
UNIVERSITY OF CALIFORNIA

SANTA CRUZ

SMARTSSD FOR GENOMICS

A Thesis submitted in partial satisfaction of the

requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE AND ENGINEERING

by

Sachet Mittal

September 2020

The Thesis of Sachet Mittal
is approved:

Professor Heiner Litz, Chair

Professor Scott Beamer

Professor Benedict Paten

Quentin Williams
Interim Vice Provost and Dean of Graduate Studies

Table of Contents

List of Figures v

List of Tables vi

Abstract vii

Acknowledgments viii

I Background 1

1 Introduction 2
1.1 SmartSSD . 3
1.2 Genome sequencing . 6

1.2.1 Sequence Alignment . 6
1.2.2 Alignment Matrix . 9
1.2.3 Genotyping . 9
1.2.4 Haplotyping . 10

1.3 Tools Used . 10
1.3.1 Perf . 10
1.3.2 Valgrind and Callgrind . 11
1.3.3 pyCparser . 11

2 SmartSSD architecture 12
2.1 Architectural Requirements . 12
2.2 Software Interface . 15

3 Determining the Suitability of a Workload 17

II Evaluating Workloads 22

4 MarginPhase 23
4.1 Introduction . 23
4.2 Algorithm . 24
4.3 Why is it suitable for acceleration? 25
4.4 Workload Properties . 26

iii

4.4.1 Parallelizability . 26
4.4.2 Partionablity . 26
4.4.3 High Data Use and Low Reuse 27

4.5 Methodology . 29
4.6 Results . 31
4.7 Verdict . 32
4.8 Learnings . 33

5 Minimap2 34
5.1 Introduction . 34
5.2 Algorithm . 35
5.3 Why is it suitable for acceleration? 36
5.4 Workload Properties . 37

5.4.1 Partionablity . 37
5.4.2 Parallelizability . 37
5.4.3 Large Data Footprint . 37
5.4.4 A Computationally Expensive Kernel 38
5.4.5 Pointer Arithmetic/ Pointer Chasing 38
5.4.6 Dynamic Allocation . 38

5.5 Methodology . 39
5.6 Results . 41
5.7 Shared data analysis . 42
5.8 Verdict . 44
5.9 Learnings . 44
5.10 Acceleration Opportunities . 45

III Learnings 47

6 Methodology 48

7 Related Work 51

8 Conclusion 53

9 Future Work 55

Bibliography 56

iv

List of Figures

1.1 Bittware’s SmartSSD Block diagram [2] 4
1.2 Illustration of the mapping process. The input consists of a set of

reads and a reference genome. In the middle, it gives the results of
mapping: the locations of the reads on the reference genome[25] . . . 8

1.3 Example of an alignment matrix. Together the reads can be used to
provide the best guess for the full sequence [1] 9

1.4 Example haplotype . 10

2.1 The block diagram for the SmartSSD 14
2.2 Communication Workflow for the architecture 15

4.1 The main algorithm implemented in MarginPhase. Note the recursive
calls to ComputePrunnedHMM . 25

4.2 A portion of the call graph for MarginPhase generated from Callgrind,
showing recursion in the merging step of the algorithm. The merge
needs to be iterative to allow partitionability and parallelism. 27

4.3 Call graph of a portion of MarginPhase that consumes the majority
of runtime. These functions memory intensive and perform simple
computations. This is a later portion of the same call graph as in
Figure 4.2. 28

5.1 Snippet of Minimap2 algorithm call graph 39

v

List of Tables

1.1 steps in Genome sequencing Pipeline along with the input data size
and format . 7

3.1 Compute properties of an amenable workload 19
3.2 Data Structure properties of an amenable workload 21

4.1 Perf Topdown . 28
4.2 Cache Accesses . 29
4.3 Compute properties of MarginPhase 31
4.4 Data Structure properties of MarginPhase 32

5.1 Compute properties of minimap2 . 41
5.2 Data Structure properties of minimap2 42
5.3 Shared data members . 44

vi

Abstract

SmartSSD for Genomics

by

Sachet Mittal

In this thesis, I introduce the SmartSSD architecture and list the hardware and

software requirements for the system. Then I give a brief overview of the domain of

genomics and discuss suitability for this architecture. I then evaluate two workloads

and profile them for amenability for this architecture. In this process, I provide

key insights that aid in the process and develop a methodology for the using and

developing on this system.

vii

Acknowledgments

I would like to thank my advisor Professor Heiner Litz for guiding me throughout this

project, Western Digital, for providing support for this research project, Genomics

Institute, for providing me with relevant domain expertise and application-specific

issues. And my reading committee Professor Heiner Litz, Professor Scott Beamer,

and Professor Benedict Paten.

viii

Part I

Background

1

Chapter 1

Introduction

SmartSSD, respectively Computational Storage, is a hardware architecture that pro-

cesses data at the storage layer rather than the compute layer[8]. This architecture

places a compute unit on the storage device, near the storage device, or between the

CPU and the storage.

The benefits of this architecture are increased parallelism, reduced data movement,

and lower energy costs on the server. In this thesis, I explore these benefits for

applications in Genomics. The research for the work is done in collaboration with

Western Digital.

Genomics is transforming humanity’s approach to health-care [15] [11]. This trans-

formation has lead to the development of more accurate and efficient genomics algo-

rithms. Many of the critical applications in Genomics have a significantly high data

footprint that leads to a lot of data traffic to and from the storage, which impacts

the overall performance and energy costs of the data center. Thus, there is a need

for a hardware implementation that addresses this. SmartSSD is an architecture

2

that helps alleviate this by offloading a part of the algorithm to be performed at the

storage layer. In this thesis, I discuss two critical algorithms used in Genomics and

profile them to accelerate them by using a SmartSSD. A novel workflow and method-

ology are developed for these specific examples that subsequently is generalized so

that it can be applied to any other workload for SmartSSD acceleration.

