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ABSTRACT: While glucose-responsive insulin delivery systems
are in widespread clinical use to treat insulin insufficiency, the on-
demand supplementation of glucagon for acute hypoglycemia
treatment remains understudied. A self-regulated glucagon release
material is highly desired to mitigate the potential risks of severe
insulin-induced hypoglycemia. Here, we describe a glucose-
responsive polymeric nanosystem with glucagon covalently grafted
to the end-group. Under normoglycemic conditions, phenylboronic
acid units in the polymer chain reversibly bind glucose, triggering
self-assembly of the conjugate into micelles. During hypoglycemia,
however, the micelle disassembles into its original, unimeric state,
revealing the active glucagon conjugate. The formulation showed a
5-fold increase in activity compared to native glucagon when tested
in vitro. Glucagon-loaded micelles injected into mice prevented or reversed deep hypoglycemia when administered prior to or during
an insulin challenge. Glucagon release was only observed at or below the counterregulatory threshold and not during normoglycemia
or moderate hypoglycemia. The in vivo acute and chronic toxicity analysis, along with μPET/μCT imaging, established the biosafety
profile of this formulation and demonstrated no organ accumulation. This proof-of-concept work is the first step toward
development of a translational, stimuli-responsive glucagon delivery platform to control glycemia.

■ INTRODUCTION
Diabetes is a metabolic disorder caused by a decline in the
function of insulin-producing beta-cells in the pancreas (type 1,
T1D) or by peripheral insulin resistance and reduced beta-cell
mass (type 2, T2D).1,2 Together T1D and T2D affect more
than 500 million people worldwide and are projected to
increase to 1.3 billion by 2050.3−5 In healthy individuals,
pancreatic cells dynamically respond to blood glucose
fluctuations by stimulating insulin secretion from the
pancreatic beta-cells.6,7 During hypoglycemia, insulin secretion
is inhibited, restoring glycemic homeostasis via the release of
glucagon from pancreatic alpha-cells (epinephrine and
norepinephrine are also released from the adrenals) to
stimulate the production of glucose predominantly by the
liver, and kidney to a smaller extent.8 Glucagon (GCG) is an
endogenous peptide that raises blood glucose levels by
activating hepatic gluconeogenesis and glycogenolysis.9

Because glucose homeostasis is disrupted in diabetic patients,
treatment generally involves regular insulin replacement to
combat rising blood glucose, hyperglycemia. Although insulin
treatment is extremely effective in lowering blood glucose from
dangerous highs, episodes of moderate to severe hypoglycemia
are common clinical complications. In such cases, where

endogenous glucose counterregulation is inadequate to combat
hyperinsulinemia and restore normoglycemia, glucagon is
administered as an emergency treatment to prevent clinical
symptoms including malaise, cognitive impairment, seizure,
and coma.10

Eli Lilly commercialized the first glucagon kit using a
lyophilized powder that required reconstitution in an acidic
solution before injection,11 but it was discontinued in 2022.12

Recent advances in glucagon delivery have included solubiliz-
ing the peptide at alkaline pH with excipients, creating new
formulations with known stabilizers, and developing new
additives and delivery vehicles.13−16 Current FDA-approved
glucagon delivery systems are a nasal spray17 and a prefilled
syringe of glucagon in dimethyl sulfoxide with sulfuric
acid.11,18,19 Other efforts included developing glucagon
analogues, one of which is FDA approved.20−22 Despite
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these advancements, a majority of research has been focused
on emergency treatments for patients already experiencing low
levels of glucose. A paradigm shift in the glucagon treatment
strategy would be to prevent hypoglycemia altogether. Haidar
et al. explored this concept in a randomized crossover-
controlled trial, revealing that diabetic adults achieved better
glucose control and reduced hypoglycemia risk when using a
closed-loop, dual-hormone pump.23 Since then it has been
shown that repeated doses of glucagon do not cause hepatic
glycogen depletion, and glucose responsiveness to glucagon
administration was similar regardless of prior glucagon
administration.24−26 These data suggest that smart delivery
systems that sense low glucose levels to release glucagon might
be possible as preventative treatments for hypoglycemia.

There are many glucose-responsive materials that detect and
respond to high levels of glucose for insulin delivery.27 Most
commonly these contain components such as phenylboronic
acids (PBAs) or glucose oxidase (GOx) that sense glucose.28,29

PBA and its derivatives selectively bind to glucose by dynamic,
covalent interactions with the 1,2 diols and have been widely
used to synthesize functional polymers and nanomaterials for
insulin delivery.30−33 Typically, meta- and para-substituted
PBAs are utilized, where the addition of glucose stabilizes the
charged tetrahedral glucose boronate esters, increasing the
ionization degree of the polymer and its hydrophilicity,
resulting in the disassembly of the materials,34,35 while GOx
reacts with glucose, changing, for example, the local pH, which
in turn solubilizes or swells materials to release insulin.36

However, efforts toward detection of low glucose levels for
glucagon delivery are limited. Notable work has been
conducted using glucose-responsive microneedle patches to
deliver both glucagon and insulin, primarily pioneered by
Gu,37−39 Wu,40,41 and co-workers. Webber and co-workers
successfully designed a nanofibrillar assembly that uses GOx to
form a nonequilibrium peptide hydrogel by lowering the pH
through glucose consumption. When glucose levels are low,
the neutral environment triggers gel dissolution, leading to the
release of an analog of glucagon, dasiglucagon.42 Recently, the
same research group reported the formation of droplets
through liquid−liquid phase separation by a net-cationic
supramolecular peptide amphiphile with a glucose-binding
motif and dasiglucagon in the presence of glucose, with
dasiglucagon being released in the absence of glucose.43 These
are exciting approaches; however, the authors also reported
background release of dasiglucagon. Therefore, there is still
interest in developing new responsive glucagon systems.

