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Abstract
We provide simple formulas that can be used to calculate ideal

bootstrap or exact recombination estimates of group statistics from
experimental data. When resampling is done over small numbers of
groups, the ideal bootstrap is more accurate than the exact recombi-
nant estimate, however the former is biased. For large sample sizes
there is no discernable difference between the two approaches and both
produce estimates that are more accurate than those obtained from
observed group outcomes.

1 Introduction

A researcher conducts auction experiments in s separate sessions. Each ses-
sion includes n subjects who bid against each other for an object. The experi-
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menter randomly induces valuations for each subject, by making independent
draws from a specified distribution.

Subjects are informed of their own valuations, the number of bidders in
their group and the rules of the auction. For each group, a single auction is
conducted, the bid of each subject is recorded and net payoffs are awarded
according to the rules of the auction.

How can the results of this experiment be used to predict the probability
distribution of the outcome if the experiment were to be repeated? Suppose,
for example, that the researcher would like to predict the seller’s revenue
from this type of auction. A simple approach would be to observe the revenue
collected in each of the s groups, calculate the mean and standard deviation
of revenue across these groups, and make statistical predictions based on the
assumption that the subjects in future experiments would be drawn from a
normal distribution with mean and standard deviation equal to those found
for the s groups that were sampled.

This approach has two serious drawbacks. One is that there is no reason
to believe that the probability distribution of revenue from randomly con-
structed auctions will be normally distributed. Even if the joint distribution
of values and bids is normal, auction revenue is based on order statistics from
this distribution and the order statistics of a normal distribution are not nor-
mally distributed. More importantly, to record only the results of the groups
that actually formed to determine individual payoffs is to discard a great deal
of useful information. An experimental auction is a one-shot game in which
no player communicates with others in his group before making his own bid.
Although an individual’s payoff depends on the bids of others in his group,
his own bid would be no different if he were assigned to any other group. We
can improve our estimates by examining the distribution of outcomes that
would result from random reassignments of subjects to groups.

We would like to use the experimental results to answer statistical ques-
tions such as “Suppose that we were to repeat the experiment with another
auction in which n bidders are randomly drawn from the same population as
were the original participants: What is the probability distribution of revenue
from the group chosen in this draw? What is the probability distribution of
the “efficiency” of the auction in this new draw?

Mullin and Reiley (2005) suggest a procedure that they call “recombinant
estimation.” This procedure is to estimate the distribution of outcomes that
would be generated by constructing a new group of n subjects drawn ran-
domly without replacement from the set of ns = T bid-value combinations
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observed in the experiment. The recombinant approach was also employed
earlier by Mitzkewitz and Nagel (1993) to estimate the probability distribu-
tion of profits in an ultimatum game and by Mehta et al (1994) in a matching
game.

A related approach that is more familiar to statisticians is “bootstrap
estimation ” (Efron and Tibshirani (1993)). The bootstrap approach esti-
mates the distribution of outcomes that would be generated by constructing
a new group of n subjects drawn randomly with replacement from the set of
T bid-value combinations observed in the original experiment.

For the two-player games studied by Mitzkewitz and Nagel and by Mehta
et al, exact calculation of the probability distribution of outcomes from ran-
dom recombination of players is straightforward and the authors present
such calculations. Reiley and Mullin (2005) consider a problem where larger
groups are selected and where brute force calculation of probability distri-
butions did not appear practical. They propose estimating the recombinant
distribution by Monte Carlo simulations. Similarly, most applications of the
bootstrap methods involve numerical simulations. Efron and Tibsharani ex-
plain that it is possible in principle to state exact probability distributions
for bootstrap problems. Such probabilities are known as “ideal bootstrap”
probabilities.

This paper shows that for bidding experiments, simple tricks make it
possible to calculate exact probability distributions of the results of resam-
pling, either by the bootstrap or the recombination method. This method
works even where the number of distinct partitions that can be obtained by
resampling is extremely large.1 We evaluate the alternative approaches by
using them to compute expected revenue in simulated second-price auction
experiments with known bidding distributions. The mean squared devia-
tion between the true expected selling price and the estimated selling price
is lower under the ideal bootstrap than the recombinant method when the
sample size (i.e., the number of auctions that are combined to compute the
estimates) is small. However, the mean estimated selling price obtained by
the bootstrap method is slightly lower than the true mean for small sam-
ple sizes (the bootstrap estimate is biased) whereas the recombinant mean
is correct. Hence, there is a tradeoff between the two approaches for small
sample sizes.