In this thesis, I provide an overview of the SmartSSD architecture and describe the

properties that an application exhibits that make it suitable for SmartSSD. Then I

explain why Genomics is a domain that is well suited for this acceleration. I describe

the generic properties that most applications in genomics exhibit, I evaluate two

specific applications and examine properties and discuss suitability as SmartSSD

workloads.

After the analysis mentioned above, I present a methodology that will aid future

work for other applications. This methodology helps decide if an application is a

candidate for SmartSSD, evaluates if a specific part of the algorithm can be offloaded

to the storage layer (henceforth called kernel), and finally the steps to follow for

offloading a computation kernel. The goal of thesis is to develop a methodology that

aids analyzing workloads and not design the actual hardware.

The applications that I chose are MarginPhase [13] and minimap2 [19]. The chapters

that follow describe the details of these applications.

1.1 SmartSSD

A SmartSSD enables high-performance accelerated computing closer to flash stor-

age, bypassing CPU and memory limitations. SmartSSDs, when powered by FP-

3

GAs, increase performance and efficiency while lowering operating costs by pushing

intelligence to where data resides.

The SmartSSD architecture couples SSD drives with FPGA accelerators to speed up

data processing and analytics. Data is processed directly on the SmartSSD, before

it reaches the host CPU, avoiding significant data movement between the storage

and the CPU and speeding up the application and reducing costs associated with

this data movement.

In industry, Samsung and Bittware (a Molex Company) are the major players in

the field. Samsung’s SmartSSD Computation Storage Drive ® [6] is commercially

available, and the various domains that it can be used are life sciences, data science,

financial services, video processing, image analysis, log processing, big data process-

ing, and machine learning. Bittware’s Computational Storage Service ® (CSS) is

another product available. The focus areas of CSS research are database accelera-

tion, big data processing, content delivery, and machine learning. Figure 1.1 is the

architecture of CSS.

Figure 1.1: Bittware’s SmartSSD Block diagram [2]

4

The benefits of this architecture are:

1. Improved parallelism

As work is offloaded to the Storage Layer, other threads can be scheduled on

the CPU to be executed.

2. Less data movement

The data is available at the storage layer, and the results of the computation or

the processed data are sent to the CPU. Communicating the compute operation

generally reduces the communication relative to transferring the actual data.

This is especially relevant when the SmartSSD is accessed over the network.

3. Power savings

There is a cost associated with the movement of data. As the amount of data

that is transferred from storage to the CPU is reduced, the CPU consumes less

power. SmartSSD enables reducing the overall power consumption of storage

applications.

4. Better utilization of cache for small data tasks

Perform parts of the program that operate on smaller data (smaller than typ-

ical processor cache size) and offload more data-intensive tasks.

5. Accelerated processing of data

As computation is offloaded, a specialized accelerator for the workload can be

designed using the FPGA.

5

1.2 Genome sequencing

This section introduces the domain in which I discuss SmartSSD acceleration. In this

thesis, the workloads I selected belong to Genomics domain so a brief understanding

on the domain is called for.

The Genome Sequencer cannot read the whole genome sequence contiguously in one

go. So it collects multiple reads that are fragments of the original genome. The pro-

cess of defragmenting these reads to form a chain that represents the whole genome

is called Genome Sequencing. The resultant chain is used for further analysis. The

details of some of these analysis steps are explained in the following sections.

The Genome Sequence Pipeline involves collecting the genomic reads using a se-

quencer. These reads are to computational data (Base-calling). As the resultant set

of reads have a large data footprint, they are uploaded to the Cloud for storage. The

next steps are cleaning up the reads to form the whole-genome (Assembly and align-

ment) and performing the operations on this whole-genome to infer various genomic

properties. Some of these properties include classifying inherited characteristics and

genealogy.

In the next section, I discuss phases in the pipeline that I focused my work on in

detail.

1.2.1 Sequence Alignment

The process of sequence alignment can be visualized as shredding multiple copies of

a book and throwing away a chunk of the shredded pieces and then recreating the

original contents of the text from the shreds.

6

Step Input Input Size Output

Sample prepara-

tion

Biological sam-

ple

10+ uL single-strand

DNA

Nanopore

recording

single-strand

DNA

10+ uL Signal (FAST5)

Base-calling Signal (FAST5) 500 GB Reads (FASTQ)

Upload data to

Cloud

Reads (FASTQ) 500 GB Reads (FASTQ)

Assembly Reads (FASTQ) 200 GB Reference

Sequences

(FASTA)

Alignment Reads, Refer-

ence

200GB Aligned reads

(BAM)

Polishing Aligned reads,

Reference

200GB Reference

Sequences

(FASTA)

Phasing Aligned reads,

Reference

100GB Haplotypes,

Variants (VCF)

Variant Calling Haplotypes 100GB Variants (VCF)

Table 1.1: steps in Genome sequencing Pipeline along with the input data size and
format

If the original book is available for reference, then it is called reference guided genome

inference, and if not, then it is called De Novo assembly.

Figure 1.2 [25] shows the reference guided genome inference process. Reference

7

Genomes are standardized for a species. The set of reads are collected using the

biological method (the exact nature of this is out of the scope of this work). Using

the Reference Genome, the reads are mapped using an alignment algorithm. A

standard alignment algorithm is Smith-Waterman [10].

Figure 1.2: Illustration of the mapping process. The input consists of a set of reads
and a reference genome. In the middle, it gives the results of mapping: the locations
of the reads on the reference genome[25]

8

1.2.2 Alignment Matrix

The reads that were aligned to a reference genome in a previous step are given as

input in the form of an alignment matrix (see Figure 1.3). The rows are individual

reads, and the columns are the genetic sites.

Figure 1.3: Example of an alignment matrix. Together the reads can be used to
provide the best guess for the full sequence [1]

1.2.3 Genotyping

Genotyping is the process of determining differences in genetic makeup (genotype)

of an individual to another sample or a reference sequence. Genotyping is also used

to reveal personality traits inherited from parents.

