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SUMMARY
The tumormicroenvironment plays a critical role in cancer progression, but the precisemechanismsbywhich
stromal cells influence the epithelium are poorly understood. Here we show that p62 levels were reduced in
the stroma of several tumors and that its loss in the tumormicroenvironment or stromal fibroblasts resulted in
increased tumorigenesis of epithelial prostate cancer cells. Themechanism involves the regulation of cellular
redox through an mTORC1/c-Myc pathway of stromal glucose and amino acid metabolism, resulting in
increased stromal IL-6 production, which is required for tumor promotion in the epithelial compartment.
Thus, p62 is an anti-inflammatory tumor suppressor that acts through the modulation of metabolism in the
tumor stroma.
INTRODUCTION

Primary tumors are initiated as a result of the stepwise acquisi-

tion of genetic alterations within the epithelial compartment

(Shen and Abate-Shen, 2010). However, increasing evidence

supports the notion that the tumor microenvironment also plays

a critical role in cancer progression in many types of neopla-

sias, including prostate cancer (PCa), although relatively little is

known about the signaling pathways that mediate communica-

tion between the stromal and epithelial compartments (Ammir-

ante et al., 2010; Erez et al., 2010; Santos et al., 2009; Trimboli

et al., 2009). Inflammation and metabolism are two critical fac-

tors contributing to the protumorigenic properties of the stroma

(DeBerardinis and Thompson, 2012; Grivennikov et al., 2010;

Hanahan and Coussens, 2012; Metallo and Vander Heiden,

2013; Vander Heiden, 2013). Although not totally understood,
Significance

Inappropriate activation of the stroma as a consequence of the
mation of epithelial tumor cells, thus facilitating the progressio
cancer as a model system, we show that the loss of the sign
response that leads to activation of cancer-associated fibrob
ciency in p62 results in reducedmTORC1activity andderegulat
the stroma is increasingly recognized as a potential source of th
metabolic reprogramming can decisively influence the tumorig
some evidence suggests that the metabolic state of the tumor

stroma can decisively influence the tumorigenic potential of

the tumor epithelial compartment (Lisanti et al., 2013). Here

we have addressed this fundamental biological question in the

context of p62 deficiency in the nonepithelial tumor compart-

ment. Our laboratory initially identified p62, also known as

sequestosome-1, as a scaffold protein for the atypical protein

kinase C isozymes and later implicated p62 in other cell stress

responses (Diaz-Meco and Moscat, 2012; Moscat and Diaz-

Meco, 2012; Moscat et al., 2007; Sanchez et al., 1998). p62

binds Raptor, a key component of the mTOR-orchestrated

nutrient-sensing complex and an important activator of anabolic

pathways that are instrumental in metabolic reprogramming

during cell transformation (Duran et al., 2011; Moscat and

Diaz-Meco, 2011). Nonetheless, nothing is known about the

signaling cascades that p62 regulates in stromal cells or to
tumorigenic process can potentiate the growth and transfor-
n of cancers toward more malignant stages. Using prostate
aling adaptor p62 in stromal cells triggers an inflammatory
lasts that enhances tumorigenesis in vitro and in vivo. Defi-
ion ofmetabolic pathways controlling inflammation.Because
erapeutic targets, this study suggests that targeting stromal
enic potential of the tumor epithelial compartment.
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Figure 1. p62 Levels Are Reduced in the Stroma of Human Prostate Tumors

(A) Representative examples of p62 staining of normal and primary prostate cancer (tumor) samples. The scale bars represent 25 mm.

(B) Quantification of p62 staining in the stroma of primary PCa tumors compared with normal; n = 22 (normal), n = 202 (PCa). Fisher’s exact test, p < 0.01.

(C) p62 levels are reduced upon PCa progression; n = 22 (normal), n = 70 (GS 2–6), n = 132 (GS 7–10). Chi-square test, p < 0.01.

(D) p62 mRNA levels in stroma of human cancer samples. Data were collected from public data sets of gene expression in the tumor stroma of several human

cancers: GSE34312 (prostate cancer), GSE9014 (breast cancer), and GSE35602 (colon cancer).

(E) FACS-sorted adult murine prostate cell lineages. Prostate basal, luminal, and stromal cells are Lin�Sca-1+CD49fHi, Lin�Sca-1�CD49fLow, and Lin�Sca-
1+CD49f�, respectively.
(F) RT-PCR of specific markers for each prostate cell population (n = 3): p63 (basal), Nkx3.1 (luminal), and vimentin (stromal).

(G) RT-PCR for p62 in prostate cell populations (n = 3).

*p < 0.05, **p < 0.01, ***p < 0.001. Results are presented as mean ± SEM. See also Figure S1.
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what extent these pathways influence the epithelial-stromal

interaction in the tumor microenvironment. Cancer-associated

fibroblasts (CAFs) have been proposed to be key mediators of

the crosstalk between malignant tumor cells and their microen-

vironment (Barron and Rowley, 2012; Franco and Hayward,

2012). CAFs and the complex set of signaling molecules they

secrete generate an environment conducive to inflammation,

and this in turn maintains the protumorigenic status of the stro-

mal cells. Among these proteins, interleukin-1b (IL-1b), inter-

leukin-8, and interleukin-6 (IL-6) have been implicated as part

of the proinflammatory signature of the PCa stroma (Erez et al.,

2010; Franco and Hayward, 2012; Schauer et al., 2008). Further-

more, IL-6 has received increasing attention as a key proinflam-

matory and protumorigenic molecule in many types of cancer,

including PCa (Azevedo et al., 2011; De Marzo et al., 2007;

Guo et al., 2012; Schafer and Brugge, 2007). Here we address

the role of p62 in the stroma in the control of the inflammatory

environment in PCa.

