
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
High Precision Control of Indirect Drive Systems Based on End-effector Sensor Information

Permalink
https://escholarship.org/uc/item/4xd2534b

Author
Han, Cheng-Huei

Publication Date
2009
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4xd2534b
https://escholarship.org
http://www.cdlib.org/


High Precision Control of Indirect Drive Systems Based on
End-effector Sensor Information

by

Cheng-Huei Han

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Mechanical Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Masayoshi Tomizuka, Chair
Professor John Karl Hedrick
Professor Claire Tomlin

Fall 2009



High Precision Control of Indirect Drive Systems Based on
End-effector Sensor Information

c⃝ 2009

by Cheng-Huei Han



1

Abstract

High Precision Control of Indirect Drive Systems Based on End-effector Sensor
Information

by

Cheng-Huei Han

Doctor of Philosophy in Engineering-Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

This dissertation emphasizes the use of end-effector sensor information for the
performance enhancement of indirect drive systems for motion control. Indirect
drive systems, unlike direct drive systems, use gear transmission mechanisms in the
chain of links and actuator for the purpose of speed reduction and torque amplifi-
cation. As a result, they are widely used in applications that require high torque
capacity such as robotic applications. The gear transmission mechanisms, however,
introduce compliance and nonlinear properties such as friction and hysteresis to the
system. Moreover, when robots are driven at high speeds to increase productivity
and quality, oscillations on the end-effector often occur caused by the transmission
mechanism. Thus, the use of gear mechanisms brings great challenges to the design
of servo control systems for robot manipulators that requires high precision at high
speed.
To enhance the performance of servo control systems for robot manipulators,

this dissertation first presents a tuning method that automatically finds the servo
gains of fixed structure controllers for a specified trajectory. The current practice
is to tune the controller gains manually, which is a time-consuming task even for
experienced control engineers. An automated gain tuning process saves not only
time but also the labor cost. The tuning method presented in this dissertation finds
the optimal controller gains using real-time nonlinear programming. The controller
gains are tuned and the effectiveness of the tuning method is demonstrated by exper-
iments. The dissertation then presents an adaptive disturbance cancellation scheme
to reduce the oscillations caused by the transmission error from speed reducers. To
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enhance performance of the adaptive scheme while maintaining a good transient
response, two modifications are introduced to the basic compensation structure.
Experimental results confirm the effectiveness of the proposed schemes and the im-
provement in load side performance.
Robots often perform the same task repeatedly in industrial applications and

thus the tracking error becomes repetitive from one run to another. Iterative learn-
ing control is a practical and promising method that reduces the error which repeats
in every cycle. An optimization-based iterative learning controller design for the
purpose of disturbance rejection is proposed in the third part of this dissertation.
It is a model-based design method, where the trade-off between performance and
robustness can be handled. Two iterative learning controllers based on different sen-
sor information are designed and compared. Due to the lack of load side position
measurements, a load side position estimation algorithm based on Kalman filtering
is proposed. The experimental results are presented to confirm the effectiveness of
the estimation scheme and the benefits of applying learning controllers for rejecting
load side vibrations.
Experiments of the research issues mentioned above are performed on a single

axis test stand. As the first step to generalize the control algorithms developed in
this dissertation to actual multi-degree-of-freedom robots, system identification of
the FANUC M-16iB robot is presented in the last part of this dissertation.

————————————————-
Professor Masayoshi Tomizuka
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Background

A robot manipulator is a reprogrammable, multifunctional manipulator which is
designed to move materials, parts, tools, or specialized devices through variable
programmed motions [16]. The robot manipulator (e.g. FANUC M-16iB robot)
can be divided into two sections: (1) an arm-and-body, which consists of three
joints connected by large links, and (2) a wrist, consisting of two or three compact
joints. Attached to the wrist can be a gripper to grasp a work part or a tool (e.g.,
a spot-welding gun) to perform operations. The two manipulator sections have
different functions: the arm-and-body is used to move and position parts or tools
in the robot’s work space, while the wrist is used to orient the parts or tools at the
work location. The robot manipulator is composed of a sequence of link and joint
combinations. The actuator at a joint and a link makes a drive train. One drive
train may be connected to another drive train or an end-effecter. Drive trains are
direct if the actuator is directly coupled to the link (load). Similarly, those that use
gear transmission mechanisms are called indirect drive trains.
Introduction of low speed high torque motors has made direct drive robots pos-

sible. The biggest advantage of using direct drive trains in robots is the elimination
of gear reduction mechanisms, which makes the system much more rigid and thus
more desirable from the motion control point of view. Also, joint friction caused
mostly by transmission mechanisms can be eliminated. However, without gear re-
duction, a direct drive motor needs to provide 𝑁 times large torque than an indirect
drive motor, given the same payload. Given the present actuator technology, direct
drive motors can be massive and their locations must be carefully selected. For a
multi-link manipulator, the increase in mass of links farther away from the base of
the robot generally results in a significant increase in required link rigidity. This is
usually accompanied by increase in the size and mass of the arm-and-body links.
Indirect drive trains, different from direct drive trains, use gear transmission
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mechanisms for the purpose of speed reduction and torque amplification. Harmonic
drives and rotor vector (RV) reducers are popular choices for the mechanism. They
permit the use of low-torque high-speed motors, which are much smaller in size than
direct drive motors. Relatively small motors are adequate because the gears reduce
velocities and amplify torques. Moreover, the reducer is designed such that several
teeth are engaged at any given time hence making backlash negligible. As a result,
they are ideal in applications requiring precision positioning such as semiconductor
manufacturing industries.
An indirect drive train, using a harmonic drive/RV reducer in particular, in

spite of the advantages as stated above, has several disadvantages. The reducers in
indirect drive trains introduce compliance, and nonlinear properties such as friction
and hysteresis to the system. Moreover, the servo controllers of indirect drive robot
manipulators in most industrial applications utilize position measurement on the
motor side, while the system performance is evaluated by the load side information
(e.g. the position of the end-effector). Since good motor side performance does
not necessarily mean good load side (end-effector) performance, load side sensing
information becomes essential to improve the load side performance in indirect drive
train systems.
Precise load side position measurements are usually not available for industrial

robots due to cost and assembly issues. Although the use of vision sensors is a
promising choice to obtain the end-effector position information, the slow sampling
rate of the vision system may limit the achievable performance. Thus, low-cost
micro-electro-mechanical systems (MEMS) sensors, such as MEMS gyroscopes and
accelerometers, are popular choices for motion control applications. Notice that
when choosing sensors, the feasibility of sensor installation needs to be considered.
The MEMS gyroscopes/accelerometers are small and easy to mount on the load
side (end-effector) of robot manipulators without modifying the drive trains.
The ultimate goal of control engineers today is to design high-performance servo

systems for these drive trains in a cost effective and timely manner. To achieve this
goal and to respond to increasingly stringent performance requirements, the mecha-
tronics approach is more emphasized [59], which considers mechanical hardware,
sensing and actuation devices, and servo software as a whole. In this dissertation,
the load side acceleration information is used extensively in the control algorithms
to improve efficiently and effectively the performance of robot manipulators .
The remainder of this chapter is organized as follows. Section 1.2 states the

motivation and contribution of this dissertation, and Section 1.3 provides the outline
of the dissertation.
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1.2 Motivation and Contribution

1.2.1 Sensor-based Controller Tuning of Indirect Drive Trains

Robot dynamics can vary substantially from one configuration to another. While it
is possible to design a controller that stabilizes a robot over the whole workspace,
it is very difficult to find a controller that guarantees good performance at every
configuration in the presence of system uncertainties. Fortunately, in most of in-
dustrial applications the desired trajectories are normally known in advance, and
robots are programmed to follow the trajectories repeatedly. Hence, it makes sense
to tune controllers specially for the given trajectories. The current practice is to
tune the controller gains manually. An experienced control engineer is required to
tune/optimize the controller gains for the given trajectories. Since the manual tun-
ing of controllers is very time-consuming, it is desirable to automate the controller
gain tuning process.
Various automated tuning methods have been studied for this purpose. The

unfalsified control [55] is a tuning method that uses input-output responses of a
feedback system excited by sinusoidal inputs at many frequencies in order to select
appropriate controller parameters among a set of predefined parameter candidates.
The iterative feedback tuning (IFT) is a gain tuning method that updates the
controller gains to minimize a certain cost function iteratively [31]. Extremum
seeking control (ESC) was used in [37] to tune proportional-integral-derivative (PID)
controllers by minimizing a cost function that characterizes the desired behavior of
the closed-loop system. The development of automatic gain tuning methods not
only reduce the time and cost in robot industries but also enables end users to
specify different trajectories for their own specific applications without the presence
of a control engineer. This provides them with more flexibility in utilizing the robot.
In this dissertation, a real-time nonlinear programming (RTNLP) method is

applied to an indirect drive system for the tuning of feedback and feedforward con-
trollers. The RTNLP method tunes controller gains by minimizing any convex cost
function that characterizes the desired behavior of the closed-loop system. There-
fore, for the robot system including flexibilities introduced by the harmonic reducer,
both the load side and motor side information can be included in the cost function
to reflect the desired performance attributes without extra effort. The controller
tuning process by the RTNLP method is completely automated. The feedback,
feedforward and state feedback controller gains are tuned and compared with the
iterative feedback tuning method. The improvement of the load side performance
using the tuned controller parameters is also demonstrated experimentally.
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1.2.2 Suppression of Oscillations for Indirect drive Robots

using Joint Sensing Information

The performance requirements for industrial robots are becoming more and more
stringent. Modern robot manipulators are operated under high speed and high ac-
curacy conditions to increase productivity and quality. When robots are driven in a
high speed manner, oscillations and vibrations often occur. Such oscillations and vi-
brations usually depend on the direction and speed of robot motion, and are mostly
caused by transmission mechanisms, such as harmonic drives, used in each joint
axis of the robot. Although the harmonic drive gear offers many advantages such
as compact design, low weight, high speed reduction ratios, and near-zero backlash,
it introduces nonlinear characteristics including transmission error, flexibility, and
hysteresis [50, 61] into the drive trains.
Among the nonlinear characteristics mentioned above, transmission error is of

foremost concern for precision positioning applications. The transmission error is
defined as the deviation between the expected output position and the actual output
position of a harmonic drive. It introduces an inaccuracy into the kinematics chain
and thus causes a positioning error on the output of the gear. In many applications,
the positioning error itself is not significant, but its influence on speed variation is
critical. A transmission error causes a speed ripple on the gear output shaft, even
at a constant rotation speed of the input shaft. These vibrations become dominant
when the frequency of the error coincides with the resonant frequency of the control
system. Speed fluctuations are largely amplified in such cases and often exceed
allowable levels for vibrations[60, 69]. Thus reducing transmission error is important
for precision tracking and performance.
To compensate for the transmission error, several control methods have been

proposed in literature [18, 20, 28]. Gandhi and Ghorbel [18] proposed nonlinear
control algorithms for the compensation of the transmission error in set point and
trajectory tracking with harmonic drives. Hirabayashi et al. [28] proposed a method
where the controller senses speed ripples through a high resolution encoder and
modifies the speed command to the driving motor. Godler et al. [20] applied
repetitive control for reducing speed ripples in a harmonic drive system.
Among the different approaches, motor side information (e.g., the motor an-

gle measured by an encoder) is widely used for the feedback control loop. These
methods are shown to be effective to some degree. Velocity fluctuation due to the
transmission error, however, is most significant on the load side and feedback con-
trol cannot effectively reduce the vibrations on the load side by using only motor
side information, since it is often unobservable from the motor side. It is important
to develop control algorithms that utilize information on the load side to achieve
smooth robot motion free from oscillations.
In this dissertation, an adaptive cancellation algorithm is presented to suppress
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the vibration phenomena caused by the transmission error of harmonic drives. The
transmission error effect is modeled and an analysis scheme that considers the trans-
mission error effect as a disturbance input to the system is constructed. To effec-
tively deal with the oscillations on the load side, load side acceleration information
is used in the adaptation laws. Two modifications are proposed to enhance the per-
formance of the algorithm. The effectiveness of the proposed methods, especially
on the load side performance, is demonstrated by experiments.