Herein, we report an approach utilizing micelles that release
glucagon at low glucose levels (Scheme 1). The micelles
exploited the use of 2-acrylamidophenylboronic acid (2-
APBA). By placing the boronic acid in the ortho position to
the amide, an intramolecular B−O dative bond is formed
favoring the charged state.44 Opposite to the typical insulin
delivery systems, upon the addition of glucose, the resultant
material exhibits an increase in hydrophobicity. This feature
has been exploited to alter the lower critical solution
temperature (LCST) of a thermoresponsive N-isopropylacry-
lamide copolymer (P(NIPAM-stat-2-APBA)).45 LCST is the
temperature at which a polymer transitions from its soluble,
hydrated state to its shrunken, dehydrated phase. This
transition heavily depends on the overall hydrophobicity of
the chain (i.e., more hydrophobic polymers have lower
LCSTs). Therefore, upon glucose addition to P(NIPAM-stat-
2-APBA), the LCST decreases due to increased hydro-

phobicity45 Wang et al. exploited this to prepare poly(ethylene
glycol)-block-poly(N-isopropylacrylamide-stat-2-acrylamido-
phenylboronic acid), PEG-b-P(NIPAM-stat-2-APBA), that
self-assembled into micelles upon glucose addition at 30
°C.46 However, the glucose levels needed to induce this
transition were orders of magnitude higher ([Glc] = 180 mg/
dL) than what would be experienced in a physiological setting
(<60 mg/dL, hypoglycemia to 100−150 mg/dL normoglyce-
mia in rodents). Consequently, although this PEG-b-P-
(NIPAM-stat-2-APBA) micelle system was promising for
hypoglycemia sensing, the polymer structure and molecular
weight needed to be extensively refined to respond to
physiologically relevant glucose levels. Therefore, in this
work, a panel of polymers was synthesized via a chain
extension of a PEGylated chain transfer agent by reversible
addition−fragmentation chain-transfer (RAFT) polymeriza-
tion. A thiolated glucagon was covalently grafted at the ω-
polymer-end group via pyridyl disulfide exchange. At 37 °C in

Scheme 1. Schematic of Glucagon-Polymer Conjugatea

aMode of action overview of PEG-b-P(NIPAM-stat-2-APBA)-GCG
between micellar form in normoglycemic conditions and linear
(unimer) format in hypoglycemic conditions. (a) Glucose-responsive
self-assembly and disassembly of PEG-b-P(NIPAM-stat-2-APBA)-
GCG conjugate. Binding of glucose with the PBA group increases the
hydrophobicity of the P(NIPAM-stat-2-APBA) block so that at 37 °C
the polymer forms micelles. When glucose levels are lowered, the
P(NIPAM-stat-2-APBA) core becomes more hydrophilic, and the
micelle disassembles. (b) Exposure to normoglycemic conditions
([Glc] > 100 mg/dL), GCG micelles retain their nanoparticle format.
Under exposure to deep hypoglycemia ([Glc] < 60 mg/dL), GCG-
micelles disassemble promoting the release of GCG and subsequent
increase of blood glucose concentration.
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the presence of 150 mg/dL glucose (normoglycemia), the
polymer-GCG conjugate candidate was micellar, and thus the
glucagon was not active (Scheme 1). However, at 60 mg/dL
(hypoglycemia) the micelles disassembled into linear/unimeric
polymers revealing the active glucagon conjugate. The in vivo
acute and chronic toxicity analysis and biodistribution
determined through micropositron emission tomography
(μPET)/microcomputed tomography (μCT) imaging showed
the safety of this formulation. Blood glucose dynamics upon
administration of glucagon-micelle in healthy mice demon-
strated successful regulation of glucose levels by reverting and
preventing insulin-induced hypoglycemia.

■ RESULTS
Synthesis and Characterization of Polymer-GCG

Conjugate Library. Considering the instability and degrad-
ability of glucagon in aqueous media, our initial hypothesis was
that a glucagon-polymer conjugate would promote stabilization
at physiological pH as evidenced by the work of Stigsnaes et al.
on PEGylated glucagon.47 Thus, a PEGylated corona was
selected for micelle formulation. The P(NIPAM-stat-2-APBA)
block was selected for glucose and thermoresponsiveness. A
block copolymer library based on PEG-b-P(NIPAM-stat-2-
APBA) with varying PEG to P(NIPAM-stat-2-APBA) block
length ratios (while keeping the NIPAM:2-APBA molar ratio
to 85:15 and PEG molecular weight at 2000 Da) was
synthesized to fine-tune the glucose-responsiveness at 37 °C,
specifically to make the micelles disassemble at 60 mg/dL.
RAFT polymerization in DMSO was employed to copoly-
merize N-isopropyl acrylamide (NIPAM) and acrylic acid
(AAc) using a PEG-modified at the omega-end with 2-
(((ethylthio)carbonothioyl)thio)-2-methylpropanoic acid
macromolecular chain transfer agent (PEG44 macro-CTA),
yielding PEG-b-P(NIPAM-stat-AAc) (polymers P1−P5, Mn =
9.0−47.2 kDa; see Supporting Information for detailed
synthetic conditions, Figure 1a−b, Figures S1, S2). EDC
coupling was performed between 2-aminophenyl boronic acid
and the carboxylic acid of PAAc repeat units (Figures S3−S12,
Table S1). Aminolysis of the polymer terminal trithiocarbonyl

group allowed for the installation of a thiol-reactive pyridyl
disulfide (PDS) moiety at the ω-end group (Figures S13, S14).
Figure 1a shows the overall synthesis scheme.