1For example, T = 100 subjects can be partitioned into groups of 5 bidders in more
than seventy-five million possible ways.
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For large sample sizes the bias in the bootstrap estimate disappears and
the mean squared deviation between the true expected selling price and the
estimated selling price obtained by the two approaches converges. Both the
ideal bootstrap and the recombinant method predict the true selling price
better than observed group outcomes.

2 Applications to Auctions

2.1 Preliminaries

Suppose that the experimenter has data on bids and values from s groups,
each of which has n subjects. Array these T bids in ascending order to con-
struct a list b. In general, the items in the list b will not all be distinct, since
more than one bidder may submit the same bid. To handle ties, we construct
a second list b′, which consists of all distinct bids, arrayed in ascending or-
der. Let T ′ be the number of elements of the list b′. For each i = 1, . . . , T ′,
define Li(b) to be the number of elements of b that are no larger than the ith
element of b′i.

2

2.2 Revenue with First-Price Sealed Bid Auctions

In a first-price sealed bid auction, each subject submits a single bid, without
observing the bids of others. An object is sold to the highest bidder in each
group at a price equal to the high bidder’s bid.

2.2.1 The ideal bootstrap estimate

Calculating the ideal bootstrap distribution is strikingly simple if all bids
are distinct (no ties). Suppose that each group has n bidders, then where
bi is ith element of the vector of bids arrayed from smallest to largest, the
bootstrap estimate of the probability that bi is the largest bid in a group of
size n is just (

i

T

)n

−
(

i− 1

T

)n

. (1)

2If the elements of b are all distinct, Li(b) = i for each bid i, and the results presented
below are familiar properties of order statistics; see Evans et al, 2006.

4



When not all bids are distinct, the computation is only slightly more
complicated. For each b′i in the list b′ of distinct bids, the probability that b′i
is the highest bid in a randomly selected group of n individuals drawn with
replacement is equal to the probability that all n draws are no larger than b′i,
minus the probability that all draws are no larger than b′i−1. This probability
is

pF (b′i) =

(
Li(b)

T

)n

−
(

Li−1(b)

T

)n

. (2)

Expected revenue is simply

T ′∑
i=1

b′ip
F (b′i). (3)

Direct calculation of the other moments of the distribution of revenue is also
straightforward.

2.2.2 The exact recombinant estimate

Exact recombinant estimates differ from ideal bootstrap methods only in that
random groups are constructed by resampling without replacement from the
set of T bids submitted by subjects. If groups of size n are chosen without
replacement, the lowest possible top bid in a group is b′n. For i ≥ n, the
number of groups of size n in which b′i is the highest bid is

(
Li(b)−1

n−1

)
. Therefore

the probability that b′i is the winning bid in a randomly selected group of
size n drawn without replacement is

p̃F (b′i) =

(
Li(b)−1

n−1

)
(

T
n

) if Li(b) ≥ n and p̃F (b′i) = 0 if L(b′i) < n. (4)

Expected revenue is simply
∑T ′

i=n b′ip̃
F (b′i).

2.3 Revenue with Second-Price Auctions

In a second price auction, the sale item goes to the high bidder at a price
equal to the second highest bid. The probability distribution of revenue is
simply the probability distribution of the second highest bid in a randomly
selected group of n subjects.
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2.3.1 The ideal bootstrap estimate

For each b′i in the list b′ of distinct bids, define P S(b′i) to be the probability
that the second highest bid is no larger than b′i. Thus P S(b′i) is the probability
that no more than one bid larger than b′i is selected in a sample of size n
drawn with replacement from the list b′. The probability that a single draw
will be less than or equal to b′i is Li(b)/T . Therefore

P S(b′i) =

(
Li(b)