RESULTS

p62 Expression Levels in the Tumor Microenvironment
The initial evidence suggesting that p62 plays a role in the regu-

lation of the tumor microenvironment in PCa came from the his-
122 Cancer Cell 26, 121–135, July 14, 2014 ª2014 Elsevier Inc.
tological analysis of a tissue panel comprising 202 primary

human PCa tumors, 8 metastases, and 22 adjacent normal

prostate tissue samples. This study revealed that p62 was ex-

pressed in the prostate epithelium and also in the stroma (Fig-

ure 1A). p62 protein levels were downregulated in the stroma

of human primary PCa tumors compared with the stroma of

normal samples (Figures 1A and 1B). Furthermore, when the tu-

mor samples were grouped on the basis of low Gleason score

(GS) (2–6) or high GS (7–10), p62 levels in the stroma were signif-

icantly reduced upon progression to the most aggressive stage

(Figure 1C). p62 was also overexpressed in the epithelial

compartment of the PCa human samples (Figure 1A; Figures

S1A and S1B available online). This is consistent with previous

observations suggesting that p62 is upregulated in many can-

cers, including lung cancer (Duran et al., 2008; Inoue et al.,

2012), liver cancer (Inami et al., 2011), glioblastoma (Galavotti

et al., 2013), breast cancer (Rolland et al., 2007; Thompson

et al., 2003), and kidney cancer (Li et al., 2013). However,

because those studies did not report on expression in the stro-

mal component, it is not clear whether p62 was downregulated

in the stroma in those samples, as we have shown in the samples

analyzed here. Moreover, bioinformatics analysis of public data

sets of stromal gene expression also demonstrated that p62

was significantly downregulated in the tumor stroma, compared
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with normal stroma, in several types of cancers, including pros-

tate, breast, and colon cancers (Figure 1D). In addition, fluores-

cence-activated cell sorting (FACS) analysis of adult mouse

prostates showed that p62 is more highly expressed in cells of

the stroma than in those of basal or luminal lineages (Figures

1E–1G). Quantitative RT-PCR analyses of the sorted prostate

cell populations showed that transcripts for the basal marker

p63, the luminal cell marker Nkx3.1, and the stroma marker

vimentin were enriched in their corresponding cell populations,

demonstrating successful cell fractionation (Figures 1E and

1F). Of note, p62 expression was highly enriched in the stromal

compartment compared with the other two cell populations (Fig-

ure 1G). These results suggest that p62 could exert its effect as a

tumor suppressor in the tumor microenvironment, likely in the

stroma.

p62 Is a Suppressor of Inflammation and the CAF
Phenotype in the Tumor Microenvironment
To test whether p62 deficiency in the tumor microenvironment

is relevant to the transforming properties of epithelial cells, we

performed orthotopic injections of syngeneic murine PCa cells

(TRAMP-C2Re3) (Olson et al., 2006) into the prostates of wild-

type (WT) and p62 knockout (KO) mice and then assessed tumor

growth. The resulting tumors were bigger in the prostates of p62

KO mice than in those of WT mice (Figures 2A–2C), supporting

the notion that a loss of p62 in the tumor microenvironment pro-

motes PCa growth. We next carried out transcriptomic profiling

of the orthotopic tumors in the WT and p62 KO mice. NextBio

analysis revealed important correlations between genes upregu-

lated in the p62 KO orthotopic tumors with a gene signature

in the category of ‘‘response to wounding’’ (Figure S2A). In

addition, gene set enrichment analysis (GSEA) also identified

‘‘response to wounding’’ as significantly enriched of the gene

ontology (GO) biological-process categories (Figure 2D; Figures

S2B and S2C) and ‘‘stromal stimulation’’ in the C2 curated gene

set library (Figures S2D and S2E). Because CAFs acquire an

‘‘activated phenotype’’ during tumor progression that resembles

that of fibroblasts during the wound-healing repair process,

these results suggested that the p62 KO stroma is likewise acti-

vated (Barron and Rowley, 2012; Bissell and Radisky, 2001;

Franco and Hayward, 2012; Schäfer and Werner, 2008) and

has a more CAF-like phenotype than the WT stroma. In support

of this notion, we observed an increase in the expression of a

smoothmuscle actin (a-SMA) in sections from orthotopic tumors

in p62 KO mice compared to WT controls (Figure 2E), as well as

an increase in transforming growth factor b (TGF-b) transcripts

as determined by RT-PCR in the same samples (Figure 2F).

TGF-b and a-SMA are two bona fide markers of the CAF pheno-

type (Barron and Rowley, 2012; Franco and Hayward, 2012).

Consistent with this, Ingenuity Pathway Analysis identified

TGF-b1 as a predicted upstream regulator in the p62 KO ortho-

topic tumors (p = 1.47 3 10�7, activation Z score = 3.890). To

determine the potential cell-autonomous effect of p62 in this

important function, we used FACS to isolate prostate stromal

cells from mice of both genotypes, as described in Figures 1E

and 1F. Interestingly, we found that p62-deficient stromal

cells also showed characteristics of CAFs, as determined by

increased expression levels of a-SMA, TGF-b, and vimentin (Fig-

ure 2G). To facilitate subsequent studies, we generated prostate
fibroblasts from WT and p62 KO mice and determined their

‘‘CAF activation’’ state. In these cells, the loss of p62 resulted

in increased CAF transcript markers (Figure 2H), as well as in

the secretion of TGF-b, as determined by ELISA (Figure 2I).

This is important because TGF-b is essential for the acquisition

and maintenance of the CAF/myofibroblast phenotype (Kojima

et al., 2010; Ostman and Augsten, 2009). Therefore, p62 loss

modifies the stroma by inducing a CAF phenotype, which in

turn drives tumor progression.

Further bioinformatics GSEA revealed a hyperinflammatory

phenotype in the p62 KO orthotopic tumors. That is, we found

‘‘humoral immune response’’ and ‘‘inflammatory response’’ as

second GO categories enriched in the p62 KO transcriptome

profile (Figure 2J; Figures S2F and S2G). RT-PCR analysis of

the tumors from p62 KO mice showed increases in the tran-

scripts of inflammatory cytokines such as IL-6, IL-1b, and kera-

tinocyte chemoattractant (Figure 2K), as well as in the secretion

of IL-6 as determined by ELISA (Figure 2L).We hypothesized that

IL-6 could be an important mediator of the stromal p62-depen-

dent signals that influence PCa progression in the epithelium.

To test this possibility, we carried out an orthotopic injection

experiment using p62/IL-6 double-KO (DKO) mice as hosts.