A thiolated glucagon analogue bearing a cysteine residue
(Q24C), GCG-SH, was used in this study and covalently
conjugated onto the polymer end-group via pyridyl disulfide
exchange and formation of a disulfide bond (Figure 1a). This
chemistry was chosen due to the ease of synthesis of the
pyridyl disulfide polymer from the trithiolcarbonyl group and
because the polymer then reacts with the thiolated glucagon
without any additional reagents. Circular dichroism studies on
the native and thiolated glucagon and predicted 3D structures
using AlphaFold indicated that the alpha-helix was fully
retained (Figures S15, S16). PEG-b-(NIPAM-stat-2-APBA)-
PDS block copolymers were reacted with GCG-SH in a 1.2:1
mixture of DPBS (pH = 7.4):HCl 10 mM (pH = 2). The
reaction was monitored by high-performance liquid chroma-
tography (HPLC) (Figure 2a). Within 1 min of the addition of
GCG-SH to the PDS-containing polymer, 57.4% of the peptide
was consumed, reaching a maximum conversion of 83.0%
within 4 h.

To confirm the presence of GCG-SH in the conjugate, PEG-
b-P(NIPAM-stat-2-APBA)-GCG was subjected to disulfide
reduction with tris(2-carboxyethyl)phosphine (TCEP) for 30
min to release GCG-SH from the polymer. The amount
released was quantified by HPLC and was consistent with the
amount of GCG-SH consumed during the reaction. The
integrity of released GCG-SH was also verified by LC-MS,
indicating identical masses in excellent agreement with
theoretical molecular weight (3457.76 Da). (Figure 2b-c).
Lastly, the purity of PEG-b-P(NIPAM-stat-2-APBA)-GCG and
the release of GCG-SH after reduction of the disulfide bond
were visualized by SDS-PAGE stained with Coomassie (Figure
S17). Altogether, these results confirm the successful synthesis
of the conjugate PEG-b-P(NIPAM-stat-2-APBA)-GCG. Fol-
lowing this strategy, a library of glucagon-polymer conjugates
(P1/P2/P3/P4-GCG) was prepared (Table S2). Conjugation
conversion was consistent for all of the polymers.

Figure 1. (a) Synthetic route of PEG-b-P(NIPAM-stat-2-APBA)-GCG (P2-GCG) conjugate (AIBN = 2,2′-azobis(2-methylpropionitrile), DMSO
= dimethyl sulfoxide, EDC = N-3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride, DMAP = 4-(dimethylamino)pyridine, MeOH =
methanol, HCl = hydrochloric acid). (b) Block copolymer characteristics of the PEG-b-P(NIPAM-stat-AAc) library. aDetermined assuming 100%
chain extension efficiency. bDetermined by 1H NMR analysis in DMSO-d6.
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Solution Behavior of GCG-Polymer Conjugates:
Tuning Glucose- and Thermo-Responsiveness. With
this library of block copolymers (P1−P5), an initial screening
of the thermoresponsive and glucose-responsive behavior of
the unconjugated polymers was assessed by dynamic light
scattering (DLS). In the absence of glucose, polymer samples
P2−P4 retained their linear form at 37 °C, but upon increasing
temperature to 40 °C, formed uniform micelles (Figure S18a,
Table S2). In contrast, the largest molecular weight polymer,
P5, formed micelles at 37 °C, confirming the trend of lower
LCSTs with increased hydrophobic block molecular weight. As
a next step, the glucose responsiveness of polymers P2−P4 was
examined by DLS due to their linearity at physiological
temperature, speculating that glucose addition could possibly
induce their self-assembly into micelles. Both P2 and P3 did
not form well-defined micelles in the presence of [Glc] = 150
mg/dL (Figure S18b). However, P4 exhibited self-assembly
behavior at normoglycemic conditions ([Glc] = 150 mg/dL)

(Figure S19a-b), forming uniform micelles with sizes similar to
those obtained at 40 °C. Our observations confirmed that
glucose effectively shifted the LCST to lower temperatures.
Variable-temperature ultraviolet visible (UV−Vis) spectrosco-
py was also employed to evaluate the cloud point of P3 and P4
in different glucose concentrations ([Glc] = 0−1000 mg/dL)
(Figure S20). A difference of 2.4 and 3.8 °C between cloud
points of 0 and 1000 mg/dL of glucose was found for P3 and
P4, respectively, confirming that glucose addition does shift
LCST and micelle formation to lower temperatures.

The solution behavior of the P4-GCG conjugate was
primarily investigated as P4 showed optimal glucose sensitivity
at physiological temperature. However, when examined by
DLS, it was demonstrated that it self-assembled into micelles at
37 °C without any glucose addition, unlike its unconjugated
version (Figure S15b). In addition, these micelles had a
significantly higher hydrodynamic diameter (Dh = 119.6 nm)
compared to the diameter of micelles obtained from polymer

