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 3 
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 5 
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 7 

Abstract 8 

 9 

The objective of this work is to discuss solute transport phenomena in fractured porous 10 

media, where the macroscopic transport of contaminants in the highly permeable inter-11 

connected fractures can be strongly affected by solute exchange with the porous rock 12 

matrix. We are interested in a wide range of rock types, with matrix hydraulic 13 

conductivities varying from almost impermeable (e.g., granites) to somewhat permeable 14 

(e.g., porous sandstones). In the first case, molecular diffusion is the only transport 15 

process causing the transfer of contaminants between the fractures and the matrix blocks. 16 

In the second case, additional solute transfer occurs as a result of a combination of 17 

advective and dispersive transport mechanisms, with considerable impact on the 18 

macroscopic transport behavior. We start our study by conducting numerical tracer 19 

experiments employing a discrete (microscopic) representation of fractures and matrix. 20 

Using the discrete simulations as a surrogate for the “correct” transport behavior, we then 21 

evaluate the accuracy of macroscopic (continuum) approaches in comparison with the 22 

discrete results. However, instead of using dual-continuum models, which are quite often 23 



used to account for this type of heterogeneity, we develop a macroscopic model based on 24 

the Continuous Time Random Walk (CTRW) framework, which characterizes the 25 

interaction between the fractured and porous rock domains by using a probability 26 

distribution function of residence times. A parametric study of how CTRW parameters 27 

evolve is presented, describing transport as a function of the hydraulic conductivity ratio 28 

between fractured and porous domains. 29 

 30 

Introduction 31 

 32 

The internal heterogeneity of fractured porous formations is a significant obstacle to the 33 

prediction of solute transport processes (Berkowitz, 2002). The macroscopic transport of 34 

contaminants in such systems is mainly carried out in high-permeable, interconnected 35 

fractures, but most of the capacity for storing a pollutant is provided by the low-36 

permeability porous matrix. Because of the much slower transport in the matrix, steep 37 

concentration gradients may occur between the fractures and the porous blocks, giving 38 

rise to a local disequilibrium. The terms “macroscopic” and “local” or “microscopic” are 39 

used in this paper to define different scales of interest. The macroscopic scale 40 

incorporates a large number of individual fractures and matrix blocks, e.g., between a 41 

contaminant source and a monitoring well. In contrast, the local (microscopic) scale is on 42 

the order of single fractures and single matrix blocks. The local disequilibrium situation 43 

with regard to the solute concentrations in fractures and matrix can lead to significant 44 

solute transfer at the fracture/matrix interfaces. This local transfer can strongly influence 45 

the macroscopic solute transport in a fractured porous formation, and thus needs to be 46 

accounted for in numerical models (Berkowitz, 2002).  47 



 48 

Generally, the numerical simulation of flow and transport processes in fractured porous 49 

media can be performed with discrete models or continuum models (e.g., Berkowitz, 50 

2002; Neuman, 2005). Discrete models describe the spatial structure of the fracture-51 

matrix system in great detail on a microscopic level, and thus allow for a more accurate 52 

simulation than continuum models. However, since discrete models are limited in their 53 

applicability to field problems, upscaling methods are commonly employed to develop 54 

macroscopic models, simulating the flow and solute transport behavior in sufficiently 55 

large computational cells and assigning suitably averaged “effective” properties to them. 56 

In fractured porous formations, where the local disequilibrium between fractures and 57 

matrix cannot be neglected, researchers have often applied so-called dual-continuum 58 

models (Barenblatt et al., 1960). Here, the heterogeneous formation is separated into two 59 

superimposed, interacting media, one representing the fracture system with high 60 

conductivity, the other representing the porous rock matrix with high storage capacity. 61 

Because both media are treated as different systems, the flow and transport processes are 62 

described by two separate sets of equations coupled by transfer terms to account for the 63 

exchange of mass at the common boundary.  64 

 65 

Despite the simplification with regard to neglecting microscopic transport processes, 66 

numerical modeling of dual-continuum systems is still a complicated process. For 67 

example, different types of dual-continuum approaches are needed depending on the 68 

hydrologic characteristics of the porous matrix. In the general form of a dual-continuum 69 

model, the regional flow and transport processes take place in both domains. In many 70 



formations, however, the regional flow and transport processes in the matrix continuum 71 

can be neglected because the hydraulic conductivity of the matrix is almost negligible 72 

compared to that of the fracture continuum, such as in crystalline rocks or shale (Bodin et 73 

al., 2003). In such cases, the matrix continuum acts as a local storage domain for the 74 

regional flow and transport in the fracture continuum. The governing equation for the 75 

matrix continuum can then be simplified by eliminating the macroscopic flow and 76 

transport terms so that only the local fluid flow or solute exchange with the fracture 77 

continuum needs to be considered. In the first general form of a dual-continuum model, 78 

we use the term “dual-permeability” (or mobile-mobile) model; the latter case is referred 79 

to as a “dual-porosity” (or mobile-immobile) model (Simunek et al., 2003). Note that in a 80 

dual-porosity model, the local fluid flow between fracture and matrix continua may be 81 

neglected, e.g., when the flow field is steady-state as assumed in this paper (i.e., no local 82 

pressure gradient between fractures and matrix) or when the matrix permeability is 83 

sufficiently small. Matrix diffusion is then the only relevant solute transfer process at the 84 

fracture-matrix interfaces. 85 

 86 

A variety of dual-porosity (mobile-immobile) approaches have been described in the 87 

literature, most of which with a focus on solute transport in fractured porous media. 88 

Respective models have been developed with simple first-order transfer terms (e.g., 89 

Huyakorn et al., 1983a; Birkholzer and Rouve, 1994) or more complex higher-order 90 

approaches, where local-scale detailed descriptions of diffusive transport are employed in 91 

the immobile domain (e.g., Bibby, 1981; Huyakorn, 1983b, 1983c; Dykhuizen, 1990; 92 