9

1.2.4 Haplotyping

A haplotype is a particular sequential pattern on a single chromosome. Haplotyping

(or phasing) is the process of determining haploid DNA sequences (haplotypes) from

unordered (unphased) genotype data.[14]

Figure 1.4: Example haplotype

1.3 Tools Used

To determine if SmartSSDs can accelerate the workloads, I used the below-mentioned

tools for profiling. The following sections provide an introduction to the various tools

I used in this work.

1.3.1 Perf

Perf is a performance analysis tool in Linux. Perf profiles the code in both user

and kernel space. It provides stats for various hardware performance counters, soft-

ware performance counters, tracepoints, and dynamic probes. It is one of the most

commonly used profiling tool [5]

10

1.3.2 Valgrind and Callgrind

Valgrind is programming that was initially developed for memory debugging, mem-

ory leak detection, and profiling. It has since evolved into a generic framework for

creating dynamic analysis tools. In this work, I use Callgrind, which is a tool in

Valgrind.

Callgrind is a profiling tool that records the call history among functions in a pro-

gram’s run as a call-graph. By default, the collected data consists of the number of

instructions executed, their relationship to source lines, the caller/callee relationship

between functions, and the number of such calls.

1.3.3 pyCparser

pyCparser is a parser for the C language, written in pure Python. It is a module

designed to be easily integrated into applications that need to parse C source code. I

use pyCparser for parsing the source code of the application and extract the effective

lines of code for the kernel that includes function calls in the given computation

kernel and lines of code in the called function.

11

Chapter 2

SmartSSD architecture

This chapter describes the basic architectural and software interface requirements

that a SmartSSD architecture should satisfy. These requirements are generic and

not limited to the problem domain of Genomics.

2.1 Architectural Requirements

1. An FPGA is connected to the NVMe [16] port of the disk that can intercept

the IO requests.

2. Storage (preferably SRAM/DRAM) to store offloaded instructions in the SmartSSD.

This storage is being referred to as Code Blocks, where the execution logic can

be written into and modified. Each of these Blocks is identified by a unique

number from 1 to N, where N is the number of Code Blocks.

3. The FPGA has shared memory that is accessible from all the Code Blocks.

This needs to be shared so that multiple data transformations to the data can

12

be applied in-place. An example of this is compressing and encrypting the

data.

4. The component that is responsible for intercepting the IO requests as per

requirement 1 is called the interceptor

5. The interceptor will allow standard and native IO requests to pass through to

the SSD disk

6. The computation IO request payload contains the Code Block identifier. These

requests are routed to the specified code block.

7. The communication workflow of this architecture is shown in Figure 2.2

8. Each Code Block has a job queue. As soon as the job is placed on this queue,

the IO request returns. The application can poll the status of the job.

9. After the job is completed, the job moves to the completion buffer. When this

job is polled, the results are returned.

10. The architecture needs to support logging and monitor the system’s health.

These are out of the scope of this thesis.

13

Figure 2.1: The block diagram for the SmartSSD

14

Figure 2.2: Communication Workflow for the architecture

2.2 Software Interface

This section describes the API that the SmartSSD needs to support. The API is

divided into two types:

1. Management API

•1 int get_block_information ()

Return the total number of empty blocks of the SmartSSD

•1 int get_empty_block ()

Returns the first available empty block if any else returns 0

•1 int transfer_code_logic(int block_number , void *kernel_logic)

15

Transfers the logic specified by the kernel logic data structure to the block

specified by block number.

2. IO API

•1 int write(int block , int offset , void *data)

Writes data to logical block number plus offset. For more details on these,

refer [3] and [4].

•1 void * read(int block , int offset)

Returns from logical block and offset

•1 int compute(int block_number , int logical_block , int offset)

Place the request on the job queue and returns the job id

•1 void get_status(int job_id , void *result)

Get the status of the job or the results if the job is completed.

16

Chapter 3

Determining the Suitability of a

Workload

This chapter describes the properties of a suitable workload for this architecture.

The properties are segregated into compute and data-structure properties. Native

Linux tools and pyCparser are used to determine the value of these properties. The

specifics of which tool to use is described in Table 3.1 and Table 3.2. At a high

level, as the goal of the architecture is to speed up the storage layer, an amenable

application spends significant time at the disk and spends a majority of time data

processing.

17

Property Desired Value Reason Tool

Computationally

expensive kernel

>10% of the

pipeline’s com-

putation time

According to Amdahl’s

law, the speedup is lim-

ited by the acceleration

factor, so there needs to

be an expensive kernel to

get a speedup

Perf

IO Bound >10 GB/s,

>50% time

spent in ker-

nel/filesystem/-

driver

The speedup in this ac-

celerator is achieved by

reducing the amount of

IO

Perf

Compute to

space ratio

>50 % cache

miss rate

Allows precomputation,

redundancy, compute -

>space overheads

Perf

Parallelism 100+ threads This architecture adds

more cores to the system,

so for optimal utilization,

the application needs to

be multithreaded

htop or psu-

tils

Dynamic In-

structions per

SLOC

1M (106 ins/-

line)

Due to the trade-off of

porting efforts with per-

formance gains

pyCparser +

gcc

18

Latency Insensitive, tol-

erate 10-100µs

per access

some of IO wait time can

overlap with some com-

pute

Valgrind

kernel compute

complexity

Single kernel

>1ms computa-

tion time

The kernel should per-

form a significant com-

pute in each call

Perf

High Loop

Count in kernel

>1,000 itera-

tions

The kernel should per-

form simple operation a

large number of times

Valgrind +

pyCparser

Recursion Free The repeated

computation

comes from a

loop and not

due to recursion

To reduce the efforts in

Verilog synthesis of the

kernel

Code exami-

nation

Table 3.1: Compute properties of an amenable workload

19

Property Desired Value Reason Tool

Large data foot-

print

1 TB+ input

data size

The data footprint needs

to be larger than stan-

dard RAM sizes to ensure

most of the data reside

on the disk

free or htop

Partitionable

Data Structures

NA Partitionable data can be

operated on in parallel

Code Exam-

ination

Streaming data

access

L3 MPKI of 5+,

20GB/s+ mem-

ory bandwidth

Contiguous data greater

in size than cache

Code Exam-

ination +

Perf

Data structure

ownership

Single writer,

multiple readers

To reduce the thread

wait time to access

shared data

Code Exam-

ination

Sparsity Flat, single-

level (not maps

of maps of

maps), deep-

copy-friendly

The data will be serial-

ized and deserialized be-

tween memory and disk

Code Exam-

ination

Complexity Common+simple

(matrices, ar-

rays, maps,

trees)

