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Abstract

Compton Image Reconstruction Algorithms and Demonstration Across Multiple Devices:
From the Lab to the Field

by

Andrew Haefner

Doctor of Philosophy in Engineering - Nuclear Engineering

University of California, Berkeley

Professor Kai Vetter, Chair

Compton cameras image gamma-rays in the range from hundreds of keV to several MeV
and are useful for a range of applications including astrophysics, contamination remedia-
tion, medical imaging and nuclear security. The data acquired from Compton cameras needs
to be inverted to recover the desired gamma-ray distribution in space and energy using
reconstruction algorithms. The focus of this work is the process of converting measured
Compton camera interaction data into gamma-ray images via such methods. Several ap-
proaches are covered, including filtered back-projection and iterative methods. This work
makes advances in each of these approaches both theoretically and through demonstration
measurements. Some of these methods are optimized for real-time imaging.

Working in the Applied Nuclear Physics group at Lawrence Berkeley Lab and in Nuclear
Engineering at UC Berkeley provided a unique opportunity to analyze data from three
di↵erent Compton cameras. This provided a cross device perspective that ultimately made
the imaging algorithms developed for one system more robust for another. Having this
perspective also made it more clear which factors of the image reconstruction algorithms
were essential. Using these di↵erent systems, techniques are described to analyze the quality
of data that can be collected from a Compton imaging system. The three imaging systems
cover a variety of semiconductor materials: Si, CdZnTe and HPGe. These devices range from
lab development platforms to a small compact Compton camera device. The compact device,
called HEMI, was taken to Fukushima, Japan and flown on a remote control helicopter to
map the cesium contamination. The results from that measurement are detailed and shown.

Another focus of this work is sensor fusion with auxiliary data sources, which include
visual cameras, depth cameras, GPS and IMU sensors. This is used to expand the number
of reconstruction dimensions. This also provides contextual information for the gamma-
ray intensity reconstruction and can be used to overcome some limitations with gamma-ray
imaging, such as inherent low count rates. This approach of sensor fusion is demonstrated
with lab measurements and the measurement taken in Fukushima, Japan.



i

Contents

Contents i

1 Introduction and Overview of Concepts 1
1.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Compton Scattering and Imaging . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Compton Imaging Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Image Reconstruction Overview . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 The Need for Data Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Dimensionality of Compton Imaging, Towards 6-D imaging . . . . . . . . . . 8
1.7 Compton Camera Device Imaging Quality . . . . . . . . . . . . . . . . . . . 9
1.8 Image Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.9 Software Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.10 What This Work Does Not Cover . . . . . . . . . . . . . . . . . . . . . . . . 12
1.11 Structure of This Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Compton Imaging Systems - an Imaging Perspective 14
2.1 Scientific Si-CCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Compact Compton Imaging System . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 CCI2 Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 High E�ciency Multimode Imager (HEMI) . . . . . . . . . . . . . . . . . . . 22
2.5 HEMI Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 2-D Directional Compton Imaging by FBP Algorithm 30
3.1 Introduction and Background . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 New Algorithm Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Practical Implications and Implementation . . . . . . . . . . . . . . . . . . . 38
3.4 Measured Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Tikhonov Parameter Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Gamma-ray Momentum Reconstruction from Compton Electron Trajec-
tories by FBP 45
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



ii

4.2 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Experimental Demonstration Cs-137 . . . . . . . . . . . . . . . . . . . . . . 49
4.5 Ba-133 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6 Co-60 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 3-D Compton Imaging with Visual Data Fusion 57
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 ML-EM Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3 ML-EM with Visual Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4 Computational Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5 Measured Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Imaging with HEMI 63
6.1 Measurement Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 False Coincidences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3 Sampling E↵ect on Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.4 Wavelet De-noising Reconstruction Algorithm . . . . . . . . . . . . . . . . . 72
6.5 Rotating Source Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.6 Fukushima Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.7 Fukushima Flight Sensor Data Fusion . . . . . . . . . . . . . . . . . . . . . . 79

7 Conclusions and Future Directions 86

A Acronyms 87

Bibliography 88



iii

Acknowledgments

Prof. Kai Vetter created the Applied Nuclear Physics group that allowed me to interact
with multiple di↵erent imaging projects. He also created the environment where it was useful
to learn cross discipline research, especially in computing. I am very grateful for having been
a part of this unique research environment and having his constant support and guidance
for heading in a fruitful research direction.

Don Gunter was a constant source of encouragement and was a daily inspiration. Many
of the results here are due to his guidance and expertise. Typically Don would solve problems
mathematically and I would test them programatically. This was a very fruitful collaboration
and dynamic that I thoroughly enjoyed. Also, he was a great source of discussions about
exotic math and physics concepts. His insights and enthusiasm were always a source of
encouragement and made the work interesting.

The multi-device approach I have taken in this thesis would not be possible were it not
for all the people who have built such incredible hardware and often provided data.

Ross Barnowski was an accomplice in research, and post-research beers. Our biggest
accomplishment was the real-time acquisition and analysis software we co-wrote. He also
maintained the CCI2 system which ensured a constant, reliable source of data.

Lucian Mihailescu provided a unique environment where we could explore imaging con-
cepts, without judgement on the ideas. This was a valuable source of encouragement for
innovative ideas and a great source of discussion for new topics.

I am grateful for Ryan Pavlovsky and Brian Plimley for providing data from the CCD
detector. They also o↵ered insights into the electron track data that proved useful.

HEMI was developed by a great team of people including Paul Luke, Mark Amman,
Michelle Galloway and Andreas Zoglauer. It is rare to have access to a working and reliable
piece of hardware, and that’s what was achieved with HEMI. Additionally John Kua and
others build the enclosure that allowed HEMI to successfully take data in Fukushima, Japan.
And finally, the measurements taken in Fukushima would not have been possible without
collaboration with the University of Tokyo and the JAEA.



1

Chapter 1

Introduction and Overview of
Concepts

Gamma-ray imaging refers to the well-established method of mapping the spatial distribu-
tion of gamma-ray emitting objects by measuring the direction of the incident photon. It
enables the reconstruction of objects in two or three spatial dimensions and, dependent on
the detection modality, can enable the reconstruction of the energy of the incident gamma
ray without depositing its full energy. Compton imaging is a technique not requiring col-
limation that works well in the range of a hundred keV to several MeV where Compton
scattering is the dominant interaction mechanism. These materials are often man made,
such as medical tracers, generated from nuclear power plants or from nuclear weapons. In
medical imaging, known tracers are injected into patients to image metabolic functions in
the body. Compton imaging has applications in astrophysics [8], in nuclear security and
safety [27], and in biomedical imaging [39].

Compton cameras are one type of gamma-ray imaging devices that were conceived of
40 years ago [41]. Many advancements in semiconductor technology and electronics have
improved Compton cameras in recent history. This work focuses on the algorithms and
software used to process the data from advanced semi-conductor based Compton imaging
systems. These algorithms have been developed and tested for three di↵erent Compton
imaging systems. Often the aim of developing advanced software for processing Compton
data is in overcoming some of the detector weaknesses, such as low count rate or sampling
issues. In the past several years several Compton camera systems have become commercially
available. One system is based on a single crystal of pixelated CZT [33]. Another is based
on a strip HPGe design with mechanical cooling [31]. This recent commercialization shows
promise for applications of Compton cameras.
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1.1 Applications

Compton imaging has applications ranging across astrophysics, medical imaging, nuclear
security and contamination remediation. One successful application of Compton cameras
thus far has been in astrophysics. Comptel was a Compton camera that was deployed in
space and produced results relevant to astrophysics, including the observation of an Al-26
line as evidence of nucleosynthesis in the galactic core [8]. Another system was flown on a
balloon and successfully imaged the crab nebula [1]. Medical imaging remains an area of
research for Compton cameras where it is demonstrated with imaging tracers in rodents[39]
or designed as a system for proton beam range verification[35].

This work focuses on demonstration measurements related to nuclear security and safe-
guards. This includes unknown source identification in real-world environment and treaty
verification of non-proliferation. A more recent application is contamination remediation
specifically related to the nuclear reactor accident in Fukushima, Japan. Much of the con-
tamination dispersed from the reactor accident is Cs-137 and Cs-134, which emit gamma rays
in the energy range where Compton scattering is the dominant interaction mechanism. The
common challenge of these applications is that the imaging domain is expansive, including
possibly unknown source energies and locations. This includes not having prior information
about the scene geometry. This is in contrast to medical imaging where the source domain
is spatially limited to the patients body and the source energy is known. Compton cameras
have a 4⇡ field of view, making them a preferred device for wide area source mapping. These
proposed applications have many computational challenges given the range of unknowns.
Often, limits need to be placed on how the images are computed to make them compu-
tationally tractable. Additionally, in the case of cesium contamination in Fukushima, the
source is distributed, which makes the reconstruction task more challenging compared to
point sources.

Throughout this work, a variety of lab measurements were taken to demonstrate imaging
concepts related to these applications. Lastly, a measurement was taken in Fukushima
with a Compton camera and is discussed in Ch. 6. Throughout this work, a mixture
of lab measurements and simplified simulations were used to test and compare di↵erent
e↵ects. Advanced gamma-ray transport simulations were not the focus of this work because
simulations also o↵er much uncertainty.

1.2 Compton Scattering and Imaging

Compton scattering kinematics are discussed in this section as a precursor to the analytic
approach to imaging used in later chapters. The approach shown here is basic, but useful for
setting the stage for later work. A diagram of Compton scattering is shown in Figure 1.1.
The diagram shows a gamma ray with direction ~⌦ 2 S2 with |~⌦| = 1 and energy E0 incident
on an electron at rest. The gamma ray then undergoes Compton scattering on an electron
at rest. This generates two particles: a scattered gamma ray and an ejected electron. Each
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Figure 1.1: A diagram of Compton scattering.

of these particles carries information about the incident gamma rays.
First we focus on the scattered gamma ray. The gamma ray scatters at an angle of ✓

with direction ~w 2 S2 where |~w| = 1 and energy E2. Relativistic kinematics results in the
following equation relating these parameters:

cos(✓) = 1 +m
e

✓
1

E0
+

1

E2

◆
(1.1)

cos(✓) = µ (1.2)

Where m
e

is the rest mass of the electron, E0 is the initial energy of the gamma-ray and E2

is the outgoing energy of the gamma-ray. This information can be related to the geometry
of the scattering direction by the following equations:

cos(✓) = ~⌦ · ~w (1.3)

µ
k

= µ
g

(1.4)

where µ
g

is the geometric term from the dot product of the incident direction and outgoing
direction and µ

k

is the kinematic term. This gives a convenient relation of the geometry and
kinematics of Compton scattering. Because ~⌦ and ~w are unit vectors, equation 1.3 is the
equation for a cone, thus revealing the cone geometry for Compton imaging. This relation
will be used in Ch. 3 to solve for the incident gamma-ray distribution. Working in this space
of dot products has several advantages over working in the angular space, as will be shown
later. Additionally, because this equation relates directly to imaging, it is useful as a metric
space for gauging a systems imaging performance.

A similar analysis can be performed for the electron. The kinematics equation for the
electron is as follows:

cos(�) =

✓
m

e

E0
+ 1

◆
✏p

✏+ 2m
e

(1.5)

cos(�) = ⌫ (1.6)
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where ✏ is the kinematic energy of the electron. The equation relating geometry and kine-
matics for the electron is as follows:

cos(�) = ~⌦ · ~!
⌫
k

= ⌫
g

This equation again reveals another Compton cone, albeit a di↵erent cone than the gamma
ray based cone. These equations will be used in Ch. 4 to solve for the incident gamma-ray
distribution when electrons are measured. It is interesting to note that Eq. 1.5 is separable
into terms describing the incident gamma ray from terms describing the resulting electron.
The relation of the electron cone and the gamma ray cone has been shown and discussed
previously[55].

These equations are a simplification of Compton scattering. Specifically they do not
include doppler broadening, which occurs in real Compton imaging systems because the
electron is bound to an atom. This gives the electron an unknown initial momentum based
on the binding energy of the atom. This is known to be the fundamental resolution limit for
Compton imaging systems [56].

1.3 Compton Imaging Modalities

Di↵erent Compton imaging modalities result from the type of particle being measured and
the variety of possible imaging domains. The particle can be the scattered gamma ray, the
ejected electron or both. The di↵erent imaging domains result from combinations of the
following: near-field or far-field; static or moving detector system; and single energy versus
spectral deconvolution.

As will be shown throughout this work, the information of the incident gamma-ray distri-
bution that can be determined from the two particles di↵ers due to the scattering properties
of the two resulting particles. Gamma-ray tracking has been used for several decades and
has seen improvements as semiconductor detector technologies have evolved. More recently
electron tracking devices have been developed as a result of improving spatial resolution
of detector systems. Tracking electron trajectories inherently requires higher resolution sys-
tems because the charged particle nature of electrons results in a shorter interaction distance
compared to gamma-rays. Measuring both particles simultaneously is not discussed in this
work, but has been discussed in the past [53].

Throughout this work there will be a reference to the surface of possible gamma-ray
directions. This refers to the possible locations in space and/or energy where a gamma-ray
could have originated given the measurement of a single particle. This surface is di↵erent
depending on the imaging modality and the assumptions made about the incident flux.
The value of this surface is to relate the measured data space to the incident flux space.
For example, in the simplest case of 2-D directional imaging where the incident energy is
measured or assumed, a ring of possible directions results. When this surface is extended to
3-D it is a cone. More exotic surfaces result when the incident energy is not assumed. Some
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di↵erent sources and modalities are listed in Table 1.1 and are discussed more thoroughly in
the chapters dedicated to that modality.

Modality Particle Dimension Assumption Surface
Directional - Far field gamma-ray 2 Energy Measured Ring

Energy Image - Far field electron 3 Hyperbolic
Volumetric Far field gamma-ray 3 Energy Measured Cone

Table 1.1: This table lists some properties about di↵erent Compton imaging modalities.

Conventionally, Compton imaging is based on the measurement of a sequence of Compton
scattered gamma ray interactions followed by a photo-electric absorption measured in time
coincidence as shown in event B in Fig 1.2. Based on the energy of the first interaction

Figure 1.2: This is a schematic of Compton scattering events from a source at energy E.
D

e

represent an electron tracking detector and D2 a position sensitive gamma-ray tracking
detector. Conventional Compton imaging requires coincidence events like sequence B, while
event A is lost to imaging. Our approach is applicable to either type of event and removes
the requirement of having the second D2 detector.

and of the full gamma-ray energy, the scattering angle can be determined. This scattering
angle defines a cone of possible incident angles whose symmetry axis is given by the the
locations of the first two interactions. Generally, sequencing of these interactions must be
performed computationally for semi-conductor based systems because the timing resolution
is inadequate to measure it directly[21]. Some fraction of events will be incorrectly sequenced
and the e↵ect of mis-sequencing is discussed throughout this work.

The scattering cone makes determining the gamma-ray incident flux challenging and thus
inversion methods are needed to recover that distribution. Inversion methods and results
based on gamma-ray tracking are discussed in chapters 3, 5 and 6.

More recently detectors have been developed that have fine enough spatial resolution
to measure individual electron trajectories. Measuring the electron trajectories has sev-
eral advantages for Compton imaging. Generally this information has been combined with
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gamma-ray tracking devices to break the scattering cone symmetry and reduce the surface
to an arc [6]. In this work, the ability to reconstruct the incident gamma-ray direction and
energy distribution using only the electron track is presented[17]. This approach is described
in Ch. 4.

The angular range into which the resulting Compton particles can scatter are di↵erent
for the electron and the gamma-ray. A stationary electron can be scattered across a range
of 90 degrees in the forward direction. The gamma-ray can scatter at a range of 180 de-
grees. This has implications for reconstructing the incident gamma-ray distributions. The
main observation about the electrons scattering at a range of 90 degrees is that its surface
of possible incident gamma-rays can be more easily transformed to retain the directional
information, thus making an analytic reconstruction possible. This same technique is not
easily extendable to gamma-ray tracking because the gamma-rays scatter across 180 degrees,
thus transforming the surface of possible gamma-ray directions while retaining the direction
information is not easily accomplished.