Zimmerman et al., 1990, 1993; Birkholzer and Rouve, 1994). Note that variations of 93 



dual-porosity approaches have also been used to study solute-transport problems in 94 

heterogeneous porous media bimodal permeability structures (e.g., Roth and Jury, 1993; 95 

Haggerty and Gorelick, 1995; Feeley et al., 2000; Flach et al., 2004). 96 

 97 

Macroscopic modeling of solute transport in dual-permeability (mobile-mobile) systems 98 

is conceptually more challenging than in dual-porosity (mobile-immobile) systems. First, 99 

the macroscopic transport processes need to be solved for in both continua, which 100 

requires determination of hydrologic properties separately for the fractured and the 101 

porous domain (e.g., Teutsch, 1988; Gerke and van Genuchten, 1993a). Furthermore, the 102 

solute-transfer term needs to take into account not only diffusive transport, but also the 103 

additional effects of advection and dispersion. Figure 1 schematically illustrates the 104 

advective mass exchange between fractures and porous matrix, as solutes migrate within 105 

matrix pores (driven by a regional gradient) and encounter flow in transverse fractures. 106 

Birkholzer and Rouve (1994) proposed a dual-permeability approach with a specific 107 

solute transfer term for such advective-dispersive mixing processes. In this approach, a 108 

first-order exchange term is determined, based on the macroscopic flow in the matrix 109 

continuum and the geometric characteristics of the fracture network. For dual-110 

permeability modeling of heterogeneous soils with high- and low-permeability regions, 111 

Ahmadi et al. (1998), Cherblanc et al. (2003), and Cherblanc et al. (2007) developed a 112 

volume averaging technique that allows definition of first-order transfer terms for 113 

diffusive, dispersive, and advective processes. 114 

 115 



As is apparent from the above discussion, dual-continuum models of various types are 116 

available for simulating solute transport in fractured porous media. However, while dual-117 

porosity models have quite often been applied to field problems, dual-permeability 118 

applications have been less frequent. One of the crucial problems encountered when 119 

using dual-permeability models is the determination of the large-scale effective properties, 120 

which include the macroscopic flow and transport properties of the two domains, as well 121 

as the properties determining solute transfer between the two domains. This is not a 122 

trivial task. For example, while a priori estimates of solute transfer coefficients have 123 

been proposed for idealized subsurface geometries (e.g., Dykhuizen, 1990; Zimmerman 124 

et al., 1990, 1993; Gerke and van Genuchten, 1993b; Gwo et al., 1998 [for diffusive 125 

matrix transport]; Birkholzer and Rouve, 1994 [for advective matrix transport]), they are 126 

generally derived from calibration to field measurements. Furthermore, the a priori 127 

decision about the appropriate model to be used in a specific field situation—dual-128 

porosity or dual-permeability—can be difficult, depending on the time and length scale of 129 

interest as well as the domain properties.  130 

 131 

In this paper, we evaluate the applicability of the Continuous Time Random Walk 132 

(CTRW) theory for modeling solute transport in fractured porous formations, as an 133 

alternative to the traditional dual-continuum approach. The CTRW theory has been 134 

developed to explain and model anomalous, i.e., non-Fickian, transport in heterogeneous 135 

physical systems (Scher and Lax, 1973). Any deviation from perfect homogeneity 136 

induces retardation and/or acceleration of the solute, which cannot be represented by 137 

models based on the classical hypothesis of homogeneous transport. CTRW is an 138 



effective upscaled method that treats unresolved (small-scale) heterogeneities 139 

stochastically and resolved (large-scale) heterogeneities deterministically. CTRW has 140 

found many useful applications in hydrogeological problems, including transport of 141 

tracers in porous media (Bijecjic and Blunt, 2006), fracture networks (Berkowitz and 142 

Scher, 1995, Noetinger et al., 2001a,b, Landereau et al., 2001), sandstones, sand columns, 143 

unsaturated soils (Cortis and Berkowitz, 2004), karstic systems (Anwar et al., 2007), the 144 

hyporheic zone (Boano et al., 2007), transient flow in highly heterogeneous permeable 145 

systems (Cortis and Knudby, 2006), flow of emulsions in porous media (Cortis and 146 

Ghezzehei, 2007), heat transfer in porous media (Emmanuel and Berkowitz, 2006), and 147 

transport of biocolloids (Cortis et al., 2006).  148 

 149 

Dentz and Berkowitz (2003) demonstrated that the CTRW method is formally equivalent 150 

to the linear multirate mass-transfer (MRMT) concept (e.g., Haggerty and Gorelick, 151 

1995). The dual-porosity approach is essentially a MRMT model with a specific mass-152 

transfer model accounting for heterogeneity in the solute exchange between mobile and 153 

immobile regions. Our study aims at demonstrating that the CTRW framework not only 154 

can substitute for dual-continuum approaches, but is generally applicable to fractured 155 

porous formations over a wide range of matrix permeabilities. We do this by first 156 

conducting numerical tracer experiments in discrete fracture-matrix systems (Berkowitz 157 

et al., 1988, Birkholzer et al. 1993a,b, Birkholzer and Rouve, 1994, Rubin et al., 1996). 158 