1.2.3 Iterative Learning Control for Indirect Drive Trains

In industrial applications, robots normally follow a trajectory repeatedly. If the
repeatability of the robot is good, the trajectory tracking error will become repetitive
from one run to another. Iterative learning control (ILC) has been extensively used
in control of systems that execute the same task repeatedly. It is a well-established
method of control for repetitive processes. Some examples of applying iterative
learning control on robot manipulators can be found in [1, 33, 43].
In many learning control applications, the sensor measurement used in the learn-

ing controller is the same as that used in the stabilizing feedback controller. For
example, in applying iterative learning control to drive trains, the conventional ap-
proach [1, 36, 49] is to utilize the motor side measurements neglecting any effects
caused by the gear between the motor and the load. In reality, however, there are
always mechanical flexibilities in both joints and links. Moreover, the performance
of the drive train system is often evaluated by the load side position. If the load
side sensor information is available, it is desirable to use load side measurements in
the learning controller to directly compensate for the effects of the gear nonlinear-
ities and other disturbances to improve load side tracking performance. Different
iterative learning control ideas [43, 64] applied to flexible mechanical systems have
been studied previously assuming that the load side position can be measured. The
precise load side position measurement, however, is often not available. Although
vision sensors are often used to provide precise load side (end-effector) position,
achievable performance by using vision sensors may be limited due to the slow sam-
pling rate of the vision system. Notice that iterative learning control is in general
considered to be an approach for the purpose of trajectory tracking in the literature
[4, 45]. In this dissertation, the learning controller design problem that emphasizes
on the purpose of disturbance rejection using the load side acceleration information
is presented.
In this dissertation, an optimization-based iterative learning controller scheme

for the purpose of disturbance rejection is proposed. This is a systematic and model-
based design method, where the trade-off between performance and robustness can
be handled. Two iterative learning controllers based on different sensor information
are designed and compared. A load side position estimation algorithm based on



6

Kalman filtering using load side acceleration and motor side position is proposed
to provide the load side position estimates in the load side learning controller. The
convergence property and the benefits of applying learning controllers for rejecting
load side vibrations are confirmed by experiments.

1.2.4 Identification of Dynamics of a Robot Manipulator

Experiments in Section 1.2.1 ∼ 1.2.3 are performed on a single-joint indirect drive
test stand. The ultimate goal of this research is to generalize the algorithms tested
for the single-input-single-output (SISO) test stand to the multi-input-multi-output
(MIMO) industrial robots (e.g. FANUC M-16iB robot). An accurate model of the
robot dynamics is an essential prerequisite for this goal. An accurate model obtained
from system identification is important not only for the controller design, but also
for the development of better or new functionalities, such as collision detection,
sensorless force control for assembly, and sensorless lead through teaching. System
identification also provides an opportunity to gauge the hardware and software
capability prior to controller implementation. Therefore, it is important to perform
system identification to obtain the estimates for the system parameters.
Robot manipulators, however, are highly nonlinear, coupled multivariable con-

trol systems. Unfortunately, the typical SISO system identification approach does
not incorporate this coupling effect. Consequently, SISO system identification if
often not sufficient to capture the complex dynamics of robot manipulators. As
a result, complementary methods such as gain scheduling method, automatic gain
tuning method, and adaptive control method are usually applied to improve system
performance. If the multi-dimensional system model is identified precisely, it is ex-
pected that a multivariable controller can be designed to give better performance
over the whole workspace. In addition, it will enable more realistic simulations to
evaluate control performance before experiments.
In this dissertation, several aspects of system identification of the FANUC M-

16iB robot are presented. First, the SISO identification approach is explained. For
the SISO system identification, both closed and open loop techniques are used. The
experiments are performed and the results along with the data processing procedure
are discussed. The identified parameter values and frequency characteristics are
documented so that they can be used in the simulation and servo controller design
of the robot. Next, the approach, experiment and data processing procedure for the
MIMO system identification are proposed. Even though only preliminary MIMO
system identification results are shown, the results demonstrate the effectiveness of
the identification approach and can be continued in future research.
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1.3 Outline

The remainder of this dissertation is organized as follows. Chapter 2 introduces the
model and characteristics of the indirect drive train system. The single-joint indirect
drive experimental setup available in the Mechanical Systems Control Laboratory
at the University of California, Berkeley is also introduced. In Chapter 3, the sensor
based controller gain tuning method using real-time nonlinear programming is pre-
sented. The method is used to tune the feedforward, feedback and state feedback
controller gains. The algorithm is shown to be not only an online, model-free iter-
ative tuning method, but also capable of optimizing the controller parameters for
nonlinear systems with multivariable nonlinear controllers. In Chapter 4, an adap-
tive disturbance cancellation scheme and its modifications are proposed and utilized
to suppress the oscillations caused by transmission error. The load side acceleration
feedback is used in the adaptation algorithms in order to further minimize the load
side vibrations. Chapter 5 presents the design of the iterative learning controller
particularly for suppressing load side vibrations in indirect drive trains. A load side
position estimation algorithm is proposed based on the load side acceleration and
motor side encoder information. Chapter 6 first discusses in detail the SISO system
identification of robot dynamics and results. The discussion then extends to MIMO
system identification and the MIMO system identification results for the robot at
zero position is presented. Finally, conclusions are provided in Chapter 7
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Chapter 2

Indirect Drive Train System

2.1 Introduction

From the point of view of the gear reduction mechanism, robots that use an actu-
ator that is directly coupled to the load (link) are called direct drive robots. On
the other hand, those that use gear reduction mechanisms are called indirect drive
robots. The use of a compact gear reduction mechanism results in a robot with a
relatively small actuation unit that can drive a relatively large payload. The har-
monic drive and rotary vector (RV) reducer are two popular choices for the gear
reduction unit. They are compact and may achieve a very high gear reduction ra-
tio. This provides several advantages compared to other indirect drive transmission
mechanisms such as planetary and spur gears. An indirect drive robot, however, has
several disadvantages such as joint compliance, actuator saturation, and harmonic
drive nonlinearities. These effects bring challenges to the servo controller design
of the indirect drive robot. This chapter describes the experimental setup and the
model of a single-joint indirect drive unit used for analysis, controller design, and
experiments in the following chapters. Section 2.2 explains the experimental setup
and Section 2.3 presents the mathematical model of the single-joint indirect drive
train. The indirect drive train characteristics are provided in Section 2.4.

2.2 Single-Joint Indirect Drive Train Experimen-

tal Setup

The indirect drive train experimental setup available in the Mechanical Systems
Control Laboratory at the University of California, Berkeley is shown in Figure 2.1.
This single joint setup consists of: 1) a servo motor with a 20, 000 counts/revolution
encoder, 2) a harmonic drive with a 80:1 gear ratio, 3) a load-side 144, 000 counts
/revolution encoder, 4) and a payload. Notice that if the link as shown in the figure
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Figure 2.1: Single-joint indirect drive train experimental setup

is rigid, the load side rotary encoder provides perfect knowledge of the payload
position. Since in most cases the payload position is not available, it is assumed
that the load side rotary encoder measures the payload position.
Besides the encoder, two accelerometers (Kistler, Type: 8330A3) are installed

at the ends of the payload symmetrically as shown in Figure 2.2. The accelerom-
eters are arranged to compensate for the effects of gravity on the accelerometer
measurements. This configuration has the following relationship from the linear
acceleration measurements, 𝑎𝑐𝑐1 and 𝑎𝑐𝑐2, to the load side angular acceleration, 𝜃ℓ,
and the gravity, 𝑔

𝑎1 = 𝑅𝑎𝜃ℓ + 𝑔 cos 𝜃ℓ

𝑎2 = 𝑅𝑎𝜃ℓ − 𝑔 cos 𝜃ℓ (2.1)

where 𝑅𝑎 is the distance from the rotation axis to the accelerometer location, and
𝜃ℓ is the angle of the payload from the horizontal position. It is not necessary to
measure the angle 𝜃ℓ, since the angular acceleration 𝜃ℓ can be obtained as

𝜃ℓ =
𝑎1 + 𝑎2
2𝑅𝑎

(2.2)

which is independent of any gravity effects.
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Figure 2.2: Accelerometer installation [68]

The controller for research is implemented in a LabVIEW real-time target in-
stalled with LabVIEW real-time and FPGA modules. The sampling rate is selected
to be 1 kHz for all the implementation of studies on this setup.