1.4 Image Reconstruction Overview

Image reconstruction is the general technique of recovering an image from measured data
when the data and image spaces are di↵erent. Often it is possible to relate the incident flux
to the measured data, either by an integral or statistical equation. The desired equation
is the opposite: a transforms from the measured data to the distribution of interest. This
general class of problems are called inverse problems, of which image reconstruction is a
subset.

Image reconstruction techniques are widely used in medical imaging including CT, MRI,
SPEC and PET imaging techniques. Due to the commercial success of medical imaging,
much research has been done on image reconstruction techniques. Each of these imaging
modalities o↵ers its own complications for image reconstruction.

Compton imaging is another imaging modality that also requires image reconstruction
techniques. Compton imaging o↵ers unique challenges for image reconstruction not typically
encountered in medical imaging. The geometry of the medical modalities is often projections
along lines or planes, whereas the geometry of Compton imaging consists of cone surface
projections. Some of the methods developed for medical techniques are su�ciently general
that they can, and have been, applied to Compton imaging. One such technique that has
had much success in MRI, wavelet de-noising, is applied to Compton imaging in Ch. 6.

There are two main types of image reconstruction algorithms: direct methods, such
as filtered back-projection (FBP) and iterative methods, such as Maximum Likelihood-
Expectation Maximization (ML-EM). These methods have fundamental di↵erences in their
formulation. FBP generally requires solving a set of integral equations, often relating to the
geometry or kinematics of a specific imaging modality. This then leads to a filtering solu-
tions, often in Fourier space, to remove data ambiguities at an the individual level. In the
case of Compton imaging, this method overcomes the ambiguity from individual scattering
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cones. Analytically solving these sets of equations can be challenging for imaging modalities
with complicated geometry. Ch. 3 and 4 focus on FBP methods for Compton imaging.

Iterative methods are fundamentally a di↵erent approach. Iterative methods often result
when a set of statistical equations are written, or when trying to use prior information in the
form of penalty functions. An example iterative method, ML-EM for emission tomography,
starts with the assumption that measuring gamma rays is modeled by a Poisson distribu-
tion due to the approach of counting individual photons. Maximizing this set of equations
does not have a direct solution and thus must be solved by iteration methods. From this
assumption, a set of statistical equations is generated that are used to compute the image
reconstruction by iteration. This method is flexible and can be applied to nearly any Comp-
ton imaging modality. Much of the e↵ort in using ML-EM reconstruction is centered around
building accurate system matrices to adequately model the system and imaging modality of
interest. Ch. 5 and Ch. 6 show results from iterative methods.

When FBP is analyzed from a statistical approach, it is equivalent to the assumption
that the data has gaussian noise with uniform variance. This is not an accurate assumption
given that the image noise varies with intensity. However, it works well in cases where high
numbers of counts are expected, such as when measurement time is not limited, which can
be the case for certain safeguards applications. FBP methods can still reconstruct images
on a low numbers of counts, but this will create noise in the images.

1.5 The Need for Data Fusion

When trying to localize unknown sources in complex environments, Compton imaging can
often su↵er from low count rates. Also, when measuring gamma-ray distributions by moving
a Compton camera through an unknown area, it might be impossible to acquire data on
a su�cient path for accurate reconstruction, thus making image reconstruction in these
situations an ill-posed problem. One possible way to overcome these issues is to use visual
data in combination with gamma-ray data. This information can be used to constrain the
imaging space and thus make the problem more tractable. Constraining reconstruction
problems is a typical way to produce better results.

Additionally combining the gamma-ray distribution with visual information provides con-
text to the location of the gamma-ray emitting materials. Otherwise ambiguous source distri-
butions would be generated. Sensors that are useful for fusion with gamma-ray data include
visual cameras, LIDAR, IMU and GPS. Data fusion with Compton imaging is demonstrated
in Ch. 5 and Ch. 6.
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1.6 Dimensionality of Compton Imaging, Towards
6-D imaging

Compton image reconstruction can be analyzed with regard to the dimensionality of interest
for each modality. Generally when performing spatial Compton image reconstruction, a
single source energy is measured or assumed. The most basic level of mapping gamma-ray
distributions is measuring energy spectra. This can be thought of as a 1-D mapping problem
in energy.

In the spatial domain, a 1-D spatial imaging example is GRETINA [22] which is a 1-
D Compton imaging system for measuring short lived nuclear states for nuclear physics
research. The single spatial dimension results from the source being constrained to the
beam-line.

2-D spatial imaging can either be directional imaging, such as a far-field 4⇡ system,
or projection imaging where the image is reconstructed at a particular plane at a known
distance from the detector. For Compton imaging, this means that the distribution of a
single energy is being mapped. In practice, 2-D Compton imaging is performed when the
detector is stationary. 2-D far-field imaging is the focus of Ch. 3.

Extending to 3-D spatial Compton imaging is achieved in one of two ways: either near-
field or far-field. In the near-field case the source distribution must be su�ciently close to
the devices so that the 3-D position within the detector can be used to reconstruct the depth
of the source. This is often the case in medical imaging. In the far-field case, the detector
moves in 3-D space. This requires tracking the detectors motion in space. One way to
track a detectors movements is by using visual information and a Simultaneous Localization
and Mapping (SLAM) algorithm [10]. This allows a detector to move freely in an imaging
environment and its position can be determined by visual sensors. Ch. 5 demonstrates this
approach.

Another approach to expanding the dimensionality of Compton imaging is to add an
energy dimension to create a correlated spatial-energy image. 2-D directional imaging can be
expanded with an energy dimension resulting in 3-D gamma-ray momentum reconstruction.
Gamma-ray momentum implies that the gamma ray has direction and energy. This implies
a stationary detector that can utilize the far-field approximation and also recover energy.
This approach is demonstrated in Ch. 4 by measuring electron trajectories.

Higher dimensional imaging is possible when considering the direction of emitted gamma
rays. Combining 3-D momentum measurements with 3 spatial dimensions leads to the ideal
case of full 6-D gamma-ray imaging. This higher dimensional imaging could be useful in
applications where shielding is present and is limiting the direction that gamma-rays can
travel, which could be the case in safeguards applications. Researching image reconstruction
at lower dimensional modalities can be seen as an attempt to approach the ideal case of
complete 6-D imaging. It is conceivable that all of these approaches can converge to make
this ideal case possible. The dimensionality of Compton imaging is mapped in Figure 1.3.
Additional combinations of space, energy and direction are shown resulting in other pos-
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Figure 1.3: A visual representation for mapping Compton imaging domains is shown. Do-
mains that include spectral deconvolution are shown in blue and connect back to the spectral
box in the upper left. Domains shown in red are spatial domains at a single energy. Appli-
cations associated with each dimension are listed on the right. Domains that are dashed are
yet to be achieved from Compton imaging.

sible reconstruction dimensionalities. This diagram organizes the reconstruction domains
according to imaging a single energy, or trying to reconstruct the energies. Modalities that
are represented in outlined boxes are yet to be achieved and represent recommended future
research directions.

1.7 Compton Camera Device Imaging Quality

Analyzing the quality of Compton camera data can be challenging because of the high number
of raw data dimensions. These dimensions consist of event time, position (3 coordinates),
energy, and other parameters a system can measure. Converting the interaction data from
energy and position to Compton cone data of direction and opening angle reduces the number
of dimensions to 3. This is achieved when analyzing one particular source energy.

One metric that is used for Compton imaging is the angular resolution measure (ARM).
The ARM is computed by measuring a point source at a known location and then computing
the angular di↵erence of the known source location and the angle computed from kinematics.
ARM is however rather limited in describing a systems imaging performance, especially its
ability to image extended sources. One limitation is that the image resolution can vary
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across the field of view of the system, while the ARM reveals the image resolution at only
one position.

From this work, a variation on the ARM is introduced that is a so called 2-D ARM plot.
The 2-D ARM plot is a plot of the geometric dot product with respect to the kinematic
cosine, both from Eq. 1.4. The geometric angle is computed from the dot product of the
scattering direction and the known direction of the point source. The kinematic angle is
computed from the energy deposited in the first interaction.

One use of this plot is to clearly show mis-sequenced events. An ideal 2-D ARM plot
is shown in Figure 1.4. The line along µ

g

= µ
k

shows where correctly sequenced events
will occur. Events that are mis-sequenced are shown on the curved line, which is computed
analytically using equation 1.1, and observed from experiment in Ch. 2.

Figure 1.4: This plot shows analytically how mis-sequencing of two interaction Compton
coincidence events can be observed. The axes compare the kinematic measurement and
the geometric measurement. The blue straight line is from properly sequenced events. The
curved green line is from events where the wrong interaction sequence is chosen. The physical
limits of each of these axes are from -1 to 1. However, due to measurement errors, actual
events can extend slightly beyond those limits. This curve is specific for a 662 keV source
energy.

One insight of this work is the importance of data sampling for adequate image recon-
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struction. This has been a major consideration in medical imaging, but has been somewhat
neglected in Compton imaging. This is especially important for imaging extended or dis-
tributed sources distributions. The importance of sampling is compared in Ch. 2 and Ch.
6.

1.8 Image Convention

This work contains many 4⇡ directional images. The imaging convention used in this work
is to plot these images as a single 2D histogram, where the (0,0) point corresponds to the
detector plane normal. Left to right in the image corresponds to rotating around the detector
in the lab frame. Moving up to down corresponds to moving from above to below in the
detector. Figure 1.5 shows a descriptive diagram of this orientation. The boundaries of this

Figure 1.5: The orientation of far-field images are described in these figures. The figure on
the left shows a labeled image. The figure on the right relates these descriptions to the 3-D
detector geometry. The Compton camera shown in the 3-D diagram consists of multiple
detector planes.

image are repeating because it represents S2, the surface of a sphere.

1.9 Software Tools

All of the analysis performed in this work utilized the open source programing language
Python. There is an especially rich set of open source tools for scientific computing built on
Python. Common computational tasks often have an open source implementation. Choosing
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Python allows for rapid testing and implementation of algorithms. Several of the algorithms
in this work run in real-time with Python implementations. We have also built an acquisition
framework with Python for several detection systems. This allows for relatively straightfor-
ward transition from algorithm testing to real-time implementation on an actual detection
system.

Python also has many non-numerical computing abilities that allowed for the extension
of reconstruction code in useful ways, such as computer networking. This was utilized to
wirelessly transfer data between two computers, where one computer was used to acquire
data from a system and a second to reconstruct Compton images.

A variety of packages were instrumental in this work including: numpy, scipy, cython,
IPython, matplotlib and Mayavi. Numpy was used for e�cient numerical array computing.
Scipy was used for some typical numerical algorithms. Cython was used to optimize com-
putationally intense numerical algorithms, especially for real-time usage[4]. Matplotlib was
used for basic 2-D plotting[19]. Mayavi proved extremely flexible for producing all the 3-D
plots shown here [34]. For interactive data analysis, IPython was a vital resource[30].

1.10 What This Work Does Not Cover

There has been a lot of research to make increasingly complicated systems models for Comp-
ton cameras[45, 50, 52]. When designing these systems models, much e↵ort goes into devel-
oping and computing a model that can be system specific. One extension of these advanced
systems models is energy-image deconvolution from Compton gamma-ray data, which is not
covered in this work. This work focuses at a di↵erent level of the reconstruction task and
concentrates on the reconstruction algorithms themselves. These reconstruction methods are
then tested across di↵erent imaging devices. Additionally, the extensive work on weighting
and systems modeling could be applied to the methods described here. The other common
Compton imaging modality that is not discussed in this work is near-field 3-D imaging that
is useful for medical applications.

1.11 Structure of This Work

The chapters of this work are organized in increasing complexity of imaging domains. Chap-
ter 2 describes the imaging systems used in this work. Chapters 3 - 6 are demonstrations
of di↵erent imaging modalities and are nearly standalone in their information. Those chap-
ters are ordered by reconstruction complexity, starting with the case of imaging 2D far-field
directional distributions. Then the dimensionality is increased by adding energy, but for
electron track based systems. Following that, far-field 3-D spatial reconstruction is explored
for gamma-ray tracking based systems. The last imaging chapter, Ch. 6 is dedicated to
HEMI and the complications of imaging cesium contamination in Fukushima, Japan. That
chapter contains a reconstruction method designed to overcome some of HEMI’s limitations.
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It also includes measured results from Fukushima where HEMI was flown on a remote control
helicopter.
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Chapter 2

Compton Imaging Systems - an
Imaging Perspective

This chapter serves to described the imaging systems used in this work. The focus of describ-
ing the systems is to provide the relevant details about how they function from an imaging
perspective. Details that are relevant to the image quality produced by each system will be
discussed. The electronic workings of these systems has been described in previous publica-
tions and, except where relevant for imaging, those details will be spared. Additionally, some
of the systems contain auxiliary visual and positioning sensors which are described here.

Three systems were analyzed throughout the course of this work including the following:

• Scientific Si Charge Coupled Device (CCD)

• Two plane, double sided strip HPGe detector (CCI2)

• High E�ciency Multi Modal Imager (HEMI), made of coplanar grid CZT modules [24]
in a two plane configuration

These systems will be described starting from lab based development systems to a deployable
imaging system. Additionally, the data quality of HEMI and CCI2 will be discussed.

2.1 Scientific Si-CCD

Scientific Si-CCD devices are being developed for Compton imaging applications. The ability
to measure Compton electrons in these devices has been demonstrated [43]. A picture of the
system is shown in Figure 2.1. This device has been developed and used successfully in
astronomy applications in the UV to infra-red light ranges [18]. The scientific distinction of
the CCD refers to having a larger active detection volume compared to conventional CCDs.
This means it is sensitive to energy deposited across the entire 650 µm thickness of Si,
compared to conventional CCD’s that have an active thickness of about 10 µm.
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Figure 2.1: This shows a picture of the CCD system inside of its cryostat. The right picture
shows one example electron track measured with this system.

This device has excellent spatial resolution with 10.5 micron pixels and thus can be
used to measure individual electron tracks. The interactions of interest from this device are
electrons generated from gamma rays that Compton scatter in the active Si volume. The
ejected electron trajectory is then estimated from the electron track. This device o↵ers the
most sensitive information about Compton scattering.

The process of measuring the electron trajectory in the device is as follows. First, a
Compton electron is generated in the active Si volume. That electron scatters randomly in
the volume depositing energy along its path. The electron ejects electrons along the way
that drift to the CCD charge contacts, producing a pixelated 2-D projection of the 3-D path.
Individual electron tracks are segmented from the 2-D projection image. A ridge following
algorithm is used to determine the direction of the electron in the plane of the CCD. Then
the dE/dx is used to determine the direction of the electron out of the plane of the CCD.
This approach is described in [32]. The resolution of determining the out of plane direction
is worse than the in plane direction.

The concept of incorporating electron trajectory information for Compton imaging has
generally been to combine that information with gamma-ray tracking. However, Compton
imaging can be performed with only the data from the CCD. The algorithm to accomplish
this is described and demonstrated in Ch. 4.

Current challenges, and active research areas for using these devices for Compton imaging
include the following:

• Timing resolution - the readout speed of these devices is on the order of one second.
This is inadequate for measuring time coincident Compton scatter events.

• Electrons can escape the active detector volume and thus not deposit their full energy.

• The directional resolution for measuring the electron trajectory is poor perpendicular
to the pixel plane.
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A strip CCD device is being developed to overcome the timing resolution by adding strips
to the back side of the CCD. Better timing resolution is needed for using these devices as
gamma-ray coincidence devices.

2.2 Compact Compton Imaging System

The Compact Compton Imaging (CCI2) system is a HPGe based Compton imaging system
that utilizes gamma-ray tracking for its mode of imaging. A picture of this system is shown
in Figure 2.2 This picture also shows CCI2 with a coded mask in front because it can also

Figure 2.2: This shows the current version of the CCI system with its auxiliary sensors.

be used for coded aperture image. However, in this work the coded aperture imaging is not
addressed and the measurements were taken without the mask present. The camera consists
of two planes of double sided strip HPGe [44]. The strips on the front are orthogonal to
the strips on the back. This orthogonality allows interactions to be positioned in the plane
of the device. Neighbor strip transient signal interpolation can be used to obtain sub-pixel
resolution. Depth information is gained from the timing di↵erence of the signals from each
side of the device. This results in position information with about 1 mm resolution in the
device. The fundamental limit to position resolution of these devices is the path length
the electron travels in the HPGe, which creates a charge cloud in the device. The ability to
have depth information and sub-pixel resolution is important not only for improving imaging
resolution, but also to have adequate event sampling for reconstructing extended objects.
The importance of this event sampling is demonstrated and discussed throughout this work.
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For this system, the imaging angular resolution at 662 keV is limited by the position
resolution. This shows another potential advantage of using the CCD for Compton imaging
because it can reduce the position resolution down to 10.5 µm.