These simulations are assumed to represent the “correct” system behavior. In a second 159 

step, the results of the discrete simulations are compared with the results from a 160 

nonparametric best-fit solution of the CTRW method (Cortis, 2007).  161 



2  Discrete Numerical Experiments 162 

2.1 Methodology 163 

Numerical tracer experiments are conducted using a discrete representation of individual 164 

fractures and matrix blocks, respectively. Because the flow and transport processes are 165 

simulated in great detail on a microscopic (“local”) scale, we may assume that the 166 

discrete simulation results faithfully represent the transport corresponding to a given set 167 

of hydrologic properties, so that the results obtained using the CTRW method can be 168 

compared to these “correct” results.   169 

 170 

Since our main interest here is phenomena related to fracture/matrix interaction and their 171 

impact on macroscopic solute transport, it is reasonable to restrict the discrete simulations 172 

to fractured formations with regular geometry and uniform properties. The randomness 173 

and heterogeneity of natural fracture networks would (1) create difficulties in interpreting 174 

the simulation results with regard to the purpose of our study, and (2) involve the difficult 175 

task of assigning effective continuum parameters. Issues of computational efficiency are 176 

to be considered as well, since the discrete simulation results need to be compared to 177 

continuum results on a sufficiently large scale.  178 

 179 

Figure 2 illustrates the setup for the numerical experiments. An idealized formation is 180 

considered, with two orthogonal sets of parallel equidistant fractures embedded in porous 181 

permeable matrix blocks (Berkowitz et al., 1988; Birkholzer and Rouve, 1994; Lagendijk, 182 

2005). A constant (steady-state) hydraulic gradient of 0.01 in the positive x-direction is 183 

imposed by prescribing appropriate hydraulic head boundary conditions at the inflow and 184 



outflow cross sections of the model area. On the local scale, flow in the matrix follows 185 

the direction of the gradient, whereas flow in the fractures follows the fracture axis. On 186 

the macroscopic scale, however, both types of flow follow the positive x-direction, owing 187 

to the symmetry of the fracture network. We simulate the migration of an ideal tracer 188 

disposed uniformly along the inflow cross section, given by a relative concentration value 189 

of one imposed at the inflow boundary of the model area. The solute migrates through the 190 

model area in both the fractures and the porous permeable blocks; however, the transport 191 

in the fractures is several orders of magnitude faster. Initially, the model area is not 192 

contaminated.  193 

 194 

Although the conceptual setup is highly idealized, it is consistent with the requirements 195 

needed for the present study. First, it represents the tortuous flow paths through a natural 196 

fracture network, providing a large interface for mixing between the fractures and the 197 

porous blocks. Second, the flow and transport processes in the domain are symmetrical to 198 

the x-axis, without any transverse dispersion stemming from the randomness and 199 

heterogeneity of the fracture network. It is therefore possible to use the system’s 200 

symmetry and simulate only the long, thin sub domain depicted in the bottom of Figure 2, 201 

with the upper and lower boundaries representing no-flow boundaries. As indicated in the 202 

figure, the term “sector” refers to part of the model domain extending between two 203 

adjacent fracture intersections. We consider model domains consisting of a hundred, 0.5 204 

m long, sectors, so that the total length of the model domain is 50 m in the x–direction, 205 

and 0.5 m in the y–direction.  206 



The discrete simulation runs were performed with the standard GALERKIN-Finite-207 

Element-Code STRAFE6 using a Crank-Nicholson time weighting scheme (Lagendijk, 208 

2005). Due to the heterogeneity of the formation, a refined discretization in space and 209 

time was needed to meet the Peclet and Courant criteria. Triangle elements were used for 210 

the porous matrix and one-dimensional line-elements for the fracture representation (see 211 

example for two sectors in Figure 2, bottom). A total number of with 1,000 line elements 212 

and 20,000 triangles was utilized, and simulation runs comprised up to 30,000 time steps. 213 

 214 

Tables 1 and 2 summarize the geometrical and hydrological properties chosen for the 215 

discrete simulations. These properties are similar to those used in the discrete numerical 216 

experiments described in Birkholzer and Rouve (1994) and Lagendijk (2005). The 217 

majority of them are kept constant in our study (Table 1), except for the hydraulic 218 

conductivity in the matrix, which is varied in four sensitivity cases (Table 2). We expect 219 

matrix conductivity to be the most important parameter defining (1) whether the fractured 220 

porous formation is a mobile-immobile or a mobile-mobile system, and (2) whether the 221 

solute exchange between fractures and matrix is dominated by diffusive or advective 222 

processes. All values chosen represent reasonable parameters mentioned in the literature 223 

as typical for actual field situations. Notice that the relevant fracture properties in Table 1 224 

are given for single fractures, as represented in the discrete modeling exercise, but have 225 

also been converted into fracture continuum parameters, as required in macroscopic 226 

continuum approaches (fracture continuum conductivity and fracture continuum porosity).  227 

 228 



Table 2 discusses the basic features of the four sensitivity cases. In Case 1, we consider a 229 

small hydraulic conductivity in the matrix of 8.3 × 10
-6 

m/d; i.e., the porous matrix is 230 

essentially impermeable. Cases 2 and 3 denote intermediate cases with conductivities of 231 

2.0 × 10
-3 

m/d and 8.3 × 10
-3 

m/d, respectively, while Case 4 features a relatively high 232 

matrix conductivity of 9.94 × 10
-2 

m/d. Notice the strong internal heterogeneity reflected 233 

in the ratios of fracture to matrix continuum conductivity and transport velocity. With 234 

respect to conductivity, these ratios range from 12,000 (Case 1) to 1 (Case 4); i.e., in the 235 

latter case, the same magnitude of flow occurs in the two continua. With respect to 236 

transport velocity, these ratios range from almost infinite (Case 1) to 250 (Case 4); i.e., in 237 

all cases, the transport velocity in single fractures is much higher than the transport 238 

velocity in the matrix. As discussed in Birkholzer and Rouve (1994), the internal 239 

heterogeneity causes a solute-transport behavior in which the fast flow and transport in 240 

the fractures is affected by more or less intense solute exchange with the matrix. In the 241 

first case, with near-zero matrix permeability, molecular diffusion is the only transport 242 

process causing the transfer of solutes between the fractures and the matrix blocks. In the 243 

other cases, with increasing matrix conductivity, more and more solute mixing occurs 244 

between fractures and the matrix, as a result of advective flow in the matrix, which has a 245 