2.3 Single-Joint Indirect Drive Model

The schematic of the single-joint indirect drive train for the experimental setup in
Figure 2.1 is shown in Figure 2.3. In the figure, 𝐽𝑚 and 𝐽ℓ represent the motor
side and the load side inertia, respectively. 𝑑𝑚, 𝑑𝑗 and 𝑑ℓ are respectively the motor
side, the joint, and the load side damping. 𝑘𝑗 is the coefficient of joint stiffness. 𝜃𝑚
and 𝜃ℓ represent the motor side and load side position, respectively. 𝑁 is the gear
reduction ratio, and 𝑢 is the control input which is the motor torque in this case.
𝑓𝑚, 𝑓ℓ, and 𝑓ℎ represent the nonlinear friction forces at the motor side, the load
side, and the reducer, respectively.
Note that while the actual robot joint is inherently nonlinear, a good linear

approximation can still preserve satisfactory performance if the nonlinear elements
are negligible or the linear parts are of most interest. Additionally, linear model
allows the use of various linear analysis and controller synthesis methods. The linear
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Figure 2.3: Single-joint indirect drive train

model of the indirect drive train in Figure 2.3 can be represented as

𝐽𝑚𝜃𝑚 + 𝑑𝑚𝜃𝑚 = − 1

𝑁

[
𝑘𝑗

(
𝜃𝑚
𝑁

− 𝜃ℓ
)
+ 𝑑𝑗

(
𝜃𝑚
𝑁

− 𝜃ℓ
)]

+ 𝑢 (2.3)

𝐽ℓ𝜃ℓ + 𝑑ℓ𝜃̇ℓ = 𝑘𝑗

(
𝜃𝑚
𝑁

− 𝜃ℓ
)
+ 𝑑𝑗

(
𝜃̇𝑚
𝑁

− 𝜃̇ℓ
)

Note that 𝜃𝑚 and 𝜃ℓ are coupled in both equations. The state-space formulation of
(2.3) can be written as

𝑥̇ = A𝑥+B𝑢 (2.4)

where

𝑥 = [𝜃𝑚 𝜃𝑚 𝜃ℓ 𝜃ℓ]
T

A =

⎡
⎢⎢⎢⎣

0 1 0 0
−𝑘𝑗
𝑁2𝐽𝑚

−𝑑𝑚+𝑑𝑗/𝑁
2

𝐽𝑚

𝑘𝑗
𝑁𝐽𝑚

𝑑𝑗
𝑁𝐽𝑚

0 0 0 1
𝑘𝑗
𝑁𝐽ℓ

𝑑𝑗
𝑁𝐽ℓ

−𝑘𝑗
𝐽ℓ

−𝑑𝑗+𝑑ℓ
𝐽ℓ

⎤
⎥⎥⎥⎦

B =
[
0 1

𝐽𝑚
0 0

]T
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Figure 2.4: Magnitude of the frequency response of the single-joint indirect drive
setup

2.4 Model Characteristics

From (2.3), the transfer functions from the torque input to the motor side velocity
and the load side acceleration can be found as:

𝜃𝑚(𝑠)

𝑢(𝑠)
=

𝐽ℓ𝑠
2 + (𝑑𝑗 + 𝑑ℓ) 𝑠+ 𝑘𝑗

𝐽𝑚𝐽ℓ𝑠3 + 𝐽𝑑𝑠2 + 𝐽𝑘𝑠+ 𝑘𝑗
(
𝑑𝑚 +

𝑑ℓ
𝑁2

) (2.5)

𝜃ℓ(𝑠)

𝑢(𝑠)
=

𝑑𝑗𝑠
2 + 𝑘𝑗𝑠

𝑁
[
𝐽𝑚𝐽ℓ𝑠3 + 𝐽𝑑𝑠2 + 𝐽𝑘𝑠+ 𝑘𝑗

(
𝑑𝑚 +

𝑑ℓ
𝑁2

)] (2.6)

where

𝐽𝑑 = 𝐽𝑚 (𝑑𝑗 + 𝑑ℓ) + 𝐽ℓ

(
𝑑𝑗
𝑁2

+ 𝑑𝑚

)
𝐽𝑘 = 𝐽𝑚𝑘𝑗 +

𝐽ℓ𝑘𝑗
𝑁2

+ (𝑑𝑗 + 𝑑ℓ) 𝑑𝑚 +
𝑑𝑗𝑑ℓ
𝑁2

Figure 2.4(a) and 2.4(b) show the frequency responses of (2.5) and (2.6), re-
spectively. Note that the system identification of the experimental setup in Figure
2.1 was performed previously and the identified system parameters are shown in
Table 2.1. It can be seen from Figure 2.4(a) that the anti-resonant and resonant
frequencies of the experimental setup are approximately 11Hz and 19Hz, respec-
tively.
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Table 2.1: Identified parameters for the single-joint robot
Variable Value Units

Motor side inertia , 𝐽𝑚 5.313× 10−4 Nms2

Load side inertia, 𝐽ℓ 6.8 Nms2

Joint stiffness, 𝑘𝑗 31000 Nm/rad
Joint damping, 𝑑𝑗 47 Nms

Motor side damping, 𝑑𝑚 5× 10−4 Nms
Load side damping, 𝑑ℓ 0 Nms

Gear ratio, 𝑁 80 -

Friction effect

Control of indirect drive train is challenging in servo control problems not only due
to joint compliance but also nonlinearities such as friction and torque hysteresis. In
the system shown in Figure 2.3, the energy is dissipated mainly by three friction
forces: the motor bearing friction, 𝑓𝑚, the load output bearing friction, 𝑓ℓ, and the
gear meshing friction, 𝑓ℎ. In most cases, the gear meshing friction 𝑓ℎ is dominant
[57] and the load side friction, 𝑓ℓ, which is often neglected, is smaller compared to
the motor side one. Limit cycles, however, may be caused by load side Coulomb
friction in standard industrial robots [39]. Furthermore, the load side friction can
be more problematic in the sense that the control effort from the motor can only
be transmitted through the flexible joint mechanism. This makes the compensation
of the load side friction more difficult than that of the motor side friction. It is
important to consider all three friction forces while modeling the system with the
consideration of friction.
The combination of system model with friction effect can be written as [9]

𝐽𝑚𝜃𝑚 = − 1

𝑁

[
𝑘𝑗

(
𝜃𝑚
𝑁

− 𝜃ℓ
)
+ 𝑑𝑗

(
𝜃̇𝑚
𝑁

− 𝜃̇ℓ
)]

+ 𝑢− (𝑓𝑚 + 𝑓ℎ) (2.7)

𝐽ℓ𝜃ℓ = 𝑘𝑗

(
𝜃𝑚
𝑁

− 𝜃ℓ
)
+ 𝑑𝑗

(
𝜃𝑚
𝑁

− 𝜃ℓ
)

− 𝑓ℓ

Equation (2.7) gives

𝐽𝑚𝜃𝑚 +
1

𝑁
𝐽ℓ𝜃ℓ = 𝑢− 𝐹 (2.8)

𝐹 = 𝑓𝑚 + 𝑓ℎ +
𝑓ℓ
𝑁

To describe the friction effects, the Lund-Grenoble (LuGre) model [8] is often
used. For the single-joint indirect drive setup, the static friction can be modeled by
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Figure 2.5: Static friction identification result

Table 2.2: The identified friction parameters (SI Units)

𝐹𝑐 𝐹𝑠 𝑣𝑠 𝜎2
0.1004 0.1075 3.951 0.001114

simplifying the LuGre model as

𝐹
(
𝜃̇𝑚

)
=
[
𝐹𝑐 + (𝐹𝑠 − 𝐹𝑐) 𝑒(−𝜃̇2𝑚/𝑣2𝑠)

]
sgn
(
𝜃𝑚

)
+ 𝜎2𝜃̇𝑚 (2.9)

where 𝜎2 represents the macro-damping of the velocity 𝜃𝑚. 𝐹𝐶 and 𝐹𝑆 are the
levels of Coulomb friction and stiction forces. 𝑣𝑠 is the Stribeck velocity. The static
velocity-torque (friction force) characteristic for the single-joint experimental setup
is shown in Figure 2.5.
Each point in Figure 2.5 is obtained by keeping the motor side velocity con-

stant for the same amount of distance in a closed-loop manner. The experiment is
repeated at various velocities for the same path to obtain the whole static velocity-
torque map. The nonlinear least squares method in the Optimization Toolbox of
MATLAB is applied to obtain the static friction parameters, 𝐹𝐶 , 𝐹𝑆, 𝑣𝑠, and 𝜎2.
The identified values are listed in Table 2.2.
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2.4.1 Summary

In this chapter, a detailed description of the single-joint indirect drive train ex-
perimental setup was presented. The two-inertia mathematical model for the ex-
perimental setup was then constructed and the model characteristic including the
friction effect was discussed. The single-joint indirect drive model is used exten-
sively in this dissertation for controller design and analysis purposes. Moreover,
the single-joint indirect drive setup is used for the experimental verification of the
proposed control algorithms throughout the dissertation.
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Chapter 3

Sensor-based Controller Tuning of
Robot Manipulators by Real-time
Optimization

3.1 Introduction

In industrial motion control systems, the structure of control algorithms is often
fixed, and thus the performance is optimized by tuning the controller gains. The
manual tuning of controllers is a time-consuming task especially when it is required
to optimize many parameters. To address this difficulty, much effort has been in-
vested in developing systematic tuning methods. Optimal control theories such as
linear quadratic control and 𝐻∞ control usually provide appropriate controller gains
for a given system and a cost function. In [14], the 𝐻∞ approach was used to deter-
mine the controller gains. The model parameters and the uncertainty bounds are
identified by the dual Youla parameterization, and the controller gains are deter-
mined based on 𝜇-synthesis. This method is attractive due to guaranteed robust-
ness. It is, however, computationally demanding, and the performance in practice
may not be necessarily optimal, since it only deals with the worst case situation.
Moreover, the theoretical values of controller gains obtained from optimal control
theories may not result in the desired performance in practice due to unmodeled
and/or uncertain properties of actual systems. In such cases, the controller gains
need to be further tuned by experiments to refine the performance.
Various model-free experimental tuning methods have been studied to obtain

appropriate controller gains [30, 37, 55]. The unfalsified control [55] is a tuning
method that uses input-output responses of a feedback system excited by sinusoidal
inputs for many frequencies to select appropriate controller parameters among a
set of predefined parameter candidates. An adaptive algorithm is used to update
the controller parameters when the controller falsifies a given criterion. Unfalsified
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control for an infinite set of proportional-integral-derivative (PID) controllers has
been developed. This approach requires a carefully chosen input signal, which is a
practical difficulty.
Another example of model-free controller tuning method is iterative feedback

tuning (IFT) [30, 32, 68]. The IFT method optimizes the controller gains based
on the experimental data and updates the controller gains to minimize a certain
cost function iteratively in a closed-loop setting [31]. It has been applied to various
applications [22, 24, 68]. In [24] and [68], the IFT method was applied to a two-
mass-spring system. In [24], it is assumed that the load-side position measurement
is available for feedback control, and in [68], the load-side acceleration information
was used for tuning of the motor loop feedback controller.
The IFT method is particularly attractive when the system is linear and the per-

formance index is quadratic. In such cases, the gradient estimate of the performance
index, which is required to optimize the parameters can be obtained by calculations
using data from a set of additional experiments, i.e. gradient experiments. After
the gradient estimate is computed, the controller gains are updated. Although the
IFT technique can be applied to multi-variable non-linear systems, the derivation
and design of the gradient experiments may be very complicated.
In this chapter, the controller gains are optimized based on real-time nonlinear

programming (RTNLP) by perturbing the controller gains [40]. The method es-
timates the gradient by perturbation in real-time. Since the gradient estimate is
obtained while the controller gains are updated, it does not require the design or
the execution of any additional experiment for obtaining the gradient. Moreover,
the cost function can be an arbitrary convex function. Notice that any non-convex
function can be converted into the convex form by utilizing certain functions, such
as barrier functions [2]. Therefore, the RTNLP algorithm is not only an on-line,
model-free iterative tuning method, but it is also capable of optimizing the con-
troller parameters for non-linear systems with multi-variable non-linear controllers.
In this chapter, the RTNLP method is implemented in the discrete-time domain
on the single-joint indirect drive train unit described in Section 2.2. To deal with
the joint compliance in indirect drive systems, the load side sensor information as
well as the motor side information are included in the performance index during the
tuning process to achieve better performance on the load side. More specifically,
the load side acceleration information is utilized because the MEMS accelerometers
nowadays are small and easy to mount and the acceleration signal directly reflects
the vibrations on the load side.
The remainder of this chapter is organized as follows. Section 3.2 provides the

model and the controller structure of the single-joint indirect drive train system.
The controller tuning methodology based on the sensor measurements is presented
in Section 3.3 and the experimental results are shown in Section 3.4. The tuning of
the state feedback controller is presented in Section 3.5 and finally conclusions are
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Figure 3.1: Block diagram of the control system

given in Section 3.6.