Moving beyond just the Compton camera itself, CCI2 contains a Microsoft Kinect as
an auxiliary visual sensor. In practice this allows for the collection of accurate 3-D visual
information. Using this information allows for performing 3-D Compton imaging in arbitrary
environments as described in Ch. 5. This system is currently a lab based development and
demonstration platform.

Some of the challenges of this system are its weight resulting from the fact that it must
be cooled to liquid nitrogen temperatures. However this weight comes with the advantage
of this being a high resolution system compared to non-cooled CZT or scintillating systems.

2.3 CCI2 Data Sampling

The sampling requirements for Compton imaging are not well known. In CT imaging, the
sampling conditions are known and are called Tuy’s conditions [42]. In Compton imaging,
the cone geometry of the scattering data complicates the mapping from the data space to
the image space and makes data su�ciency conditions complicated to determine. For 4⇡
directional imaging, the data space is 3-D and the imaging space is 2-D. It is possible that
the system is over-determined but at the same time under-sampled due to detector geometry.
Because these conditions are not known, the best that can be achieved is trying to cover as
much of the sampling space as possible. This section shows some data analysis techniques
to observe the quality of the data sampling for 4⇡ directional imaging. These concepts are
then demonstrated with the CCI2 system and later with the HEMI system.

A general convention for event sequencing is to use the higher energy event first for a 662
keV source [51]. Baysian methods have also been proposed for sequencing [54], however those
are much more computationally demanding and thus not ideal for real-time applications. The
e↵ect of choosing the higher energy first can be observed. Alternatively, both possible cone
directions can be used in an image reconstruction. This section will look at the e↵ect on the
data of these di↵erent sequencing choices.

Another common choice when using multi-plane Compton cameras is to only use the
scattering events between di↵erent planes. The e↵ect of this on the data will also be observed.
One conclusion from these observations is that making these di↵erent choices does not have
a big impact when imaging point sources. However, when trying to reconstruct distributed
sources, more care needs to be taken with these choices. This section will focus on two
approaches to analyzing the measured data. The first is to observe the scattering direction
distributions. The second will be to observe the 2D ARM plot as described in Ch. 1.

To observe the e↵ects described in this section and analyze CCI2’s data performance, a
Cs-137 point source measurement was taken with the source 2.5 m in front of the detector
directly normal to the detection planes. From this measurement a variety of e↵ects can be
observed, such as event sequencing and data sampling. For the Compton telescope recon-
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struction, the data space is reduced to 3 dimensions, two for the scattering direction and one
for the cone opening angle. Visualizing these 3 dimensions can be challenging and usually
requires reducing the data space to 2D. Thus the data plots shown here are for one source
position, but this is su�cient to demonstrate the concepts. Events in a 6 keV window at
662 keV energy are used.

The scattering direction makes up two of the three dimensions of the Compton scattering
data for far-field imaging of a single energy. These directions can be observed in a 2-D
histogram of all measured scattering directions. This is shown in multiple plots in Figure
2.3. The top plot in this figure shows all possible scattering directions measured from a
point source including one and two plane events and both possible sequencing directions.
This figure shows that a large fraction of the sampling space is covered, albeit with some
anomalies. This will be contrasted later with the HEMI imaging system which does not
have as complete sampling. This plot is complicated to interpret directly for CCI2, but the
e↵ect of single plane events versus two planes events can be observed independently. The
other two plots in this figure separate the distributions from two and single plane interactions
respectively. The middle plot shows the scattering direction distribution for two plane events.
In this figure there are two areas of interest. The center region representing events going from
the back plane to the front plane. The blobs at the left and right of the plot represents events
in the opposite direction, from the front to the back plane. It is important to note the empty
space where events are not sampled. This shows one of the pitfalls in choosing only multi-
plane events for image reconstruction, namely that a large fraction of the scattering space is
not sampled. This can result in incomplete reconstruction or image artifacts, especially for
distributed sources.

The bottom plot in Figure 2.3 shows the distribution of scattering directions for single
plane events. These events cover portions of the space not sampled by the two plane events.
It is important to note that depth sensing in the detection planes provides more sampling
coverage of this space. As will be seen later, HEMI does not have depth sensing and the
same plot from its data results in a much sparser sampling space. Thus depth sensing in
planar Compton cameras is not only useful to improve image resolution, but also to better
sample the scattering data space. The biasing in this distribution is caused by a combination
of geometry and complications with event strip processing. This plot also demonstrates that
single plane Compton camera systems have limited angular sampling.

The final scattering distribution plot shown in this section is the e↵ect of choosing the
higher energy first sequencing. Choosing the higher energy interaction as the first interaction
is not always kinematically possible as there is a maximum energy for a Compton scatter. The
maximum energy results when a gamma ray back-scatters and a source energy is assumed.
Thus these events will actually be sequenced with the lower energy first. The scattering
distribution from choosing the higher energy first is shown in Figure 2.4. This plot shows
under-sampling in the center region, which corresponds to forward scattered events. This is
caused by the fact that forward scattered events would have lower energy first as forward
scattering deposits lower amounts of energy. This plot shows one pitfall with using only
higher energy first sequencing as it reduces the sampling space for the scattering data.
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Figure 2.3: These histograms show the number of events measured in each scattering direc-
tion. The top plot shows all scattering directions measured by the CCI system. The middle
plot shows only two plane Compton coincidence events. The bottom plot shows only single
plane events.
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Figure 2.4: This shows the scattering distribution with higher energy first sequencing.

Now the focus will shift to how di↵erent events e↵ect the measurement of a point source.
The first plot considered is the 2-D ARM plot mentioned in Ch. 1. This plot is shown in
Figure 2.5 and is represented as a 2-D histogram. The x-axis is computed from kinematics
and the y-axis is computed from the known geometric position of the source. Correctly
sequenced events have a one-to-one correspondence on this plot, and thus are represented
by the diagonal straight line where µ

k

= µ
g

. There is also a curved line that represents mis-
sequenced events. This plot shows horizontal streaking, which is the result of how timing
information is processed for these events. The details of the events processing at the detector
strip level will be discussed in detail in a future publication by Ross Barnowski[2].

We can now observe the 1-D arm plot for this same data, which is shown in Figure 2.6.
Relating the 1-D and 2-D ARM plot is achieved by projecting the 2-D data along the line
of correctly sampled events This figure is shown as the di↵erences in cosine of the angle
instead of di↵erence in angular space. The expected peak at zero di↵erence is observed, but
an additional peak is observed from the mis-sequenced events. Specifically, the peak in the
negative di↵erence region corresponds to mis-sequenced single plane events. The ridge in
the positive region corresponds to two plane backscatter events that are mis-sequenced as
forward scatter. This is determined by observing the mis-sequenced events on the 2-D ARM
plot and correlating where they will be projected on the 1-D ARM plot.

Now the e↵ect of choosing higher energy first sampling on these ARM plots will be
observed. First we can look at the 2-D ARM plot which is shown in Figure 2.7. The major
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Figure 2.5: This shows a 2-D ARM plot for CCI2 data. The straight diagonal line is from
correctly sequenced events. The curved line is from mis-sequenced events.

Figure 2.6: An ARM plot for all data. The data in this plot is the same as Figure 2.5.
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Figure 2.7: This shows a 2-D ARM plot with high energy first event sampling. Events that
actually deposited the smaller amount of energy first would occur in the vertical strip where
no events ever located.

di↵erence of this plot when compared to the 2-D ARM that shows both sampling directions
in Figure 2.5 is the region where no events are sampled. This is the location of events with
the lower energy first. The events on the left half of the plot are from events sequenced
with their higher energy first. The events on the right half of the plot represent events with
energy too high to come from Compton scatter at 662 keV and thus were sequenced with the
lower energy first. This plot shows one unexpected advantage of sequencing with the higher
energy first: it covers the µ sampling space more completely. This happens because of the
Compton scattering limit forcing some events to have sequencing with lower energy first.

The 1-D ARM plot from this higher energy first data is plotted in 2.8. This ARM removes
some artifacts from the ARM with both sequence of events. There are still humps to the
left and the right of the peak, which come from mis-sequenced events as observed from the
2-D ARM plot from this data.

2.4 High E�ciency Multimode Imager (HEMI)

HEMI is a multimode imaging system built with CZT modules that are 1 cm cubes. This
system, in addition to auxiliary sensors, is shown in Figure 2.9 The multimode distinction
in the name includes Compton imaging and coded aperture imaging. The coded aperture
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Figure 2.8: This plot shows the ARM plot for high energy first events. The asymmetric tails
are caused by mis-sequenced events.

imaging is not addressed in this work and has be demonstrated previously [15]. The advantage
of using CZT for a Compton imaging system is that no cooling is required and thus HEMI
is a much more compact system compared to CCI2. Much work has been done to use CZT
for Compton imaging by Zhong He at the University of Michigan. In his work, the CZT is
pixelated to gain position information. HEMI is di↵erent in that each module of CZT serves
as a pixel. This reduces the electronic complexity and event processing needed in the device,
which reduces the size and weight of such a system.

HEMI contains 96 1 cm3 CZT modules. The performance of HEMI has been characterized
extensively in other work [13]. The imaging performance of HEMI is worse than that of
CCI2 because it has broader energy resolution and larger position resolution. Additionally,
it su↵ers from poor sampling conditions due to the large size of the pixels. This sampling
issue is described in the next section.

HEMI was packaged with additional sensors for a demonstration measurement in Fuku-
shima, Japan. In this configuration, HEMI was combined with a visual camera, a GPS, an
IMU and an onboard computer. This package was then attached to a remote control RMAX
helicopter. The results of this measurement are shown in Ch. 6.
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Figure 2.9: This shows a picture of the HEMI system with its auxiliary sensors. This is the
packaged version used for helicopter flights.

2.5 HEMI Data Sampling

The data sampling of HEMI is explored in this section. A 50 µCi Cs-137 point source
measurement is used to demonstrate HEMI’s data sampling. The source was located on the
axis normal to the detector face at a distance of 1.3 m in front of the detector. The duraction
of the measurement was 5 hr. This long measurement time is not needed for imaging, but is
useful to produce many events for the diagnostic plots. Scattering direction plots and ARM
analysis will be observed for this point source measurement, as was shown with the CCI2
system previously in this chapter.

First we will observe the scattering direction histogram, which are shown in Figures 2.10
and 2.11. The di↵erence between the two figures is the choice of background color where
no events are sampled. Figure 2.10 has a blue background that helps to accent the biasing
of the di↵erent direction. Figure 2.11 has a white background that accents the sparcity of
the scattering direction sampling. The concentrated area in the center of the plot is from
two-plane events, while the vertical lines at -90 and 90 degrees are from single plane events.
The two plane events are challenging to see on the blue background due to geometric biasing,
especially from neighboring pixel events which have the highest intensity on this plot. Figure
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Figure 2.10: This shows the unweighted scattering distribution for a Cs-137 point source
incident on HEMI. The events on a line at -90 and 90 degrees are from single plane events.
The events in the center are from two plane coincidence events.

Figure 2.11: This is the same plot as Figure 2.10 except the areas that are not sampled are
shown in white. This helps depict the exact areas that are not sampled. However, in this
version it is challenging to see the biasing di↵erence from single plane and two plane events.

2.11, where the areas that are not sampled are shown in white, displays several issues with
this sampling. In the areas where there are two-plane events, the data are under-sampled
and relatively sparse. The second issue is that ideally this space should be completely
covered, however there are regions where no events are collected. One thing to note about
the single plane events is that more directions are actually measured due to the extent of
the individual crystals, however given the lack of position information within the crystal this
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is a fair estimate for the measured direction. These sampling issues have implications for
the possible accuracy of reconstruction, especially for distributed sources. Another issue is
the biasing of the di↵erent scattering directions. This is partially a geometric e↵ect caused
by events with a shorter lever arm to be more probable. This can be compensated for
with a L2 weighting for each event where L is the lever arm, which is the distance between
coincidence interactions. Applying this weighting to events creates a weighted version of this
histogram, which is shown in Figure 2.12. This weighting makes the scattering distributions

Figure 2.12: This shows the weighted scattering distribution for a Cs-137 point source inci-
dent on HEMI. The events on a line at -90 and 90 degrees are from single plane events. The
events in the center are from two plane coincidence events.

more uniform and is especially important for recovering distributed or extended sources.
The weighting also has the added benefit that events with short lever arm have broader
imaging resolution. Because of this, they will create image artifacts if they are not properly
accounted for with data cuts or weighting. One caveat with this weighting scheme is for low
count rate images. In that case, adding this weighting will increase the image variance and
can thus make the image look more noisy.

Another way to analyze this data is to look at the 2-D ARM plot described previously.
Making this plot requires taking a point source measurement with a known location. The
unweighted version of this plot is shown in Figure 2.13. The line of events at µ

g

= 0 is
from single plane events. This is clear because the source was at the detector normal and
thus single plane scatters were at about 90 degrees, which means the dot product is zero.
The events in the upper right corner are foreword scatter events and events in the lower left
corner are backscatter events. One thing to notice is the space where no events are collected.
There are two horizontal regions on this plot where no events are located due to the lack
of position information in the crystals. Comparing this with the same plot for CCI2 shown
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Figure 2.13: This shows a 2-D ARM plot for HEMI. The line across the center of the plot
comes from single plane events, which are all at µ

geometry

= 0 due to the position of the
source.

in Figure 2.5 reveals one of data sampling challenge with HEMI. Also this shows a large
fraction of single plane events that get incorrectly sequenced, represented by the hot red
region along the middle line.

Similarly to the CCI2 analysis, a 1-D ARM can be plotted, as shown in Figure 2.14.
Again this shows an o↵-center peak that comes from mis-sequenced single plane events.

These ARM plots can also be improved and observed when the lever arm weighting is
applied. Figure 2.15 shows the weighted version of the 2D ARM plot for this data. This
plot shows some of the biasing being fixed compared to the unweighted version, especially
comparing the single plane region to the two plane region. The weighted version of the 1-D
ARM is shown in Figure 2.16. This also shows an improved peak compared to the unweighted
version. Overall, HEMI does not sample the data space as well as the CCI2 system. These
plots also show that data cuts and weighting have di↵erent levels of importance for di↵erent
systems. For example, in this case HEMI appeared to have more geometric biasing compared
to CCI2.
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Figure 2.14: This shows the unweighted lever arm for a Cs-137 point source in front of HEMI.
The prominent peak in the negative region is the result of mis-sequenced single plane events.

Figure 2.15: This shows the 2-D ARM weighted by the lever arm squared for a Cs-137 point
source incident on HEMI. Some of the biasing is removed when compared to the unweighted
version in Figure 2.13.
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Figure 2.16: This shows an ARM plot for HEMI with the events weighted by the lever arm
squared.
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Chapter 3

2-D Directional Compton Imaging by
FBP Algorithm

The focus of this chapter is on the reconstruction of 2-D far-field directional images from
a Compton camera. In this imaging scenario, the detector is stationary and no auxiliary
sensors are needed, although this type of reconstruction could easily be merged with a visual
image. The reconstruction method in this chapter is demonstrated with CCI2, but this
method is general to any far-field Compton imaging system, or any system resulting in cone
data, such as neutron scatter cameras[26].

This type of reconstruction is often referred to as the Compton telescope problem. In
the past, filtered back-projection solutions for Compton telescope data required sums of
spherical harmonics or stereographically mapping the back-projection, which can result in
imaging artifacts. This chapter presents a solution to this inversion problem that removes
these complexities by embedding the 2-D directional image on the surface of a sphere S2

into R3 where it is easily solvable. In this manner 2-D Compton 4⇡ imaging is related to
the 3-D Radon transform, which has known solutions. To accomplish this, the cone data is
converted to planar data. Additionally it is shown how the planar geometry can be used to
produce a computationally e�cient implementation.