sizable impact on overall transport behavior (see Section 2.2). 246 

 247 

2.2 Simulation Results 248 

We shall first discuss simulation results on a local scale—i.e., on the scale of single 249 

fractures and matrix blocks—to evaluate the basic phenomena of solute transport in 250 

fracture-matrix systems. In Figure 3, we present the solute isoconcentration contours for 251 



the discrete matrix blocks located in Sectors 3 and 4 of the model area. These sectors are 252 

close enough to the contaminant source to feature a fast response, and yet far enough 253 

away from it to be essentially unaffected by the inlet boundary condition. We then 254 

discuss the macroscopic transport in the discrete fracture-matrix systems using 255 

breakthrough curves (BTC, see Figure 4) obtained at selected locations along the model 256 

domain (i.e., at 1 m, 5 m, 15 m, and 45 m from the inflow boundary, which corresponds 257 

to 2, 10, 30, and 90 model sectors). The BTCs at these locations will be used to evaluate 258 

the performance of the CTRW method.  259 

 260 

Figure 3(a) depicts the discrete simulation results in Sectors 3 and 4 for Case 1, which 261 

has an almost impermeable porous matrix. We notice a strong contaminant buildup near 262 

the fractures, demonstrating that solutes migrate very fast in the fracture network. During 263 

this fast advective transport, a small fraction of the solute migrates from the fractures into 264 

the porous matrix. This process is slow: at 100 days, the major fraction of the matrix 265 

blocks is not yet contaminated. The BTCs for Case 1 in Figure 4(a) exhibit the typical 266 

transport behavior of dual-porosity (mobile-immobile) media. The tracer breakthrough 267 

values initially increase very quickly, because of the large velocities in the fracture 268 

network. The smaller the distance between observation point and tracer inlet, the more 269 

significant the initial concentration buildup. Long tailing is observed after the initial 270 

buildup, a result of the slow diffusive transfer between the fractures and the matrix pore 271 

system. The dashed BTC indicates the local concentration differences between fractures 272 

and matrix for a migration distance of 30 sectors. It is obvious that the formation would 273 



need a very long time to equilibrate: significant local concentration differences can still 274 

be observed at 3,000 days.  275 

 276 

Concentration contours for Cases 2 and 3 are presented in Figures 3(b) and 3(c), 277 

respectively, after 100 days of solute disposal. While the transport velocity in the 278 

fractures is still orders of magnitude higher than in the matrix (Table 2), the impact of 279 

increasing matrix permeability shows in the microscopic transport behavior. The 280 

asymmetrical concentration contours are a result of advective-dispersive transport in the 281 

matrix, acting in the positive x–direction. The diffusive transfer from the fractures into 282 

the matrix is complemented by this advective-dispersive component—thus, the faster 283 

concentration buildup in the matrix compared to Case 1. The effect of enhanced mixing 284 

between fractures and matrix also shows in the BTCs in Figures 4(b) and 4(c), where, 285 

compared to Case 1, equilibrium conditions are reached earlier and less tailing can be 286 

observed.  287 

 288 

Case 4 presented in Figures 3(d) and 4(d) features a conductivity ratio of one between the 289 

fracture and matrix continua; i.e., 50% of the macroscopic flow is performed in the 290 

fractures and 50% in the matrix. The advective-dispersive mixing between the fracture 291 

and the matrix flow is so intense that the local concentrations equilibrate very fast, 292 

despite the still significant velocity-difference ratio of 250 between the two media. We 293 

present concentration contours at 20 days because the matrix blocks in Sectors 3 and 4 294 

are completely contaminated after less than 100 days. (With a transport velocity of about 295 

0.02 m/d in the matrix, a particle needs about 50 days to migrate along the two sectors, as 296 



shown in Figure 3(d).) The breakthrough curves in Figure 4(d) resemble those of 297 

advective-dispersive transport in a homogeneous medium; it seems that an almost 298 

continuous front is moving through the formation.   299 

 300 

3  CTRW Modeling of the Fractured-Rock Transport Problem 301 

3.1  Physical Motivation and Model Formulation 302 

The CTRW framework is a generalization of the classical Random Walk (RW) method 303 

so often used in the hydrogeological literature to solve the advection-dispersion equation 304 

(ADE) of a passive tracer in a porous domain. In the RW approach, tracer density is 305 

obtained by following the evolution of an ensemble of random walkers taking 306 

(uncorrelated) jumps of constant length at random (uniform) direction in the unit time. 307 

CTRW generalizes this physical picture by allowing the walker to jump according to a 308 

probabilistic distribution function (pdf), ),( τxΨ , of the length of a jump, x, and the 309 

retention time, τ, at a given location, while keeping a uniform random distribution for the 310 

jump direction. Assuming that the probability of the length of the jumps and the retention 311 

time probability are statistically independent, we write )()(),( τψτ xpx =Ψ , where p(x) is 312 

the probabilistic distribution of the particle jump lengths, and ψ(τ) is the retention times 313 

pdf. A detailed analysis of this uncoupling assumption can be found in Berkowitz et al. 314 

(2006]. When both the p(x) and ψ(τ) pdfs have finite first and second moments, (e.g., 315 

uniform, decaying exponential), the CTRW and RW physical pictures can be considered 316 

to be equivalent. If, however, either of the two has infinite variance (e.g., Cauchy, power-317 

law) than the CTRW yields qualitatively different physical pictures, and the random 318 

paths are referred to as Levy walks and Levy flights, for the cases of infinite variance of 319 



ψ(τ) and p(x), respectively. By taking an ensemble average over all the possible 320 

realizations of the unresolved heterogeneity, it is possible to map the set of small-scale, 321 

unresolved heterogeneities onto a probabilistic distribution of retention times, ψ(τ), that 322 

contains all the information necessary to describe transport in a given heterogeneous 323 

media. The p(x) pdf is assumed to have finite variance; from a physical point of view, 324 

this means that the tracer is allowed to take only relatively short jumps—consistent with 325 

the geological picture we have of a fractured porous matrix. 326 

 327 

A comprehensive discussion of the CTRW and its relation to other upscaling methods can be found in the 328 

recent review by Berkowitz et al. (2006). We refer to this review for the theoretical development of the 329 