3.2 Single-Joint Indirect Drive Train System

3.2.1 Model

The dynamic equations of the single-joint indirect drive train were expressed by
(2.3)

𝐽ℓ𝜃ℓ + 𝑑ℓ𝜃ℓ = 𝑘𝑗

(
𝜃𝑚
𝑁

− 𝜃ℓ
)
+ 𝑑𝑗

(
𝜃𝑚
𝑁

− 𝜃ℓ
)

𝐽𝑚𝜃𝑚 + 𝑑𝑚𝜃̇𝑚 = 𝑢− 1

𝑁

[
𝑘𝑗

(
𝜃𝑚
𝑁

− 𝜃ℓ
)
+ 𝑑𝑗

(
𝜃̇𝑚
𝑁

− 𝜃ℓ
)]

3.2.2 Controller Structure

Figure 3.1 shows the servo controller structure for the robot system (2.3). It con-
sists of two feedforward controllers, 𝐶𝑓𝑓1 and 𝐶𝑓𝑓2, and a motor position feedback
controller, 𝐶. 𝜃𝑚𝑑 and 𝜃ℓ𝑑 represent the desired motor side and load side trajectory,
respectively.
Assuming that the joint damping, 𝑑𝑗, is negligible in (2.3), the desired motor

side position, 𝜃𝑚𝑑(𝑡), and the control input, 𝑢(𝑡), can be determined such that the
system dynamics is compensated, i.e.

𝜃𝑚𝑑(𝑡) = 𝑁𝜃ℓ𝑑(𝑡) +
𝑁

𝑘𝑗
(𝐽ℓ𝜃ℓ𝑑(𝑡) + 𝑑ℓ𝜃̇ℓ𝑑(𝑡)) (3.1)

𝑢𝑓𝑓(𝑡) = 𝐽𝑚𝜃𝑚𝑑(𝑡) + 𝑑𝑚𝜃𝑚𝑑(𝑡) +
1

𝑁
(𝐽ℓ𝜃ℓ𝑑(𝑡) + 𝑑ℓ𝜃ℓ𝑑(𝑡)) (3.2)
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_ _

+

Figure 3.2: Block diagram of the feedback controller

Notice that (3.3) and (3.2) result in two feedforward controllers, i.e.

𝐶𝑓𝑓1(𝑠) =
𝑁

𝑘𝑗
[𝑘𝑗 + 𝑑ℓ𝑠+ 𝐽ℓ𝑠

2]

= 𝑁 +𝐾𝑓1𝑠+𝐾𝑓2𝑠
2 (3.3)

𝐶𝑓𝑓2(𝑠) =
𝑁

𝑘𝑗
[(𝑘𝑗𝑑𝑚 +

𝑘𝑗
𝑁2
𝑑ℓ)𝑠+ (𝐽𝑚𝑘𝑗 + 𝑑𝑚𝑑ℓ +

𝑘𝑗
𝑁2
𝐽ℓ)𝑠

2

+(𝐽ℓ𝑑𝑚 + 𝐽𝑚𝑑ℓ)𝑠
3 + 𝐽𝑚𝐽ℓ𝑠

4]

= 𝐾𝑓3𝑠+𝐾𝑓4𝑠
2 +𝐾𝑓5𝑠

3 +𝐾𝑓6𝑠
4 (3.4)

where 𝐶𝑓𝑓1(𝑠) and 𝐶𝑓𝑓2(𝑠) are the transfer functions from the load side reference,
𝜃ℓ𝑑(𝑡), to the motor side trajectory, 𝜃𝑚𝑑(𝑡), and to the control input, 𝑢(𝑡), respec-
tively. Note that 𝑠4 term is included in 𝐶𝑓𝑓2(𝑠), which requires the fourth derivative
of the trajectory. From (3.3), it is observed that the controller parameters in 𝐶𝑓𝑓1(𝑠)
and 𝐶𝑓𝑓2(𝑠), i.e. [𝐾𝑓1, ..., 𝐾𝑓6], can be calculated using the identified physical pa-
rameters, e.g. 𝐾𝑓1 =

𝑁
𝑘𝑗
𝑑ℓ. However, the parameters of the actual system are often

difficult to identify precisely. In such cases, the controller gains, [𝐾𝑓1, . . . , 𝐾𝑓6],
need to be experimentally tuned for achieving the desired performance in practice.
In this chapter, the six feedforward controller parameters are tuned. Note that in
the experiments, the feedforward controllers are implemented in discrete time by
replacing the operator 𝑠 with 𝑧−1

𝑡𝑠𝑧
where 𝑡𝑠 is the sampling period.

The system dynamics is completely compensated by the feedforward controllers
in ideal situations. However, a feedback controller is necessary when disturbances
or model uncertainties are present. Figure 3.2 shows the structure of the motor
position feedback controller, 𝐶, which is a modified PID controller. The discrete-
time transfer function from the error, 𝜃𝑚𝑑(𝑡)− 𝜃𝑚(𝑡), to the control input, 𝑢(𝑡), can
be written as

𝐶(𝑧) = [𝐾𝑝 +𝐷(𝑧)][𝐾𝑣 +𝐾𝑖𝐼(𝑧)] (3.5)

where 𝐾𝑝, 𝐾𝑣, and 𝐾𝑖 are the controller gains. 𝐷(𝑧) represents the approximate
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differentiation, i.e 𝐷(𝑧) = 𝑧−1
𝑡𝑠𝑧
. 𝐼(𝑧) is the discrete time integrator, i.e 𝐼(𝑧) = 𝑡𝑠

𝑧−1
.

In this chapter, three feedback controller gains, i.e. 𝐾𝑝, 𝐾𝑣, and 𝐾𝑖, are optimized.

3.3 Controller Tuning Methodology

3.3.1 Cost Functions

Feedback controller tuning

The controller tuning method in this chapter optimizes the controller parameters
such that the value of a cost function is minimized. Since the feedback and the
feedforward controller can interact with each other in one optimization process,
they are optimized separately. That is, the feedforward controllers, 𝐶𝑓𝑓1 and 𝐶𝑓𝑓2,
are disabled during the tuning process of the feedback controller gains and the motor
side reference trajectory, 𝜃𝑚𝑑, is used instead of the load side reference, 𝜃ℓ𝑑. To define
a cost function, let Θ𝑓𝑏(𝑖) represent the collection of the feedback controller gains
at the 𝑖𝑡ℎ iteration, i.e. Θ𝑓𝑏(𝑖) = [𝐾𝑝(𝑖), 𝐾𝑣(𝑖), 𝐾𝑖(𝑖)]. Then, the gains are adjusted
in each iteration to minimize the performance index

𝐽𝑓𝑏(Θ𝑓𝑏(𝑖)) =

𝑘𝑓∑
𝑘=𝑘0

[𝑀𝑏(𝑘)𝑒
2
𝑚(𝑘) + 𝑈𝑏(𝑘)𝑢

2(𝑘) + 𝐴𝑏(𝑘)𝑒
2
𝑎(𝑘)] (3.6)

where 𝑒𝑎(𝑘) = 𝜃ℓ𝑑(𝑘)−𝜃ℓ(𝑘), 𝑒𝑚(𝑘) = 𝜃𝑚𝑑(𝑘)−𝜃𝑚(𝑘), and 𝑢(𝑘) is the control input.
𝑘 is the time index during one trial period, and 𝑖 represents the iteration index.
The cost function in (3.6) penalizes the motor position error, the control input, and
the load side acceleration error over the interval 𝑘 = [𝑘0, 𝑘𝑓 ] where the load-side
acceleration error is a measure of vibrations. By setting [𝑘0, 𝑘𝑓 ] = [1, 𝑁𝑓 ] where
𝑁𝑓 is the duration of each trial, (3.6) penalizes the three terms over the entire time
during one iteration. The trade-off among the penalty terms is determined by the
weighting factors, 𝑀𝑏(𝑘), 𝑈𝑏(𝑘), and 𝐴𝑏(𝑘).

Feedforward controller tuning

Without loss of generality, assume that the feedback controller, 𝐶(𝑧), is tuned be-
fore the tuning of the feedforward controllers. Given a desired load side positoin
reference, 𝜃ℓ𝑑(𝑘), the feedforward controllers are tuned to reduce the load side track-
ing error, 𝑒ℓ(𝑘) = 𝜃ℓ𝑑(𝑘) − 𝜃ℓ(𝑘). Since the load-side position measurement is not
available, the feedforward controllers are adjusted to minimize the load-side accel-
eration error, 𝑒𝑎(𝑘), and the motor side position error, 𝑒𝑚(𝑘). It follows that the
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performance index for the feedforward controller tuning is selected as

𝐽𝑓𝑓(Θ𝑓𝑓 (𝑖)) =

𝑘𝑓∑
𝑘=𝑘0

[𝑀𝑓 (𝑘)𝑒
2
𝑚(𝑘) + 𝐴𝑓 (𝑘)𝑒

2
𝑎(𝑘)] (3.7)

where Θ𝑓𝑓 (𝑖) = [𝐾𝑓1(𝑖), . . . , 𝐾𝑓6(𝑖)]. 𝑀𝑓 (𝑘) and 𝐴𝑓(𝑘) are the weighting factors
that determine the ratio between the two penalty terms.