3.1 Introduction and Background

This chapter focuses on 4⇡ directional imaging with a Compton camera that is sensitive to
gamma rays from all directions. A position sensitive gamma-ray detector with good energy
and position resolution is required for Compton imaging. Compton imaging is conventionally
based on the measurement of gamma-rays that interact in at least two distinct locations
and deposit their full energy in the detector. The two-interaction coincidence requirement
is one factor that limits e�ciency in Compton cameras. Measurement of two interaction
positions gives a scattering axis based on the direction from the first interaction to the second.
Assuming full energy deposition, one can compute the scattering angle from kinematics using



CHAPTER 3. 2-D DIRECTIONAL COMPTON IMAGING BY FBP ALGORITHM 31

the deposited energy in the first interaction. The incident direction of the photon and the
scattering direction define a scatter plane. However, because the incident photon direction
is not directly measured, the orientation of the interaction plane is not known, so that the
angle of the incident gamma ray around this scattering axis is ambiguous, resulting in a cone
of possible source directions. A diagram of this cone geometry is shown in Fig. 3.1

Figure 3.1: This schematic diagram illustrates three Compton events originating from a point
source represented by a red star. Each event is characterized by a scattering axis represented
by a unit vector ~!

n

and a cone opening angle ✓
n

(which is labeled only for the first cone).
All of the cones intersect the point source at the star. Two planes of detectors similar to
CCI2 with the detector normal ~n are shown for reference. However, the actual location of
interactions within the detector are unimportant, only the relative positions of interactions
(which determine the scattering axis) are important in the far-field approximation.

Even if the scattering directions and opening angles (as determined by energy deposition
and kinematics) where perfectly known, simple back-projection of this data would produce
a blurred image. Thus, inversion methods are needed to enhance collective correlations in
the data to overcome the ambiguity of individual cones. The most common reconstruction
methods for Compton cone data include direct filtered back-projection (FBP) [52] or iterative
Maximum Likelihood-Expectation Maximization (ML-EM) [48]. Filtered back-projection is a
direct inversion method that requires representing the imaging modality as an integral equa-
tion. FBP approaches are generally more computationally e�cient and can o↵er insights
into a detector systems response, whereas ML-EM can be more computationally intensive.
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The quality of an ML-EM reconstruction depends on the level of system detail. This makes
a direct comparison between ML-EM and FBP methods challenging as ML-EM implemen-
tations are system-specific, while FBP is more system agnostic. In this chapter the focus
will be on filtered back-projection methods.

This work incorporates several assumptions commonly employed in the analysis of Comp-
ton telescope data. One is that the energy of the incident radiation is known, based on either
(1) a priori knowledge of the source spectrum or (2) determined from the measured spec-
trum. Relativistic kinematics then determines the opening angle of the Compton cone from
the energy deposited at the initial Compton-scattering site. Implicit in this kinematic anal-
ysis is the assumption that the sequence of the gamma-ray interactions within the detector
is known. In most Compton cameras, the timing resolution is inadequate for such interac-
tion sequencing; the sequence must be determined computationally from analysis involving
detector geometry, e�ciency and di↵erential scattering cross-sections. Improper sequencing
of interactions will assign an incorrect Compton cone to an event, thereby causing imaging
artifacts that can reduce image sensitivity. Despite these problems, we will assume for the
remainder of this work that the interaction sequence is known unambiguously. Finally, we
use a far-field approximation by only using the relative positions of interactions within the
detector. The specific location of the initial interaction is not significant. This is demon-
strated in Fig. 3.1. The diagram shows a generic Compton camera consisting of two planar
detectors at the center of a sphere. The planes are shown for reference, however, neither the
specific design nor the exact position of the initial interaction in the detector is required,
only the scattering direction, determined as the vector connecting successive interactions,
is used. This diagram is also used as a reference for results shown later in this paper. For
Compton telescopes this far-field assumption is trivially satisfied, but for applications where
the source is near the Compton camera, such as medical applications, this assumption may
pose problems because the flux direction may vary significantly within the detector. Failure
of the far-field approximation will blur the reconstructed distribution.

Previous Work

In the past several filtered back-projection solutions were found for Compton telescope data
[29], [52]. These solutions involved modeling the back-projection as a convolution of a general
point spread function (PSF) on the sphere. This approach does not explicitly express the
cone geometry inherent to Compton imaging but instead applies generally to 4⇡ directional
imaging. Consequently, the PSF must be computed for the system, either analytically or by
simulation. Based on this assumption of a generalized PSF, spherical harmonics are used to
deconvolve the source distribution.

A more recent approach used Fourier techniques to deconvolve the source distribution
by modeling the cone geometry explicitly via back-projection[16]. This was accomplished by
stereographically mapping the spherical imaging surface to a plane. Stereographic projec-
tion onto a plane permits one to write the imaging equation as a convolution integral on the
plane, which can be solved using Fourier techniques, thereby avoiding spherical harmonics.
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Unfortunately, stereographic projection requires the selection of an arbitrary projection di-
rection that is mapped to infinity on the projection plane. As a result, multiple projections
are required in practice to cover the whole sphere. In the end, each of those multiple pro-
jections must be merged, which can result in imaging artifacts. The work presented here is
an extension of the techniques used in that work.

In recent years several designs for Compton imaging systems have been developed; for
example [47], [57] and [20]. The reconstruction algorithms associated with these systems
are either simple back-projection or system specific ML-EM. An alternative reconstruction
method that is easy to implement and robust while requiring relatively little information
about the system is inherently valuable. The algorithm described here satisfies those re-
quirements. This method is also useful for characterizing the parameters of a Compton
camera, such as imaging resolution. This is advantageous over other reconstruction meth-
ods because ML-EM can produce artificially fine resolution due to its ambiguous stopping
conditions, whereas, simple back-projection produces artificially broad resolution.

3.2 New Algorithm Formulation

The geometry of Compton cone data was illustrated in Figure 3.1, which shows how the
cones intersect the imaging sphere to create rings. The key observation of this algorithm is
the fact that a plane also intersects a sphere creating rings. Thus each individual cone can
be substituted with the plane that creates the equivalent ring on the image sphere. This set
of planes relates Compton camera reconstruction to the 3-D Radon transform, which can be
inverted analytically (e.g. with a filter back-projection algorithm). Now this approach will
be described mathematically.

The mathematical formulation of this approach involves the mapping between two dis-
tribution functions. First, one defines the incoming gamma-ray flux, f(~⌦) with gamma
direction ~⌦ 2 S2 and units of photons per sec steradian, where |~⌦| = 1. Then one defines
g(~!, µ) as the measured cone distribution distribution with direction ~! 2 S2 and cone open-
ing angle µ = cos(✓). The units of g(~!, µ) are events detected per sec steradian. The cosine
of the scattering angle, µ is computed from kinematics using the energy deposited in the
first interaction and the incident gamma-ray energy.

The measured data g(~!, µ) is given in terms of the incident flux distribution by the
following integral equation:

g(~!, µ) =

Z

|~⌦|=1

d2~⌦f(~⌦)�(µ� ~! · ~⌦) (3.1)

The delta function in this equation ensures that the kinematic angle and the geometric angle
are equivalent, where µ is from the scattering kinematics and the dot product of ~⌦ · ~! is the
geometric cosine between the photon directions. This function generates cone data from the
incident flux distribution.
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Equation 4.1 can also be written as follows:

g(~!, µ) =

Z
d3~xf(~x)�(|~x|� 1)�(µ� ~! · ~x) (3.2)

where the integration is now over R3 instead of S2. This allows us to combine terms as
follows:

F (~x) = f(~x)�(|~x|� 1) (3.3)

where ~x 2 R3. This equation represents the incident flux as a 3-D distribution, albeit a
somewhat artificial 3-D distribution whose only purpose is to facilitate the mathematical
solution. The delta function in equation 3.3 will be used to recover the desired solution on
the sphere at the end of the inversion. Using Eq. 3.3, Eq. 3.2 can be written as:

g(~!, µ) =

Z
d3~xF (~x)�(µ� ~! · ~x) (3.4)

This equation represents the measured Compton cone distribution as an integral over planes
intersecting the spherical source space. We note that Eq. 3.4 is the 3-D Radon transform of
F (~x). In this form, µ represents the distance to the plane and ~! is the normal to the plane.
This is demonstrated in Fig. 3.4 where the colored points are the cone axis ~! plotted with
their color as µ for a measured point source. This plot reveals the planar nature of the data
as shown by horizontal iso-colors containing the same µ value. This shows that g(~!, µ) can
be thought of as a projection of the data in the source space onto the scattering axis, ~! at a
distance of µ. Relating Compton imaging to the 3-D Radon transform is convenient because
it has several known solutions. What follows is a solution convenient for list mode Compton
imaging.

One now defines a back-projection integral that converts the measured cone distribution
into a distribution of incident flux:

b(~x) =
1

2⇡

Z 1

�1

dµ

Z

|⌦|=1

d2~!g(~!, µ)�(µ� ~! · ~x) (3.5)

This back-projection generates planes in R3 from the measured cone distributions. For
list-mode image reconstruction, this means that each cone generates a 2-D plane in the 3-
D back-projection space. An example back-projection of 10 events is shown in Fig. 3.2.
Defining this back-projection in 3D as opposed to the desired S2 directional imaging space
is key for the inversion.

Combining Eq. 3.4 and Eq. 4.3 one finds that:

b(~x) =

Z
d3~yF (~y)

|~x� ~y| (3.6)

This is the 1/r result expected for a Radon transform. Interestingly this shows that the
theoretical PSF from Compton imaging, or any form of cone based imaging, is the intersection
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Figure 3.2: This shows an example back-projection for 10 events in the 3-D reconstruction
space. Each plane corresponds to an individual Compton event. The red sphere represents
the S2 surface that indicates the location of the imaging solution. The colorbar is the
intensity of the planes as they have widths that are determined by the Gaussian width of
the back-projection as described in Eq. 3.11. The extent of the planes are limited by the
3-D grid on which the back-projection is computed. The intersection of the planes indicates
the source direction.

of the unit sphere with 1/r in 3D. A sample back-projection of about 6.0 ⇥ 104 measured
events from a point source is shown in Fig. 3.3. This figure shows the expected 1/r shape.

Taking the Fourier transform of Eq. 3.6, one recovers

F̃ (~k) = |~k|2b̃(~k) (3.7)

where F̃ (~k) and b̃(~k) are the 3-D Fourier transforms of the source distribution F (~x) and the
back-projection b(~x) respectively. This is the expected result for a Radon transform in Rn,
which has the known |~k|n�1 filter solution where n is the number of dimensions. The resulting
|~k|2 filter in 3D amplifies the high frequencies in compensation for the blurring introduced
by the 1/r convolution of Eq. 3.6. Unfortunately, actual measurements include noise that
is preferentially amplified at high spatial frequencies by this |~k|2 filter. The e↵ects of noise
can be suppressed by many di↵erent strategies. For this work, Tikhonov regularization was
used. For this application, the Tikhonov regularization fives a modified filter of the form:

F̃ (~k) =
|~k|2b̃(~k)
1 + �4|~k|4

(3.8)
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Figure 3.3: This shows an example back-projection of about 60 thousand measured events
from a Cs-137 in the 3-D reconstruction space. The source is in the positive z direction.
The iso-surfaces depict the back-projection intensity. The expected 1/r response shape is
shown by the spherical iso-surfaces that encapsulate the source position. The blue surface
has a somewhat square shape that comes from the 3-D square grid the back-projection was
computed on. The plotted points correspond to the scattering axes for the individual cone
events used to calculate this back-projection. The color of the points depicts the cosine of
the cone opening angle, µ as computed from kinematics. Plotting the data points also shows
the surface of the sphere where the desired image solution lies.

Here, � is the Tikhonov parameter that can be adjusted as a trade-o↵ between noise and
resolution. Higher values of � reduce high-frequency noise but at a cost of poorer image
resolution from image biasing towards lower frequency.

One advantage of this approach over previous FBP solutions is that it reduces imaging
artifacts inherent in other methods. This benefit is the direct result of the fact that the
reconstruction is solved in a higher dimension than the image. Many artifacts that appear in
the 3-D back-projection volume are subsequently discarded in the reconstructed 2-D image.

An example of filtered back-projection in the 3-D space is shown in Fig. 3.4. The surface
at the right of the plot represents the filtered image result. The scatter points are the cone
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data as described previously. The cone data is plotted to demonstrate the planar nature of
the data and it shows the spherical surface where the desired image solution lies.

Figure 3.4: This plot shows two pieces of information: the Compton scattering data and the
reconstructed surface. The point data is the Compton scattering direction with the color
representing the scattering angle measured in detector. The surface data on the right of
the figure is the filtered 3-D reconstruction. The point data is shown to indicate where the
reconstructed image solution lies in this 3-D space. The point source is at the right side of the
graph. The reconstructed surface is not point-like in 3D because of a reconstruction artifact
on the edge of this space. However, this artifact does not a↵ect the desired image on the
surface of the sphere as shown in Figure 3.5. The small structure on the left corresponding
to µ = �1 is an artifact likely from mis-sequenced events.

After filtering the back-projection, a trilinear interpolation is then used to recover the
desired image on the unit sphere as dictated by the delta function in Eq. 3.3. The final
image from the data shown throughout this section is shown in Fig. 3.5 and is discussed in
a later section.
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3.3 Practical Implications and Implementation

As this method applies to Compton cones in general, it can be applied to any Compton
imaging detector system without needing to explicitly compute the system response. In the
previously presented formulation, detector e↵ects were neglected and uniform distributions
of scattering angles were assumed. Most Compton imaging systems have highly biased data
due to coupling of system geometry with scattering distributions, represented by the Klein-
Nishina formula. Extensive work has been done to account for those e↵ects [52], [23] [45]
and thus they will not be a major focus of this work. To incorporate some of these e↵ects,
the cone data generating equation, Eq. 4.1, can be modified to take into account various
e↵ects as follows:

g(~!, µ, p) =

Z

|⌦|=1

d2~⌦f(~⌦)�(µ� ~! · ~⌦)W1(~!, µ, p)W2(~⌦) (3.9)

where W1(~!, µ, p) represents e�ciency relating only to the data parameters and p is an n-
dimensional vector to keep track of additional data parameters, such as interaction positions
~x1 and ~x2. In practice we use:

W1(~!, µ, L) =
1

L2
(3.10)

where L = |~x1 � ~x2| is the distance between interactions, often called the lever arm, for
each event. This is a geometric factor that accounts for the fact that events with a shorter
lever arm are more likely to occur. A straightforward way to determine this factor is to
assume that once an interaction occurs, the probability that the next interaction will occur
geometrically is d2/(⇡L2) where d is the pixel dimension. If the assumption is made that all
pixels are spheres then this becomes a constant for all events, then d2/⇡ can be ignored as
it is constant for all events. Because these equations are inverted, each individual Compton
event weighting will my multiplied by L2. This has an added benefit because events with
a shorter lever arm have worse angular resolution and as a result of this factor will have
smaller weight. This reduces the need to make cuts in the data based on the value of the
lever arm. The W2(~⌦) function encapsulates e�ciency as a function of incident direction.
For this work, this function is set to one. This function can be used to account for detector
sensitivity anisotropies. These functions W1 and W2 must be greater than zero or properly
regularized. Additionally due to the �(µ � ~! · ~⌦) term of Eq. 3.9, e↵ects dependent on
~! · ~⌦ can be incorporated into W1. W1 and W2 can be incorporated into modified versions
of g(~!, µ) and f(~⌦) respectively and the inversion is still solvable.

If these e↵ects are not taken into account, this method can result in biased images,
especially for extended sources where detector response is more critical. However, for point
sources, which are often of interest in search and security applications, this imaging method
is more robust to the exclusion of detector response.

The steps for computing this algorithm are as follows:

1. Compute the 3-D back-projection in Eq. 3.11 on a uniform 3-D rectilinear grid
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2. Compute the 3-D FFT of the back-projection

3. Filter in Fourier space based on Eq. 3.7

4. Compute the inverse FFT of the filtered result

5. Generate points on the unit sphere and interpolate the image at those points from the
3-D filtered back-projection

These steps will now be discussed in more detail.
The first step is to compute the back-projection in Eq. 4.3. While that function includes

a delta function, in practice a Gaussian function is used as an approximation. The equation
for computing the back-projection from n events is as follows:

b(~x) =
nX

i=1

1

w
i

�
i

p
2⇡

exp

✓
(~x · ~!

i

� µ
i

)2

2�2
i

◆
(3.11)

where:

• the sum index i is over the list of cone events

• w
i

is the weight for the individual cone, computed by Eq. 3.10

• �
i

is the Gaussian width of the cone in the cosine space

Here the width, �
i

can correspond to the uncertainty of the cone angle or be some small value.
Using a cone width equal to the uncertainty in cone angle double counts the error, artificially
worsening image resolution, Thus in practice it is best to use a small value, lower than the
expected resolution, which also prevents pixelization e↵ects of the individual cone. The
result of this equation is that an individual plane is summed into the total back-projection
for each measured Compton event.