Notably, the increased tumor growth observed in p62 KO mice

was completely reversed in the DKO mice (Figures 2M and

2N), demonstrating that p62 plays a tumor-suppressive role in

the tumor microenvironment during PCa progression by inhibit-

ing CAF activation and blocking inflammation.

p62 in Stromal Fibroblasts Regulates an IL-6/TGF-b
Cascade Essential for Tumor Invasion
We next set up a 3D organotypic culture model that recapitu-

lates, in a genetically accessible system, the tumor microenvi-

ronment and its interactions with the tumor epithelial cell, closely

mimicking the physiological situation and the cellular architec-

ture (Gaggioli et al., 2007; Kim et al., 2013; Nyström et al.,

2005; Ridky et al., 2010). Because our genome-wide transcrip-

tomic analysis suggested that the loss of p62 in the tumor

microenvironment is associated with a CAF-like signature, and

because fibroblasts are a critical component of the stroma, we

next tested whether p62 KO prostate fibroblasts were able to

recapitulate the in vivo phenotype in 3D organotypic cultures.

To do this, we cocultured in this organotypic system prostate

fibroblasts from p62 KO and WT mice with TRAMP-C2Re3

PCa cells (Figure 3A). Importantly, p62 KO prostate fibroblasts

(versus WT counterparts) enhanced the invasiveness and prolif-

eration index of PCa epithelial tumor cells (Figures 3B–3D).

Similar results were obtained with other PCa cell lines, such as

mouse Myc-CaP (Figure S3A), or human PC3 cells (Figure S3B).

Mouse fibroblasts from p62 KO mice also enhanced the inva-

siveness and proliferation index of human normal prostate

epithelial cells compared with similar organotypic cultures with

WT fibroblasts (Figure S3C). Altogether, this indicates that p62

deficiency in the stromal fibroblasts has a pivotal role in medi-

ating cancer cell proliferation and invasion.

To follow up on our findings that IL-6 levels were increased in

orthotopically injected tissues and that increased IL-6 expres-

sion was associated with enhanced tumorigenicity in vivo (Fig-

ures 2K–2N), we further investigated the role of this cytokine in

the protumorigenic microenvironment created by p62 deficiency
Cancer Cell 26, 121–135, July 14, 2014 ª2014 Elsevier Inc. 123



Figure 2. IL-6 Is Required for p62’s Role in the Tumor Microenvironment

(A) Orthotopic injection of TRAMP-C2Re3 cells into the prostates of syngeneic WT and p62 KO mice. Orthotopic tumors were allowed to grow for two months.

(B and C) GU tract weight (B) and pictures (C) from (A); n = 5 or 6 mice per genotype. The scale bar represents 1 cm.

(D) ‘‘Response to wounding’’ GSEA plot of enrichment of gene expression in p62 KO orthotopic tumors.

(E) a-SMA staining of orthotopic tumors from WT and p62 KO mice. The scale bars represent 25 mm.

(F) RT-PCR of TGF-b in orthotopic tumors from WT and p62 KO mice (n = 3).

(G and H) RT-PCR of CAF markers (a-SMA, TGF-b, and vimentin) in FACS-sorted prostate stromal fraction fromWT and p62 KOmice (G) and in WT and p62 KO

prostate fibroblasts (H); n = 3.

(I) TGF-b production in prostate fibroblasts was determined by ELISA.

(J) GSEA plots of enrichment of gene expression in p62 KO orthotopic tumors.

(K) RT-PCR of inflammatory cytokines in orthotopic tumors of WT and p62 KO mice; n = 5 or 6 animals per group versus WT.

(L) IL-6 ELISA in fibroblasts.

(M andN) Orthotopic injection of TRAMP-C2Re3 cells into the prostates ofmice of different genotypes (n = 5 or 6mice). GUweights (M) and pictures (N). The scale

bar represents 1 cm.

*p < 0.05, **p < 0.01, ***p < 0.001. Results are presented as mean ± SEM. See also Figure S2.
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in the stroma. The two major sources of IL-6 in the tumor micro-

environment aremacrophages and stromal fibroblasts (Hanahan

and Coussens, 2012). Notably, 3D organotypic culture experi-
124 Cancer Cell 26, 121–135, July 14, 2014 ª2014 Elsevier Inc.
ments established that fibroblasts (Figures 3B and 3C), but

not macrophages (Figure S3D), from p62 KO mice recapitu-

lated the p62 KO phenotype in the orthotopic tissue grafting



Figure 3. p62-Deficient Stroma-Mediated Invasion Is IL-6 and TGF-b Dependent

(A) Schematic representation of 3D organotypic cultures.

(B) H&E-stained sections of TRAMP-C2Re3 cells cultured in an organotypic system in the presence of primary prostate fibroblasts from WT and p62 KO mice.

(C and D) Quantification of PCa cell invasion (C) and proliferation index (D) of experiment shown in (B); n = 4.

(E) H&E staining of organotypic gels combining Myc-CaP cells with prostate fibroblasts from mice of different genotypes (n = 4).

(F and G) Quantification of PCa cell invasion (F) and proliferation index (G) of experiment shown in (E); n = 4.

(H) H&E staining of organotypic gels combining Myc-CaP cells with prostate fibroblasts frommice WT and p62 KOmice in the presence or absence of the TGF-b

inhibitor SB431542 (10 mM).

(I and J) PCa cell invasion quantification (I) and proliferation index (J) of (H); n = 4.

(K) Invasion index determined by modified Boyden chamber assay with conditioned media from WT and p62 KO fibroblasts in the presence or absence of

SB431542 (10 mM); n = 3.

(L and M) RT-PCR of TGF-b (L) and a-SMA (M) mRNA levels in fibroblasts of mice of different genotypes (n = 4).

(N) IL-6 production by WT and p62 KO fibroblasts in the presence or absence of the TGF-b inhibitor SB431542 (n = 4).