3.3.2 Update Law

The cost functions, 𝐽𝑓𝑏(Θ𝑓𝑏(𝑖)) and 𝐽𝑓𝑓(Θ𝑓𝑓 (𝑖)), can be seen as a mapping from
the control parameters to the measure of performance. The real-time optimization
method tunes the controller gains based on the gradient of the cost function. The
controller gains are updated iteratively using the conjugate gradient method, i.e.,

Θ(𝑖+ 1) = Θ(𝑖)− 𝛾𝑖𝐷(𝑖) (3.8)

where

𝐷(𝑖) = −∇𝐽(Θ(𝑖)) + 𝛽𝑖𝐷(𝑖− 1),
𝛽𝑖 = (∥∇𝐽(Θ(𝑖))∥/∥∇𝐽(Θ(𝑖− 1))∥)2,

𝐷(0) = −∇𝐽(Θ(0)),
𝐽(Θ(𝑖)) is the cost function and Θ(𝑖) ∈ ℜ𝑞 represents the controller gain vec-

tor to be optimized. where 𝑞 is the number of variables to be optimized. 𝛾𝑖 ∈
ℜ+determines the update speed, and ∇𝐽(Θ(𝑖)) is the gradient of the cost function.
𝐷(𝑖) is the searching direction. The conjugate gradient method [2] is simple but
effective. It is known that in the method, the current searching direction is not
orthogonal to the previous direction and thus it tends to cut diagonally through the
orthogonal steepest descent directions. Therefore, it improves the rate of conver-
gence of the steepest descent method considerably. Notice that the first step of the
conjugate gradient method is the same as the steepest descent method. Each cost
function in (3.6) and (3.7) is a convex function that includes three and six variables,
respectively. Equation (3.8) updates the variables such that the value of the cost
function is decreased.

3.3.3 Estimation of ∇J in Real-Time

The gradient is numerically estimated by amplitude modulation. Suppose Θ(𝑖) is
perturbed by 𝜀(𝑖). The Taylor series expansion of 𝐽(Θ(𝑖) + 𝜀(𝑖)) is

𝐽(Θ(𝑖) + 𝜀(𝑖)) = 𝐽(Θ(𝑖)) + 𝜀(𝑖)𝑇∇𝐽(Θ(𝑖))
+0.5𝜀(𝑖)𝑇H(Θ(𝑖))𝜀(𝑖) + 𝐸(𝜀(𝑖)3) (3.9)
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Figure 3.3: Block diagram for gradient estimation

∇𝐽(Θ(𝑖)) and 𝐻(Θ(𝑖)) are the gradient and the Hessian matrix of 𝐽(Θ(𝑖)),
respectively. 𝐸(𝜀3(𝑖)) is the higher order terms and is neglected here. The pertur-
bation, 𝜀(𝑖), is a vector that consists of 𝑞 sinusoidal waves, i.e.,

𝜀(𝑖) =

⎡
⎢⎢⎢⎣
𝑎1 sin(𝜔𝑐1𝑖𝑁𝑓 𝑡𝑠)
𝑎2 sin(𝜔𝑐2𝑖𝑁𝑓 𝑡𝑠)

...
𝑎𝑞 sin(𝜔𝑐𝑞𝑖𝑁𝑓 𝑡𝑠)

⎤
⎥⎥⎥⎦ ∈ ℜ𝑞 (3.10)

𝑎𝑙 and 𝜔𝑐𝑙 are the amplitude and the frequency of the perturbation for the 𝑙
𝑡ℎ

variable, respectively. Notice that frequencies should be selected such that each 𝜔𝑐𝑙
is distinguished from each other, and 𝜔𝑐𝑙 ∕= 𝜔𝑐𝑚 + 𝜔𝑐𝑛 for 𝑙, 𝑚, 𝑛 = 1, . . . , 𝑞.
Notice that sin(𝜔1) × sin(𝜔2) has the frequency components of 𝜔1 + 𝜔2 and

∣𝜔1 − 𝜔2∣. Therefore, in (3.9) the perturbation frequency is preserved only in the
first order term, i.e. 𝜀(𝑖)𝑇∇𝐽(Θ(𝑖)). The second term in (3.9), in which ∇𝐽(Θ(𝑖)) is
included, is extracted by applying a frequency filter that passes only the concerned
frequency component. For this purpose, a peak filter is applied, i.e.

𝑝𝑖(𝑠) =
𝑏𝜔𝑐𝑙𝑠

𝑠2 + 𝑏𝜔𝑐𝑙𝑠+ 𝜔2𝑐𝑙
(3.11)

Figure 3.4 shows the frequency response of the peak filter with the center fre-
quency, 𝜔𝑐𝑙, at 250Hz. As shown in the figure, 𝑏 determines the width of the peak.
To extract only a certain frequency component, 𝑏 should be sufficiently small. No-
tice that 𝑝𝑖(𝑠) introduces no phase delay at the center frequency (see the dashed
line in Figure 3.4).
For the implementation purpose, (3.11) needs to be discretized. Since the center

frequencies are critical in the design of the peak filters, a method which does not
change the locations of poles and zeros should be applied for the peak filters. Note
that a pole in the continuous time domain (𝑝) is equivalent to 𝑒𝑝𝑇 in the discrete
time domain. 𝑝𝑖(𝑠) has two poles at 𝜔𝑐𝑖[−0.5𝑏 ± (1 − (𝑏/2)2)0.5𝑖] and a zero at 0.
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Figure 3.4: Frequency response of a peak filter

Therefore, a discretized peak filter is

𝑝𝑖(𝑧) =
𝑏0(𝑧 − 1)
𝑧2 + 𝑎1𝑧 + 𝑎0

(3.12)

where

𝑎0 = 𝑒−𝑏𝜔𝑐𝑙𝑡𝑠𝑁𝑓

𝑎1 = −2𝑒−0.5𝑏𝜔𝑐𝑙𝑡𝑠𝑁𝑓 cos (

√
1− ( 𝑏

2
)2𝜔𝑐𝑙𝑡𝑠𝑁𝑓 )

𝑏0 = ∣𝑒
𝑗2𝜔𝑐𝑙𝑡𝑠𝑁𝑓+𝑎1𝑒

𝑗𝜔𝑐𝑙𝑡𝑠𝑁𝑓+𝑎0

𝑒𝑗𝜔𝑐𝑙𝑡𝑠𝑁𝑓 − 1 ∣

In the 𝑞 dimensional case, a peak filter vector, 𝑃 (𝑧), is defined as

𝑃 (𝑧) = [𝑝1(𝑧) 𝑝2(𝑧) . . . 𝑝𝑞(𝑧)]
𝑇 (3.13)

where 𝑝𝑙(𝑧) is the peak filter designed for the perturbation frequency, 𝜔𝑐𝑙 in (3.10)
for the 𝑙𝑡ℎ variable. The perturbed cost function filtered by 𝑃 (𝑧) can be obtained
as

𝑃 (𝑧)[𝐽(Θ(𝑖) + 𝜀(𝑖))] = 𝑃 (𝑧)[𝐽(Θ(𝑖))] + 𝑃 (𝑧)[𝜀(𝑖)𝑇∇𝐽(Θ(𝑖))]
+ 𝑃 (𝑧)[0.5𝜀(𝑖)𝑇H(Θ(𝑖))𝜀(𝑖)] + 𝑃 (𝑧)[𝐸(𝜀(𝑖)3)]

≈ E𝑝(𝑖)∇𝐽(Θ(𝑖))
≡ J𝑀(Θ(𝑖)) ∈ ℜ𝑞×1 (3.14)

Notice that 𝐽𝑀(Θ(𝑖)) is the gradient modulated by 𝐸𝑃 (𝑖), where

E𝑝(𝑖) ≡ diag[𝑎1 sin(𝜔𝑐1𝑖𝑁𝑓 𝑡𝑠), . . . , 𝑎𝑞 sin(𝜔𝑐𝑞𝑖𝑁𝑓 𝑡𝑠)] ∈ ℜ𝑞×𝑞 (3.15)
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Equation (3.15) holds only if 𝑏 in the peak filter is sufficiently small. Notice that
the second order term in the perturbed cost function, i.e., 0.5𝜀(𝑖)𝑇H(Θ(𝑖))𝜀(𝑖) in
(3.9), is eliminated by applying the peak filter vector in (3.13).
To obtain ∇J(Θ(𝑖)) from 𝐽𝑀(Θ(𝑖)), (3.14) needs to be demodulated. In the de-

modulation process, the perturbation signals, 𝜀(𝑖), are multiplied to the modulated
cost function, J𝑀(Θ(𝑖)), i.e.

𝜀(𝑖)⊗̇J𝑀(Θ(𝑖)) = E2
𝑝(𝑖)∇𝐽(Θ(𝑖)) ∈ ℜ𝑞×1 (3.16)

where 𝐸2
𝑃 (𝑖) is a diagonal matrix with the components of 𝑎

2
𝑙 sin

2(𝜔𝑐𝑙𝑖𝑁𝑓 𝑡𝑠) and ⊗̇
generates a vector of pointwise product, i.e.,⎡

⎢⎣ 𝑎1...
𝑎𝑛

⎤
⎥⎦ ⊗̇

⎡
⎢⎣ 𝑏1...
𝑏𝑛

⎤
⎥⎦ ≡

⎡
⎢⎣ 𝑎1𝑏1...
𝑎𝑛𝑏𝑛

⎤
⎥⎦ ∈ ℜ𝑛

The demodulated signal is also decoupled due to the diagonality of E2
𝑃 (𝑖). Using

a trigonometric function, sin2(𝜔𝑐𝑙𝑖𝑁𝑓 𝑡𝑠) = 0.5[1 − cos(2𝜔𝑐𝑙𝑖𝑁𝑓 𝑡𝑠)], E2
𝑃 (𝑖) can be

divided into two terms, i.e.