CTRW, while details regarding the numerical implementation can be found in Cortis and Berkowitz 330 

(2005). In this work, we use, as the starting point of our analysis, the CTRW partial differential equation 331 

(PDE) for the transport of a passive tracer. In its nondimensional form, the CTRW PDE that governs the 332 

spatio-temporal evolution of the density of a passive tracer, c(x,τ), is (Dentz et al., 2004):333 

 [ ]),(~),(~)(
~

)(),(~
0 uxcuxcuMxcuxcu xx ∂−∂−=− α   (1) 334 

 335 
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∞

−==
0
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~

, 336 

u is the Laplace variable, )(0 xc  is the initial condition, α is the local dispersivity, and 337 

)(
~

uM  is a memory function that takes into account the nature of the heterogeneity and is 338 

related to the retention times pdf, ( )uψ , by 
)(~

)(~
)(

~

u1

u
uuM

ψ
ψ
−

= . In Equation (1), length 339 

and times have been made nondimensional, such that the nondimensional transport 340 

velocity is equal to unity. Equation (1) represents the time convolution of the memory 341 



function M(τ) with the classical advection-dispersion operator, and for this reason this 342 

class of models is referred to as nonlocal in time. Equation (1) reduces to the classical 343 

ADE when 1)(
~ =uM ; i.e., M(τ)=δ(τ), which implies an exponentially fast decay of the 344 

retention times pdf, 
u

u
+

=
1

1
)(~ψ , i.e., ψ(τ)=exp(−τ). It can also be shown that fractional 345 

derivative models are special cases of the general CTRW formulation (Berkowitz et al., 346 

2006).   347 

 348 

The CTRW interpretation of the dispersivity α is different from the classical advection-349 

dispersion equation (ADE). In the ADE, α represents a typical characteristic length of the 350 

small features of the systems, e.g., the pore-throat size. This interpretation has been a 351 

problematic one from its inception, and has led to a vast literature on the so-called 352 

macroscopic dispersion tensor, i.e., the attempt of explaining the scale-dependent 353 

spreading of observed tracer BTCs by means of an evolving characteristic length. Instead, 354 

in the CTRW approach, α is defined as the ratio  355 

 

∫
∫=

xxxp

xxxp

d)(

d)(

2

1
2

α . (2)  356 

 357 

The ψ(τ) pdf completely describes, in a probabilistic sense, the entire range of 358 

interactions that a solute molecule experiences in its interactions with the fluid flow field. 359 

Heterogeneities in the flow field have a strong influence on the retention-time probability 360 

of staying in a given place for a given interval of time, as is the case for high retention 361 

times in stagnation zones (such as those in low-permeability matrix blocks) and short 362 



retention times for fast flow paths (such as those in interconnected fractures). In other 363 

words, the CTRW approach smoothes out the unresolved heterogeneities and maps them 364 

onto the ψ(τ) retention times pdf. This mapping has the effect of representing the overall 365 

effect of the heterogeneities through a time-memory convolution, which reflects the 366 

history of interactions within the system.  367 

 368 

As discussed in Dentz et al., (2004), an algebraically decaying βτψ −−1~)(t  can explain a 369 

power-law like type of decay for the tail of a breakthrough curve. This type of long 370 

tailing is illustrated in Figure 5, where we plotted the solution of the ADE equation for a 371 

dimensionless velocity of v=1 and a dimensionless dispersivity α=0.005 (solid blue line), 372 

and the CTRW solution corresponding to the βψ
u

u
+

=
1

1
)(~ , with β=0.8, and α=0.005 373 

(solid red line). We recall that the ADE solution corresponds to 
u

u
+

=
1

1
)(~ψ . The long 374 

tailing in the CTRW solution is caused by the convolution of the memory function with 375 

the ADE transport operator (solid blue line). We note that the explicit solution of the 376 

CTRW equation is more than just a simple convolution of the memory function 377 

)(
~

uM with the solution for the ADE equation (see ,e.g., the Appendix B of Dentz et al., 378 

2004,). Depending on the specific shape of ψ(τ), the CTRW model can reproduce the fast 379 

early-time arrivals as well as the long tailing typical of fractured systems, as illustrated in 380 

Figure 5.  381 

 382 

Typically, the CTRW PDE is solved by postulating a simple functional form for ψ(τ) and 383 

then fitting its model parameters to the experimental data. A number of ψ(τ) models are 384 



described in detail in Berkowitz et al. (2006). Despite the wide success in fitting many 385 

laboratory and field datasets, however, such simple functional forms may not be general 386 

enough to describe the entire range of transport modes encountered in hydrogeological 387 

applications (Anwar et al., 2007). Following this approach, we have tried to fit the BTCs 388 

in Figure 4 with all the functional forms described in Berkowitz et al. (2006), with no 389 

success. Attempts to generalize these functional forms to conform to the shape of these 390 

BTCs also failed. Thus, a more general and less restrictive method needs to be used in 391 

this case. For this reason, in this work we apply a nonparametric inversion algorithm 392 

(NPIA) first described in Cortis (2007).  393 

 394 

The NPIA is aimed at recovering the numerical approximation of the whole spectrum of 395 

retention times that govern transport directly from the experimental data, without 396 

postulating a priori a functional form for ψ(τ). While the details of the NPIA can be 397 

found in Cortis (2007), below we summarize the salient features of the method. In the 398 

NPIA, the ψ(τ) is given through its numerical representation in the time-interval interest 399 

depending on the evolution of the breakthrough. This representation is obtained through 400 

the numerical inversion of the numerical approximation of )(~ uψ , determined via a 401 

nonlinear numerical inversion of the best fit of the CTRW PDE solution to the numerical 402 