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Results are presented as mean ± SEM. The scale bars represent 100 mm. See also Figure S3.
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experiment, and this effect was abolished when p62/IL-6 DKO

fibroblasts were used in the 3D system (Figures 3E–3G). Further-

more, when TGF-b signaling was inhibited by incubating the

organotypic cultures with the TGF-b inhibitor SB431542 (Inman

et al., 2002), the protumorigenic phenotype of p62-deficient

fibroblasts was reverted, consistent with the notion that TGF-b

is important for the CAF phenotype and PCa proliferation (Fig-
ures 3H–3J). Likewise, the TGF-b inhibitor reverted the increased

invasion index of PCa cells incubated with p62-deficient fibro-

blast conditioned medium in a Boyden chamber invasion assay

(Figure 3K). Results shown in Figure S3E demonstrate the effec-

tiveness of this inhibitor to block the TGF-b pathway. Moreover,

the enhanced TGF-b production observed in the p62 KO fibro-

blasts, as well as that of a-SMA, was completely abrogated in
Cancer Cell 26, 121–135, July 14, 2014 ª2014 Elsevier Inc. 125



Figure 4. Metabolic Reprogramming in p62-Deficient Stroma

(A and B) Total intracellular levels of ROS in WT and p62 KO fibroblasts (A) and quantification (B); n = 4.

(C) IL-6 ELISA of WT and p62 KO fibroblasts treated with vehicle or the ROS scavenger BHA (100 mM) for 12 hr (n = 4).

(D and E) RT-PCR of NQO1 (D) and SOD1, SOD2, and FHC (E) mRNA levels in fibroblasts (n = 4).

(legend continued on next page)
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the DKO fibroblasts (Figures 3L and 3M). Consistently, the

knockdown of IL-6 in p62 KO fibroblasts impaired IL-6 secretion

and, more important, also reverted TGF-b production and PCa

invasion (Figures S3F–S3H). Furthermore, incubation of p62/

IL-6 DKO fibroblasts with exogenously added IL-6 restored

TGF-b levels to those of p62 KO cells as well as PCa invasion

(Figure S3I and S3J). All this is consistent with a cell-autonomous

role of the p62-IL-6 axis in the control of the CAF phenotype.

However, incubation of p62 KO fibroblasts with the TGF-b

signaling inhibitor SB431542 did not affect the overproduction

of IL-6 in p62 KO fibroblasts (Figure 3N). These are important

observations that establish a sequential p62/IL-6/TGF-b axis in

the tumor fibroblastic compartment contributing to the control

of epithelial tumorigenesis during PCa progression.

p62Controls IL-6 Levels by RepressingReactiveOxygen
Species Production through Metabolic Reprogramming
We next sought to determine how p62 controls IL-6 production

in fibroblastic stromal cells and whether the mechanisms medi-

ating IL-6 production are relevant to stroma-driven tumorigen-

esis. It should be noted that p62 KO fibroblasts have increased

levels of reactive oxygen species (ROS) (Figures 4A and 4B)

and that the inhibition of ROS production (by the ROS scavenger

butylated hydroxyanisole [BHA]) completely reverts the IL-6

hyperproduction phenotype (Figure 4C). This indicates that the

mechanism whereby p62 represses IL-6 production in fibro-

blasts involves the control of ROS levels. It has previously

been reported that p62 can activate NF-kB and NRF2 (Duran

et al., 2008; Komatsu et al., 2010; Moscat and Diaz-Meco,

2009), which suggests that these molecules could play a role

in the ability of p62 to repress ROS production and the subse-

quent activation of IL-6. The expression of critical detoxifying

NF-kB- or NRF2-dependent genes (Figures 4D and 4E), as well

as the levels of the NRF2 inhibitor Keap1 (Figure 4F), was not

affected by the loss of p62 in fibroblasts. However, we found

that p62 KO fibroblasts displayed lower levels of reduced gluta-

thione (GSH) than the WT controls (Figure 4G). These are impor-

tant observations because GSH is central to the control of ROS

levels. In fact, treatment of p62 KO fibroblasts with the GSH

analog GSH-reduced ethyl ester (GEE) reduced IL-6 to levels

comparable with those of WT fibroblasts (Figure 4H). These

results demonstrate that the loss of p62 results in lower GSH

levels, thus promoting ROS accumulation, which is required for

IL-6 overproduction in p62-deficient fibroblasts.

We observed a striking decrease in the reduced nicotinamide

adenine dinucleotide phosphate (NADPH)/nicotinamide adenine

dinucleotide phosphate (NADP) ratio in p62-deficient fibroblasts
(F) Immunoblot analysis of KEAP1 in cell lysates from WT and p62 KO fibroblast

(G) Cellular GSH levels in WT and p62 KO fibroblasts (n = 4).

(H) IL-6 ELISA of fibroblasts treated with increasing concentrations of the GSH a

(I) Cellular NADPH/NADP levels in WT and p62 KO fibroblasts (n = 4).

(J) Metabolic scheme depicting biosynthetic routes to NAPDH (yellow shading) a

(K) Glucose consumption, lactate secretion, and glutamine consumption rates d

(L) PPP flux estimates from metabolic flux analysis in WT and p62 KO fibroblast

(M) RT-PCR of GLUT1 mRNA (n = 4).

(N) Glutamate labeling inWTandp62KOfibroblasts grown in either [1,2-13C2]gluco

(O and P) RT-PCR of SLC7A5, SLC1A5, and GLS1 (O) and SLC7A11 (P) mRNA l

(Q) Labeling of serine and glycine from [1,213C2]glucose (n = 3).

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Results are presented as mea
(Figure 4I). This ratio provides additional information on the

cellular redox status, as the relative concentration of GSH versus

oxidized GSH depends on the cellular content of NADPH. Glyco-

lytic metabolism plays a critical role in maintaining NADPH

production through the oxidative pentose phosphate pathway

(PPP) (Figure 4J, yellow shading). Indeed, p62 KO cells exhibited

decreased glucose uptake and lactate secretion (Figure 4K). This

reduction in glycolytic rate resulted in decreased flux through the

oxidative PPP, as determined by stable isotope tracing with

[1,2-13C2]glucose (Figure 4L). These metabolic changes corre-

lated with a reduction in GLUT1 levels in p62-deficient fibro-

blasts (Figure 4M), providing evidence that transcriptional

changes associated with p62 loss influence metabolic flux.