E2
𝑝(𝑖) = A[I+B(𝑖)] ∈ ℜ𝑞×𝑞 (3.17)

where

A = 0.5diag[𝑎21, 𝑎
2
2, . . . , 𝑎

2
𝑞] ∈ ℜ𝑞×𝑞

B(𝑖) = −diag[cos(2𝜔𝑐1𝑖𝑁𝑓 𝑡𝑠), . . . , cos(2𝜔𝑐𝑞𝑖𝑁𝑓 𝑡𝑠)] ∈ ℜ𝑞×𝑞

A is a constant matrix, and B(𝑖) has the frequency components related to the
perturbation. From (3.16), it is desired to extract ∇𝐽(Θ(𝑖)), i.e. B(𝑖) in (3.17)
needs to be eliminated. This is solved by applying a lowpass filter to (3.16). No-
tice that any lowpass filter is applicable to eliminate B(𝑖) as long as its cut-off
frequency is lower than the lowest frequency in 𝜀(𝑖). Since the demodulated signal
is 𝑞 dimensional, the filter matrix, L(𝑧), is designed as

L(𝑧) = 𝑙(𝑧)A−1 (3.18)

where 𝑙(𝑧) is a single lowpass filter that satisfies the condition mentioned above.
Equation (3.18) can be represented as diag[2𝑎−2

1 𝑙(𝑧), 2𝑎
−2
2 𝑙(𝑧), . . . , 2𝑎

−2
𝑞 𝑙(𝑧)], where

𝑎𝑙 are the perturbation amplitudes. The demodulation is accomplished by applying
L(𝑧) to (3.16), i.e.

L(𝑧)[𝜀(𝑖)⊗̇J𝑀(Θ(𝑖))] = 𝑙(𝑧)[A−1A[I+B(𝑖)]∇𝐽(Θ(𝑖))]
≈ ∇𝐽(Θ(𝑖)) (3.19)

The stability of the algorithm is guaranteed by the choice of 𝛾, i.e., the step size,
in (3.8). The stability proof of the algorithm can be found in [40].
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Figure 3.5: The feedforward controller tuning scheme

3.3.4 Controller Tuning Scheme

Figure 3.5 shows the example of the feedforward controller tuning scheme. The
experiment shown inside the dashed box is run iteratively; that is, one experiment
is run given the controller parameters, Θ(𝑖), and the value of the cost function,
𝐽(Θ(𝑖)), is calculated after the data of one run is acquired. Then, the real-time opti-
mization algorithm uses the value of 𝐽(Θ(𝑖)) to update the controller parameters. A
new experiment is then performed with the new controller parameters, i.e. Θ(𝑖+1),
and the process continues iteratively. Notice that for the gradient estimation, a
perturbation is used in the RTNLP algorithm. For the tuning of one parameter,
one perturbation frequency is needed, e.g., for the feedforward controller tuning
process, six perturbation frequencies are needed, i.e., 𝜀𝑓𝑓(𝑖) = [𝑎1 sin(𝜔𝑐1𝑖𝑁𝑓 𝑡𝑠), ⋅ ⋅ ⋅ ,
𝑎6 sin(𝜔𝑐6𝑖𝑁𝑓 𝑡𝑠)]. The details of how to choose these frequencies properly were ex-
plained in Section 3.3.3. In the following section, the controller tuning method is
applied to the indirect drive train system discussed in Section 2.2.

3.4 Controller Tuning Results

3.4.1 Iterative Feedback Tuning (IFT)

The tuning results of the RTNLP method are compared with those of the iterative
feedback tuning (IFT) method. The IFT method is a model free technique that
tunes the parameters of a fixed structure controller in a closed-loop setting. In IFT,
the controller parameters are optimized by using a gradient estimate of the cost
function that is calculated based on data collected from closed-loop experiments.
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The controller gains can be updated by the iterative algorithm,

Θ(𝑖+ 1) = Θ(𝑖)− 𝛾𝑖R−1
𝑖 ∇𝐽(Θ(𝑖)) (3.20)

where Θ(𝑖) represents the controller gain vector of the 𝑖𝑡ℎ iteration, 𝛾𝑖 is a positive
real scalar that determines the step size in the 𝑖𝑡ℎ iteration, and R𝑖 is an appropriate
positive definite matrix. If 𝑅𝑖 is an identify matrix, the algorithm follows the rule
of the steepest descent method. In the case that R𝑖 =H(Θ(𝑖)) or an approximated
Hessian, 𝐽(Θ(𝑖))𝐽𝑇 (Θ(𝑖)), (3.20) follows the Newton or Gauss-Newton algorithm
where H(Θ(𝑖)) is the Hessian matrix. The choice of R𝑖 and 𝛾𝑖 will thus affect the
convergence of the IFT method [34]. The step size 𝛾𝑖 for the IFT method used
in this chapter is determined using the backtracking line search method [2] and
the tuning process is terminated if the step size is smaller than a certain criteria.
The estimate of the gradient is obtained from several gradient experiments designed
previously and executed after the normal experiment. More detail on the design of
gradient experiments for iterative feedback tuning of the single-joint indirect drive
robot can be found in [68].
Both IFT and RTNLP methods are non-model based, closed-loop, and online

tuning methods that utilize the gradient of the cost function to find the optimal con-
troller parameters. The difference mainly lies in how these algorithms estimate the
gradient. In this chapter, the same cost functions are used in both methods for fair
comparison. R𝑖 is chosen to be the approximation of the Hessian, 𝐽(Θ(𝑖))𝐽

𝑇 (Θ(𝑖)),
where they can be obtained simultaneously with the gradients.

3.4.2 Feedback Controller Tuning

As stated in section 3.3, the feedforward controllers, 𝐶𝑓𝑓1 and 𝐶𝑓𝑓2, are disabled
during the feedback controller tuning process. The proposed and the IFT method
were used to tune the three feedback controller gains, i.e. [𝐾𝑝, 𝐾𝑣, 𝐾𝑖] in (3.5).
The initial values of the gains were set to be [𝐾𝑝, 𝐾𝑣, 𝐾𝑖] = [30, 0.25, 1] based on
the manual tuning result obtained previously. The motor side reference, 𝜃𝑚𝑑, was
selected to be a smoothed step input, i.e.

𝜃𝑚𝑑 =
𝜔2𝑚

𝑠2 + 2𝜔𝑚𝑠+ 𝜔2𝑚
𝜃𝑚𝑜 (3.21)

The magnitude of the reference input, 𝜃𝑚𝑜, was selected to be 1 radian, and
the bandwidth of the smoothening filter was selected to be 𝜔𝑚 = 25 𝑟𝑎𝑑/𝑠𝑒𝑐. The
parameters in the RTNLP method were chosen as follows: the cost function spans
from 𝑘𝑜 = 1 to 𝑘𝑓 = 1000, the perturbation 𝜀 = [0.01 sin(2𝜋0.427𝑖𝑁𝑓𝑡𝑠), 0.001
sin(2𝜋0.335𝑖𝑁𝑓𝑡𝑠), 0.01 sin(2𝜋0.371𝑖𝑁𝑓 𝑡𝑠)]

𝑇 , and the step size for updating the pa-
rameter 𝛾 = [0.0003, 1.2 × 10−7, 5 × 10−8]𝑇 . Figure 3.6 shows the resulting cost
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Figure 3.6: Minimization of the cost function in feedback controller tuning experi-
ment
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Figure 3.7: Tuning of PID controller parameters using RTNLP in experiment
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functions in feedback controller tuning process. The circle-dashed line and the
diamond-dashed line represent the evolution of the cost function for the IFT and
the RTNLP method, respectively. It can be seen from the figure that the cost func-
tion converges after about 35 experiments for both methods. It is known that in
real situations, every experiment is different from each other. Therefore, the initial
values of the two cost functions are not identical in the figure. Notice that the
RTNLP method requires one experiment for each iteration, while the IFT method,
requires two experiments for each iteration: one normal experiment and one gradient
experiment [67].
The step size parameters, 𝛾, in the tuning algorithms were selected such that

both algorithms have approximately the same convergent rate. The convergent rate
for both methods can be further improved by increasing 𝛾. In the experiments,
𝑁𝑓=1000. The cost function is penalizing during the whole time in one iteration
and each experiment takes 1 second. Therefore, it requires less than one minute
for the controller parameters to converge. Figure 3.7 shows the the convergence of
feedback controller parameters using the RTNLP method. The proportional gain,
𝐾𝑝, was greatly reduced in order to suppress vibration on the load side of the indirect
drive train setup. The PID parameters determined by the two tuning methods are
presented in Table 3.1.

Table 3.1: Feedback controller parameters after tuning
Tuning Method 𝐾𝑝 𝐾𝑣 𝐾𝑖

IFT 8.312 0.1019 1.174
RTNLP 12.48 0.098 0.9965

The performance of the feedback controller parameters before and after tuning
are shown in Figure 3.8. Figure 3.8(a) shows the load side acceleration responses
and Figure 3.8(b) shows the motor side position responses. In Figure 3.8(a), the
solid and the dash dotted line show the responses using the IFT and RTNLP method
after 40 experiments, respectively. The dotted line shows the response of the initial
controller with the controller gains obtained previously from manual tuning (MT).
It can be seen from the figure that for both tuning methods, the load side vibration
settles much faster while the magnitude of the acceleration error is greatly reduced.
In Figure 3.8(b), the solid and the dotted lines show the motor side position reference
and the response of the initial controller, respectively. The dashed and the dash
dotted lines show the responses of the IFT and RTNLP tuning method, respectively.
Notice that the overshoot and accuracy of the motor side position are penalized for
reducing the load side vibration. From Figure 3.8, the performance of the controller
parameters tuned by the RTNLP method is roughly equivalent to that by the IFT
method, which implies that both methods sought the same local minimum of the
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same cost function.

3.4.3 Feedforward Controller Tuning

The feedforward controllers, 𝐶𝑓𝑓1 and 𝐶𝑓𝑓2, are tuned after the feedback controller,
𝐶, has been tuned. In the tuning process of feedforward controller, the feedback
controller parameters are fixed with the values obtained in the previous section. The
feedforward controllers are tuned to further enhance the load-side position tracking
performance. The proposed tuning method and the IFT method were used to tune
the six feedforward gains, [𝐾𝑓1, 𝐾𝑓2, 𝐾𝑓3, 𝐾𝑓4, 𝐾𝑓5, 𝐾𝑓6] in (3.3). The initial values
of the controller parameters were set to be [0,0.01, 0, 0.08, 0, 0] based on (3.3).
The parameters in the RTNLP method were chosen as follows: the cost function
spans from 𝑘𝑜 = 1 to 𝑘𝑓 = 1000, the perturbation 𝜀 = [1× 10−7 sin(2𝜋0.401𝑖𝑁𝑓𝑡𝑠),
0.001 sin(2𝜋0.335𝑖𝑁𝑓 𝑡𝑠), 0.005 sin(2𝜋0.298𝑖𝑁𝑓 𝑡𝑠), 0.001 sin(2𝜋0.371𝑖𝑁𝑓 𝑡𝑠), 1×10−7

sin(2𝜋0.445𝑖𝑁𝑓𝑡𝑠), 1× 10−7 sin(2𝜋0.247𝑖𝑁𝑓 𝑡𝑠)]
𝑇 , and the step size for updating the

parameter 𝛾 = [1× 10−14, 9× 10−8, 9× 10−7, 9× 10−8, 1× 10−14, 1× 10−14]𝑇 .