T

)n

+ n

(
T − Li(b)

T

)(
Li(b)

T

)n−1

. (5)

For each b′i in the list b′, the probability that the second highest bid is
exactly b′i is the difference between the probability that the second highest
bid is less than bi and the probability that the second highest bid is less than
bi−1. Therefore the probability that the second highest bid is exactly b′i is

pS(b′i) = P S(b′i)− P S(b′i−1). (6)

We have thus produced an estimate of the full probability distribution of
revenue and we can readily calculate the mean or any other moment of this
distribution. In this case, expected revenue is

∑T ′
i=1 b′ip

S(b′i).

2.3.2 The exact recombinant estimate

The recombinant approach is to find the probability distribution of second-
highest bids if each of the

(
T
n

)
groups of n bids that could be selected from

the populations of bids were equally likely.
A bid b′i in the list b′ will be the second-highest bid in a group of n bidders

if there are n − 2 bids less than or equal to b′i and one other bid at least as
large as b′i. Thus the total number of groups of size n in which b′i is the
second-highest bid is (

Li(b)− 1

n− 2

)
× (T − Li(b))

provided Li(b) ≥ n− 1 and 0 otherwise. Since the number of distinct groups
of size n that can be formed is

(
T
n

)
, then where Li(b) ≥ n, the probability

that b′i is the second highest bid is

p̃S(b′i) =

(
Li(b)−1

n−2

)× (T − L(b′i))(
T
n

) (7)

and for Li(b) < n, p̃S(b′i) = 0.
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3 Efficiency

Auction theorists are interested in the “efficiency” of auctions, where effi-
ciency is measured by the ratio of realized total profits for buyers and sellers
to the maximum potential total profits. To estimate the efficiency of auc-
tions, we need to look at bidders’ valuations (which have been induced by
the experimenter) as well as their bids. We will show how to calculate this
measure by means of the ideal bootstrap procedure. Similar calculations can
be made for exact recombinant estimates.

Suppose that an experiment has generated T observations of bid-value
pairs, (bj, vj). We first wish to find the expected surplus yielded by a perfectly
efficient outcome. This value will be equal to the expected revenue in a first
price auction where every bidder j bids his true value vj. This expected
revenue is given by Equation 3, where we replace the list b of bids by a list
v of bidders’ values and the list b′ of distinct bids by the list v′ of distinct
values arrayed in ascending order. The expected highest valuation is

T ′′∑
i=1

v′ip
F (v′i), (8)

where T ′′ is the number of distinct values in the list v′.
In second price auctions, as well as first price auctions, the object is sold

to the highest bidder. Thus in either case, we need to compute the expected
value of the object to the highest bidder. For either type of auction, the
probability pF (b′i) that b′i is the winning bid in a first price auction is given
by Equation 3. Let us define v̄i to be the mean of the valuations, vj, of those
subjects j whose bids are b′i in a first price auction. Thus if b′i is the winning
bid, the expected value of the object to the buyer, is v̄i. Thus for either a
first price or a second price auction, the expected value of the object to the
winning bidder is therefore

T ′∑
i=1

v̄ip
F (b′i). (9)

Let us measure the efficiency of an auction as the ratio of expected value
of the object to the winning bidder to the expected value of the object to the
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bidder with highest value. Thus we have

EF =

∑T ′′
i=1 v̄ip

F (v̄′i)∑T ′
i=1 v′ipF (b′i)

. (10)

4 Hypothesis Testing

Suppose a seller is planning to sell an object to a population that he be-
lieves is very similar to the sample population used to generate our boot-
strap estimates of expected revenue. He wishes to know which auction for-
mat is most likely to produce the most revenue. The bootstrap procedure
can also be used to put confidence intervals around the estimates of ex-
pected revenue. Let RA denote the expected revenue of auction format A,
A ∈ {F, S}. The bootstrap estimate of the standard deviation of this estimate

is SA =
√∑T ′

i=1 pA(b′i)(b
′
i −RA)2. This can be used to compute confidence

intervals around the revenue estimates.3

5 Examples

5.1 A lazy experimenter’s auction

To clarify the difference between naive estimation, recombinant estimation,
and bootstrap estimation of auction results it is instructive to consider their
workings in a very simple class of examples.