Amino acids are critical for the production of GSH, a peptide

composed of glutamate, cysteine, and glycine (Figure 4J, pink

shading). Glutamine serves as an important precursor for gluta-

mate, and loss of p62 in fibroblasts leads to lower glutamine con-

sumption compared withWT cells (Figure 4K). We also observed

a decrease in the direct conversion of [U-13C5] glutamine to

glutamate in p62 KO fibroblasts, with a relative increase in the

fraction of glutamate derived from [1,2-13C2]glucose (Figure 4N).

In good agreement with these changes in glutaminemetabolism,

we observed reduced levels of the glutamine transporters

SLC7A5 and SLC1A5, as well as glutaminase-1 (GLS1) (Fig-

ure 4O), a critical enzyme in the pathway that catalyzes the con-

version of glutamine into glutamate (Figure 4J). Consistent with

reduced levels of GSH, p62 KO fibroblasts also exhibit a dra-

matic reduction in the levels of SLC7A11, the xCT cystine/gluta-

mate antiporter, which is the major driver of cystine uptake, a

critical and rate-limiting step in the synthesis of GSH in several

cell types, including fibroblasts (Figure 4P) (Bannai and Tateishi,

1986; Gout et al., 1997). Finally, we observed significant

decreases in labeling of both serine and glycine from [1,2-13C2]

glucose (Figure 4Q). Serine serves as a precursor to glycine

and cysteine (when synthesized from methionine), so this

decrease in label transfer provides evidence that there is less

demand for GSH synthesis in p62-deficient cells. These results

collectively demonstrate that loss of p62 in fibroblasts influences

metabolic pathways controlling cellular redox, including NADPH

production in the PPP and GSH synthesis.

p62 Is a Critical Regulator of c-Myc Levels
Previous data from other laboratories have established the crit-

ical role of c-Myc in the regulation of glutamineandglucosemeta-

bolism (Dang, 2012). We found significantly reduced levels of

c-Myc in p62 KO fibroblasts as well as in WT fibroblasts in which

p62 has been knocked down by small hairpin RNA (shRNA)
s. Results are representative of three experiments.

nalog GEE (n = 4).

nd GSH (pink shading) from glucose and glutamine.

etermined by spent medium analysis from WT and p62 KO fibroblasts (n = 3).

cultures labeled with [1,2-13C2]glucose (n = 3).

se and unlabeled glutamine or [U-13C5]glutamine and unlabeled glucose (n = 3).

evels in WT and p62 KO fibroblasts (n = 3).

n ± SEM.
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Figure 5. c-Myc-Mediated Metabolism in p62-Deficient Stroma

(A–C) Immunoblot analysis of c-Myc levels in WT and p62 KO fibroblasts (A), in WT fibroblasts lentivirally infected with shRNA nontargeted control (shNT) or

shRNA specific for p62 (shp62) (B), and in p62 KO fibroblasts retrovirally infected with control vector (control) or with c-Myc expression vector (c-Myc) (C). Results

are representative of three experiments.

(D) IL-6 ELISA in control and c-Myc cells (n = 4) as in (C).

(E) RT-PCR of SLC7A5, SLC1A5, and GLS1 mRNA in control and c-Myc cells (n = 3).

(F) Intracellular GSH levels in control and c-Myc cells (n = 3).

(G) Immunoblot analysis of c-Myc and p-STAT3 in WT fibroblasts infected with shNT or shRNA for c-Myc (shMyc).

(legend continued on next page)
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(Figures 5A and 5B) and reductions in the levels of the key gluta-

mine transporters SLC7A5 and SLC1A5, and GLS1 (Figure 4O),

which are targets of c-Myc (Dang, 2012). Interestingly, ectopic

expression of c-Myc in p62 KO fibroblasts (Figure 5C) reverted

the p62-deficient phenotype in terms of IL-6 production (Fig-

ure 5D) and the levels of glutamine transporters and GLS1 (Fig-

ure 5E) and GSH (Figure 5F). On the contrary, c-Myc knockdown

in WT fibroblasts (Figure 5G) resulted in increased IL-6 produc-

tion at the mRNA and protein levels (Figures 5H and 5I). c-Myc

knockdown in fibroblasts led to decreased levels of GSH (Fig-

ure 5J), as well as enhanced PCa cell invasion and proliferation

in organotypic cell cultures (Figures 5K–5M). Also, the knock-

down of c-Myc in fibroblasts resulted in increased PCa cell inva-

sion index in a Boyden chamber assay (Figure 5N). Of note, this

cause-and-effect correlation between p62 deficiency, c-Myc

expression, and IL-6 productionwas also found in FACS-isolated

prostate stromal cells from WT and p62 KO mice (Figure 5O).

Collectively these results demonstrate that p62 repression of

c-Myc expression in the stroma fibroblasts accounts for its tumor

suppressive role in PCa.

IL-6 Is Regulated by a p62/mTORC1/c-Myc Cascade
Consistent with previously published observation (Duran et al.,

2011), we found that p62 KO cells displayed reduced mTORC1

activity (Figure 5P). We hypothesized that the reduction in

c-Myc levels found in p62 KO fibroblasts could be the conse-

quence of mTORC1 inhibition. Importantly, we rescued c-Myc

inhibition in p62 KO fibroblasts by expressing a permanently

active mutant of the small-guanosine triphosphatase RagB,

which is a critical activator of mTORC1 (Figure 5Q). IL-6 levels

were likewise reduced under these conditions (Figure 5R). These

results demonstrate that reduced mTORC1 activity in p62 KO

fibroblasts accounts for the low levels of c-Myc and the subse-

quent increase in IL-6 production in these mutant cells. Treat-

ment of WT fibroblasts with rapamycin or Torin, two different

inhibitors of mTORC1, effectively reduced c-Myc levels (Figures

5S and 5T), promoting a significant reduction in GSH levels

(Figure 5U) and a concomitant increase in IL-6 production (Fig-

ure 5V). Therefore, p62’s ability to regulate mTORC1 in the

stroma is essential for its control of the c-Myc/GSH/IL-6 axis.

p62 KO Mice Develop Prostate Hyperplasia and
Prostatic Intraepithelial Neoplasia upon Aging
On the basis of these results, we hypothesized that the loss of

p62 at an organismal level, which would include both the pros-
(H and I) RT-PCR of IL-6 mRNA (H) and IL-6 ELISA (I) in the same cells (n = 3) as

(J) Quantification of intracellular GSH levels in WT shNT and shMyc cells (n = 3).