Trajectory generation

The reference trajectory is generated base on the idea of 4𝑡ℎ order time optimal
trajectory design proposed in [42]. The planning algorithm is based on the con-
struction of a derivative of jerk profile that can be integrated four times to obtain
fourth order position trajectory. Assuming that a trajectory is planned for a point
to point move over a distance, a symmetric trajectory is completely determined by
four time intervals: the constant derivative of jerk interval 𝑡𝑑, the constant jerk
interval 𝑡𝑗̄ , the constant acceleration interval 𝑡𝑎̄ and the constant velocity interval
𝑡𝑣. The resulting profiles are given in Figure 3.9. Including the starting time of
the trajectory at 𝑡0, there are sixteen time instances at which the derivative of jerk
changes:

𝑡𝑑 = 𝑡1 − 𝑡0 = 𝑡3 − 𝑡2 = 𝑡5 − 𝑡4 = 𝑡7 − 𝑡6
= 𝑡9 − 𝑡8 = 𝑡11 − 𝑡10 = 𝑡13 − 𝑡12 = 𝑡15 − 𝑡14 (3.22)

𝑡𝑗̄ = 𝑡2 − 𝑡1 = 𝑡6 − 𝑡5 = 𝑡10 − 𝑡9 = 𝑡14 − 𝑡13 (3.23)

𝑡𝑎̄ = 𝑡4 − 𝑡3 = 𝑡12 − 𝑡11 (3.24)

𝑡𝑣 = 𝑡8 − 𝑡7 (3.25)

By defining the level of the derivative of jerk, 𝑑, and the four time intervals, 𝑡𝑑,
𝑡𝑗̄ , 𝑡𝑎̄, and 𝑡𝑣, a trajectory is designed such that the fourth derivative of the load side
position reference is guaranteed to exist. Figure 3.10 shows the desired load-side
trajectory for feedforward controller tuning. It can be seen from the figure that in
each iteration, the payload moves from the initial position to the desired position
and back to the initial position in 2 seconds.
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Figure 3.11: Minimization of the cost function in experiment (Feedforward controller
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Table 3.2: Feedforward controller parameters after tuning
Tuning Method 𝐾𝑓1 𝐾𝑓2 𝐾𝑓3

IFT 2.17×10−5 0.0284 0.1121
RTNLP 5×10−5 0.0273 0.1064

Tuning Method 𝐾𝑓4 𝐾𝑓5 𝐾𝑓6

IFT 0.1115 4.2×10−9 1×10−8

RTNLP 0.1257 2×10−5 3×10−5

Results

Figure 3.11 shows the resulting cost functions for the IFT and the proposed method
during the tuning process. It takes approximately 30 experiments for the cost
functions to converge. Notice that in feedforward controller tuning process, the IFT
method requires three experiments in each iteration: one normal experiment and two
gradient experiments. The parameters for the IFT algorithm were selected such that
both algorithms have approximately the same convergent rate. Figure 3.12 shows
the convergence of the three feedforward controller parameters, 𝐾𝑓2, 𝐾𝑓3, and 𝐾𝑓4,
using the proposed method. Only these three parameters are shown in the figure
because they are the critical parameters that affect performance. The feedforward
controller parameters determined by the two tuning methods are presented in Table
3.2.
The tuning results are shown in Figure 3.13. Figure 3.13(a) shows the load side

position tracking error responses while Figure 3.13(b) shows the load side accelera-
tion responses. In Figure 3.13(a), the solid and the dash-dotted lines represent the
tracking errors of the feedforward controller tuned by the proposed and the IFT
method after 30 iterations, respectively. The dashed line shows the performance
of the initial feedforward controller. Although the steady state error could not be
completely eliminated because of the friction effect, the tracking performance has
been significantly improved after tuning. In Figure 3.13(b), the solid and the dotted
line shows the load-side acceleration reference and responses of the initial controller,
respectively. The dashed and the dash dotted lines represent the acceleration re-
sponse after tuning for the proposed and the IFT method respectively. It can be
observed that the tuning of the controller reduces the acceleration tracking error as
expected.

3.4.4 Selection of Parameters for the RTNLP method

Implementation of the proposed tuning method requires the choice of several param-
eters, namely, the perturbation amplitudes, 𝑎𝑙, adaptation gains, 𝛾𝑖, perturbation
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10−8, 5× 10−7, 5× 10−8, 5× 10−15, 5× 10−15]))

frequencies, 𝜔𝑙, and the bandwidth of the low pass filter. The basic principle of how
to choose these parameters was explained in Section 3.3. Through the experiments,
it is discovered that the minimized cost value is fairly insensitive to the algorithm
parameters. To investigate the sensitivity, the controller parameters of the indirect
drive train system were tuned with various adaptation gains, 𝛾𝑖. Figure 3.14 shows
the evolution of the cost function during the feedforward controller tuning process.
The tuning parameters other than 𝛾 are chosen to be those described in section
3.4.3. It can be seen from the figure that in each case, the cost function converges
to a similar value with slower convergent rate for reduced gains. Table 3.3 shows
that the proposed tuning algorithm yielded similar controller parameters even when
𝛾 was reduced by an order of 10.
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Table 3.3: Feedback controller parameters for different adaptation speed 𝛾 after
tuning (𝛾𝑛 = 𝑑𝑖𝑎𝑔([5× 10−15, 5× 10−8, 5× 10−7, 5× 10−8, 5× 10−15, 5× 10−15]))

Parameters 𝐾𝑓1 𝐾𝑓2 𝐾𝑓3

𝛾𝑛 5×10−5 0.0263 0.1064
1.2𝛾𝑛 7×10−5 0.0221 0.1142
𝛾𝑛/2 2×10−5 0.0255 0.0961
𝛾𝑛/10 3×10−5 0.0236 0.0922

Parameters 𝐾𝑓4 𝐾𝑓5 𝐾𝑓6

𝛾𝑛 0.1257 2×10−5 3×10−5

1.2𝛾𝑛 0.1203 5×10−5 3×10−5

𝛾𝑛/2 0.1217 1×10−5 5×10−5

𝛾𝑛/10 0.1201 3×10−5 3×10−5

- -

Figure 3.15: The state feedback controller tuning scheme

3.5 State Feedback Controller Tuning

3.5.1 Observer and State feedback Controller Structure

The proposed controller tuning scheme can also be used to tune the state feedback
controller. The controller structure is shown in Figure 3.15 where 𝐶 is the modified
PID controller as discussed in Section 3.2 and 𝐾𝑓𝑏 is an inner torsion feedback
controller with the feedback gain 𝐾𝑓𝑏 is 𝐾𝑓𝑏 = [𝐾𝑓𝑏1 𝐾𝑓𝑏2] ∈ R1×2. The inner
torsion is estimated by an observer where the output of the observer is the estimate
of the torsion, 𝛿𝑚 = 𝜃𝑚/𝑁 − 𝜃ℓ, and the derivative of the torsion, 𝛿̇𝑚.
Equation (2.4) shows that the dynamics of 𝛿𝑚 and 𝛿̇𝑚 are not affected by the

motor position 𝜃𝑚. Therefore, if the motor velocity measurement is available, an ob-
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server can be constructed based on the state-space representation (3.26) to estimate
the torsion information, 𝛿𝑚 and 𝛿̇𝑚.

𝑑

𝑑𝑡

⎡
⎣ 𝜃𝑚𝛿𝑚
𝛿̇𝑚

⎤
⎦ =

⎡
⎢⎣ −𝑑𝑚

𝐽𝑚

𝑘𝑗
𝐽𝑚𝑁2

𝑑𝑗
𝐽𝑚𝑁2

0 0 1
𝑑ℓ
𝐽ℓ

− 𝑑𝑚
𝐽𝑚

− 𝑘𝑗
𝐽𝑚𝑁2 − 𝑘𝑗

𝐽ℓ
− 𝑑𝑗
𝐽𝑚𝑁2 − 𝑑𝑗+𝑑ℓ

𝐽ℓ

⎤
⎥⎦

︸ ︷︷ ︸
A𝑜

⎡
⎣ 𝜃̇𝑚𝛿𝑚
𝛿̇𝑚

⎤
⎦+

⎡
⎣ 1

𝐽𝑚

0
1
𝐽𝑚

⎤
⎦

︸ ︷︷ ︸
B𝑜

𝑢

(3.26)

𝑦𝑜 =
[
1 0 0

]︸ ︷︷ ︸
C𝑜

⎡
⎣ 𝜃̇𝑚𝛿𝑚
𝛿̇𝑚

⎤
⎦

Equation (3.26) may be equivalently represented in the discrete-time domain as[
𝜃𝑚(𝑘 + 1)
𝛿𝑚(𝑘 + 1)

]
=

[
A𝑜𝑑11 A𝑜𝑑12

A𝑜𝑑21 A𝑜𝑑22

]
︸ ︷︷ ︸

A𝑜𝑑

[
𝜃𝑚(𝑘)
𝛿𝑚(𝑘)

]
+

[
B𝑜𝑑1

B𝑜𝑑2

]
︸ ︷︷ ︸

B𝑜𝑑

𝑢(𝑘) (3.27)

𝑦𝑜(𝑘) = C𝑜𝑑

[
𝜃𝑚(𝑘)
𝛿𝑚(𝑘)

]
= 𝜃𝑚(𝑘)

where 𝛿𝑚 = [𝛿𝑚 𝛿̇𝑚]
𝑇 . It follows that the discrete-time reduced order observer can

be constructed as

𝑥̂(𝑘 + 1) = (A𝑜𝑑22 − L𝑑A𝑜𝑑12) 𝑥̂(𝑘) + (B𝑜𝑑2 − L𝑑B𝑜𝑑1)𝑢(𝑘) (3.28)

+ [A𝑜𝑑21 − L𝑑A𝑜𝑑11 + (A𝑜𝑑22 − L𝑑A𝑜𝑑12)L𝑑] 𝑦𝑜(𝑘)

:= A𝑜𝑏𝑥̂+B𝑢𝑜𝑏𝑢(𝑘) +B𝑦𝑜𝑏𝑦𝑜(𝑘)

ˆ̄𝛿𝑚(𝑘) = 𝑥̂(𝑘) + L𝑑𝑦𝑜(𝑘)

where L𝑑 is the observer gain.