The back-projection is computed on a uniform 3-D rectilinear grid to accommodate the
computation of the Fourier transform in the filtering space. The range of that grid is from
[�(1 + ↵), 1 + ↵], where ↵ is a small number to ensure that the edges of the unit sphere
are fully enclosed within the grid. In practice a value of ↵ = 0.5 has been used. ↵ should
be su�ciently large to ensure that edge e↵ects show in in Fig. 3.4 do not degrade the
image quality. Using too large of a window will reduce the resolution of the grid used for
computation.

Improving the speed of the back-projection computation can be achieved by taking ad-
vantage of the plane geometry of events. To achieve this for a single plane, two of the
three back-projection dimensions are fixed based on the back-projection grid, then the third
dimension is computed based on the equation for a plane. The contribution to the total back-
projection from that individual event is then summed near the corresponding grid points.
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This reduces the 3-D back-projection computation from O(n3) to O(n2), where n is the num-
ber of pixels in each dimension. This optimization dramatically reduces the computation
time for the back-projection.

Steps 2 and 3 involve computing the 3-D Fourier transform of the back-projection; then
applying the appropriate |~k|2 filter with the Tikhonov factor. For real-time applications,
the Tikhonov parameter can be implemented as a user controllable parameter. This allows
the user to broaden the resolution for low count rate situations, such as at the beginning of
an image acquisition when there are fewer counts and a noisier image. As more counts are
collected the Tikhonov parameter can be reduced to improve resolution.

3.4 Measured Results

Point Source Results

In this section we demonstrate measured results taken with a two plane double sided strip
HPGe detector [44]. As a simple demonstration measurement, a 50 µCi Cs-137 point source
was positioned perpendicular to the detector planes at a distance of about 1 m for 1.5 hours.
This results in about 4 degrees error from the far-field approximation. All detected and
reconstructed 662±3 keV events were used in these images, resulting in 61,423 events. The
image resulting from this measurement is shown in Fig. 3.5. To construct this image, events
were selected in the 662 keV energy window. The origin in the following images corresponds
to the detector normal. The data shown in this image is the result of interpolating the
3-D filtered back-projection as given by step 5. The angular width of the reconstructed
source is 8.2 by 9.1 deg FWHM. Fig. 3.6 shows the same data with a lower Tikhonov value
to demostrate the trade o↵ between noise and resolution. The image in that figure has a
resolution of 6.2 by 7.6 deg FWHM but the signal-to-noise ratio is degraded.

This algorithm can also perform with a small number of events. This is demonstrated in
Fig. 3.7 that contains the first 100 full-energy events from the same data set that was used
to create the images in Figs. 3.5 and 3.6. This number of events corresponds to the first
9 seconds of acquisition time and demonstrates that the source is localized quickly, albeit
with a relatively noisy image. To produce the image, a higher Tikhonov filtering value is
needed to compensate for the lower number of events, which results in degraded resolution
compared to the high count rate case in Fig. 3.5.

Extended Source Results

This reconstruction method was also tested with extended sources. A 50 µCi Cs-137 point
source was rotated in a plane parallel to the detector planes at a distance of 35 inch from
the front of the detector. The radius of rotation was 14 inch with a measurement time of
148 min. The experimental setup is shown in Figure 3.8.
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Figure 3.5: Example point source image placed in front of detector planes. The Tikhonov
parameter is 0.045 which gives a resolution of 8.2 and 9.1 deg FWHM in each angular
dimension.

Figure 3.6: Example point source with same data from Fig. 3.5 with a Tikhonov value
of 0.031. The resolution is improved to 6.2 and 7.6 deg FWHM, but with a reduction of
signal-to-noise in the image.
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Figure 3.7: This shows an example point source with same data from Fig. 3.5 using only the
first 100 events, which is equivalent to 9 sec of acquisition for 50 µCi at 1 m. The Tikhonov
value is 0.447 with a resolution of 10.6 and 14.5 deg FWHM for each dimension.

Figure 3.8: The experimental setup for a rotating Cs-137 source is shown.

This measurement resulted in 34,779 Compton coincidence events that were all used
in the image. The simple back-projection before this algorithm is applied is shown in the
Fig. 3.9 for comparison. The application of the filtered back-projection algorithm to this
rotating source data is shown in Fig. 3.10. The width of this reconstructed ring is 9.85 deg.
Accounting for the geometric weighting as described in Eq. 3.10 was vital for the result of
this image.
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Figure 3.9: A simple back-projection of a ring source measurement from 34,779 events.

Figure 3.10: A filtered back-projection of a ring source measurement, the same as Figure 3.9
from 34,779 events. The Tikhonov parameter was 0.305.
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3.5 Tikhonov Parameter Choice

It should be noted at this point that the Tikhonov values chosen for these images are some-
what arbitrary. They were chosen by the author by an interactive method where changing
the parameter changed the image in real-time. More research is needed to quantify the
choice of value for this reconstruction method as it is a trade-o↵ between biasing, which
degrades resolution, and signal-to-noise. The choice of an optimal parameter can be task
dependent. For example, if a point source and distributed source are imaged resulting in the
same number of events, a larger value would be needed for the distributed source.
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Chapter 4

Gamma-ray Momentum
Reconstruction from Compton
Electron Trajectories by FBP

This chapter focuses on reconstructing the gamma-ray momentum (direction and energy)
incident on an electron tracking detector. The results of this chapter require measuring the
electron trajectory, but do not need coincident gamma-rays interactions. This is the only
chapter with results from the CCD electron tracking detector. In this imaging modality
there are 3 reconstructed dimensions: two of direction and one of energy. This is an increase
of one energy dimension compared to Ch. 3, and also a change of modality. This imaging
modality assumes a stationary detector with no auxiliary sensors.

Gamma-ray imaging utilizing Compton scattering has traditionally relied on measuring
coincident gamma-ray interactions to map directional information of the source distribu-
tion. This coincidence requirement makes it an inherently ine�cient process. This chapter
presents an approach to gamma-ray reconstruction from Compton scattering that requires
only a detector capable of tracking individual electrons resulting from a single Compton
scattering event, thus removing the coincidence requirement. From the Compton scattered
electron momentum distribution, this algorithm analytically computes the incident photon’s
correlated direction and energy distributions. Because this method determines the distri-
bution of the source energy and direction, it is useful in applications where prior energy
and direction information about the source distribution is unknown. While this method was
demonstrated with electron tracks in a Si-based CCD, detector it is applicable to any detec-
tor that can measure electron direction and energy, or equivalently the electron momentum.
In particular, it can significantly increase the sensitivity of gas-based systems that su↵er
from limited e�ciency in coincident detection tasks.
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4.1 Introduction

While conventional Compton imaging circumvents some limitations of collimator-based sys-
tems, it is inherently limited by (1) the requirement of at least two time-coincident interac-
tions, (2) the knowledge or measurement of the gamma-ray energy, and (3) the reconstruction
of the incident angle to only a cone. By using the measured scattering kinematics and by
employing (ML-EM) iterative techniques it is possible to reconstruct the gamma-ray mo-
mentum, the incident gamma-ray energy and the two incident angles[50]. However, these
methods are computationally intensive because they include detailed information about the
detector system. No analytical solution for energy-image inversion for gamma-ray tracking
Compton imaging has yet been found.

By measuring the initial direction of the Compton-scattered electron, some of these lim-
itations can be avoided or reduced. For example, the azimuthal symmetry of the Compton
scattering process that results in the reconstruction of a cone can be broken and the scat-
ter cone can be reduced to an arc [6]. In addition, the electron-track information makes
the gamma-ray tracking less error-prone. However, past electron-tracking based Compton
imaging concepts and systems have relied on at least two interactions. In the following
a concept and associated algorithm is described that enables the analytical and therefore
e�cient reconstruction of the gamma-ray momentum based only on the measurement of
Compton-scatter electron tracks.

4.2 Algorithm Overview

The algorithm di↵ers from previous algorithms in two crucial ways. First, the algorithm uses
data from electron-tracking rather than gamma-tracking data (i.e. data from the electron
trajectories, rather than from coincident photon interactions) as depicted in event A in Figure
1.2. The analysis uses the direction of the electron motion as the axis for the reconstruction
cones. Second, in contrast to other analytical methods, the energy of the incident radiation
(E) is no longer assumed known. Instead of assigning each event to a cone, each event is
associated with a class of cones sharing the same axis, but with di↵erent opening angles
depending on the incident energy and deposited energies. Thus, one now determines the
incident flux in three dimensions (i.e., the flux depends on both the energy and direction of
the radiation). Each event is characterized by the energy deposited in the detector (✏) and the
direction of the scattered electron motion (~!). Therefore, the input data can be described
by a three-dimensional distribution of observed electron trajectories. The mathematical
inversion problem posed by this system produces the incident flux distribution (in 3D) from
the observed distribution of electron trajectories (also in 3D, albeit a di↵erent space).

The proposed algorithm o↵ers several advantages. By using only the electron-tracking
data the measurement e�ciency is greatly improved by removing the requirement for coin-
cident gamma-ray interactions. Consequently, all Compton scattered events in the detector
could theoretically be used for imaging. The use of electron tracks also eliminates the need



CHAPTER 4. GAMMA-RAY MOMENTUM RECONSTRUCTION FROM COMPTON
ELECTRON TRAJECTORIES BY FBP 47

for gamma-ray sequencing. Furthermore, the algorithm analytically deconvolves the incident
energy by a direct method not requiring iteration. Given these improvements this method
would be especially useful in applications where the source energy and direction are not
known a priori.

4.3 Mathematical Formulation

The mathematical formulation of this problem involves the mapping between two distribution
functions. First, one defines the incoming gamma-ray flux, f(~⌦, E) with gamma direction
~⌦ 2 S2, energy E and units of photons per sec keV steradian. Then one defines g(~!, ✏),the
measured electron track distribution, with direction ~! 2 S2, deposited electron energy ✏, and
has units electrons detected per sec keV steradian.

The measured data g(~!, ✏) is given by incident flux in the following integral equation:

g(~!, ✏) =

Z 1

E

min

(✏)

dE

ZZ
d~⌦

f(~⌦, E)p
✏(✏+ 2m

e

)
�(⌫(E, ✏)� ~! · ~⌦) (4.1)

where the function ⌫(E, ✏) is the cosine of the angle between the incident photon with energy
E and the measured electron track with energy deposited ✏. Relativistic kinematics yield
that:

⌫(E, ✏) =

r
✏

✏+ 2m
e

✓
E +m

e

E

◆
(4.2)

where m
e

is the electron rest mass. Eq.4.2 is factorable into separate functions of E and ✏.
The limit to the energy integration in Eq. 4.1 is the minimum gamma-ray energy that could
have deposited ✏ energy in the electron track as defined by scattering kinematics.

Next one defines a back-projection integral that converts the measured electron distribu-
tion into a distribution of incident flux:

b(~⌦, E) =

Z
✏

max

(E)

0

d✏

ZZ
d~!

g(~!, ✏)

✏+ 2m
e

�(⌫(E, ✏)� ~! · ~⌦) (4.3)

where ✏
max

(E) is the maximum energy that can be deposited by a gamma ray with energy
E as defined by scattering kinematics.

The surface of all possible incident gamma-ray directions and energies for a single electron
track is hyperbolic. However, this surface can be remapped to a plane as depicted in Figure
4.1. This mapping is accomplished by the following transformation:

(E, ~⌦) ! ~u =
m

e

E

E +m
e

~⌦ (4.4)

with inverse:

E =
m

e

|~u|
m

e

� |~u| ,
~⌦ =

~u

|~u| (4.5)
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This combines E 2 R and ~⌦ 2 S2 into a single vector ~u 2 R3 where |~u| 2 [0,m
e

). The
hyperbolic surface goes to infinity while the remapped plane is contained in a sphere with
radius m

e

. In other words, this transform maps the incident energy from [0,1) to [0,m
e

).
This space will be referred to as ~u-space.

Figure 4.1: The left image shows, in (~⌦, E) spherical coordinates, the hyperbolic surface of
all possible incident gamma-ray directions and energies for a single electron trajectory. The
right figure shows this surface remapped to a plane in ~u-space. Three example energies are
shown to demonstrate how they map from one surface to the other.

Applying this transform to the source space results in new functions f1(~u) = f(~⌦, E) and
b1(~w) = b(~⌦, E). Using these transformed functions and grouping terms gives:

B(~w) =
m

e

|w|b1(~w) (4.6)

F (~u) =
m

e

|~u|
f1(~u)

(m� |~u|)2 (4.7)

Substituting Eq. 4.1 into Eq. 4.3 and applying the definitions in Eq. 4.6 and 4.7, one finds
the convolution integral:

B(~w) =

ZZZ
⇡F (~u)

|~u� ~w| d~w (4.8)

The Fourier transform of this equation yields:

F̃ (~k) = |~k|2B̃(~k) (4.9)
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where F̃ (~k) and B̃(~k) are the 3D Fourier transforms of F (~u) and B(~!) respectively. The re-
sulting |~k|2 filter in 3D will amplify high frequencies, which can be dampened using Tikhonov
regularization resulting in:

F̃ (~k) =
|~k|2B̃(~k)

1 + �4|~k|4
(4.10)

Here, � has units of keV and is the Tikhonov parameter that can be adjusted as a trade-o↵
between noise and resolution. Higher values of � reduce high-frequency noise but at a cost
of image resolution.

The steps for computing this algorithm are as follows:

1. Individual electrons are measured from Compton scattered gamma-rays. The ensemble
of these electrons create the distribution g(~!, ✏).

2. Compute the back-projection on a 3-D rectilinear grid in the energy transform space,
corresponding to Eq. 4.3.

3. Compute the 3-D FFT of the back-projection.

4. Filter in Fourier space based on Eq. 4.10.

5. Compute the inverse FFT of the filtered result.

6. Interpolate the filtered result from the energy transform ~u-space to a grid on (~⌦, E) to
recover the f(~⌦, E) distribution.

The range of the back-projection grid is from [�m
e

,m
e

] in each dimension to account
for the energy being transformed from [0,1) to [0,m

e

). The uniform grid in ~u-space leads
to larger energy bins at higher energies because of the hyperbolic nature of the ~u-space
transform.

4.4 Experimental Demonstration Cs-137

The proposed algorithm was demonstrated with electron trajectories measured with a scien-
tific Si-based charge-coupled device (CCD) [43]. Measurements from an uncollimated Cs-137
source was acquired to demonstrate this algorithm for a 662 keV source. The results shown
here were computed with 256 pixels in each ~u-space dimension.

The Cs-137 source was positioned at a 22 degree angle o↵ of the detector plane. The
data includes 36k electron tracks with energies greater than 200 keV. The angular resolution
of the electron tracks in this CCD detector degrades significantly below 200 keV.

Figure 4.3 shows the reconstructed source in the 3-D energy-image space. This 3-D
image can be di�cult to interpret so slices are taken to show images at specific energies.
Figure 4.4 shows the directional image at 662 keV. The source has an angular resolution of
30 by 21 deg FWHM as determined by Gaussian fit, which is consistent with the angular
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Figure 4.2: Shown here is an example of back-projection in the 3D energy transform space
for ten simulated events. The two images show two di↵erent viewpoints of the same back-
projection. The intersection of the planes in this 3D space determines the source direction
and energy.

Figure 4.3: This image shows a 3-D representation of the energy image from a Cs-137 source
measurement.

resolution of the detector. A detector with finer angular resolution would produce a sharper
image, the resolution is not inherently limited by this method. Directional spectra can also
be observed as seen in Figure 4.5. This spectra shows a reconstructed source energy of
647.6 keV with a resolution of 36 keV FWHM as determined by a Gaussian fit of the peak.
The reconstructed energy is lower than the expected 662 keV energy and the exactly cause
of this is not currently known. This could have been caused by electron tracks escaping
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Figure 4.4: An image at the source energy of 662 keV with a resolution of 30 by 21 deg
FWHM.