The data will be serial-

ized and deserialized be-

tween memory and disk

Code Exam-

ination

20

Synchronization Coarse grain, <

1 sync per ms

To ensure sync overhead

due to accessing IO de-

vice is < 1 %

Code Exam-

ination +

Perf

Data transfer ≤ 2 data trans-

fers per data

item between

host and accel-

erator

To ensure bandwidth of

kernel offloading is not a

bottleneck

Valgrind

No Dynamic ob-

jects

NA Programming for storage

needs data size to be ex-

plicit, so the size should

be static and determined

at compile time.

Code Exam-

ination

Table 3.2: Data Structure properties of an amenable work-

load

21

Part II

Evaluating Workloads

22

Chapter 4

MarginPhase

4.1 Introduction

Current genotyping approaches for single nucleotide variations (SNVs) rely on rela-

tively accurate short reads. Currently, new long-read technology is becoming more

prevalent with the advent of companies such as Oxford Nanopore and Pacific Bio-

sciences. These reads come with significant (about 15%) sequencing error [22], mak-

ing them unsuited for current genotyping algorithms. However, long reads make

a longer strand of genome unambiguously mappable and provide more linkage in-

formation between neighboring variants. The spatial locality information for these

different genes is known as the haplotype.

One algorithm created for both genotyping and haplotyping (known together as

diplotyping) is presented by Ebler et al. [13]. They consider bi-partitions of the

sequencing reads, corresponding to the two haplotypes. They formalize the compu-

tational problem in terms of a Hidden Markov Model (HMM) and compute posterior

genotype probabilities using the forward-backward algorithm. Genotype predictions

23

are then made, picking the most likely genotype at each site. Ebler et al. implement

their algorithm in a C program referred to as MarginPhase.

MarginPhase, however, takes 9 hours to run on the smallest single human chro-

mosome with an Intel Xeon, with an input alignment file of size 1.8 GB. Larger

chromosomes can easily be 5x the size, providing a runtime of about 45 hours. This

long run time presents an opportunity to accelerate the algorithm and substantially

decrease the overall time for the genomics pipeline. In this thesis, the features of

the MarginPhase workload are characterized to gain insight into bottlenecks and its

suitability for SmartSSD acceleration.

MarginPhase is a C implementation of the algorithm described by Ebler et al. [13].

The input to the program is BAM files [7], which provide the aligned reads and can

be up to 9 GB in size. MarginPhase returns the most likely genotype and haplotype.

4.2 Algorithm

Since a genome has two of each chromosome, to determine the haplotype, each read

must not only be aligned but also assigned to the correct chromosome. Consider

reads belonging to the first chromosome as haplotype1 (H1) and the second as hap-

lotype1 H2. Therefore the problem to solve is: assign reads from Alignment Matrix

(M) to either H1 or H2, maximizing the probability of H1 and H2 given M.

The problem is formalized with a Hidden Markov Model applied to a graph rep-

resentation of the bipartition of M. The details of the algorithm are out of scope

for this thesis. However I bring attention to the most time-consuming step of the

program: computing the HMM from the alignment matrix. The algorithm is shown

24

in Figure 4.1. Subgraphs of the HMM are computed and recursively merged to form

the full HMM graph.

Figure 4.1: The main algorithm implemented in MarginPhase. Note the recursive
calls to ComputePrunnedHMM

4.3 Why is it suitable for acceleration?

The primary requirement of an amenable workload for this architecture is that the

application has a large data footprint and a computationally expensive kernel that

is IO-bound. MarginPhase has a large data footprint, and the application partitions

the data for processing. It also has a relatively small computation kernel that takes

up a significant amount of runtime.

Knowing the algorithm and various workload properties, MarginPhase was a good

25

candidate for future analysis. Section 4.5 details the profiling experiments per-

formed and properties extracted from them. These properties will help determine if

SmartSSD can accelerate the workload. If the application can be accelerated, then

proceed to porting the kernel to SmartSSD compute hardware.

4.4 Workload Properties

4.4.1 Parallelizability

In the current implementation of MarginPhase, a majority of the time is spent in the

merge step (see Figure 4.2). By analyzing the code and the algorithm manually, I

found that merge operations can be parallelized. This is possible because the data is

partitionable. Due to the recursive nature of the current implementation, the merge

step needs to be modified to an iterative version to allow parallelization

4.4.2 Partionablity

Partitionability is defined as the ability of the memory accesses of the workload

to be separated with few transfers between them, a concept similar to the coarse-

grained spatial locality. The kernel that is under examination is mergeTilingPaths.

The tiling path refers to the pruned HMM mentioned in the algorithm described

in Figure 4.1. Upon profiling these data structures, I found them to be a flat data

structure that only has a single writer. Moreover, the tiling paths are extensive in

size, they don’t fit in the cache or the main memory, so there are significant cycles

spent on just data movement.

26

Figure 4.2: A portion of the call graph for MarginPhase generated from Callgrind,
showing recursion in the merging step of the algorithm. The merge needs to be
iterative to allow partitionability and parallelism.

4.4.3 High Data Use and Low Reuse

MarginPhase must-read in the entire input dataset, then in each step as it merges

subHMMs, it reads in the sub-HMMs and writes out the new merged HMM. This

processes large amount of data with very little reuse (low temporal locality).

The program is bound to a single core, and perf top-down is used with an interval

of 1K to understand how cycles are used during execution. The results are given in

Table 4.1.