A researcher is interested in estimating the expected revenue that a sup-
plier would raise by selling an object in a two-person, second bidder auction.
The researcher does not know the distribution of willingness to pay in the
population at large and decides to estimate these returns by experimental
methods. To reduce our own computational burden, let us assume that this
is very lazy researcher who chooses a sample of just two persons and sells to
one of them by means of a sealed-bid second price auction.

The lazy experimenter selects her two subjects at random from a large
population, half of which values the object at $1 and half of which values the
object at $0. Let us assume that both subjects play their weakly dominant

3These confidence intervals will not be accurate if, as may well be the case, the distri-
bution of the winning bids is far from normal.
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strategy of bidding their true valuation. A seller will receive revenue of $1
if both bidders have $1 values and will receive $10 otherwise. Therefore the
true expected value of revenue in a two-person auction with randomly chosen
buyers is 1/4. How well the alternative estimation procedures perform?

Since the population contains equal proportions of each type, the proba-
bility is 1/4 that both subjects value the object at $1, 1/2 that one subject
values it at $1 and the other values it at $0, and 1/4 that both value the
object at $0. If the investigator follows the naive procedure of using ob-
served revenue to estimate expected revenue, then with probability 3/4, the
estimate will be 0 and with probability 1/4 the estimate will be 1. Since
the entire sample has only two bidders, recombination by sampling without
replacement does not produce any new combinations of bidders and so the
recombinant estimate must be the same as the naive estimate. The naive
procedure and the recombinant procedure are both “unbiased” in the sense
that the expected value of the estimate $3/4 × 0 + 1/4 × 1 = 1/4 is equal
to the true expected value of revenue. On the other hand, the investigator’s
estimate is never exactly right. The mean squared error of this estimate is
3/4(1/4)2 + 1/4(3/4)2 = 3/16.

The bootstrap procedure draws new samples with replacement from the
selected subject pool. If both persons in the original sample are of the same
type, bootstrap resampling produces no new combinations and yields the
same estimate as the naive and recombinant methods. But if one person
sampled has value $1 and the other value $0, the bootstrap estimates the
probability of drawing two $0 types to be 1/4, the probability of drawing one
person of each type to be 1/2 and the probability of drawing two $1 types
to be 1/4. In this case she estimates expected revenue to be $1/4. Since the
bootstrap estimate is $1 with probability 1/4 and 1/4 with probability 1/2,
the expected value of the bootstrap estimate of expected revenue is $3/8.
The bootstrap estimate is therefore “biased” since the true expected revenue
from two randomly selected bidders is $1/4. Although the bootstrap esti-
mator is “biased” and the naive and recombinant estimators are “unbiased”,
the bootstrap estimate is strictly “better than” the naive and recombinant
estimates in the following sense. Whenever the two bidders drawn are of
the same type, the bootstrap estimate is the same as the naive and recom-
binant estimates, but whenever the two bidders drawn are of two different
types, the bootstrap estimate is exactly correct and the other two procedures
underestimate expected revenue. The mean squared error of the bootstrap
procedure is 1/4(3/4)2 + 1/4(1/4)2 = 1/16.
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Consider a slightly more diligent experimenter, who recruits two pairs of
two subjects and runs a sealed-bid second-price auction with each pair. With
a bit of calculation, we find that if she uses naive estimation, her estimate of
expected revenue will be $0 with probability 9/16, $1/2 with probability 3/8,
and $1 with probability 1/16. This estimate for revenue of $1/4 is unbiased
and has mean squared error of 9/16(1/4)2 + 3/8(1/4)2 + 1/16(3/4)2 = 9/32.
With recombinant estimation, she will estimate expected revenue to be 0
with probability 5/16, 1/6 with probability 3/8, 1/2 with probability 1/4
and 1 with probability 1/16. This estimate, which is also equal to $1/4,
is also unbiased and has mean squared error of 5/16(1/4)2 + 3/8(1/12)2 +
1/4(1/4)2+1/16(3/4)2 = 7/96. With bootstrap estimation, she will estimate
expected revenue to be 0 with probability 1/16, 1/16 with probability 1/4,
1/4 with probability 3/16, 9/16 with probability 1/4 and 1 with probability
1/16. The expected value is 5/16, so the bootstrap estimate is biased upward.
However the mean squared error is 1/16(1/4)2 + 1/4(3/16)2 + 1/4(3/16)2 +
1/4(5/16)2 + 1/16(3/4)2 = 37/1024, which is lower than both the naive and
recombinant estimate. Hence the bootstrap estimate is more accurate.