Figure 2. (a) GCG-SH conjugation to PEG-b-P(NIPAM-stat-2-APBA)-PDS monitored by HPLC at λ = 224 nm. (b) LC-MS mass spectra of fresh
GCG-SH and (c) GCG-SH released from the conjugate with TCEP (10 mM). (d) Normalized cloud point (10 mg/mL) of block copolymer
candidate (P2) before and after GCG-conjugation measured by UV−vis spectroscopy between 25 and 65 °C by determining absorbance at λ = 600
nm. (e) Intensity-weighted size distributions obtained by DLS for GCG-micelles at 37 °C showing micelle formation at normoglycemia and their
disruption when the media is diluted to hypoglycemic level. [Glc] = 0 (red curve), 60 (purple curve), 150 (green curve), and 60 mg/dL upon
dilution (orange curve). (f) TEM image of GCG-micelle at 25 °C, presenting no micelles and (g) at 40 °C, presenting defined micelles. (h) Dose
response curves of native GCG (red), GCG-SH (blue), P2 Polymer (black), P2-GCG conjugate (gray), and TCEP reduced P2-GCG conjugate
(green) using commercial kit cAMP Hunter eXpress GCGR CHO-K1 GPCR assay. (i) EC50 values of native GCG (red), GCG-SH (blue), P2-
GCG linear conjugate (gray), and TCEP reduced P2-GCG in the linear form (green) using commercial kit cAMP Hunter eXpress GCGR CHO-
K1 GPCR assay. Data are shown as the mean ± SEM of five to six independent repeats. p < 0.001 (***), p < 0.0001 (****).
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without glucagon (Dh = 46.75 nm). Variable-temperature UV−
Vis spectroscopy also confirmed that the cloud point of P4-
GCG was shifted 2.5 °C lower than that of P4 alone,
confirming the assembly behavior observed by DLS (Figure
S21a-b). We speculate that because glucagon has a net charge
of 0 at neutral pH, the peptide adds hydrophobicity to the
conjugate, therefore shifting PEG-b-(NIPAM-stat-2-APBA)-
GCG to a lower LCST. This trend was confirmed for P2-GCG
as well, exhibiting a cloud point of 50.6 °C, 11.5 °C lower than
that of P2 alone (Figure 2d). Dry-state transmission electron
microscopy (TEM) of P2-GCG also confirmed the thermor-
esponsiveness of the system, showing no micelles at 25 °C
(Figure 2f), while at 40 °C micelles were observed (Figure 2g).
This effect is more marked with P2-GCG because of its lower
molecular weight compared to that of P4-GCG, thus allowing
glucagon to exert a more significant hydrophobic contribution.
P3-GCG, however, behaved differently, showing an increase in
cloud point by 9.5 °C higher than P3 alone (Figure S22a).
Both the polymer and conjugate started eliciting a response to
the rise in temperature around 45−46 °C, but the P3 response
was much sharper. This may be attributed to a higher
hydration of the conjugate, but further investigation is beyond
the scope of this work. Nonetheless, when investigated by
DLS, P3-GCG showed the same thermoresponsive behavior as
P4-GCG and self-assembled into micelles already at 37 °C
without glucose addition (Figure S22b).

Conjugate P2-GCG showed responsive characteristics by
DLS (Figure 2e). Specifically, at 37 °C, P2-GCG had a mixture
of linear conjugate, micelles, and larger structures, which could
be attributed to swollen micelles in the absence of glucose or at
hypoglycemic glucose concentrations ([Glc] = 60 mg/dL). It
should be noted that DLS cannot be used to quantitatively
assess the number of each species; especially since intensity
percentage tends to overestimate the presence of larger
particles. Importantly, DLS showed that well-defined micelles
were present at normoglycemia ([Glc] = 150 mg/dL) with a
hydrodynamic diameter of 50.39 nm (Table S2). To further
investigate the sensitivity of this system toward changes in
glucose concentration, P2-GCG micellar solution was diluted
([Glc] = 60 mg/dL). Within 10 min of incubation, the micelle
peak decreased and a peak at 293 nm, which could be
attributed to swelled micelles, was observed (Figure 2e). The
conjugation was conducted for 4 h at 4 °C, which should not
cause aggregation of the GCG. However, to investigate this,
glucagon fibrillation was evaluated qualitatively by assessing
fluorescence using the ThT assay, a dye known to bind to
amyloid fibrils in vitro.16 The GCG-micelle exhibited no
statistically significant increase in fluorescence after conjuga-
tion to P2. The stability of glucagon at temperatures above the
LCST was also evaluated, as the polymer becomes more
hydrophobic under these conditions. There was also no
increase in fluorescence compared to that of fresh GCG-
micelle after two cycles of heating above the LCST of the
polymer (Figure S23). The data demonstrate that glucagon is
stable during both conjugation and transition through the
LCST. Considering these results, P2-(GCG) was selected as
the candidate polymer for further in vivo toxicity, biodis-
tribution, and efficacy evaluation.
In Vitro Evaluation of PEG-b-P(NIPAM-stat-2-APBA)-

GCG Conjugate Activity. A cAMP HunterTM eXpress
GCGR CHO-K1 GPCR commercial test kit was used to
evaluate the in vitro effectiveness of native GCG, GCG-SH, P2,
P2-GCG, and TCEP reduced P2-GCG (Figure 2h,i). The kit

uses cells in which human glucagon receptor (GCGR) is
overexpressed, allowing for quantification of receptor activa-
tion via increased levels of intracellular cAMP. Native GCG
showed an EC50 of 4.49 ± 0.52 nM, comparable to literature-
reported values.48,49 The EC50 of GCG-SH was 39.30 ± 11.60
nM; the increase in EC50 is attributed to the chemical
modification of GCG-SH, resulting in a reduced receptor
interaction. However, the value for GCG-SH is still in the
reported range for glucagon activity, and we believe that careful
selection of the modification site in the peptide chain (Q24C)
maintained significant bioactivity. Polymer P2 was used as a
negative control, showing no bioactivity as expected.

The EC50 of the linear polymer conjugate P2-GCG (i.e., not
in the micellar form) showed the lowest value (0.87 ± 0.12
nM). These results confirm that the glucagon is still active after
conjugation to the polymer, and reduction of the conjugate
disulfide to release GCG-SH is not a requisite for receptor
activation. This is in accordance with previous findings by our
laboratory, where glucagon covalently linked to trehalose
nanogels, exerted activity independent of polymer release.15

The assay confirmed that the critical step for the onset of
activity is micelle disassembly to unmask the glucagon
conjugate rather than GCG-SH release. Notably, the EC50 of
GCG-P2 is 5-fold lower than that of native glucagon, indicating
that the polymer might promote receptor interaction or simply
enhance the stabilization of the peptide. To confirm this
hypothesis, we reduced the conjugate’s disulfide bond using a
10 mM TCEP solution (TCEP removed through centrifugal
filtration, molecular weight cutoff (MWCO) = 3.5 kDa),
leading to a mixture of GCG-SH and polymer, P2. The
reduced solution showed an EC50 of 4.66 ± 0.64, 5-fold higher
than that of unreduced P2-GCG and on the same order of
magnitude as that of native GCG. This activity loss upon
reduction confirms that the conjugate is a more potent agonist
than native GCG.