Laplace-transformed data. The method is robust enough to reproduce all the known 403 

functional forms for ψ(τ), and yet flexible enough to represent more complex-looking 404 

BTCs. One of the most notable results of the application of the nonparametric approach 405 

to nonlocal methods is that any given unresolved heterogeneity can be represented by a 406 

family of retention-time probability distributions, ψ(τ|α) of parameter α, where α is the 407 



local dispersivity. In other words, any given set of breakthrough curves taken at different 408 

sections, and/or concentration profiles taken at different times, can be fit equally well by 409 

different ψ(τ), conditional to some reasonable value of α. This means that the dispersivity 410 

α cannot be considered either an intrinsic or a scale-dependent parameter of the system. 411 

Importantly, as no a priori value of α can be given or estimated from any type of 412 

macroscopic measurement, it must be interpreted only as an ancillary parameter of the 413 

retention-time probability distribution ψ(τ), which fully describes the transport. These 414 

considerations hold true not only for systems exhibiting anomalous transport, but also for 415 

normal transport, i.e., for the classical ADE Gaussian type of transport (Cortis, 2007).  416 

 417 

3.3  Application of the CTRW Method 418 

 419 

The first step in applying the CTRW model to the BTCs (shown in Figure 4) is the 420 

definition of characteristic (dimensional) transport velocity v’ and dispersivity α' for the 421 

different fracture-matrix systems studied in Section 2.  422 

 423 

As discussed earlier, in our CTRW model, the interaction between the fractures and the 424 

porous matrix is fully taken into account via the introduction of the memory function 425 

M(τ) (hence the probabilistic distribution of retention times, ψ(τ)), which is convoluted 426 

with the classical ADE transport kernel, i.e., [ ]),('),(' txctxcv xx ∂−∂ α . We thus need to 427 

define reasonable values for the relevant parameters v’ and α' of the classical ADE that 428 

represent the local dispersion inside the porous matrix and along single fractures, without 429 

accounting for their interaction.  430 



 431 

One logical approach is to define the characteristic transport velocity of the composite 432 

system in Figure 2 using the total flux through the fracture-matrix column (to calculate 433 

the Darcy velocity) and the total porosity of the fractured porous medium (to convert 434 

from Darcy to transport velocity). In other words, we calculate the velocity v’ that 435 

represents a homogeneous column conducting the same total flux and has the same pore 436 

space as the fracture-matrix systems studied in Cases 1 through 4. Note that both these 437 

quantities—total flux and porosity—can generally be measured or estimated in field 438 

situations. Similarly, the dispersivity α' can be chosen such that it represents only local 439 

dispersive effects in fractures and matrix blocks, and not the effects stemming from the 440 

fracture-matrix interaction. The exact value of α' is not important because, as discussed 441 

above, the application of the nonparametric inversion algorithm implies that equally good 442 

fits of the CTRW equations on the BTCs data can be obtained for different (reasonable) 443 

values of the dispersivity (Cortis, 2007). In this work, we selected a value of α'=0.25 m, 444 

that, as we will see in the discussion below, represent the characteristic dispersivity of 445 

Case 4. Such value of α' is considerably smaller than the typical macrodispersivity 446 

estimates (Gelhar, 1993). 447 

 448 

We define dimensionless parameters as follows. Length-based quantities such as 449 

horizontal distance or dispersivity are normalized with the total length of the model 450 

domain, L=50 m. The four BTC locations shown in Figure 4, at 2, 10, 30, and 90 sectors 451 

(1, 5, 15, 45 m), thus correspond to nondimensional distances of x=[0.02, 0.1, 0.3, 0.9]. 452 

Nondimensional dispersivity is α=0.005. The characteristic transport velocity calculated 453 



above is normalized to unity, and time in the breakthrough curves is normalized such that 454 

a particle migrating with unit velocity would arrive at the end of the column, x=1, at 455 

nondimensional time τ=1. We then select the BTC calculated at x=0.1 as the reference 456 

BTC for the CTRW model: this will be our “data.” In other words, the breakthrough 457 

results from the discrete simulations for the cross section at 10 sectors (Figure 4) 458 

represent the data set over which the nonparametric inversion algorithm is fitted to. The 459 

NPIA yields the ψ(τ|α) retention time pdf, conditional to the chosen value of α. The 460 

ψ(τ|α) is then used to predict the BTCs at x=0.02, x=0.3, and x=0.9. This procedure is 461 

conducted for all parameter cases, by keeping the value of α unchanged. 462 

 463 

We recall that Case 1 represents the one bounding case in which a very small flux is 464 

allowed to flow in the porous matrix (low permeability). Cases 2, 3, and 4 have 465 

increasing matrix-permeability values, with Case 4 the other bounding case, in which an 466 

equal amount of flux is allowed in the fractures and the porous matrix.  467 

 468 

The results of the fitting procedure to Cases 1 through 4 are reported in Figure 6. In the 469 

left panels of Figure 6, we plotted as solid lines the simulated BTCs at the four sections 470 

x=[0.02, 0.1, 0.3, 0.9] (as calculated by the discrete numerical procedure), together with 471 

the best fits obtained by means of our NPIA applied to the CTRW model (circles). The 472 

ADE model α = 0.005 is also reported for reference (dashed lines). In the right panel of 473 

Figure 6, we plotted, in double logarithmic units as a solid line, the best fit ψ(τ) obtained 474 

with the NPIA on the BTC at x=0.1 and as a reference the exponential function exp(-τ), 475 

which represents the ADE model limit.  476 



 477 

As we can see from Figure (6), the ADE model does a good job at fitting the BTCs in 478 

