallow in the
opposite side (Fig. 5, lower right panels).
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Figure 5: Reaction times and changes of mind. First row
has RT (mean and standard deviations) in the data and
the model (notice the scale differences). Lower left panel
has proportions of changes of mind. Lower right panels
have hand-picked examples with noticeable resemblance
in the data and the model

Discussion
We have layout an optimal model of reach that can be
modulated by ongoing cognitive processing. We now dis-
cuss several more general implications of this work.

The need of thresholds
A dominant way of thinking about decisions in the liter-
ature (perceptual or cognitive) is that the system gener-
ates evidence for the main purpose of hitting a threshold
(Shadlen & Kiani, 2013). Our results pose a challenge
to the framework because trajectories overlap with suf-
ficiently large thresholds (Fig. 4). Rather, in the model
thresholds are not critical. Practically-null thresholds as-
sure that during movement time there is sufficient un-
certainty in regards to which is the appropriate target to
hit, and this produces the observed spatial gradient in
reach. This finding may have more general implications
for movement and decision-making models where thresh-
olds are commonly employed. Behavior may appear as
though subjects accumulate evidence until a threshold is
passed, but our work shows that this behavior could also
result from a unitary mechanism: a statistically-optimal
motor planner that moves only very slowly at first due to
statistical uncertainty.

Also, the model addresses a fairly underrated chal-
lenge to the threshold-framework: changes of mind. The
prominent way to tackle the problem is to assume a sec-
ond, post lift-off, threshold (Resulaj et al., 2009). A prob-
lem of adding additional thresholds is that there is not a
principle argument against adding more. For example, if
someone has a double change of mind, does this suggest
a third threshold? The model presented here produced
changes of mind naturally, as a result of the quality of
evidence Eq. (8).
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One of the strengths of threshold models is their ability
to fit reaction time data (Ratcliff, 2014). The model here
qualitatively reproduced the pattern of reaction times
with a fairly naïve approach that did not include any
encoding phase. Future work should be able to repro-
duce reaction times by explicitly including an encoding
phase, in which harder ratios take longer to encode. This
should improve the quantitative fit, but more impor-
tantly, it questions again the need for thresholds. If re-
action times can be accounted with encoding and output
stages, then thresholds seem unnecessary. The main ad-
vantage of continuous motor-responses is that they made
more transparent output generation, hidden from dis-
crete button responses. Thus, future work should con-
tinue to explore how cognition is reflected in continuous
responses and produce a threshold-less quantitative ac-
count of RT.

The need of more complex evidence
accumulation models
It is possible that more complex accumulation models can
solve the "anomaly" of (practically) null thresholds, such
as collapsing the thresholds over time or accumulating
likelihood ratios to determine degrees of uncertainty at
lift-off. While this is a potential future direction of our
work, a central implication of the model here presented is
that evidence can be used in richer ways beyond thresh-
old purposes. The motor system needs a mechanism to
efficiently account for evolving cognitive states. Waiting,
for example, for a threshold to recompute a new course
of action given a changing context might not be an effi-
cient computational strategy. Thus, in addition to more
complex diffusion models, there are further interesting
questions. For instance, we proposed a linear combina-
tion of two parallel motor plans but is unclear if this is
the best approach. Also, even though we sampled a ran-
dom movement time for each trial, movement time was
fixed. Future work should make movement times a natu-
ral consequence of the computations. Finally, at the neu-
ral level, the Bayesian inference could be done with prob-
abilistic population codes (Ma, Beck, Latham, & Pouget,
2006) and implemented in neural networks. Those, and
related questions, are critical areas for future research.

Conclusion
The model produced movements modulated by cognitive
processing through weighting of optimal controllers and
statistical inference. Also, we found that accumulation
of evidence serves the purpose of uncertainty reduction
rather than threshold arrival.
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