(K) H&E-stained organotypic gels of TRAMP-C2Re3 cells with shNT or shMyc fib

(L and M) Quantification of PCa cell invasion (L) and proliferation index (M) of ex

(N) Invasion index determined by modified Boyden chamber assay of Myc-CaP

(O) RT-PCR of c-Myc and IL-6 mRNA levels in FACS-isolated prostate stromal c

(P) Immunoblot analysis with the indicated antibodies of cell lysates of WT and p

(Q) Immunoblot analysis for the specified proteins of cell lysates from p62 KO fi

expression vector (RagBGTP). Results are representative of three experiments.

(R) IL-6 ELISA (n = 3) in cells shown in (Q).

(S and T) Immunoblot analysis of c-Myc and p-S6K in fibroblasts treated with ra

(U) Intracellular GSH levels in fibroblasts treated with Torin1.

(V) IL-6 ELISA in fibroblasts treated with Torin1 (n = 3).

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Results are presented as mea
tate stroma and epithelium, might be sufficient to drive prostate

epithelium toward neoplasia. We characterized the prostates of

p62 KO mice by histological analysis, which revealed no abnor-

malities in development ormorphology at early stages. However,

at 9 months of age, prostates from p62 KO mice developed

hyperplasia, with a concomitant increase in Ki67 staining (Fig-

ures 6A and 6B). These lesions progressed to prostatic intraepi-

thelial neoplasia (PIN) at 1 year of age (Figure 6C). This indicated

that, whereas in xenograft experiments PCa epithelial cells with

reduced p62 displayed inhibited tumorigenesis (Duran et al.,

2011), the total loss of p62 in vivo promoted prostate epithelial

cell growth. These observations are in good agreement with

our model whereby p62 in the stromal fibroblasts normally acts

as a tumor suppressor, and the total KO of p62 results in p62-

deficient stromal fibroblasts that drive the prostate epithelium

to a malignancy-prone state. To further test this hypothesis,

we crossed total p62 KO mice with two well-established mouse

models of PCa (PTEN+/� and TRAMP+) (Di Cristofano et al.,

1998; Greenberg et al., 1995) and asked whether total ablation

of p62 inhibited or promoted prostate tumor development. Fig-

ures 6D and 6E show hematoxylin and eosin (H&E) analyses of

PTEN+/�/p62 KO prostrates demonstrating an increase in the

percentage of glandswith high-grade PIN at the age of 6months.

Furthermore, TRAMP+/p62 KO mice had reduced survival (Fig-

ure 6F), increased percentages of poorly differentiated adeno-

carcinoma (Figure 6G) and neuroendocrine tumors (Figure 6H),

as well as a larger number of metastases (Figure 6I), of which

a higher percentage were in the liver (Figure 6J). Consistent

with our model, prostate fibroblasts from PTEN+/�/p62 KO

mice showed increased IL-6 and reduced c-Myc expression

compared with those from p62-proficent PTEN+/� mice (Figures

S4A–S4C). Interestingly, immunohistochemical analysis of

prostates from PTEN+/� mice confirmed reduced expression of

p62 in the stromal compartment compared with those from WT

mice (Figure S4D). To further support the role of p62 deficiency

in the stroma in driving tumorigenesis in vivo, we coinjected syn-

geneic PCa cells (TRAMP-C2Re3) with WT or p62 KO fibroblasts

and assessed the effect that fibroblasts exert on tumor growth.

Tumors coinjected with p62 KO fibroblasts grew significantly

faster andwere larger than tumors inmice injectedwithWT fibro-

blasts, consistent with the cell-autonomous tumor-promoting

activity of p62-deficient fibroblasts on epithelial PCa cells (Fig-

ures 6K and 6L). In agreement with this, bromodeoxyuridine

(BrdU) incorporation was increased in the p62 KO fibroblast-

driven tumors (Figures 6M and 6N).
in (G).

roblasts. The scale bar represents 100 mm.

periment shown in (K).

cells cocultured with shNT and shMyc fibroblasts.

ells from WT and p62 KO mice (n = 3).

62 KO fibroblasts.

broblasts retrovirally infected with control vector (control) or FLAG-RagBGTP

pamycin (S) or Torin1 (T) for 12 hr.

n ± SEM.
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Figure 6. p62 Deficiency Accelerates Prostate Tumor Progression in Different Mouse Models of Prostate Cancer

(A) Hyperplasia in the prostatic anterior lobe of p62 KO mice. H&E and Ki67 staining of prostates from 9-month-old WT and p62 KO mice (n = 5).

(B) Quantification of Ki67-positive cells in the prostate sections shown in (A). Results are the means ± SD of counts from 10 different fields per mouse (n = 5).

(C) PIN in the dorsolateral lobes of prostates from 12-month-old p62 KO mice.

(D) Representative examples of H&E staining of dorsolateral lobes of prostates from PTEN+/� and PTEN+/�/p62 KO mice at 6 months of age (n = 5).

(E) Percentage of glands with HG-PIN (n = 5 mice).

(F) Kaplan-Meier survival curve of TRAMP+ mice (n = 10), compared with TRAMP+/p62 KO mice (n = 15).

(G) Representative H&E staining of mouse prostate sections from TRAMP+ and TRAMP+/p62 KO mice (n = 10).

(H) Incidence of neuroendocrine tumors in TRAMP+ (n = 12) and TRAMP+/p62 KO mice (n = 19).

(I and J) Incidence of metastasis (I) and liver metastasis (J) in TRAMP+ compared with TRAMP+/p62 KO mice.

(K–M) Coinjection of syngeneic TRAMPC2-Re3 PCa cells with either WT or p62 KO fibroblasts in C57BL/6 mice. (K) Tumor volume assessed at different time

points after injection (n = 7 mice). (L) Tumor weight at 6 weeks after injection (n = 7 mice). (M) BrdU staining in tumor sections.