Even in a single-threaded sequential implementation, 27% of cycles are spent wait-

ing for memory or computation. Upon exploring a little deeper, it can be seen that

27

Figure 4.3: Call graph of a portion of MarginPhase that consumes the majority of
runtime. These functions memory intensive and perform simple computations. This
is a later portion of the same call graph as in Figure 4.2.

Retiring Bad Speculation Frontend Bound Backend Bound

44.4% 5.8% 22.5% 27.3%

Table 4.1: Perf Topdown

the cache miss rate is unacceptably high at 64%. Caches are being heavily under-

utilized and wasting significant energy. A compute unit close to data, e.g., inside

the same enclosure as the SSD, avoid the unnecessary overhead of caches, bringing

improvement in both performance and energy.

According to Table 4.1, a moderate number of frontend stalls are also observed pos-

sibly caused by complex instructions or branch mispredictions. I leave the detailed

28

analysis to future work and focus on the larger problem of backend stalls.

Miss Rate Miss Count Reference Count

64.4% 1,633,498,853 2.536,992,733

Table 4.2: Cache Accesses

4.5 Methodology

I profiled the code to find the hot spots in the code using Valgrind, more specifically

the Callgrind tool, and generated a graph from the result. Figure 4.2 and Figure

4.3 are snippets from Callgrind’s graph. Displaying the full graph here would take

up much space and would not have provided much more information. As can be

seen from Figure 4.2, mergeTilingPaths is a function where the majority of the time

is spent. On inspection of the code and the inputs to this function, I determined

that if the recursive calls are modified to a loop, the data will become partitionable.

This is because the merge operation of 2 tiling paths (MergeTwoTilingPaths) is

independent of other tiling paths.

However, as this is a recursive call, the function calls at the top-level hold the refer-

ence to original data in the call stack, adding data dependency. After transforming

this function from recursive to iterative, apply merge operations on data items that

are independent. Now, it is possible to parallelize the procedure and, in turn, offload

it to a co-processor (SmartSSD). It is preferable to offload the kernel to a SmartSSD

instead of a GPU as offloading to GPUs involves large data movements, which are

precisely the problem that this architecture addresses. The snippet shown in Figure

4.3 is a little lower in the call-stack of the mergeTwoTilingPath function. These

29

functions are minimal in size (15 lines of code). However, they account for a sig-

nificant portion of the run time. This is because these functions are called many

times. To give an idea of this, for our testing, I used a tiny subsection of the chro-

mosomes, and marginPhase takes less than 2 minutes to complete the run. Even in

this run, these functions are called millions of times. So instead of performing these

operations in software, developing specialized hardware can improve efficiency. An

issue in offloading all these functions is that because some of these functions have

pointers as inputs, serializing/deserializing becomes an issue if the pointers point to

very complex data structures (such as an array of pointers which point to Hidden

Markov Models).

30

4.6 Results

Property Name Satisfied (Yes/No)

Computationally expensive Yes

IO Bound Yes

Compute to space ratio NA

Parallelism No (A complete redesign can fix this)

Instructions per SLOC Yes

Latency NA

kernel compute complexity No

High Loop Count in kernel No (A complete redesign can fix this)

Recursion Free No (A complete redesign can fix this)

Table 4.3: Compute properties of MarginPhase

31

Property Satisfied (Yes/No)

Large data footprint Yes

Partitionable No

Streaming data access No

Data structure ownership Yes

Sparsity No

Complexity NA

Synchronization NA

Data transfer Yes

No Dynamic allocation NA

Table 4.4: Data Structure properties of MarginPhase

4.7 Verdict

MarginPhase seemed like a good candidate for smartSSD acceleration and displayed

properties that were ideal for SmartSSD. However, the current implementation is

highly optimized to run on a general server, and it is not possible to extract a

kernel to offload to the SSD. Thus, MarginPhase is not a candidate for SmartSSD

acceleration.

The main issues with the MarginPhase code are:

1. Sparse data structures with pointer chasing.

2. Recursion

3. Tightly coupled code that makes it difficult to extract a function without

32

making significant changes to other parts of the code.

4. Shared data structures referenced by multiple threads

4.8 Learnings

Although MarginPhase didn’t turn out to be a good candidate, genomics as a domain

has properties that make it a promising avenue for more research. There exists a

large number of algorithms that need to be re-architected for hardware-assisted

acceleration. I will discuss one such algorithm in the next chapter.

MarginPhase was an excellent first application in this endeavor. This is mainly be-

cause the implementation had so many optimizations that make it run fast on a gen-

eral linux machine and traditional architecture that makes it difficult for SmartSSD.

This improved the understanding of the whole group and helped steer us in the

right direction. This application enforced our belief in the importance of profiling

and enhanced our knowledge of SmartSSD architecture.

During the process of profiling MarginPhase, I also developed some tools to aid in

deciding if an application is a good fit. These tools significantly helped in selecting

the next application for our work.

33

Chapter 5

Minimap2

5.1 Introduction

Minimap2 is a sequence alignment program that aligns DNA or mRNA sequences

against a large reference database. It can be used for the following. [19]

• Mapping genomic reads to the human genome

• Finding overlaps between long reads with error rate up to 15%

• Splice-aware alignment of PacBio Iso-Seq or Nanopore cDNA or Direct RNA

reads against a reference genome

• Aligning Illumina single- or paired-end reads

• Assembly-to-assembly alignment

• Full-genome alignment between two closely related species

For long-read sequences, minimap2 is orders of magnitude faster[19] than other long

read mappers such as BLASR [12], BWA-MEM [18], NGMLR [20], and GMAP[26].

34

In this work I am using minimap2 to map genomic read sequences to reference

genome strings using global alignment. Global Alignment [21] performs the align-

ment over the enitre read sequence.

5.2 Algorithm

The goal of this algorithm is to map the genome query sequences to a reference

string. The output of the algorithm is P. P is a collection of chains and each chain

is a mapping of a section of a query sequence to the reference string.