Case 4 (for x=0.1) and predicting the BTC at the other sections. This can be seen also 479 

from the best fit ψ(τ) (solid line), which is very close to the decaying exponential exp(−τ) 480 

(dashed line), i.e., the ADE limit. In other words, the observed “correct” BTC of the 481 

fracture-matrix system can be represented without explicitly accounting for unresolved 482 

heterogeneities. This is not too surprising, considering the strong mixing between fracture 483 

and matrix flow (Figure 3) and the typical symmetrical shape of the breakthrough curve 484 

(Figure 4). In this case, however, the CTRW model is slightly more precise than the ADE. 485 

Notice that the good agreement between the “correct” BTC and the ADE solution also 486 

supports the determination of the characteristic transport velocity of the composite 487 

system. 488 

 489 

As the total flux in the system predominantly flows in the fractures for the cases with 490 

small matrix permeability (Cases 1 through 3), the ADE fails in predicting the BTCs, 491 

whereas the CTRW model provides excellent fits (for x=0.1) and predictions (for 492 

x=[0.02, 0.3, 0.9]). (For the section at x=0.02, the CTRW model provides a correct 493 

prediction only up to the time at which the reference BTC used to derive the ψ(τ) pdf (in 494 

our examples the BTC at x=0.1) differs significantly from zero. In other words, because 495 

of the inherent numerical instability of the numerical Laplace inversion algorithms (i.e., 496 

the oscillating behavior), the numerical approximation of ψ(τ) is not accurate enough to 497 

back-propagate the BTC for small enough times.) The CTRW approach is capable of 498 

representing transport processes for a wide range of fractured porous formations, ranging 499 



from mobile-immobile systems with mostly diffusive mixing (Figure 3(a) for Case 1) to 500 

mobile-mobile systems with diffusive as well as advective-dispersive mixing (Figures 501 

3(b) and 3(c) for Cases 2 and 3).  502 

 503 

In each of these three cases, the best-fit ψ(τ) pdfs consistently deviate from the decaying 504 

exponential, which indicates the presence of a wider spectrum of characteristic retention 505 

times in the fracture-matrix system. We can observe the graph of the best-fit ψ(τ) (solid 506 

line) crossing the graph of the decaying exponential (dashed line). Retention times larger 507 

than exp(-τ) are indications of faster tracer arrivals, whereas smaller values indicate 508 

slower tracer arrivals. This behavior can be understood by recalling the characteristics of 509 

the fracture-matrix interaction as shown in Figure 3. We also note that the best-fit ψ(τ) 510 

converges, for long times, to a decaying exponential behavior, a clear indication of a 511 

truncation time for the transport process (Dentz et al, 2004). Consistent with this 512 

observation, the crossing time decreases with the increase of the matrix permeability.  513 

 514 

It is also worth pointing out that the estimated ψ(τ) pdfs show a 21 /−τ  slope for Cases 1 515 

through 3, which is often observed in field conditions and interpreted as macroscopic 516 

matrix diffusion. While Cases 1 and 2 are definitely diffusion dominated in the matrix, 517 

Case 3 exhibits clearly the effect of advective transport through the matrix blocks. It 518 

appears that diffusive and advective interaction between fractures and matrix lead to the 519 

same slope in the estimated ψ(τ) pdfs. This suggests that the macroscopic values of 520 

matrix diffusion determined in field conditions, which are often larger than those 521 

observed in laboratory conditions, may include contributions stemming from advective 522 



transport in the porous matrix. A interesting topic of research would be a study of the 523 

relationship between the transition cut-off time from a 21 /−τ  slope to a decaying 524 

exponential behavior in the ψ(τ), and its dependence on the permeability characteristics 525 

of the fractures and the matrix. 526 

 527 

Note that the value for dispersivity α remains unchanged for the four cases, so that the 528 

transport is completely defined by the ψ(τ|α) pdf. Furthermore, within each individual 529 

case, a single value of α is used to describe the BTCs for the four locations, whereas a 530 

macrodispersivity approach would require a scale-dependent and much larger value of 531 

α =α(x). Our sensitivity study indicates that the quality of the CTRW fitting results does 532 

not depend on the particular (small) value of α, in accordance with the results of Cortis 533 

(2007) describing the existence of a family of residence time pdfs parameterized in α. 534 

This confirms our initial conjecture that small values of α can be thought of as 535 

accounting for the small local dispersion and diffusion phenomena happening in the 536 

individual fractures and matrix blocks, whereas the fracture-matrix interaction can be 537 

represented by a memory function related to the tracer retention-times probabilistic 538 

distribution.  539 

 540 

 541 

 542 

4.  Conclusions 543 



We have presented a study of the tracer-transport interaction in a composite 544 

hydrogeological system consisting of interconnected fractures and porous permeable 545 

matrix blocks. Four sensitivity cases, covering a wide range of matrix permeability 546 

values, exhibited a macroscopic transport behavior strongly dependent on the intrinsic 547 

heterogeneity of the fractured rock (i.e., fractures versus matrix) and the characteristics of 548 

local fracture-matrix interaction processes. Using results from numerical experiments 549 

employing a discrete (microscopic) representation of fractures and matrix, we 550 

investigated the possibility of the Continuous Time Random Walk (CTRW) framework 551 

for predicting the observed macroscopic transport processes in such composite media.  552 

 553 

Our results indicate that:  554 

1. The CTRW offers a valid and robust alternative to classical approaches used for 555 

fractured porous media (such as dual-continuum models), with a clear physical 556 

interpretation and a parsimonious number of parameters;  557 

2. The anomalous transport observed in the numerical experiments can be fully 558 

characterized by the probabilistic distribution function (pdf) of retention times, 559 