Figure 4.5: The spectra through the source maximum value. The 662 keV peak is observed.
The peaks above and below 662 keV are caused by noise. They can be removed by increasing
the Tikhonov value, but at the cost of broadened resolution.

the CCD detection volume and not depositing their full energy. No assumption about the
source energy were made in this reconstruction. Figure 4.6 shows the energy spectrum of
the electron tracks used in the image, showing that no photo-peak was directly observed. In
this image a Tikhonov regularization value of 15.8 keV was used to compensate for the noise.
This contributes to the large resolution of the 662 keV source line. A lower Tikhonov value
could be used and better energy resolution would be achieved at the expense of increasing
image and spectral noise.
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Figure 4.6: The measured electron track spectrum is shown. One notes that the 662 keV
photo-peak is not observed. Electron energies less than 200 keV are excluded from the
reconstruction. Knowledge of the incident energy must be deconvolved from the electron
directional information.

4.5 Ba-133 Measurement

Measurements were taken with a Ba-133 to test lower energy gamma-ray sources. Ba-133
also provides an additional challenge because it emits multiple gamma rays, each with lower
energy than the Cs-137 source. At these lower energies the CCD has worse angular resolution
because lower energy electrons traverse fewer pixels. The di↵erent energies could be imaged
however at this stage reconstructing the di↵erent energies required changing the energy
threshold of the electron tracks used to generate the image.

The gamma rays of interest from Ba-133 for this measurement are 356 keV and 384 keV.
To accommodate these energies, the energy cuto↵ was lowered to 150 keV. This degrades
angular resolution but is needed for the lower 356 keV source energy of Ba-133. As with the
Cs-137 source, a full energy-image was reconstructed from the Ba-133 data. This reconstruc-
tion is then visualized as spectra in a particular direction or directional maps at a particular
energy. The 3-D reconstruction is not shown as it is visually similar to the Cs-137 result.
The reconstructed energy spectrum through the source max is shown in Figure 4.7. This
reconstructed spectra reveals the 356 keV source energy, but not the 384 keV source energy.
This shows the reconstructed 356 keV peak with an energy spread of 26 keV FWHM. The
reason the lines are not simultaneously observed is due to the poor angular resolution of the
CCD and the lower branching ratio of the 384 keV line. This requires a high Tikhonov value
to overcome the noise, which then also blurs the image in energy. The directional image
with a 150 keV cuto↵ from measuring Ba-133 is shown in Figure 4.8. The angular resolution
of this source is worse than that of Cs-137 because the lower electron track energies have
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Figure 4.7: This shows the energy spectra in the direction of the maximum image intensity.
For this reconstruction, a 150 keV energy cuto↵ was used.

Figure 4.8: This shows a Ba-133 directional image from a 150 keV cuto↵ energy.

broader angular resolution.
The 384 kev line can be observed by increasing the energy cuto↵ up to 207 keV, which is

near the Compton edge of the 356 keV line. The di↵erent electron track energy spectra used
for imaging each line are plotted in Figure 4.9. All events above 150 keV were used for the
image that reconstructed the 356 keV source. The spectra used to reconstruct the 384 keV
line is the portion above 207 keV. The image from the 384 keV source is shown in Figure
4.10 and the corresponding spectra is shown in figure 4.11. This 384 keV line is observed
with a resolution of 26 keV. It is interesting to note the small portion of events that actually
contribute to this source from the electron spectrum in the range 207 to the Compton edge
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Figure 4.9: This shows the measured electron spectra in the CCD for the Ba-133 source. All
Events above 150 keV were used for the 356 keV image and all events above 207 keV were
used for the 384 keV image.

Figure 4.10: This shows the reconstructed directional distribution from a Ba-133 point source
at 384 keV.

at 230 keV. It is also interesting to note that the reconstructed energies were closer to the
actual source energies for Ba-133 than compared to the Cs-137 measurement.

4.6 Co-60 Measurement

A Co-60 measurement was taken to test the reconstruction of higher energy gamma rays.
The higher energy gamma rays generate higher energy electron tracks, which results in longer
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Figure 4.11: This plot shows the reconstructed spectra from a Ba-133 measurement with an
electron track energy cuto↵ of 207 keV.

track lengths that are more likely to escape the CCD and not deposit their full energy. As a
result, higher energy cuto↵s are needed to reconstruct the source energies. Many events with
measured energies between 200 keV to 750 keV are from electrons that deposited a fraction
of their initially higher kinematic energy. This lead to the hypothesis that as the energy
cuto↵ is increased, the fraction of events that deposit their full energy also increases. This
is supported by the fact that higher energy cuto↵s made reconstructing the higher source
energies of Co-60 possible. A cuto↵ of 750 keV was su�cient for reconstruction of the 1173
keV gamma-ray energy. The threshold can then be raised to observe the 1332 keV line.
The reason these lines are not observed simultaneously is more complicated than the Ba-
133 case and is not yet fully understood. Possible factors include: poor angular resolution,
larger energy bins at this source energy from the reconstruction energy transform, di↵erent
detector e�ciencies for the two energies, or high loss of events from 1332 keV line due to
its higher energy. The resulting images from the Co-60 are not shown as they are similar
to the Ba-133 and Cs-133 images, however the reconstruction values are tabulated in Table
4.1. This table also compares the reconstruction results from all the sources described in
this chapter, including the di↵erent cuto↵ values and resolution values.

4.7 Conclusions

A full gamma-ray momentum distribution reconstruction was developed and demonstrated
experimentally utilizing only electron track measurements from Cs-137, Ba-133 and Co-60.
The Ba-133 and Co-60 measurements demonstrate some limits of the CCD system. Addi-
tional work should be done to reconstruct multiple energies simultaneously. The algorithm
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Reconstruction Resolution FWHM
Source Energy ✏ cut # Tracks Engergy Eng (keV) Theta Phi
Ba-133 356 150 56k 355.6 26.3 37.9 58.8

384 207 8k 382.2 26.1 21.5 53.7
Cs-137 662 200 36k 647.6 35.8 21.5 30.4
Co-60 1173 750 3630 1162.4 87.6 33.6 53.3

1332 950 715 1312.8 27.6 27.6 53.1

Table 4.1: This table lists the reconstruction results from all the sources discussed in this
chapter. All energies are in keV and angles in degrees. ✏ cut refers to the low energy cuto↵
below which electron track events are removed from the reconstruction. The measurement
time for each source varied so the number of events used is not an indication of e�ciency for
each energy. The number of tracks listed is after the energy cut was applied.

reconstructed the sources full energy using the electron track direction and energy with-
out directly measuring the source energy. This algorithm o↵ers two main improvements for
gamma-ray imaging. The first is the increase in imaging e�ciency by only requiring electron
track data and thus removing the requirement of coincidence measurement. The second
advantage is analytically inverting the gamma-ray energy by direct method. This algorithm
was demonstrated with measured electron tracks in a Si CCD detector with a source energy
of 662 keV. The quality of the image is limited by several factors associated with the CCD
such as poor angular resolution, electrons escaping the detector volume and the algorithms
used to determine the electron trajectory[32]. This method would work for other systems
that measure Compton electron trajectories such as TPC gas systems[38], and the quality
of images from such devices needs to be investigated. Thus these results are intended as a
demonstration of this method and not as an indication of its limits.



57

Chapter 5

3-D Compton Imaging with Visual
Data Fusion

In this chapter 3-D spatial reconstruction is demonstrated with the CCI system, which was
described in section 2.2, thus we are returning back to gamma-ray tracking based Compton
imaging. This will focus on far-field 3-D mapping as opposed to near-field 3-D imaging which
is common in medical imaging research [28]. To gain a 3rd dimension of spatial information,
the Compton camera is moved throughout the mapping area. Position tracking of the system
is achieved with a Microsoft Kinect as an auxiliary sensor. The reconstruction method used
in this chapter is a slightly modified ML-EM algorithm to accommodate the visual data
input. The ML-EM algorithm is simplified to ensure near real-time operation. There is no
convenient FBP method for this imaging domain, especially for the low count rates used to
demonstrate this method.

5.1 Overview

The goal of this chapter is the demonstration of the ability to locate sources in complex
real-world environments. Such environments could include outdoor urban environments or
nuclear processing facilities for safeguards applications. The focus of this work is a description
of the reconstruction method used to recover the 3-D distribution of gamma-ray emitting
sources. A more thorough description of the system setup and processing pipeline, including
the visual data processing, are the focus of Ross Barnowski’s PhD work and are the subject
of a publication in progress[2]. For this demonstration, a cluttered lab environment is used
with a Cs-137 source.

To achieve 3-D imaging, a Microsoft Kinect is used as an auxiliary sensor. The Kinect
serves two purposes:

• position the Compton camera in the scene
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• build a visual model of the scene which is incorporated into the gamma-ray reconstruc-
tion.

This is achieved by a Simultaneous Localization and Mapping (SLAM) algorithm [10]. The
code for this algorithm is freely available within the framework of the Robot Operating
System and thus we were able to use it for our system. To build the model, successive
frames from the Kinnect are merged together in 3D so that the visual model expands as
the detector cart moves through the scene and more visual data is collected. The output of
this algorithm is a visual point-cloud. In this chapter the term “point-cloud” refers to the
3-D visual data in the form of a set of points. Each point has six values: a 3-D position
coordinate and 3 color values representing RGB.

The visual data can help overcome two main issues with 3-D gamma-ray mapping. One
is the low count rate expected for Compton coincidence events over a short period of time.
For example, a path about 1.5 m from a 50 µCi Cs-137 source produces on the order of 100
full energy events per minute in the CCI2 detectors. Another issue is in the sampling path
of the cart as it moves arbitrarily through a scene. If the cart is going to be pushed through
an environment on an arbitrary path it is unlikely that orthogonal projections needed to
fully reconstruct the source space will be acquired. This leads to an ill-posed reconstruction
problem, which will inaccurately reconstruct the source distribution. The visual data adds
an additional constraint to the reconstruction, which can help regularize the solution and
overcome these sampling limitations.

5.2 ML-EM Overview

This chapter utilizes the ML-EM reconstruction algorithm, which will now be generally
described. Independent of image reconstruction, Maximum Likelihood-Expectation Maxi-
mization is a method for maximizing a likelihood function that describes a distribution when
another distribution is observed. ML refers to maximizing a likelihood function that relates
the data and the computed image, which in the case of gamma-ray imaging obey Poisson
statistics. In general, EM refers to the mathematical method of maximizing a likelihood
function when there is a latent, unobserved variable. The original solution to ML-EM for
emission tomography utilized this approach [37]. In the case of gamma-ray imaging, the
latent variable is a variable that describes exactly which image element (voxel, pixel, etc.
depending on the dimensionality) a single measured data event originated. For Compton
imaging, the Compton cone dictates a set of pixels from which the source could have origi-
nated. This latent variable corresponds to exact knowledge of which element the gamma-ray
originated. Later solutions found algebraic approaches to arrive at the same answer[7].

This method was later applied to list mode data [3] and then to Compton list mode
data[48]. The equations used here are as follows:
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where:

• n is the iteration number

• i is the image element index

• j is the data index

• �
(n)
i

is the image value in voxel i at iteration n

• a
ij

is the system matrix value

• s
i

is the sensitivity for image element i

In this case, the image elements are voxels. Because this is list mode reconstruction, the sen-
sitivities cannot be computed directly from a

ij

and thus in practice they must be computed
by some other means. However, to ensure as close to real-time computation as possible,
uniform sensitivities are used. In general this assumption results in imaging artifacts for
complicated source distributions, but it works su�ciently well for the point sources of this
imaging task.

5.3 ML-EM with Visual Data

The gamma-ray reconstruction can be computed with or without the aid of the visual infor-
mation. To perform the reconstruction with the visual reconstruction, a constrained ML-EM
method is used. The constraint comes from the 3-D point cloud data from the Kinect. Using
visual 3-D point cloud data, the space is voxelized around the point clouds. An occupancy
grid is created from the visual point cloud based on the assumption that gamma-ray emitting
objects will only be contained on or inside visual objects. When the ML-EM reconstruction
is constrained by the visual data, it is only computed in the voxels that are occupied by the
visual grid. This strategy not only improves the reconstruction results, this also improves
the computation time because a limited number of voxels are used for the reconstruction.
The reconstruction is performed in near real-time, so that both the visual space and the
distribution of gamma-ray emitters are reconstructed as the data is collected.

Alternatively, the reconstruction can also be computed without constraining the solution
with the visual point cloud data. This is done by voxelizing the entire space surrounding
the cart path to a fixed distance. The extent of the grid is determined from the length of
the cart path because the depth sensitivity is limited by the cart path length. This can be
advantageous because the Compton camera has a 4⇡ field of view whereas the Kinect has a
much more limited FOV. Thus there could be cases where the Compton camera localizes a
source that was not in the view of the visual camera.
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5.4 Computational Structure

The computational thread structure is shown in Figure 5.1. There are two main components

Figure 5.1: This diagram shows the structure of the software used to acquire and reconstruct
the volumetric data. There are two main components: acquisition and reconstruction.

to the reconstruction structure: acquiring the data and reconstructing the imaging space. In
practice these can both be on one acquisition computer or on separate computers. Separate
computers is advantageous because it allows for data analysis to happen at a stationary
location while the detector is being moved through the scene. The acquisition part includes
the visual processing, both of which are the focus of Ross Barnowski’s work.

Here we will focus on the reconstruction portion of the software. The reconstruction loop
consists of four main parts:

1. Capture and organize data

2. Determine the area where the reconstruction will be computed

3. Recompute the imaging matrix

4. Compute ML-EM reconstruction iterations

Step 1 requires syncing the data based on time stamps. Also data can be sent at irregular
intervals and thus a fixed collection time is used before a new reconstruction is performed.
This is also needed to control when the reconstruction is recomputed. There should be
su�cient new data to allow for a new reconstruction to proceded. In Step 2 the limits of the
volumetric reconstruction grid are determined based on the pose estimates, the point-cloud
data, or both. The reconstruction space changes as the point-cloud expands and more pose
estimates are collected. Step 3 computes the imaging matrix for this newly computed space.
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The voxels where the image is reconstructed can be limited by the visual point cloud data
at this step. The final step is to perform the ML-EM iterations. This step is relatively
fast because the imaging matrix is precomputed in step 3. Also, the iteration Eq. 5.1
can be written as matrix operations so that fast matrix multiplication and numerical array
operations in Numpy are utilized.

The version of this software described here is not directly scalable to large mapping areas.
To accommodate this, future versions will use data caching by only computing the image
near where new data has been recently collected. Then this locally updated reconstruction
can be merged to a larger global reconstruction. The global reconstruction would also need
an optimized storage method, likely based on octrees.

5.5 Measured Results

As a demonstration measurement, a 50 µCi Cs-137 source was placed in a cluttered lab
environment. The CCI2 cart system was pushed through this lab environment. Figure 5.2
shows the reconstruction of a Cs-137 source in 3D without using the visual data to constrain
the ML-EM. This plot shows several pieces of data related to the measurement including:

Figure 5.2: 3-D ML-EM reconstruction without using the visual point-cloud data. The
entire space around the detector path was voxelixed and reconstructed. The source location
is blurred and there are image artifacts. The measurement time was 34 seconds which
produced 74 events for imaging at 662 keV.
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the visual point-cloud reconstructed by the SLAM algorithm, the Compton camera pose
estimates, individual Compton scatter events and the reconstructed source distribution. The
SLAM algorithms produces a visual point-cloud and a rotation and translation for each
frame, which together create the pose estimate. This rotation and translation is the position
of the Kinect in the scene. An additional rotation and translation is then used to map the
Compton camera in the scene from that data. The reconstruction shows the source being
reconstructed to the wrong location, likely due to the inadequate sampling of the cart path.
This also shows some reconstruction artifacts in air where no source was located.