1. Initialize P as an empty set. Values are added to it in step 9.

2. Read I reference bases and index them into a hash table called a reference

index.

3. Read K query sequences. These sequences form the whole human genome

sequence. For each query sequence, do step 4 through 9.

4. Partition the query sequence into subsequences called minimizers.

5. For each minimizer in the query sequence, check if there is a partial match in

the reference index. Filter out the minimizers that are not found. The remain-

ing minimizers are called seeds. This step reduces the number of alignment

operations required in step 6.

6. Perform an alignment operation on each seed to determine the location in the

reference genome where the seed is most likely to map to.

7. The result of the alignment is an alignment string (refer bottom part of Figure

35

1.3) called a chain and the score for the alignment is called a chaining score.

8. Sort the chains according to the chaining score in decreasing order. This is to

ensure that P contains chains that have maximum chaining scores as chains

with lower scores will be dropped.

9. For each chain, if more than a certain threshold value of the section of reference

genome that this chain maps to is covered by other chains in P then drop this

chain. Else add it to P.

10. Return P.

5.3 Why is it suitable for acceleration?

As described in Section 1.2.1, algorithms used in alignment are substring matching

algorithms. The Smith-Waterman algorithm is commonly used for this. As there

are a large number of reads to be processed, running this algorithm over all the

reads takes unacceptably long runtime. This issue is handled by splitting alignment

into two steps: an approximate match to filter out some overlapping reads (this step

uses some hash-based processing) and an exact match to align the filtered reads (by

Smith-Waterman or some other dynamic programming algorithm).

Among the two steps, the second step is the performance bottleneck, so we will focus

our efforts on optimizing the second step. As with the Smith-Waterman algorithm,

minimap2 has a computationally expensive kernel, which is executed a large number

of times.

The data footprint of this algorithm depends on the size of the reference and genome

36

read strings. And as these tend to be huge in size(upto 500GB), the footprint of

this algorithm is large.

Due to these factors and other properties that will be described in detail in the next

section, minimap2 is the right candidate for acceleration for SmartSSD acceleration.

5.4 Workload Properties

5.4.1 Partionablity

The input data for minimap2 a Fasta file which consists of a set of reads. The

program preprocesses the reads to filter out the reads which cover the overlapping

region in the reference genome. The remaining reads are then processed (aligned)

independently. This shows that the minimap2 data exhibits data partionablity.

5.4.2 Parallelizability

As discussed above, the processing of each read is independent of other reads. For

the alignment, the data structures that represent the reference genome and reads

are read-only. Due to these reasons, the main alignment kernel is highly parallel.

5.4.3 Large Data Footprint

The inputs for minimap2 are genome reads and the reference genome. Both of

these are several gigabytes in size. A massive data footprint is not an issue if the

CPU uses only part of the data at a time. For minimap2 to take advantage of all

the parallelization opportunities in a traditional architecture, all the genome strings

need to be in cache at the same time.

37

5.4.4 A Computationally Expensive Kernel

Using perf and pyCparser, I determined that in minimap2, the function ksw extd2 sse41

takes up a significant portion of the runtime. This is the function that performs the

alignment task. It takes the offset of the reference genome and the offset of the

genome string to perform the alignment operation on. There are 495 effective lines

of code in this function, which implies that the function is relatively simple and can

be mapped to hardware.

5.4.5 Pointer Arithmetic/ Pointer Chasing

From static analysis of the source code, I found that the data structures used in

minimap2 are arrays, and the structures used for the kernel do not have pointer

chasing. The details of the data used in minimap2 kernel are described in details in

Section 5.7

5.4.6 Dynamic Allocation

The data structure that the function ksw extd2 sse41 works with is dynamically

allocated, and the memory is reallocated for the alignment string during the pro-

cessing. To address this issue, I allocated the maximum possible memory used by

the string statically, and it didn’t have any problems, nor did it have any impact on

the performance.

38

5.5 Methodology

I profiled the code to find the hot spots in the code using Valgrind, more specifically

the Callgrind tool, and generated a graph from the result. Figure 5.1 is the snippet

from Callgrind’s graph. Displaying the full graph here would take up much space

and probably would not have added any more useful information. As can be seen

from Figure 5.1, ksw extd2 sse41 contributes the most to runtime as compared to

other functions. The higher-level functions are not contributing to the runtime, so

for this research, I focus on offloading this function.

Figure 5.1: Snippet of Minimap2 algorithm call graph

On inspection of the code and the inputs for this function, I found that the arguments

39

to the function and the returned values (genome read, offset in the reference genome

string, scoring matrix, and initially empty alignment string) are serializable with

minimal effort. This enables easy movement of data to and from the disk. The

operations that this function performs are easy to map to hardware. The only issue

with the implementation is memory allocation. The memory for the data members is

dynamic and changes at run time. Programming for the storage layer requires that

the space needed is static. To overcome this, I modified the code so that the data

members take up the maximum required space statically. This leads to an increase

in the total data footprint of the program, but as this is to offload to the disk, the

amount of storage used is not a concern. These modifications in the code do not

affect the overall performance of the code. However, these modifications make the

kernel amenable for offload.

Now, as per the APIs described in Section 2.2, the data needed for the kernel is sent

to the SmartSSD as soon as the data structure for them is populated. This step is

an asynchronous operation and needs to be started before the execution fans out to

multiple threads so each thread can perform the alignment as soon as the data is

available on the disk.

40

5.6 Results

Property Name Satisfied (Yes/No)

Computationally expensive kernel Yes

IO Bound Yes

Compute to space ratio Unknown

Parallelism Yes

Instructions per SLOC Yes

Latency NA

kernel compute complexity Yes

High Loop Count in kernel Yes

Recursion Free Yes

Table 5.1: Compute properties of minimap2

41

Property Satisfied (Yes/No)

Large data footprint Yes

Partitionable Yes

Streaming data access Yes

Data structure ownership Yes

Sparsity Yes

Complexity Yes

Synchronization Unknown

Data transfer Yes

No Dynamic allocation No (but can be modified)

Table 5.2: Data Structure properties of minimap2

5.7 Shared data analysis

In this section, I will list the parameters of the kernel and various details that aid

in porting the application.