In Vivo Acute and Chronic Toxicity of Empty Micelles
(P2). Prior to study of the glucagon conjugate, acute toxicity of
the empty micelles (candidate polymer P2) was evaluated in
C57Bl/6J male mice at 0, 24, and 120 h following injection.
Mice were injected intraperitoneally (IP) with a single dose of
empty micelles (2.322 mg/kg, equivalent to 500 μg/kg of
glucagon) and were euthanized at different intervals to
determine the complete blood count (CBC) (n = 4 or 5)
and organ weights (liver, kidney, spleen, heart, and lungs) (n =
6). White blood cell (WBC), red blood cell (RBC),
monocytes, lymphocytes, neutrophils, eosinophils, hemoglo-
bin, and hematocrit were measured (Figure S24a and Table
S3). No significant difference in CBC counts was observed
when compared to mice treated with empty micelles after 0,
24, and 120 h. All values were in accordance with the reported
literature.50−52 Additionally, there were no significant differ-
ences between the treatment groups for organ weights (Figure
S24b).

Following acute studies, a chronic toxicity study was
conducted in C57Bl/6J mice. The mice were injected IP
with empty micelles every day for 14 days, and the control
group was injected with saline (Figure S25a). After 14 days of
injections, mice were euthanized to determine body weight,
CBC count, organ weight, histopathology, hepatic function
parameters, kidney function parameters, immune markers, and
immunohistochemistry of lung and liver tissues. Total body
weights as well as organ weights of saline control and empty
micelle-treated mice (liver, lungs, spleen, heart, and kidney)
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showed no significant differences (Figure S25b). The CBC
counts were all in accordance with published values (Figure
S26a,b (i)−(xii), Table S4).50−52 Hepatic function parameters
including alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) levels analyzed from serum (Figure
S26d and Table S5) were the same for the micelles as the
negative controls. For lactate dehydrogenase (LDH), the
values for the empty micelles were slightly lower and
statistically significant compared to the control. Kidney
function was determined by blood glucose level and calcium
count in urine and found not to be different for mice exposed
to the micelle (Figure S26c). Organ histopathology of liver,
spleen, heart, lung, and kidney were examined via Hematoxylin
& Eosin (H&E) staining (Figure S26e). No microscopic
morphological changes were observed in the histological
sections. Markers IFN γ, TNF α, and IL 2 were also analyzed
to determine immune reaction and inflammation in response
to micelle injection, and no differences were detected between
the groups (Figure S27a and Table S6). Immunohistochem-

istry was performed on liver and lung slices by using a
macrophage marker F4/80 antibody. No difference in F4/80
staining was observed for either tissue between the groups
(Figure S27b). Together, the data for acute and chronic
toxicity analyses demonstrate a favorable safety profile of the
polymeric material.

In Vivo μPET/μCT Imaging of PEG-b-P(NIPAM-stat-2-
APBA) Micelle and GCG-SH. The μPET/μCT imaging was
performed by using an 18F-FBEM-labeled micellar polymer and
18F-SFB-labeled glucagon as a negative control. Conjugation
conditions of the micelle and glucagon were initially optimized
using 19F-FBEM/SFB (see Supporting Information for detailed
experimental conditions on synthesis and conjugation of
18/19F-FBEM/SFB, Figures S33−S37, Figure 3a).

The μPET/μCT imaging analysis of 18F-SFB-labeled
glucagon showed higher uptake in all organs compared to
18F-FBEM-labeled micelle, particularly in the kidney and
spleen during the first 4 h after probe injection (Figures 3b,c,
S38, S39). The 18F-FBEM-labeled micelle was eliminated by

Figure 3. μPET-μCT imaging showing the time course biodistribution and excretion of 18F-FBEM-labeled-micelle and 18F-SFB-labeled GCG (n =
4). (a) Chemical structure of (i) 18F-FBEM-labeled micelle and (ii) 18F-SFB-labeled GCG. (b) PET-CT images of (i) 18F-FBEM-labeled micelle
and (ii) 18F-SFB-labeled GCG. (c) The time course biodistribution in blood, liver, left kidney, right kidney, bladder, muscle, left lung, right lung,
gall bladder, gastrointestine (GI), spleen, and blood half-life time. ID, injected dose. CC, cubic centimeters.

ACS Central Science http://pubs.acs.org/journal/acscii Article

https://doi.org/10.1021/acscentsci.4c00937
ACS Cent. Sci. 2024, 10, 2036−2047

2041

https://pubs.acs.org/doi/suppl/10.1021/acscentsci.4c00937/suppl_file/oc4c00937_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acscentsci.4c00937/suppl_file/oc4c00937_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acscentsci.4c00937/suppl_file/oc4c00937_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acscentsci.4c00937/suppl_file/oc4c00937_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acscentsci.4c00937/suppl_file/oc4c00937_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acscentsci.4c00937/suppl_file/oc4c00937_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acscentsci.4c00937/suppl_file/oc4c00937_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acscentsci.4c00937/suppl_file/oc4c00937_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acscentsci.4c00937/suppl_file/oc4c00937_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acscentsci.4c00937/suppl_file/oc4c00937_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acscentsci.4c00937/suppl_file/oc4c00937_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acscentsci.4c00937/suppl_file/oc4c00937_si_001.pdf
https://pubs.acs.org/doi/10.1021/acscentsci.4c00937?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.4c00937?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.4c00937?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.4c00937?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acscii?ref=pdf
https://doi.org/10.1021/acscentsci.4c00937?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