Does it make an important difference to compute the ideal bootstrap or
exact recombinant instead of using the naive approach of simply forming
each auction once and looking at the results, and if it does matter, which
should approach is better, the ideal bootstrap or the exact recombinant?
To answer these questions we consider five-player second price auctions for
the case where we know the underlying distribution of bids to be normal
with mean 10 and standard deviation 2. For this case, we can work out the
actual ”true” expected selling price to be 10.99 with standard deviation of
1.12. We want to see how well each of these estimation procedures: naive
formation of auctions using each point only once, ideal bootstrap, and ideal
recombinant, perform as a function of the sample size (total number of five
player auctions that we run in our experiment). We do that by simulating a
very large number of experiments (100,000) for each sample size.

Figure 1 shows the mean squared deviation between the true expected
selling price and the estimated expected selling price as a function of sample
size. The dotted line shows us what we get for the naive procedure. The
dashed line shows us what we get for the exact recombinant. The solid line
shows us what we get for the ideal bootstrap (The figure is plotted on a log
scale). As expected, mean squared deviation drops with sample size. We also
see that the ideal bootstrap is strictly better than the other procedures, but
that as the sample size gets large the ideal recombinant does approximately
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Figure 1: Comparison.

as well. So this figure shows us that it does make a difference whether we
use some sort of recombinant sampling or bootstrap, and hints that for small
sample sizes the bootstrap might be best. For large sample sizes, it doesn’t
matter which of the two one uses.

Why wouldn’t you use the bootstrap? A comparison of figures 2-4 sug-
gests one possible answer. The solid lines in these figures show the mean
value across all 1000 experiments of the estimated mean selling price. In the
naive and recombinant procedures, the mean estimated mean selling price is
right on target for all sample sizes — that is, these estimators are unbiased.
In the bootstrap procedure, the mean estimated selling price is somewhat
lower than the true mean for small sample sizes — that is, the bootstrap es-
timator is biased. For practical purposes, where the experimenter is running
some specified number of sessions once (rather than replicating the whole
experiment thousands of times) the issue of bias seems less important than
accuracy. Hence, the advantage of the lower mean squared deviation for the
ideal bootstrap probably outweighs the unbiased nature of the exact recom-
binant. The dashed lines in figures 2-4 show the ranges in which 97.5% of
the estimated means lie. The ranges are tighter for the ideal bootstrap and
broader for the naive approach.
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Figure 3: Recombinant sampling.
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Figure 4: Naive pairing.

6 Other applications

Other types of behavior can also be analyzed using the above techniques. For
instance, in a war of attrition a group of players compete to be the unique
survivor and receive a prize. The expenditures by each player are equiva-
lent to bids in an auction and the award goes to the highest bidder. Other
interactions such as lobbying, political campaigns, lawsuits, standing in line
for tickets, and some forms of price-setting oligopoly can be modelled as
auctions (See Klemperer, 2000), and hence experimental treatments of these
interactions produce bid-value vectors which can be analyzed using recombi-
nant or bootstrap methods. For example, Dufwenberg et al (2006) conduct
an experiment in which subjects choose prices in a Bertrand oligopoly game.
In this case the “winner” is the player who chooses the lowest price. The
ideal bootstrap and exact recombinant estimates of expected price in these
markets can be obtained simply by replacing the L(·) function in Equations
2 and 4 with the function G(·) : B′ → Z+, defined so that for any b′i ∈ B′,
G(b′i) = |{bj ∈ B : bj ≥ b′i}| .
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