Figure 5.3 shows the result when the visual data is used to constrain the reconstruction
voxels. The result from the constrained reconstruction is improved and correctly locates the

Figure 5.3: This shows the 3-D constrained by the visual point cloud.

source in 3-D. The imaging artifacts when the point-cloud is not used are removed.
While the results shown here are for one example measurement, this method appeared

to be robust across a variety of measurements similar to the one shown here. Further work
is needed to quantify the e↵ectiveness of this method to locating sources by this data fusion
approach.
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Chapter 6

Imaging with HEMI

This chapter focuses on Compton imaging results with the HEMI system. The major ad-
vantage of this system is its size and weight. The imaging hardware and electronics weigh
less than 10 lb. and are highly portable. However, this small size does come with some
imaging performance downsides. These issues will be discussed, as well as proposed solu-
tions. Additionally, HEMI was used in field measurements taken in Fukushima, Japan as a
demonstration of the ability to map the cesium contamination. To accomplish this, HEMI
was packaged with auxiliary sensors and mounted to a remote control RMAX helicopter
system. The Fukushima imaging environment proved challenging and the analysis of those
issues will be discussed here. A combination of data analysis, lab measurements and simple
simulations were used to enhance the understanding of what was limiting the image perfor-
mance in such an environment. The imaging results shown in this chapter are at the 662
keV line of Cs-137.

6.1 Measurement Challenges

The goal of mapping the contamination in Fukushima, Japan is the localization of hot spots
to aid in the decontamination and monitoring process, which could lead to people being able
to return to currently evacuated regions. Mapping cesium, specifically Cs-137, contamination
in Fukushima is technically challenging for several reasons. The imaging scenario consists
of a relatively constant background cesium level, with concentrated hotspots, likely due to
water flow and rain.

Several measurement campaigns were performed in Namie, an evacuated town in Fuku-
shima prefecture. The chosen location was a riverbed, where hotspot concentrations have
developed due to water flows in this area. These measurements were performed in collabora-
tion with the Japanese Atomic Energy Agency (JAEA) and the University of Tokyo through
Prof. Hiroyuki Takahashi. In these measurements HEMI was packaged with several auxil-
iary sensors and mounted to a remote controlled RMAX helicopter. The auxiliary sensors
included GPS with IMU, visual camera and onboard computer. The riverbed where the
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measurements where taken are depicted in Figure 6.1. This area is of interest because it

Figure 6.1: This picture shows the area where HEMI was flown on a helicopter in May 2014.
The cone indicates a known hotspot several meters out in the grass. The tress in this scene
make the imaging environment challenging because their contamination level is not known.
The river is behind the trees.

contains concentrated hotspots due to the river flow. The orange cone in the picture in-
dicates a known hot spot. The trees in this scene make the imaging task challenging for
several reasons. The contamination level in the trees is not known. Also, HEMI will be
more sensitive to the trees as they are closer to the detector when the helicopter is flying
over them. These measurements proved extremely challenging to reconstruct the ground
source distribution. These challenges lead to the systems imaging analysis described in this
chapter. The accurate reconstruction of the scene is the subject of continuing research and
will need to build o↵ the work described here.

Compton imaging with HEMI in the Fukushima contamination environment proved chal-
lenging for several reasons. The challenges that are specific to the HEMI system include:
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• False coincidences

• Sampling issues

• Mis-sequenced events

• Down scatter events

False coincidences refers to events randomly occurring in the Compton coincidence timing
window and thus creating a random background of events. Sampling issues are related to the
data collected from HEMI, including scattering direction and distribution, as was discussed
in section 2.5. These sampling issues relate to data su�ciency conditions, which are currently
not clear for Compton imaging. Mis-sequenced events are events for which the interactions
are incorrectly sequenced. Down scatter events come from gamma rays that Compton scatter
and deposit part of their energy where this partial energy deposition correlates to another
imaging energy of interest. Specifically for cesium contamination, one example is of the 796
keV line from Cs-134 down-scattering to 662 keV. Each of these issues are discussed further
in the following sections.

6.2 False Coincidences

Random coincidences are a result of the relatively high count rate of the Fukushima envi-
ronment combined with the 1 cm3 cube size of HEMI. The 1 cm size of the detector cubes
broadens the time resolution due to the drift across the length of the detector crystal. This
broadened time resolution means that as the event rate increases, so does the false coinci-
dence rate. These false coincidences then get tagged as Compton coincidence events, which
can create noise in the image.

A similar issue of false coincidences can occur in PET imaging systems. To account for
this issue, a time delayed signal is used to create a false coincidence signal. This is then
subtracted from the true coincidence signal at the data (sinogram) level. This subtraction
changes the Poisson statistics and requires modified reconstruction algorithms [11]. This
compensation approach is possible with PET when the data is processed in bin mode. How-
ever, this technique is not directly applicable to list mode data and thus not easily applied to
Compton imaging. A variation on this technique can be used to analyze the e↵ect of random
coincidences on the image, and to create an image generated from the random events. This
type of analysis is applicable to any Compton imaging scenario where high count rates are
expected, such as proton beam depth verification from prompt gamma rays.

To generate a false coincidence signal for Compton data, several steps are needed. First,
the individual interactions for the whole system are sorted by time. Then a small time o↵set
that is greater than the coincidence window is added to every other event. This time delay
breaks the time coincidence of the true Compton events. However, this will overestimate
the false coincidence rate due to the fact that the true coincidences are also mixed into the
signal. Because the o↵set breaks the true coincidence events, this creates an alternate list
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mode data set that represents the false coincidence signal. This delayed time data is then
resorted by time as it was unsorted due to the o↵set of half the events. A time di↵erence
spectrum is then used to observe the magnitude of the true coincidence and false coincidence.
The false coincidence time spectra can be subtracted from the full signal to estimate the true
event rate. Also, any metric that can be observed for the unprocessed signal can be analyzed
for the delayed signal, for instance the coincidence event energy spectra. Finally, a signal-
to-noise ratio (SNR) can be computed as a comparison between the unprocessed signal and
the delayed signal.

Measurements were taken to demonstrate this e↵ect. First, a low count rate Cs-137
measurement was used as a baseline. This data is from the same measurement that was used
in section 2.5 to show HEMI’s data sampling. From that data, a time coincidence histogram
is shown in Figure 6.2 on the left as the blue line. This plot shows a true coincidence peak

Figure 6.2: On the left, time di↵erence histograms are shown for an unprocessed and a
delayed signal. The plot on the right shows a signal-to-noise ratio (SNR) plot as a function
of time di↵erence. The SNR is computed by the ratio of the unprocessed signal to the delayed
signal. The noise at lower values of the SNR plot is due to the smaller number of events
with those time di↵erence values.

near 1 µs (-6 on the plot due to the log scale) and a large false coincidence peak at a longer
time scale. It also shows an anomaly peak in the middle from electronic cross-talk, which
has been previously documented[13].

To estimate the false coincidence rate, a delayed signal was created with a delay time of
0.1 sec. The time spectra from this delayed signal is also shown in Figure 6.2 on the left
as the green line. The delayed time spectra is then subtracted from the unprocessed data
to estimate the true coincidence rate in the coincidence window. In the random coincidence
region above 1 µs, the subtracted spectra is negative. This is because the delayed signal is
an overestimate of the false coincidences as it also contains the true coincidences. From this
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data, a signal-to-noise ratio (SNR) can be computed as a ratio of the delayed time spectra to
the unprocessed time spectra. This plot is shown in Figure 6.2 on the right. However, these
time di↵erence plots do not tell the full SRN story for imaging because energy cuts are also
applied before computing the image. Thus an energy spectrum can be compared for delayed
coincidence and the unprocessed coincidence events. This energy spectrum comparison is
shown in Figure 6.3 on the left. This plot shows the coincidence energy spectra from the

Figure 6.3: The left plot shows the coincidence spectrum for the unprocessed and delayed
signals. The right plot shows the SNR as a function of energy as computed by the ratio of
the unprocessed coincidence spectra to the delayed spectra. The peak in SNR occurs at the
662 keV peak. There is also an SNR peak at 1461 keV that comes from the K-40 background
in the lab.

unprocessed signal and from the delayed signal. The delayed spectra does not show the 662
keV peak. From these two spectra, a SNR can be computed as a function of total event
energy. This is shown in Figure 6.3 at the right. There is a peak in SNR at 662 keV from
the Cs-137 with a value of 468. Also note that this SNR value is higher than that observed
on the time di↵erence plot, which is reasonable because the time di↵erence SNR is for all
energies. Another property to note about this SNR plot is that in the Compton shelf of 662
keV, which goes up to 477 keV, the SNR is significantly worse. This means that using these
events for energy-image deconvolution could reduce the SNR when compared to only using
photo-peak events.

A second measurement was taken to compare with a high count rate case. For this com-
parison, a 1 mCi source was placed 48 cm in front of HEMI. As the event rate increases, the
location of this false coincidence peak shifts towards shorter times, thus creating noise under
the true coincidence peak. This is shown in the time spectrum plot from this measurement
in Figure 6.4. This time di↵erence spectra shows that the true coincidence peak has been
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Figure 6.4: On the left, time di↵erence histograms are shown for an unprocessed and a
delayed signal. The plot on the right shows a signal-to-noise ratio (SNR) plot as a function
of time di↵erence. The SNR is computed by the ratio of the unprocessed signal to the delayed
signal.

degraded by false coincidences.
As with the low count rate data, a delayed time spectra is used to estimate the true

coincidence rate. The time histogram for this delayed signal is also shown in Figure 6.4 on
the left figure in green. In this high count rate case, the subtracted spectra is noticeably less
than the unprocessed spectra. Again this delayed signal is used to estimate the SNR as a
function of time di↵erence, which is shown in Figure 6.4 on the right. This plot shows the
SNR is degraded compared to the low count rate.

As with the low count rate case, the SNR can be computed as a function of total event
energy for the coincidence events as shown in Figure 6.5. This plot shows the coincidence
spectra on the left, and the SNR as a function of energy on the right. The computation of
SNR as a function of energy for the high count rate case shows that the SNR is degraded
compared to the low count rate. For the high count rate measurement, the SNR at the 662
keV peak is 25 compared to 468 for the low count rate. However, it is not clear exactly how
this will e↵ect the image reconstruction as this degradation of SNR can be spread over the
whole image and is not necessarily correlated to the source position. This can be shown by
reconstructing an image from the delayed signal events.

Accounting for the false coincidence events in the image reconstruction is challenging
given the list mode approach to Compton imaging. An image can be generated from the
delayed, false coincidence events. This image could then be subtracted from the full signal
events, however this would increase the image noise. Thus for lower count rate images where
noise is already an issue, this is not a feasible approach.
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Figure 6.5: The left plot shows the coincidence spectrum for the unprocessed and delayed
signals. The right plot shows the SNR as a function of energy as computed by the ratio of
the unprocessed coincidence spectra to the delayed spectra. The peak in SNR occurs at the
662 keV peak.

6.3 Sampling E↵ect on Imaging

Section 2.5 displayed the sparseness of HEMI’s scattering data sampling. A simplified sim-
ulation was done to isolate the e↵ect of HEMI’s scattering distribution on reconstructing
distributed sources. To test this e↵ect, a simple simulation was performed. In this simu-
lation kinematics are ignored and only the geometry is considered. Thus source points are
photon directions without a specific energy. When a source photon is generated, a random
scattering direction is also generated. These vectors define the cone open angle. The combi-
nation of opening angle and scattering direction creates the simulated data set. The source
used for this idealized simulation is uniform over a limited angular range. The sampled
source distribution is depicted in Figure 6.6.

In the reference case, cones were generated with uniform scattering distributions. These
events were reconstructed using the FBP method described in Ch. 3. These results are
shown in Figures 6.7. Because the reconstruction surface is on a sphere, it can be depicted
in 3-D space. This is shown in Figure 6.8. In this image, the bowl like structure represents
the reconstructed source. The planar structure below that is a reconstruction artifact caused
by the edges of the 3-D grid used for reconstruction. This does not however alter the recon-
structed source because the limits of this 3-D space were far enough from the reconstruction
sphere as to not alter the reconstructed source. If the grid limits are too small, this can
cause biasing in the reconstruction on areas of the sphere that are close to the edge of the
3-D cube.

Now we will observe this reconstruction when HEMI’s data sampling is used. For this
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Figure 6.6: This shows the distribution of the simulated uniform angular distribution. The
poisson noise is clear. The events are binned into angle versus cos(angle) space. This is used
because the cos(angle) space has equal area bins.

Figure 6.7: Uniform angular source reconstructed from uniform scattering angle distribution
using FBP.
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Figure 6.8: This shows a 3-D representation of the uniform source reconstruction. The
bowl-like structure is from the simulated source. The planar structure below it is an artifact
caused by the edges of the 3-D reconstruction grid.

case, the randomly generated scattering directions were sampled from the possible directions
that HEMI can measure. A reconstruction was performed on that data with limited scatter-
ing directions and is shown in Figure 6.9. The reconstructed result from the HEMI scattering

Figure 6.9: Uniform angular source reconstructed from HEMI’s scattering angle distribution
using FBP. This shows the reconstruction bias caused by HEMI’s limited direction sampling.

distribution shows image bias not seen when the uniform scattering directions are used. Ad-
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ditionally, there is some aliasing of the source in the reverse direction that is not present in
the uniform scattering reconstruction. This aliasing creates correlated noise in the image,
which is challenging to overcome. This is one demonstration that the scattering distributions
produced by HEMI are problematic for reconstructing distributed sources. Further e↵ort is
needed to better understand the data su�ciency conditions needed for Compton telescope
data.

6.4 Wavelet De-noising Reconstruction Algorithm

In this chapter thus far, it has been shown that HEMI has sampling issues. Additionally,
Compton imaging measurements are often dominated by Poisson statistics from low count
rate measurements. Thus a reconstruction method is desired that can account for both of
these issues. It has been shown that under certain sampling conditions a function can be
perfectly recovered from sampling less than the Nyqvist sampling rate. [5]. This has lead to
the field of compressive sensing, which has is also especially useful for MRI applications[25].
There are two main requirements to satisfying compressive sensing. First the data must
be sampled in a non-coherent pattern. Second, the desired distribution must have a sparse
representation in some domain. Two popular algorithms to accomplish this are wavelet
de-noising by soft thresholding [9] and total variations methods [36]. Interestingly, both
of these methods were widely used before it was proven that they could exactly recover
information from under-sampled signals. Implementing these methods requires optimizing
a cost function. In the case of MRI, the data is modeled as Gaussian noise and thus least
squares optimization methods are applicable to that imaging modality. However, Compton
imaging is better modeled by Poisson statistics and thus a di↵erent approach is desired.

The wavelet transform is a basis decomposition method. It is similar to the Fourier
transform in that it decomposes a signal into frequency componenets. Wavelets di↵er from
the Fourier transform because the Fourier transform does not retain location information
over the range where the transform is computer. This means that when Fourier filtering
is applied to a signal, an alteration of frequencies is applied over the whole signal. This is
especially consequential at high frequencies where noise and edge information are contained.
Alternatively, wavelets do retain location information of frequencies. This means that they
can preserve edge information in some regions and remove noise in other regions.

Many signals, especially images, have sparse wavelet coe�cients. This sparcity can be
used in the reconstruction method. This is acheived by using the L-1 norm on the wavelet
coe�cients, which enforces sparcity.

The usefulness of using wavelets with Poisson images has been discussed in [40], where
wavelets were applied to photon-limited images. The wavelet transform allows for multi-level
photon counting in the image, which helps reduce the noise of the reconstruction.

It is not clear if HEMI qualifies as a compressive sensing device given that its data
sampling is regular in Cartesian space. However, the data space for reconstruction is actually
projection vectors in 3-D space, which are not regularly spaced. Additionally, HEMI also
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has random missing elements to create the coded mask in the front plane. Given that a
reconstruction method is desired that can account for the Poisson statistics and the under-
sampling of data, a reconstruction scheme was developed to merge the conventional ML-EM
approach with wavelet de-noising. The scheme is as follows:

1. Perform one iteration of ML-EM

2. Perform one iteration of wavelet soft-thresholding

3. Repeat

Wavelet soft thresholding was chosen over total variations because it can accept an image as
input and output a de-noised image, whereas total variation returns a numerical value that
needs to be minimized. This makes wavelet de-noising more computationally compatable
with this method.