renal clearance more rapidly than glucagon, as shown by PET
signal intensity in the bladder. In addition, the 18F-FBEM-
labeled micelle was also rapidly cleared from the gallbladder.
After 8 h postinjection, organs showing PET activity (>1%ID/
cc) were kidney (18F-FBEM-labeled micelle 1.17%ID/cc),
gallbladder (18F-FBEM-labeled micelle 3.88%ID/cc, 18F-SFB-
labeled glucagon 3.61%ID/cc), and bladder (18F-FBEM-
labeled micelle 1.44%ID/cc, 18F-SFB-labeled glucagon
16.75%ID/cc). These data contrast with what was observed
when the micelles were labeled with 89Zr via a DFO chelator
(see Supporting Information for details). Therefore, we
hypothesize that uptake and accumulation seen with the
89Zr-radiolabel may have been directly caused by the
radiometal and chelator.
In Vivo Safety Evaluation of PEG-b-P(NIPAM-stat-2-

APBA)-GCG Micelle. To investigate if P2-GCG elevates
glycemia in vivo at normal glycemic conditions, the conjugate
was administered IP in healthy 6 h fasted C57Bl/6J mice
(Figure S40). The control group was administered with PBS
only. Upon injection, the blood glucose levels of mice were
monitored over 8 h at different time intervals. An initial small
spike was observed in the first 15 min, with the glycemia level
rising from 160 to 190 mg/dL. This is not uncommon, as the
stress during injection can lead to a transient increase in blood

glucose and is observed in both the glucagon-micelle and the
PBS control. After 15 min, the glucose level steadily dropped
to 125 mg/dL within 60 min of injection and remained
constant until the end of the experiment. Overall, glycemia
remained in the normal range throughout the study. Following
the 8 h study period, animals were euthanized, kidneys and
liver were harvested, and subsequent histopathological analyses
were conducted via H&E staining (Figure S41). No micro-
scopic morphological changes in histological sections were
observed in micelle-injected mice vs controls. These findings
indicate that micelles are not activated under normoglycemia,
nor do they induce histopathological outcomes in the kidney
or liver. Next, we evaluated the in vivo efficacy of the GCG-
polymer conjugate.

In Vivo Activity of PEG-b-P(NIPAM-stat-2-APBA)-GCG
Micelles. Two independent in vivo experiments were
conducted to evaluate the effectiveness of P2-GCG in reversing
or preventing insulin-induced deep hypoglycemia. The efficacy
of GCG-micelle was evaluated in healthy male C57Bl/6J mice.
First, the mice were fasted for 12 h prior to the administration
of the insulin of dose 0.90 U/kg intraperitoneally to induce
hypoglycemia. Glucose levels decreased from 100 to 65 mg/dL
after 30 min of insulin administration and was approximately
60 mg/dL after 1 h. At this point, GCG-micelle at a dose of

Figure 4. Micelle-reversal of insulin-induced deep (a) or moderate (b) hypoglycemia in fasted C57Bl/6J mice. The dotted line represents the
approximate gluco-counterregulatory threshold. (c) Micelle-induced prevention of insulin-stimulated hypoglycemia in fasted C57Bl/6J mice. Data
are represented as mean ± SEM, n = 5−6. p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), p < 0.0001 (****). Statistical comparison of glucose levels
between the two groups at the same time point during the ITT.
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500 μg/kg of glucagon was administered intraperitoneally.
Blood glucose immediately increased, reaching 90 mg/dL in 25
min and 100 mg/dL within 40 min, restoring baseline glycemia
(Figure 4a). For comparison, native and thiol-glucagon (GCG)
alone (positive controls) and empty micelle (negative control)
were also evaluated utilizing the same experimental protocol.
The GCG-micelle showed a statistically different response
compared to the negative control group injected with the
empty micelle, which exhibited hypoglycemia <65 mg/dL until
the end of the 120 min (Figure 4a), while the GCG-micelle
had a similar response to the positive controls groups of native
and thiol-glucagon (Figure S42). To evaluate the responsive-
ness of the GCG-micelle above the estimated glucose-
counterregulatory threshold, moderate hypoglycemia (80
mg/dL) was induced by administering 0.85 U/kg insulin at
time 0. The moderate reduction in glycemia, by design, should
not trigger the disassembly of micelles to avoid the induction
of hyperglycemia. After 60 min, 500 μg/kg of glucagon (GCG-
micelle) was administered intraperitoneally resulting in a less
pronounced response, restoring initial normoglycemia of 120
mg/dL in 105 min (within 45 min relative to micelle injection
time). More importantly, there was no statistical difference in
glycemia at any time point during the insulin tolerance test
(ITT) between the GCG-micelle and the empty micelle-
injected control. These data suggest that micelle disassembly
was not triggered unless insulin induced a sufficient level of
hypoglycemia at or below the estimated glucose counter-
regulatory threshold (Figure 4b). Overall, the GCG-micelles
demonstrated in vivo glucose responsiveness that quickly and
effectively reversed deep hypoglycemia, restoring blood
glucose concentrations to baseline levels.