42

Name Description type Size Mode (On

Accelera-

tor)

Transfer

query query string array of

uint8 t

280 GB Read Only Host to

Accelerator

before

the first

kernel

invocation

target reference

string

array of

uint8 t

500 GB Read Only

m Scoring Ma-

trix

array of

int8 t

5 B Read Only

e alignment

parameter

int8 t 1 B Read Only

Host to

Accelerator

for each

Kernel

Invocation

q alignment

parameter

int8 t 1 B Read Only

e2 alignment

parameter

int8 t 1 B Read Only

q2 alignment

parameter

int8 t 1 B Read Only

w alignment

parameter

int8 t 1 B Read Only

zdrop overlap pa-

rameter

int 4 B Read Only

end bonus overlap pa-

rameter

int 4 B Read Only

43

cigar Mapping of

query to ref-

erence

array of

uint8 t

32.53

KB

Read Write

Accelerator

to Host

after the

last kernel

invocation

Table 5.3: Shared data members

5.8 Verdict

Minimap2 is an application amenable for SmartSSD acceleration. As can be seen

in Table 5.1 and Table 5.2, minimap2 does not satisfy all the properties, but it has

enough to make it a good candidate for acceleration.

5.9 Learnings

Minimap2 has proved to be amenable to this architecture. The current implemen-

tation of minimap2 uses SIMD libraries to make operations faster. Writing Verilog

code for this adds complexity to the offloading task. Offloading minimap2 has two

issues that make the process difficult.

1. Minimap2 uses an in-built memory allocation module, which, as per my under-

standing, provides no benefit over standard malloc() and free() C commands.

Moreover, as the data is moved to the storage layer, the same logic would also

have to be implemented at storage to understand the new memory allocation

44

module.

2. Minimap2 built a complicated threading library that provides no benefit other

than slightly easier thread spawning functionality but reduces the code read-

ability and maintainability.

The first issue can be eliminated by replacing the special memory allocation and

deallocation commands with standard C commands for the same. This did not

hamper the performance. The second turned out not to be an issue for me as the

offloaded kernel does not spawn new threads.

5.10 Acceleration Opportunities

1. Reduce data movement by storing the reference genome and reads on disk

The kernel ksw extd2 sse41 performs the string matching operations on genome

reads, and reference strings based on the scoring matrix and creates an align-

ment string. Offloading this operation to the SmartSSD requires the strings

to be present on the disk. So the data structures (arrays) used to store these

strings can be deep copied to the disk.

2. Moving the parameters in the preprocessing phase

Minimap2 is a multithreaded application, and it has a sequential phase (pre-

processing) followed by a parallel alignment step for each read sequence. The

data structures (arrays of strings) used to store these reads can be deep copied

to the disk in the preprocessing phase of the execution. As the preprocessing is

a single-threaded operation, making this transfer asynchronous provides even

45

more performance improvement. This requires that instead of passing pointers

to the kernel function, offsets from the start be function parameters.

46

Part III

Learnings

47

Chapter 6

Methodology

With the experience of working with the two workloads mentioned above, one of

which is a good candidate and the other, which did not turn out to be a good

candidate, I have come up with a methodology that aids in identifying properties

that make an application amenable to SmartSSD acceleration, identifying kernel

that can be offloaded to SmartSSD, and doing the actual port of the application.

This methodology is described below.

Given an application, use tools such as perf and Valgrind to analyze the code base

and find out if there is a kernel that takes up a significant runtime as described

in earlier chapters. Note that this kernel is ideally near the leaf in the call graph.

From the list of candidate kernels functions, filter out candidates for which the high

computation time is not due to a high loop count. The loop may not be in the

candidate function but a higher-level function, which calls this function repeatedly.

From the remaining candidates, if a function is called from different places, it is likely

not a good candidate. Furthermore, if the function is part of a recursive call or if it

48

contains a recursive call, then either avoid this function or modify the source code to

make it an iterative call (as recursion is complicated to implement in hardware). In

my experience, I only found one or two candidate functions, and they were part of

the same call stack. In this case, it is preferable to offload the higher-level function

as more work offloaded to the accelerator means more time the host CPU is free to

do some other work.

After a function is finalized, determine the data that is to be moved to and from

the host and the target. This data is generally just the data structures local to the

function and global variables if any. The requirements for these variables is that they

not be dynamically allocated (if they are, then modify the source code to allocate

them statically) and the data structures are flat. In case it is not possible to flatten

the data structures, then the data structures need to be serializable [9] by other

means, such as writing a custom serialization library. Duplicate the global constants

within the accelerator. At the time of writing this thesis, I did not have access to

the real hardware. In the absence of hardware, a simulator can be developed. The

API that the simulator supports needs to align with the API described in section

2.2. Extract the function body along with any global dependent variables and copy

the code in a separate binary than the workload.

On the original codebase, develop a strategy to serialize/deserialize the data struc-

tures of the application. This is needed as the accelerator will behave as a different

process, and hence the virtual memory of the application will not be shared with the

accelerator. The best way to emulate this process of data movement is to serialize

the data at the host and deserialize at the target. Now, as the original function

body is empty, fill with serialization library calls to data that needs to be moved

49

from host to target, and a function call to invoke the kernel function is a different

binary and then deserialize the results from the function.

At this point, the kernel can be offloaded to the simulator. Now benchmark and

perform code improvements to reduce performance bottlenecks.

50

Chapter 7

Related Work

Amazon Aurora [23] is an example of a system that disaggregates storage from the

compute layer. The compute layer writes data to local storage, and the required

storage replication, garbage collection, and indexing are performed asynchronously

at the storage layer. However, computational storage offloads the actual computation

to the storage device to accelerate the workload.