One typical approach to image reconstruction is by cost function optimization. Cost
function optimization is formulated as follows:

f
est

= argmin
f

D(g, Af)� �B(f) (6.1)

Where f contains the image values, g is the data, D(g, Af) is a data fidelity term, A is
the projection matrix, B(f) is an image regularization term, and � controls the balance be-
tween regularization and data fidelity. This cost function can then be optimized be iterative
methods. For more information on such methods, see [12]. One typical choice for the data
fidelity term is to use least-squares. However, this implicitly assumes Gaussian noise of the
measurement, which as previously mentioned is not the best model for Compton imaging.
So for the approach described here, D(g, Af) will be treated as the negative Poisson log-
likelihood for emission tomography. The second term encapsulates wavelet denoising, where
B(f) = ||Wf ||1 where Wf is the wavelet transform of the reconstructed image. This is
equivalent to having a Laplacian prior on the wavelet coe�cients. Minimization of this term
is acheived using soft-thresholding.

The approach taken here is to solve the data fidelity term and the image regularization
term as two separate steps. This is achieved by alternating between minimizing each term.
The data fidelity term is solved with the typical ML-EM for emission tomography iteration
equation. The image regularization term is achieved using wavelet de-noising, where � is the
soft thresholding cuto↵ level.

6.5 Rotating Source Measurement

In section 6.3, it was shown how the directional sampling e↵ects the reconstruction of a
uniform distributed source. This section attempts to demonstrate this e↵ect with measure-
ments from HEMI. Creating distributed sources in the lab is very challenging. To emulate
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Figure 6.10: This shows the rotating source measurement setup.

an extended source in the lab, a Cs-137 point source was rotated in front of HEMI as shown
in Figure 6.10. The source was placed at a distance of 22 inches with a rotation radius of
7 inches. The measurement time was 7.7 hours. An energy window with a width of 20 keV
around 662 keV and a lever arm cut of 5 cm was used. This resulted in 100,515 Compton
events for image reconstruction. Klein-Nishina weighting was used and both possible cone
directions were input into the reconstruction algorithm. Incorporating both cone directions
is important to ensure more sampling of the data. At this source distance, the near-field
approximation will cause blurring of the source. However, this was used for comparison with
the FBP algorithm described in Ch. 3.

The data from this extended source was reconstructed using several methods. Figure
6.11 shows the result of reconstructing the source using the FBP method described in Ch.
3. This image shows ringing artifacts that are typical of sampling issues, especially when
high frequencies are missing, as is the case with HEMI.

The data was also reconstructed using standard list-mode ML-EM reconstruction. These
results are shown in Figure 6.12. Interestingly, the ML-EM reconstruction still su↵ers from
ringing present in the FBP reconstruction. The ML-EM reconstruction must be regularized
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Figure 6.11: A rotating source reconstructed using FBP. For this image a lever arm cut of
5.0 cm was used with a Tikhonov value of 0.27.

in some way. In this approach, a Gaussian blurring was used after each iteration computation.
This data was then used in the hybrid wavelet ML-EM algorithm described in the previous

section. The results are shown in Figure 6.13. This hybrid reconstruction has removed the
imaging artifacts without blurring the reconstruction result. For this image a Daubechies 4
wavelet was used. The Haar wavelet, which is essentially a flat top wavelet, was also tested
but tended to produce more artifacts by sometimes revealing the flat top. The wavelet
transform was computed using an open source Python package called pyWavelets[46].

One disadvantage of the wavelet transform is that it is not shift invariant. This can
be accounted for with a technique called cycle spinning. This is accomplished by applying
several random cyclical-shifts to the image and computing wavelet de-noising on each. The
final image is the average of each of these shifted results. This technique fits nicely with
Compton imaging because the image boundaries are repeating due to the image being on
the surface of a sphere. The image in Figure 6.13 used 10 random cycles at each of the 20
iterations of ML-EM.

6.6 Fukushima Results

Several measurements were taken in Fukushima over two measurement campaigns. For the
measurements, HEMI was fitted with auxiliary sensors including a GPS, visual camera and
onboard computer, as described in section 2.4. Reconstructing the data from these measure-
ments proved extremely challenging. This section is intended to display some reconstruction
tasks at a conceptual level and relate that to the challenges discussed thus far.
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Figure 6.12: A circular source reconstructed using ML-EM is shown. 20 iterations were used
with a 0.5 degree Gaussian regularizer.

Figure 6.13: A rotating Cs-137 source reconstruction using wavelet regularized ML-EM
reconstruction is shown. 20 iterations were used with a db4 wavelet and a soft-threshold
value of 2.0.
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Two measurement campaigns were performed in Namie, which is a town in Fukushima
Prefecture, one in August 2013 and one in May 2014. In August 2013, a ground measurement
was taken along with several helicopter flights. The flights from that measurement campaign
will not be discussed here, but the ground measurement will. Data analysis from the 2013
flight was discussed previously [14].

For the ground measurement from August 2013, a hotspot was identified in a bush. The
HEMI system was directed towards this bush in an attempt to image it from a distance.
The hot source location was known, however an entire ground measurement survey was not
performed. The technique described in section 6.4 was used to reconstruct the distribution
of Cs-137 from the 662 keV line. A pair of reconstructed images are shown in Figure 6.14. A

Figure 6.14: A comparison of ground reconstructions from Compton data take of a contam-
inated region is shown. These images are overlays of Compton image reconstructions with
a visual camera image. The di↵erent images represent di↵erent cuto↵ values for the wavelet
soft-thresholding. The image on the right has a higher cuto↵ value, resulting in increased
noise. However, as expected, the contamination does not extend above the horizon in either
image. The image on the left correctly identifies a hot spot that was measured by hand in
a bush. There are 8128 events in this image and a lever arm cut of 2.5 cm was used.

DB4 wavelet was used for this reconstruction. This pair of images compares di↵erent wavelet
soft-thresholding values. The left image shows a prominent hot-spot in the known location
of the hot-spot found in a bush. The right image had a lower soft thresholding value and
thus shows a noisier reconstruction. These images demonstrate how di↵erent thresholding
values can result in structural changes in the image reconstruction. This is di↵erent than
blurring based regularization methods, which create blurrier images as the regularization
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parameter is increased. Further studies are needed in regard to the detection e�cacy of the
wavelet reconstruction method.

Using the same data and reconstruction method, another reconstruction was performed
but with the use of the Haar wavelet and without cycle-spinning. This result is shown in
Figure 6.15. In this reconstruction the square structure of the Haar wavelet is visible. As

Figure 6.15: This shows a ground reconstruction using the wavelet regularized method.
The square structure in the reconstruction is from the use of the Haar wavelet, which is
essentially a flat top. A measured hot source is correctly located, and the di↵used background
contamination is also restricted to the ground regions.

was the previous reconstructions, the hotspot is correctly located. This demonstrates how
the wavelet reconstruction can create anomalies when cycle-spinning is not used.
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6.7 Fukushima Flight Sensor Data Fusion

This section will focus on helicopter flights taken in May 2014. For these measurements,
during whcih HEMI was attached to the helicopter in Fukushima, several flight patterns were
tested, including hover flights and scan flights. The results discussed here will focus on one
of those scan flights, and show some of the challenges of analyzing this data, and relate it to
the observations mentioned previously in this chapter. In several flights, HEMI successfully
collected data continuously for nearly 4 hours, stopping only to refuel the helicopter. This
demonstrates the stability of the HEMI hardware and software, which at times was operating
at temperatures above 40 C as determined by a temperature sensor in the HEMI system.
For the particular scan flight to be discussed here, the flight speed was 1 m/s and the total
measurement time was 21.2 minutes. This measurement time compares favorably to the
several days it takes to perform ground measurements by hand, which is complicated due to
the river and the variety of plants in the region. The ultimate goal of these measurements
is to map, in 3-D dimensions, the cesium contamination. This section describes the steps
towards achieving that goal.

For the flight measurements, HEMI was fitted with a GPS and visual camera. When
merging the data from multiple sensors there is a question of where in the processing pipeline
the data should be fused. First we will look at some of the raw data from this scan flight
measurement. The total count rate for the flight over time is shown in Figure 6.16. The

Figure 6.16: This shows the count rate changing over the time of a helicopter scan flight.
This count rate is integrated over all energies.
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oscilatory nature of the rate measurement during this flight is due to the helicopter passing
over a hot region and a cold region. The cold region is a road where rain can wash away the
cesium. The hot region is the riverbed where the cesium concentrates from water flow.

The time di↵erence spectrum from this measurement is shown in Figure 6.17. The overlap

Figure 6.17: This shows the time di↵erence spectra for a scan flight from Namie, Fukushima.

of the true coincidence peak and false coincidences is worse than observed in the lab. This
figure shows the histogram for the entire flight, but this will actually change over time as
the count rate changes. In particular, this e↵ect is less severe in regions with less cesium
activity and therfore lower count rate.

The energy spectra from coincidence events is shown in Figure 6.18. This spectra shows
three prominent peaks at 605 keV, 662 keV and 796 keV. The 662 keV line is from Cs-
137 and the other two lines are from Cs-134. This spectra displays another challenge with
imaging Cs contamination from this data. The 662 keV line is the most prominent, but also
contains down-scatter events from higher energies. Specifically, higher energy events deposit
a fraction of there energy totaling 662 keV and thus are indistinguishable from actual 662
keV source events.

Having observed some of the raw data, the rest of this section is dedicated to discussions
about the actual data fusion. The GPS data can be used with Google earth data to globally
position the measurements. Google earth provides a smoothed version of the ground plane
that does not include small scale features such as trees or the river bed height. This count
rate data can be merged with GPS data to show the change in Cs count rate over space.
This can then be interpolated and is shown in Figure 6.19. This figure also shows the flight
pattern taken by the helicopter. A river runs through the center of this region. From ground
surveys, the area north of the river was known to have higher activity levels than the area
south of the river. This mapping of coincidence 662 keV count rate roughly correlates with
that knowledge. One approach to improve this mapping would be to perform background
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Figure 6.18: This shows the coincidence event energy spectrum for the scan flight, limited
to only the actual scan region.

subtraction. However, that background subtraction would need to be a function of time
and could increase the noise of this already noisy result. The streaking artifacts in this
data are due to the measurement noise combined with the wide flight paths. The known
location of three hot-spots is indicated by the green dots in this plot. The heat-map does
not correlate very well with these hot spots. This observation lead to the hypothesis that
there was contamination in the trees that was contributing to these heat maps. However, at
this time the exact cause of this discrepancy is not know. This reveals one limitation of this
method of only using GPS data, that it does not take into account the detailed geometry of
the objects below the helicopter, and thus cannot account for the trees being closer to the
measurement system. This will lead to the system being more sensitive to objects that are
closer. This reveals the need to dig deeper into the data streams and try to extract more
fine levels of spatial information.

To accomplish a finer level of accuracy, the visual camera data can be used. Pictures
were take at a rate of 2 Hz and then used to reconstruct the ground. This serves two
purposes, to reconstruct the ground geometry and to position the detector system in the
scene. This position includes a translation and rotation. Using time syncing from the
onboard computer, the Compton coincidence data can then be correlated to a pose estimate
determined from the visual reconstruction. This is useful because of the trees on the ground
have unknown radiation levels. Thus visually reconstructing them could lead to determining
their contamination levels from air measurements. To perform this reconstruction a general
technique of struction from motion (SFM) was used. The ground was reconstructed using a
software package called VisualSFM [49]. The general approach to this visual reconstruction
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Figure 6.19: An interpolated map of Cs-137 activity from the 662 keV coincidence count
rate is shown. The three green dots are from coordinates of known hotspots that were found
by doing ground surveys of this area by hand. The red line is the path the helicopter flew,
as determined by the GPS data.

technique is as follows:

• Find key-points in each image

• Determined which key-points match across di↵erent images

• Compute the transform that relates these images

• After several of these transforms are computed, bundle adjustment is performed to
improve the pose estimates
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This method does not use the GPS as prior information and is very general for an arbitrary
set of images of a scene. This is a sparse reconstruction method that results in a set of 3-D
spatial points, as opposed to a dense reconstruction that would provide triangulated surfaces.
However, for the purpose of correlating the visual data to gamma ray reconstructed data,
this sparse reconstruction is su�cient. The length scale that results from this method is
arbitrary, but the actual scale could be determined by correlating with the GPS data. The
resulting visual reconstruction is shown in Figure 6.20. This picture shows that the visual

Figure 6.20: This shows multiple perspectives of a 3-D visual reconstruction from the images
taken on the helicopter that flew HEMI. The red circles represent the pose estimate for each
camera frame.

reconstruction recovered the tree structures in the scene. This result also demonstrates the
robustness of this reconstruction method because the helicopter was actually causing the
trees to move from the airflow generated from the rotors, so the tree structure was not static
throughout the flight.
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Now that the visual data is available for the gamma-ray emitter reconstruction, we shift
focus to incorporating this data with the Compton scattered data. Similarly to the gamma-
ray reconstruction method used in Ch. 5, a voxelized space is constructed around the visual
point cloud. This voxelized space is then limited to the voxels where visual point clouds are
contained. The back-projection of Compton cones can then be computed in these voxels.
This back-projection is shown in Figures 6.21 and 6.22.

Figure 6.21: This shows a top and bottom view of the merging of Compton cone back-
projection with a visual reconstruction. The spatial units are arbitrary pixel values that
result from VisualSFM. The top down plot on the left shows the path the helicopter flew
where the red lines represent the path. The blue lines around this are individual Compton
scatters used for the reconstruction. The blue regions have lower back-projection levels than
the green regions.

In this back-projection, the road is not as hot as the rest of the region as expected.
However, finite details of the reconstruction do no reveal the known hotspots because the
back-projection has artificially poor resolution. Further studies are needed to accurately
reconstruct the ground from this data. Also, it is not clear what the reconstruction should
produce. This is the case because it is not clear how the reconstruction should match
ground measurements, especially considering that the ground measurements did not include
surveys of the tress. It is also possible that the count rate from this measurement is too
low. Additionally, more research is needed to determine the best methods to account for
all the e↵ects described early in this chapter in the reconstruction method. And thus, as is
often the case in research, these measurements have opened more questions that need to be
answered. But at least those questions are more specific as a result of this work.
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Figure 6.22: This shows a side views of the merging of Compton cone back-projection with
a visual reconstruction.
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Chapter 7

Conclusions and Future Directions

This work demonstrated several advancements for Compton imaging. At the data level,
techniques were shown to analyze the quality of Compton imaging data. More work should
be done to better understand the data su�ciency conditions for Compton imaging. Some
of these analysis techniques are useful for isolating specific issues related to imaging. These
analysis techniques need to be extend so they can be used to improve the image reconstruc-
tion, especially for reconstructing the contamination levels in Fukushima, Japan. Progress
towards this reconstruction was shown, however more future research is needed to better
quantify the limits and capabilities of such an approach.

The importance of data sampling was demonstrated with extended source measurements
with HEMI and CCI2. The wavelet regularized algorithm was detailed that can help deal
with some of sampling issues with HEMI. Future work is needed to further push the limits
of HEMI’s imaging capabilities, especially in complex real-world scenarios.

At the physics level, an algorithm was demonstrated to reconstruct gamma-ray flux
distributions from electron trajectories. Future work related to this algorithm is in testing
the simultaneous imaging of di↵erent source energies. Also, this algorithm should be tested
with di↵erent detection systems, especially gas based systems.

A simplified FBP algorithm was shown that related the Radon transform to Compton
image reconstruction. Further work on this algorithm includes quantifying which weighting
factors have the highest impact on image reconstruction. Also this method can be used to
analyze the noise characteristics of the reconstruction.

Overall, these approaches to Compton imaging are quite varied. As was mentioned in
the first chapter, the ultimate goal of this variety of approaches is to move further towards
the ideal case of 6-D gamma-ray imaging.
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Appendix A

Acronyms

ARM Angular Resolution Measure - A measure of a Compton camera’s resolution. It is
computed by using a point source with a known location.

CCD Charged Coupled Device

CCI2 Compact Compton Imager 2 - A HPGe based Compton Imaging system with visual
auxiliary sensors.

FBP Filtered Back-Projection - In general, an analytic approach to image reconstruction
based on Fourier filtering.

HEMI High E�ciency Multi-mode Imager - A CdZiTe based Compton imaging system.

ML-EM Maximum-Likelihood Expectation-Maximization

PSF Point Spread Function

SFM Structure from Motion

SLAM Simultaneous Localization and Mapping
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