Next, the in vivo efficacy of the GCG-micelle to prevent deep
hypoglycemia was assessed by injecting insulin and the micelles
simultaneously (combined preparation) at time 0 of the
experiment. Healthy male C57Bl/6J mice were fasted for 12 h
before being administered 0.90 U/kg of insulin and either 500
μg/kg of glucagon (GCG-micelle) or an equivalent dose of
empty micelle. The mice injected with the glucagon-conjugate
maintained normoglycemia for the duration of the experiment,
whereas mice injected with empty micelle showed a marked
reduction in blood glucose that dropped below the counter-
regulatory threshold (Figure 4c). Specifically, blood glucose of
empty micelle treated animals reached a nadir of 70 mg/dL at
60 min with endogenous counterregulation promoting only a
modest increase in glycemia to 88 mg/dL at 120 min. This is
in contrast to the GCG-micelle-treated mice in which baseline
glycemia (130 mg/dL) was restored by 120 min. Overall, in
vivo efficacy studies confirmed that the glucagon micelle can
safely prevent and reverse deep hypoglycemia.

■ DISCUSSION
Glucose-responsive drug delivery systems have been exten-
sively investigated for insulin delivery.27 However, glucose-
responsive glucagon delivery is understudied. Inspired by the
work of Wang and co-workers, we decided to use PEG-b-
P(NIPAM-stat-2-APBA) as the polymer of choice for its ability
to form micelles in the presence of glucose.46 We set out to
tune this system to be responsive in physiological conditions,
self-assembling, and disassembling in a narrow glucose range at
relevant temperatures. Through RAFT polymerization, a
library of block copolymers was synthesized with a
trithiocarbonyl end-group that could be chemically modified
to allow for the site-specific conjugation of glucagon. The

LCST and glucose responsiveness were altered to be effective
at physiological conditions; this was possible by varying weight
ratios between the PEG hydrophilic block, which was kept
constant at 2 kDa, and the P(NIPAM-stat-2-APBA) block.
Initially, P4 was found to present responsivity at 37 °C and
relevant glucose concentrations, forming well-defined, uniform
micelles in normoglycemia, but when GCG-SH was con-
jugated, the polymer LCST decreased due to the hydro-
phobicity of the glucagon, forming micelles at temperatures
lower than necessary. As a result, P2-GCG presented the
optimal responsiveness, even though P2 alone did not.

In early experiments, we attempted to encapsulate native
glucagon by physical entrapment (data not shown), but poor
encapsulation and release were achieved. A covalent design
was, therefore, pursued instead. Typically, polymer conjugation
to a protein or peptide results in a loss of activity. To minimize
this loss, researchers often employ site-selective conjugation to
biomolecules.53 To best ensure site-selectivity during polymer
conjugation to glucagon, we chose to engineer a single cysteine
unit into the native peptide. First, we selected the substitution
site for amino acid modification based on the crystal structure
of a glucagon analogue binding to the glucagon receptor.54

Additionally, Chabenne et al. found that when substituting the
existing glutamine residue of glucagon with alanine (Q24A),
the full potency of glucagon receptor binding and activity was
retained.14 We therefore selected the glutamine residue in
position 24 to modify to a cysteine (Q24C) so that the peptide
could be conjugated to a PDS-functionalized polymer. This
allowed a simple, site-selective conjugation to the cysteine
without affecting any of the other reactive residues of glucagon.
Biomolecules conjugated to polymers often display reduced
activity due to either undesirable changes in the protein
structure itself or polymer interference between the bio-
molecule and its receptor. Much to our surprise, the in vitro
experiments demonstrated a higher activity for the conjugate
itself compared to both native, thiolated, and released GCG-
SH after the reduction of the disulfide bond. We hypothesize
that the polymer might help configure GCG in the correct
confirmation for interaction with the receptor and the related
G protein.55 Alternatively, the polymer might stabilize GCG in
solution, similar to our previously published trehalose
nanogels.15 Although unusual, other examples where site-
specific protein−polymer conjugation increased protein
bioactivity can be found in the literature.56−59 Ultimately,
the increased conjugate activity remains under investigation yet
is fortuitous.

The successful in vitro results prompted us to evaluate the
formulation efficacy in vivo. First, the in vivo acute and chronic
toxicity was evaluated to understand the safety of the
formulation in a healthy mouse model. The in vivo acute
toxicity was determined by analyzing the CBC count and organ
weights. Empty micelles showed no significant difference in the
CBC count or organ weights, indicating no acute toxic effects
upon administration. Further, a detailed chronic toxicity
analysis was performed for 14 days with daily dosages of
empty micelles, examining organ weight, CBC count, hepatic
and kidney function, histology, and immune/inflammation
markers. The acute and chronic toxicity evaluation studies are
promising in that they show a favorable safety profile over the
dosages and time course studied. Although more extensive data
of repeated administration over longer periods, as well as long-
term toxicity effects will need to be obtained, and
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comprehensive immunogenicity studies, including antibody
formation, are also planned in the future.

The in vivo μPET/μCT imaging experiments were
performed to further understand the pharmacokinetics of the
polymer. The μPET/μCT imaging using 89Zr-labeling revealed
a small but unexpected percentage of polymer accumulated in
certain organs. After hypothesizing that the hydrophobicity
and large molecular weight of the DFO molecule may have led
to the observed results, we decided to repeat μPET/μCT
imaging experiments using an 18F-labeled version of the
polymer to avoid the need for a bulky chelator ligand. The
blood half-life of the polymer from the experiments with the
89Zr-labeled construct was also determined to be short enough
to be compatible with the shorter half-life of F-18 (109.7 min).
In these experiments, accumulation was not observed in key
organs such as the liver, kidney, lungs, and spleen. We
hypothesize that adding a large, hydrophobic radiometal-
chelator probe to the polymer system altered the biodis-
tribution or triggered the immune system. Regardless, the
results were in accordance with the toxicity tests, demonstrat-
ing safety.