There has been a recent focus in the industry on performing computations at the

storage layer. Samsung has developed SmartSSD [6]. The focus of work done in

Samsung is finance, data science, and data processing. Another startup that is

working on SmartSSDs is Bittware(a Molex company). Its area of focus is database

acceleration and big data processing. Neither of these companies is focussed on the

genomic domain.

Skyhook[17] is another implementation of SmartSSD that is developed using Ceph[24].

But it differs from the architecture described here, and other companies mentioned

previously in that Skyhook is an object store. The benefit of the object store is

51

that the module that is responsible for translating object details to the location at

storage can be extended to create an interceptor discussed in Section 2.1.

52

Chapter 8

Conclusion

In this thesis, I explored the suitability of Genomics as a domain for SmartSSD

acceleration by examining two applications – marginPhase and minimap2. The

significant properties an amenable application should exhibit are:

• A large data footprint

• IO bound

• A simple but computationally expensive kernel (high runtime comes from a

high loop count)

• Flat data structures in the kernel

The primary issue that rendered MarginPhase unsuitable for SmartSSD acceleration

is the data structures used. The shared data structures are sparse with a lot of

pointer chasing. On the other hand, minimap2 has a function that takes up a

significant runtime that has a high loop count. The parameters to these functions

are serializable so they can be transferred to and from the storage layer. So minimap2

53

is a good candidate for SmartSSD acceleration.

I also developed a strategy described in Chapter 6 that aids profiling a workload to

decide suitability for SmartSSD acceleration, determine the kernel to be offloaded

to SmartSSD, and outlines steps to port the application for this architecture.

54

Chapter 9

Future Work

The next steps in this research area are to develop a working simulator that sup-

ports the APIs as described in Section 2.2 and designs a hardware implementation

of the proposed architecture. A simulator can be developed and used to bench-

mark and identify the potential benefits of an application before rewriting it for this

architecture.

The methodology and tools developed as part of this research project can be used to

analyze any other domain that deals with processing large amounts of data. Some of

the other fields that can be explored are Finance, Data Management, Data Security.

55

Bibliography

[1] Alignment matrix. https://en.wikipedia.org/wiki/Smith-Waterman\

_algorithm.

[2] Bittware architecture. https://www.bittware.com/fpga/storage/.

[3] Disk allocation strategy. http://www2.cs.uregina.ca/~hamilton/courses/

330/notes/allocate/allocate.html.

[4] Logical block addressing. https://en.wikipedia.org/wiki/Logical\

_block_addressing.

[5] Perf repo. https://github.com/torvalds/linux/tree/master/tools/perf.

[6] Samsung smartssd. https://samsungsemiconductor-us.com/smartssd/,.

[7] What are bam files? https://software.broadinstitute.org/software/

igv/BAM.

[8] What is computational storage? https://www.snia.org/education/

what-is-computational-storage.

[9] What is serialization. https://isocpp.org/wiki/faq/serialization.

56

[10] Identification of common molecular subsequences. Journal of Molecular Biology,

147(1):195 – 197, 1981.

[11] A. D. Baxevanis. Transforming medicine: Genomics, bioinformatics, and human

health. In 2007 IEEE 7th International Symposium on BioInformatics and

BioEngineering, pages 1449–1449, 2007.

[12] Mark J Chaisson and Glenn Tesler. Mapping single molecule sequencing reads

using basic local alignment with successive refinement (blasr): application and

theory. BMC bioinformatics, 13(1):238, 2012.

[13] Jana Ebler, Marina Haukness, Trevor Pesout, Tobias Marschall, and Benedict

Paten. Haplotype-aware genotyping from noisy long reads. bioRxiv, 2018.

[14] Gustavo Glusman, Hannah C. Cox, and Jared C. Roach. Whole-genome hap-

lotyping approaches and genomic medicine. Genome Medicine, 6(9):73, Sep

2014.

[15] Alan E Guttmacher, Mary E Porteous, and Joseph D McInerney. Educating

health-care professionals about genetics and genomics. Nature Reviews Genet-

ics, 8(2):151–157, 2007.

[16] A. Huffman and D. Juenemann. The nonvolatile memory transformation of

client storage. Computer, 46(8):38–44, 2013.

[17] Jeff LeFevre and Noah Watkins. Skyhook: Programmable storage for databases.

Boston, MA, February 2019. USENIX Association.

[18] Heng Li. Aligning sequence reads, clone sequences and assembly contigs with

bwa-mem. arXiv preprint arXiv:1303.3997, 2013.

57

[19] Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformat-

ics, 34(18):3094–3100, 05 2018.

[20] Fritz J Sedlazeck, Philipp Rescheneder, Moritz Smolka, Han Fang, Maria Nat-

testad, Arndt Von Haeseler, and Michael C Schatz. Accurate detection of com-

plex structural variations using single-molecule sequencing. Nature methods,

15(6):461–468, 2018.

[21] Temple F Smith, Michael S Waterman, et al. Identification of common molec-

ular subsequences. Journal of molecular biology, 147(1):195–197, 1981.

[22] Yatish Turakhia, Gill Bejerano, and William J. Dally. Darwin: A genomics

co-processor provides up to 15,000x acceleration on long read assembly. In Pro-

ceedings of the Twenty-Third International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS ’18, pages 199–

213, New York, NY, USA, 2018. ACM.

[23] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,

Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz

Kharatishvili, and Xiaofeng Bao. Amazon aurora: Design considerations for

high throughput cloud-native relational databases. In Proceedings of the 2017

ACM International Conference on Management of Data, SIGMOD ’17, page

1041–1052, New York, NY, USA, 2017. Association for Computing Machinery.

[24] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos

Maltzahn. Ceph: A scalable, high-performance distributed file system. In Pro-

ceedings of the 7th symposium on Operating systems design and implementation,

pages 307–320, 2006.

58

[25] Joachim Wolff, Bérénice Batut, and Helena Rasche. Mapping (galaxy training

materials), 03 2020.

[26] Thomas D Wu and Colin K Watanabe. Gmap: a genomic mapping and align-

ment program for mrna and est sequences. Bioinformatics, 21(9):1859–1875,

2005.

59