(N) Quantification of BrdU positive cells of (M).

Results are presented as mean ± SEM (n = 10). *p < 0.05, ****p < 0.001. The scale bars represent 25 mm. See also Figure S4.
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Figure 7. The p62-Myc-mTORC1 Cassette Is Downregulated in Prostate Tumor-Associated Stroma in Human Samples

(A) Myc levels are downregulated in the tumor stroma of human tissue samples. Data were collated from public data sets of gene expression in tumor stroma in

several human cancers: GSE34312 (prostate cancer) and GSE9014 (breast cancer). The p value, fold change of expression, and size of the sample (n) for each

study are indicated in the corresponding panels.

(B) Positive correlation between p62 and Myc levels in the stroma.

(C) Heatmap of mTORC1 signature selected from p62 neighboring genes in human stroma. p62 levels are indicated as SQSTM1.

(D and E) RT-PCR analysis of mTORC1 genes in WT and p62 KO fibroblasts (D) and in FACS sorted mouse prostate stromal fraction (E).

*p < 0.05, **p < 0.01, ***p < 0.001. Results are presented as mean ± SEM (n = 3). See also Figure S5.
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p62/mTORC1/c-Myc Connection in Human Cancer
Stroma
To determine whether the identified link between p62 and c-Myc

through mTORC1 has relevance to the role of the stroma in hu-

man cancer, we used bioinformatics to analyze c-Myc transcript

levels in two sets of human gene-expression arrays from pros-

tate and breast cancer stroma. Stroma of human tumors

displayed reduced levels of c-Myc (Figure 7A), and there was

a statistically significant correlation between c-Myc and p62

expression in tumor stroma (Figure 7B), emphasizing the clinical

relevance of the p62-Myc connection in the stroma. To further

explore the link between p62 and mTORC1 in the tumor stroma

of human cancers, we identified expression neighbors of p62.

We developed this gene signature by using the human cancer

stroma data set shown in Figure 7A, in which we classified

tumors on the basis of p62 expression levels and selected for

analysis only those samples in the top and bottom 25%. Interest-

ingly, this analysis revealed a statistically significant correlation

between p62 expression and that of genes previously reported

to be controlled by mTORC1 activity (Figure 7C; Figure S5)
(Peña-Llopis et al., 2011). We determined the expression levels

of a selection of these genes by RT-PCR and found that their

expression was reduced in p62 KO fibroblasts compared with

WT (Figure 7D). The same results were obtained when these

were analyzed in prostate stromal cell preparations from p62

KO and WT mice (Figure 7E). Furthermore, we found a clear sta-

tistically significant correlation between p62 expression and that

of these genes in human cancer stroma (Figures S5B–S5H). Alto-

gether, these results demonstrate that the p62/mTORC1/c-Myc

connection is not only relevant in the mouse prostate stroma but

it is also important in human cancer stroma.

DISCUSSION

Tumorigenesis is a slow process that is initiated by the succes-

sive accumulation of genetic and epigenetic changes that result

in the activation of cell growth and survival genes and the inacti-

vation of tumor suppressors (Hanahan and Weinberg, 2011).

However, for tumor development to take place, initiation is not

sufficient. Other signals are required to drive tumor promotion
Cancer Cell 26, 121–135, July 14, 2014 ª2014 Elsevier Inc. 131



Figure 8. Stromal Activation by p62 Deficiency in Cancer

Tumor epithelium promotes the downregulation of p62 in stromal fibroblasts,

leading to reduced mTORC1 activity and c-Myc expression, which results

in impaired metabolic detoxification and the subsequent release of ROS and

IL-6. An autocrine pathway promotes TGF-b and the induction of CAF

phenotype, which further increases epithelial invasion and tumorigenesis.
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and progression and the development of the fully malignant

stage. The progression phase is most likely orchestrated via

the tumor microenvironment by nonepithelial cells in which

metabolic stress and inflammation create an environment in

which epithelial tumor-derived cells propagate and acquire

more aggressive phenotypes (Hanahan and Coussens, 2012;

Hanahan and Weinberg, 2011). Immune cells, such as tumor-

associated macrophages, are among the cell types in the tumor

microenvironment that contribute to inflammation (Coussens

and Werb, 2002; Johansson et al., 2008). On the other hand, a

crosstalk between metabolic pathways in the stromal and

epithelial compartments of the tumor may drive the survival

and growth of epithelial cancer cells (Lisanti et al., 2013). How-

ever, it has not been thoroughly investigated whether metabolic

reprogramming in the stromal cells of the tumor microenviron-

ment exerts any control over inflammation and the malignant

characteristics of the transformed epithelium.

Here we demonstrate that the inactivation of mTORC1 in p62-

deficient stromal fibroblasts results in metabolic reprogramming

through c-Myc inactivation (Figure 8). This reprogramming leads

to increased levels of IL-6, which promotes epithelial cell

invasion and proliferation. Therefore, because of its regulation

of mTORC1, p62 emerges as a tumor suppressor that acts by

regulating c-Myc and thus inducing an inflammatory response.

These results are in marked contrast to the role played by p62

and mTORC1 in epithelial cancer cells. That is, we have recently

demonstrated that p62 inactivation in PCa and lung adenocarci-

noma epithelial cells inhibits the proliferation and tumorigenic

properties of these cells and correlates with decreasedmTORC1

activation. Moreover, the increased IL-6 phenotype can be re-

verted by expression of a permanently active mutant of the

mTORC1 activator RagB. This has important implications from

a therapeutic point of view because inhibition of p62 and/or
132 Cancer Cell 26, 121–135, July 14, 2014 ª2014 Elsevier Inc.
mTORC1 may result in opposite effects in the stroma and

the epithelium of the tumor, thus reducing the efficacy of broadly

applied mTORC1-based chemotherapeutic approaches. In

this regard, these results are reminiscent of the dual role that

mTORC1 might play as a regulator of autophagy, which can

have a tumor-suppressing or a tumor-promoting effect, depend-

ing of the stage of the tumor (Guo et al., 2013; Levine and

Kroemer, 2008), and also on whether the manipulation takes

place in the epithelium or in the stroma (Lisanti et al., 2013).