ψ(τ), which stochastically describes the full range of interactions between the 560 

fractures and porous matrix;  561 

3. The ψ(τ) pdf can be extracted by means of a nonparametric inversion algorithm 562 

fitted on the observed breakthrough data at a given location, which fully 563 

characterizes the transport at all other locations;  564 



4. The characteristic transport velocity used in the CTRW approach can be 565 

calculated from the total composite flux and the total composite porosity of the 566 

fractured formation; 567 

5. The dispersivity α used in the CTRW is not scale-dependent, such that one value 568 

of α can be used for all sensitivity cases and locations. Moreover, the relatively 569 

small value used for α represents the local dispersion in single fractures or matrix 570 

blocks, but does not need to account for the complex interaction between fractures 571 

and matrix that leads to the anomalous macroscopic behavior. As discussed 572 

above, the latter is fully characterized by the pdf of retention times;  573 

6. Anomalous early-time arrivals can also be represented in the CTRW framework, 574 

and are characterized by values of ψ(τ) > exp(-τ) for times smaller than some 575 

crossover value τ', whereas the slow late-time arrivals are characterized by values 576 

of ψ(τ) < exp(-τ). 577 

 578 

Future work will focus on CTRW applications to more disordered fracture-matrix 579 

systems, looking at the effects of random fracture structures or evaluating the impact of 580 

microscopic heterogeneities within the fractures or the porous matrix, hence requiring a 581 

local ψ(τ) for these local structures. We will also attempt to apply the CTRW methods 582 

developed here to field data from fractured porous media. 583 

 584 

 585 

 586 
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Table 1:   Geometry and properties chosen for discrete simulation 719 

Parameter Value Unit 

Fractures 

Fracture Spacing,  B 0.707 m 

Angle Between Fractures and x – Direction,  θ 45 ° 

Aperture,  a 10-4 m 

Hydraulic Conductivity of Single Fracture
1
,  F

sK    703 m/d 

Continuum Conductivity in x – Direction
2
,  

F
K  9.94 × 10-2 m/d 

Equivalent Continuum Porosity
3
,  n

F
 2.83 × 10-4 - 

Longitudinal Dispersivity Along Single Fracture,  F

lα  0.01 m 

Effective Diffusion in Single Fracture Coefficient,  F

moD   10-4 m
2
/d 

Matrix
4
 

Porosity,  n
M

 0.05 - 

Hydraulic Conductivity,  
M

K  case dependent m/d 

Longitudinal Dispersivity,  M

lα  0.01 m 

Transverse Dispersivity,  M

tα  0.001 m 

Effective Diffusion Coefficient
5
,  M

moD  2.0 × 10-5 m
2
/d 

Size of Matrix Blocks,  B × B 0.707 × 0.707 m
2
 

Other 

Hydraulic Gradient in x - Direction,  J 0.01 - 

Sector Length,  L 0.5 m 

1 
Calculated from parallel plate assumption as follows:  ν12b2gK

2F

s /)(=  720 

2 
Calculated from geometry considerations as follows:  ( )θθ sin/cos BKK F

s

F =  721 

3 
Calculated from geometry considerations as follows:  ( )θθ cossin/ BanF =  722 

4 
Properties are given for unit bulk volume of the rock matrix 723 

5 
Includes effect of tortuosity, assumed to be 0.2 724 

 725 

726 



Table 2:   Sensitivity Cases 726 

 Case 1 Case 2 Case 3 Case 4 

Formation Type e.g., crystalline 

rock, shale 

e.g., porous sandstone, limestone 

Matrix Hydraulic 

Conductivity 

8.3 × 10
-6

 m/d 2 × 10
-3

 m/d 8.3 × 10
-3

 m/d 9.94 × 10
-2

 m/d 

Ratio Fracture to 

Matrix Continuum 

Conductivity 

≈ 12,000 50 12 1 

Ratio Fracture to 

Matrix Transport 

Velocity
1
 

≈ 3 × 10
6
 m/d ≈ 12,400 ≈ 3,000 250 

Type of Fracture-

Matrix Interaction
2
 

Almost Purely 

Diffusive 

Mostly Diffusion 

Diffusion and 

Advection 

Mostly 

Advection, 

Strong Mixing 

Breakthrough 

Characteristics
2
 

Rapid Response, 

Long Tail 

Between Cases 1 and 4 

Typical  ADE
3
 

without tailing 

1
 Fracture transport velocity is measured along fracture axis. 727 

2
 Based on Birkholzer & Rouve (1994) 728 

3
 ADE:  Advection-Dispersion Equation 729 

 730 

731 



 731 

 732 

Figure 1: Schematic showing the mixing between fracture and matrix flow as a result of 733 

convective transport in the matrix 734 

 735 

736 



 736 

Figure 2.  Discrete representation in idealized fracture network. Flow and transport is 737 

from left to right, with a concentration boundary condition on the left side. The total 738 

domain is 100 sectors long.  739 
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Figure 3.   Matrix concentrations from discrete simulations displayed in sectors 3 and 4 of 742 

the model domain. 743 
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Figure 4.   Breakthrough curves for (a) Case 1, (b) Case 2, (c) Case 3, and (d) Case 4,  746 

measured at different locations along the model domain.    747 
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 748 

Figure 5.  ADE solution (solid blue line) and CTRW solution (solid red line), for the 749 

same value of the non-dimensional dispersivity α=0.005. For the CTRW 750 

solution, βψ
u

u
+

=
1

1
)(~ , with β=0.8.  751 
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 757 

Figure 6: Best fit results of the CTRW model. Cases 1-4, (top to bottom) represent 758 

systems with increasing values of the porous matrix (See Table 2). In the left panel we 759 

compare the discrete numerical computations (solid lines), with the CTRW model 760 

(circles) and the ADE model (dashed lines). The breakthrough curves are calculated at 761 

four different sections, x=0.02, 0.1, 0.3, and 0.9. In the right panel, we plot the best fit 762 

probabilistic distribution of retention times, ψ(τ) (solid lines), and for comparison the 763 

decaying exponential exp(-τ) (dashed lines), the classical ADE limit. 764 