Next, experiments were undertaken to verify that the
injection of GCG-conjugate (GCG-P2) at normal glucose
levels did not induce hyperglycemia. The blood glucose levels
were monitored for 8 h after injection of GCG micelle and
remained above 125 mg/dL, well within the normoglycemia
range. Surprisingly, glycemia levels of the mice treated with
GCG micelle were lower than the PBS control by 30 mg/dL.
This could be due to counterregulation effects and the release
of endogenous insulin. Future experiments using a diabetic
model would be needed to elucidate this hypothesis. Yet, the
above experiments did show that the empty micelle was not
causing any in vivo toxicity, and the GCG micelle was not
inducing hyperglycemic conditions, indicating that the
formulation was safe for further exploration. In vivo efficacy
studies were performed in a healthy murine model, avoiding
various variables associated with diabetes mouse models.
According to experimental results, the GCG micelle was able
to reverse deep hypoglycemic conditions in less than 25 min
after injection, indicating that the glucagon formulation could
be employed as an emergency treatment for hypoglycemia.
Interestingly, when mice with moderate hypoglycemia were
injected with GCG micelles, there was no hyperglycemic
condition following this injection, further demonstrating the
safety of the GCG micelle. Finally, when the CGC formulation
was injected together with insulin, blood glucose levels were
maintained in the normal range, whereas the control group
experienced a drop in glycemia below the gluco-counter-
rgulatory threshold. This indicates that the GCG-micelle,
acting in tandem with insulin, proved more effective at
maintaining normoglycemia than the empty-micelle-insulin
combination. In conclusion, these experimental results indicate
that the GCG micelle could be used to avert the onset of
insulin-induced deep hypoglycemia as a responsive system.
Hypoglycemia occurs in diabetic patients 1−2 times per week
on average for glucose levels below 70 mg/dL and
approximately once a year for less than 50 mg/dL.60 Therefore,
we envision that the glucagon in this formulation would be
released once, or not all, before the material is excreted. As
such, these studies highlight the potential for a glucagon
formulation to manage glycemia by pre- or coadministration of
glucagon-micelles with insulin.

■ CONCLUSION
In conclusion, a novel glucose-responsive polymer-GCG
conjugate system was developed that self-assembled into
micelles under normoglycemic conditions via reversible
binding of phenylboronic acid units to glucose and
disassembled during hypoglycemia, releasing the active
glucagon conjugate. The GCG-micelle exhibited a significant
increase in activity compared to native glucagon in vitro. In
mouse models of insulin-induced hypoglycemia, intraperito-
neal administration of glucagon-micelles successfully regulated
blood glucose concentration, both reverting and preventing
deep hypoglycemia depending upon when the glucagon-
micelles were injected relative to insulin administration.
Importantly, in vivo, glucagon release from micelles only
occurred at or below the counter-regulatory threshold, with no
release observed under moderate hypoglycemia or normogly-
cemic conditions. Additionally, acute and chronic toxicity
analyses in vivo along with μPET/μCT imaging demonstrated
a favorable safety profile of this formulation, showing no organ
accumulation. The proof-of-concept data indicates that the
GCG-micelle is a promising candidate worthy of further
investigation for the treatment of insulin-induced hypoglyce-
mia.

■ MATERIALS AND METHODS
Study Design. The objective of this study was to design

and develop a glucose responsive delivery system for glucagon
to combat severe hypoglycemia, either as an emergency
medication or as a preventive measure. Two main goals were
identified: I) to synthesize a polymer, fine-tuning its
physicochemical characteristics, that serves as a carrier for
glucagon and that is able to self-assemble into micelle and
disassemble at the desired glucose levels, and II) to verify such
formulation biological activity by testing for its potency in vitro
and for its capacity to prevent or reverse severe hypoglycemia
without side effects in vivo. First, we identified PEG-b-
P(NIPAM-stat-2-APBA) as a polymer presenting all desired
characteristics, such as the ability to self-assemble into micelles
based on temperature and glucose response. We modified the
polymer to be responsive in physiological conditions by
altering the ratio of hydrophilic PEG block to responsive
hydrophobic NIPAM-stat-2-APBA block as well as the
percentage of phenyl boronic units present in the hydrophobic
block. The polymer was modified to insert a disulfide to react
with a thiolated glucagon, forming an active conjugate.
Through careful fine-tuning of the length and ratios of each
polymer block, the conjugate was engineered to respond to
changes in glycemia at physiological range. After the above
optimization, the conjugate activity was tested in vitro using
cells overexpressing the glucagon receptor, finding an increased
potency of the conjugate compared to native glucagon. Finally,
the conjugate safety and activity were assessed in vivo using
healthy male C57Bl/6J mice. To test the safety, animals were
injected with either the conjugate or PBS as a control, and
changes in their glycemia were monitored for 8 h. At the end of
the study, kidney and liver tissues were collected to perform
the histopathological analysis. Two experiments were per-
formed to study the capacity of the micelle to reverse or
prevent deep hypoglycemia. In the first, animals were fasted for
12 h and then injected with insulin to induce severe
hypoglycemia. After, either the glucagon micelle or empty
micelle as a control were administered monitoring changes in
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glycemia for 2 h. The second experiment was conducted
similarly, but the glucagon micelle or empty micelle were
administered at the same time as insulin. All animal procedures
performed in this study were reviewed and approved by the
UCLA Animal Oversite Committee and supervised by A.L.H.
or R.M.VD.

Statistical Analysis. In vitro and in vivo experimental
values are reported as the mean ± SD and mean ± SEM,
respectively. Graph Pad Prism 8 (GraphPad Software, San
Diego, USA) was used for the statistical analyses. Two-way
analysis of variance (ANOVA) followed by Bonferroni’s
multiple comparison test was employed to compare the
means and determine the significance of the differences.
Results were considered significantly different if p < 0.05 (*);
results are also reported with p < 0.01 (**), p < 0.001 (***)
and p < 0.0001 (****).
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