Our data using KO mice clearly reveal that p62 deficiency cre-

ates a protumorigenic environment for p62-proficient PCa cells

in orthotopic experiments and also show that, even under normal

conditions, it drives PIN formation in the endogenous epithelium

in the absence of any other induced mutations. Furthermore, in

two PCa models, the lack of p62 at an organismal level results

in increased tumorigenesis, despite the fact that p62 is absent

not only in the stroma but also in the transformed epithelium.

These results are very important because they demonstrate

that even though p62 is required for epithelial cancer cells to pro-

liferate in vitro and in xenografts (Duran et al., 2011), the p62-

deficient tumor microenvironment overrides the requirement

for p62 in the epithelium. Our in vitro and in vivo findings establish

that increased IL-6 levels generated by stromal fibroblasts are a

critical event in that process. Therefore, it can be predicted that

total ablation of p62 at an organismal level, either genetically or

pharmacologically, may increase tumorigenesis, rather than in-

hibiting it, depending on the contribution of the stroma and the

ability of p62 deficiency to reprogram stromal metabolism to

generate ROS and inflammation. Our data shown here demon-

strate that this is the case in prostate tumorigenesis and suggest

that it could be a relevant mechanism in other tumor types as

well. The proinflammatorymicroenvironment in the p62-deficient

stroma results in a CAF-activated phenotype that is maintained

by stromal TGF-b production. This is consistent with previous

results in colon cancer demonstrating that a TGF-b-activated

tumor microenvironment is critical for fully aggressive cancer

cells to metastasize (Calon et al., 2012).

Metabolic reprogramming in cancer is emerging as a central

process in tumor cell survival and growth (DeBerardinis and

Thompson, 2012; Metallo and Vander Heiden, 2013; Vander Hei-

den, 2013). The so-called Warburg effect supports the impor-

tance of an atypical glucose metabolism tailored to the cancer

cell’s need for efficient anabolic utilization of nutrients (Vander

Heiden et al., 2009). More recently, different types of reprogram-

ming events have been unveiled that constitute specific re-

sponses of the tumor cell to a nutrient-deficient environment.

These include the metabolism of serine or the utilization of the

PPP to alleviate oxidative stress conditions during tumorigenesis

(Locasale, 2013; Ma et al., 2013; Possemato et al., 2011; Vander

Heiden et al., 2010). In the current study, we show that metabolic

reprogramming triggered by p62 deficiency in the tumor stroma

is critical for the creation of a protumorigenic inflammatory envi-

ronment driven by IL-6. Moreover, we have shown that this in-

volves an mTORC1/c-Myc/ROS cascade that is controlled by

p62. In this regard, previous results from our and other labora-

tories have shown that p62 represses ROS by inducing the acti-

vation of NF-kB- or NRF2-dependent detoxifying molecules

(Duran et al., 2008; Komatsu et al., 2010; Ling et al., 2012). Sur-

prisingly, neither of these two transcription factors nor Keap1
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levels were affected in p62-deficient stromal fibroblasts, indi-

cating that p62 may use diverse cascades in different cellular

compartments of the tumor. Interestingly, our previous data

demonstrate that under conditions of Ras-induced transforma-

tion, p62 deficiency leads to increased cell death and reduced

tumorigenesis due to enhanced ROS production (Duran et al.,

2008). In contrast, we show here that the enhanced ROS

observed in the untransformed stromal fibroblasts does not

result in increased cell death but rather in the creation of a proin-

flammatory phenotype. The main conclusion of these results is

that increased ROS production induced by p62 deficiency has

different outcomes depending on the cell type and the mecha-

nisms whereby ROS is produced. The outcome also depends

on whether or not the levels of ROS are high enough to engage

a c-Jun N-terminal kinase-driven cell-death pathway, as found

in the Ras-tumor cell, as opposed to increased IL-6 production

and a protumorigenic effect on epithelial cells, as we demon-

strated in the stromal nontransformed fibroblasts.

Importantly, we were able to show that the implication of the

p62/mTORC1/c-Myc cascade is relevant not only in mouse

model systems but also in human samples, in which this pathway

is inactivated in the tumor stroma. Therefore, our findings sup-

port amore comprehensive approachwhen devising therapeutic

strategies in cancer, which should take into account not only the

altered pathways in the transformed epithelial compartment

but also how the inhibition of these cascades might affect the

surrounding stroma. Our observations suggest that pharmaco-

logical inhibition of IL-6 and/or TGF-b to target stromal activa-

tion could be beneficial in combination with epithelial-targeted

therapies.

EXPERIMENTAL PROCEDURES

Mice

WT, p62 KO, PTEN+/�, and TRAMP+ mice were previously described (Durán

et al., 2004; Di Cristofano et al., 1998; Greenberg et al., 1995). All mouse strains

were generated in a C57BL/6 background. All mice were born and maintained

under pathogen-free conditions. All genotyping was done by PCR. Mice were

sacrificed and genitourinary (GU) sections were dissected. Mice were injected

with 5-bromo-20-deoxyuridine intraperitoneally and sacrificed 2 hr after injec-

tion. Animal handling and experimental procedures conformed to institutional

guidelines (Sanford-Burnham Medical Research Institute Institutional Animal

Care and Use Committee).

Cell Lysis and Western Immunoblotting

Cells were rinsed once with ice-cold PBS and lysed in radioimmunoprecipita-

tion assay buffer (1 3 PBS, 1% Nonidet P-40, 0.5% sodium deoxycholate,

0.1% SDS, 1 mM phenyl methyl sulfonyl fluoride, and protease inhibitors).

Cell extracts were denatured, subjected to 8% to 14%SDS-PAGE, transferred

to nitrocellulose-enhanced chemiluminescence membranes (GE Healthcare),

and immunoblotted with the specific antibodies. Chemiluminescence was

used to detect the proteins (Thermo Scientific).

Statistical Analysis

Significant differences between groups were determined using Student’s

t test. Scoring of immunostaining of human prostate tissue microarrays was

analyzed using Fisher’s exact test. The significance level for statistical testing

was set at p < 0.05.
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