3.5.2 Experimental Results

The proposed controller tuning method is used to tune the state feedback controller
gains, [𝐾𝑓𝑏1, 𝐾𝑓𝑏2], and the tuning scheme is shown in Figure 3.15. The experiment
shown inside the dashed box is run iteratively as described in Section 3.3. The state
feedback controller gains, Θ𝑠𝑡𝑓𝑏(𝑖) = [𝐾𝑓𝑏1(𝑖), 𝐾𝑓𝑏2(𝑖)], are adjusted in each iteration
to minimize the performance index (3.6).
The feedforward controllers, 𝐶𝑓𝑓1 and 𝐶𝑓𝑓2, are disabled during the state feed-

back controller tuning process. The feedback controller, 𝐶, is fixed during the
tuning process of state feedback controller. The feedback controller gains, [𝐾𝑝, 𝐾𝑣,
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Figure 3.16: Minimization of the cost function in state feedback controller tuning
experiment

𝐾𝑖], were set to [30, 0.25, 1] and the initial values of the state feedback gains were
set to zero. The reduced order observer (3.28) was designed by the pole placement
method. The bandwidth of the observer was selected to be 20Hz. The motor side
reference, 𝜃𝑚𝑑, was selected to be 3.21.
The parameters in the RTNLP method were chosen as follows: the cost function

spans from 𝑘𝑜 = 1 to 𝑘𝑓 = 1000, the perturbation 𝜀 = [0.005 sin(2𝜋0.371𝑖𝑁𝑓𝑡𝑠),
0.0025 sin(2𝜋0.445𝑖𝑁𝑓 𝑡𝑠)]

𝑇 , and the step size for updating the parameter 𝛾 = [3 ×
10−6, 3 × 10−7]𝑇 . Figure 3.16 shows the resulting cost function in state feedback
controller tuning process. It can be seen from the figure that the cost function
converges after about 45 experiments. Notice that the convergent rate for both
methods can be further improved by increasing 𝛾. The final controller gain, 𝐾𝑓𝑏,
was found to be 𝐾𝑓𝑏 = [1.3428,−0.1295].
The performance of the state feedback controller parameters before and after

tuning are shown in Figure 3.17. Figure 3.17(a) shows the load side acceleration
responses and Figure 3.17(b) shows the motor side position responses. Comparing
the acceleration response of the final controller to the one of the initial controller,
it can be observed that the vibration has been greatly suppressed and the damping
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of the closed-loop system has been improved.

3.6 Summary

In this chapter, the controller parameters for a single-joint indirect train were op-
timized by real-time nonlinear programming which involved the estimation of the
gradient of the cost function by perturbing the magnitude of the controller gains.
Six feedforward, three feedback, and two state feedback controller gains were tuned.
For the tuning of the state feedback controller gains, a reduced order observer was
used to provide the torsion estimate. The load side performance was shown to be
improved significantly after tuning. Moreover, unlike the IFT method, the RTNLP
method used in this chapter did not require any additional experiments for the
estimation of gradient.
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Chapter 4

Suppression of Oscillations for
Indirect drive Robots using Joint
Sensing Information

4.1 Introduction

In indirect drive robots, harmonic drives are often used as the transmission mecha-
nism for the purpose of speed reduction and torque amplification. They are designed
such that several teeth are engaged at any given time making backlash virtually
zero and hence are popular in applications requiring precision positioning such as
the semiconductor industry.
A harmonic drive is composed of the components identified in Figure 4.1. The

wave generator is an elliptically shaped steel core surrounded by a flexible race
bearing. The circular spline is a rigid steel ring with teeth machined into the inner
circumference. The flexspline is a thin-walled flexible cup having two fewer teeth
on its outer rim than on the inner rim of the circular spline. Upon assembly, the
wave-generator is inserted into the flexspline cup and the circular spline teeth then
mesh with the flexspline teeth at the major axis of the ellipse defined by the wave
generator.
The most common configuration for the harmonic drive is the speed reduc-

tion/torque magnification arrangement. This mode of operation usually consists of
the wave generator as the input port, the flexspline as the output port, and the
circular spline fixed to ground. In this configuration, the wave generator rotation
corresponds to the motor angle input while the rotation of the flexspline in the
opposite direction corresponds to the load side output.
Figure 4.2 shows the principle of motion of a harmonic drive in this configuration.

In Figure 4.2(a), the flexspline is deflected by the wave generator into an elliptical
shape causing the flexspline teeth to engage with those of the circular spline at
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Circular Spline

Flexspline

Wave 
Generator

Figure 4.1: Harmonic drive gear components [26]

Figure 4.2: Principles of motion [26]

the major axis of the wave generator ellipse, with the teeth completely disengaged
across the minor axis of the ellipse. When the wave generator is rotated clockwise
with the circular spline fixed as shown in Figure 4.2(b), the flexspline is subjected
to elastic deformation and its tooth engagement position moves by turns relative
to the circular spline. When the wave generator rotates 180 degrees clockwise, the
flexspline moves counterclockwise by one tooth relative to the circular spline as
shown in 4.2(c). Figure 4.2(d) shows the situation when the wave generator rotates
one revolution clockwise (360 degrees). The flexspline moves counterclockwise by
two teeth relative to the circular spline because the flexspline has two fewer teeth
than the circular spline. The special configuration of the harmonic drive makes
them ideal for use in robotic applications which require high torque-to-weight ratio.
The concept of harmonic drives was conceived and developed during the mid-

1950s [65]. Their industrial use for different applications such as robot manipula-
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_

Motor

Reducer

Figure 4.3: Definition of the transmission error

tors [29], force-feedback haptic devices [62] and steer by wire systems in the vehicle
steering technology [3] has been growing since then. Research in the theoretical
aspects of their transmission characteristics has been carried out in nonlinear trans-
mission attributes including friction, transmission error, flexibility, and hysteresis
[19, 50, 60].
Among different nonlinear characteristics mentioned above, the transmission er-

ror is of foremost concern for precision positioning applications. The transmission
error of the gear introduces an inaccuracy into the kinematics chain and a posi-
tioning error due to the inaccuracy appears on the output of the gear. In many
applications, the positioning error itself is not significant, but its influence on speed
variation is critical. A transmission error causes a speed ripple on the gear output
shaft, even at a constant rotation speed of the input shaft. These vibrations become
dominant when the frequency of the error coincides with the resonant frequency of
the control system. Speed fluctuations are largely amplified in such case and often
exceed allowable level for vibrations[60, 69]. Thus reducing the vibration caused by
the transmission error is important for precision tracking and performance.
The transmission error, 𝜃, is defined as the deviation between the expected

output position and the actual output position of a harmonic drive. It is given by
the following equation as shown in Figure 4.3

𝜃 =
𝜃𝑚
𝑁

− 𝜃𝑜 (4.1)

The experimental transmission error waveforms has been presented in the lit-
erature [60]. It shows a periodic nature with small amplitude. Due to mechanical
imperfections such as gear assembly misalignments and dimensional inaccuracies of
the gear itself, the output oscillations may vary with different drives and operat-
ing conditions. It has been shown in the literature, however, that the dominant
component of the experimental transmission error waveforms is repeated every half
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turn of the input shaft [19]; i.e. the ripple is periodic in nature and its fundamental
frequency component corresponds to twice the rotation frequency of the input shaft.
Hence, 𝜃 can be approximated with a simple sinusoid as follows

𝜃𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 = 𝐴𝑡𝑒 sin(𝜔𝑜𝑡 + 𝜙) (4.2)

where 𝐴𝑡𝑒 is the amplitude of the transmission error which can be found in the
harmonic drive catalogue. 𝜙 is the phase of the error and 𝜔𝑜 is the frequency of the
error which is twice the rotation frequency of the motor shaft. Note that in (4.2)
the higher frequency components in the error were neglected.
The velocity oscillation on the load side is highly undesirable for industrial

robots. Therefore, the servo control system should have a control algorithm to sup-
press such oscillatory phenomena. In order to suppress the oscillations due to the
transmission error, several control methods have been proposed in the literature[18,
20, 28]. Gandhi and Ghorbel [18] proposed nonlinear control algorithms for the
compensation of the transmission error due to harmonic drives in set point regu-
lation and trajectory tracking. Hirabayashi et al. [28] proposed a method where
the controller senses speed ripples through a high resolution encoder and modifies
the speed command to the driving motor. Godler et al. [20] applied the repetitive
control for reducing speed ripples in a harmonic drive system. Among the different
approaches, motor side information is widely used for feedback control. However,
the velocity fluctuation due to the transmission error is most significant on the load
side and the feedback controller cannot effectively reduce the vibrations on the load
side by using only motor side information.
Adaptive feedforward cancellation (AFC) is an effective method for eliminating

a periodic input/output disturbance, in which the disturbance is simply cancelled
by adding the negative of its value at the input/output of the plant[54]. Since
the value of the disturbance is generally unknown, it is adaptively determined by
estimating the amplitudes of sine and cosine functions at disturbance frequencies
using the output error signal. In this chapter, an adaptive disturbance cancellation
scheme and its modifications are proposed and utilized to reduce the oscillations
caused by the transmission error. Moreover, the load side acceleration feedback
is used in the adaptation algorithms in order to minimize the load side vibrations
effectively.

4.2 Dynamic Model of Single-Joint Indirect Drive

Train with Transmission Error

Several harmonic drive models have been developed in the literature [18, 19]. In
[19], a harmonic drive model considering transmission error and flexibility was de-
veloped using Lagrange formulation and in [18] the singular perturbed model of a
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Figure 4.4: Block diagram of a single-joint indirect drive train with transmission
error

harmonic drive considering transmission error and flexibility effect was derived. It
has been shown in [66] that the model of the single-joint indirect drive train with
the consideration of transmission error as shown in Figure 4.4 is the simplest yet
accurate enough for representing the actual system. Note that as shown in the
figure, the transmission error is included in the system as a position error at the
output of the motor shaft. The dynamic model of the system shown in Figure 4.4
can be obtained as

𝐽ℓ𝜃ℓ + 𝑑ℓ𝜃ℓ = 𝑘𝑗

(
𝜃𝑚
𝑁

− 𝜃ℓ − 𝜃
)
+ 𝑑𝑗

(
𝜃𝑚
𝑁

− 𝜃ℓ − ˙̃𝜃

)
(4.3)

𝐽𝑚𝜃𝑚 + 𝑑𝑚𝜃̇𝑚 = 𝑢− 1

𝑁

[
𝑘𝑗

(
𝜃𝑚
𝑁

− 𝜃ℓ − 𝜃
)
+ 𝑑𝑗

(
𝜃̇𝑚
𝑁

− 𝜃ℓ − ˙̃𝜃

)]

By grouping the nonlinear terms due to the transmission error together, (4.3)
can be viewed as the combination of two terms: the standard single-joint indirect
drive train model in (2.3) and the nonlinear term that is due to the transmission
error. It follows that the state-space representation of the system can be written as

𝑥̇ = A𝑥+B𝑢+B𝑑𝑑 (4.4)

where

B𝑑 = [ 0
1

𝐽𝑚𝑁
0 − 1

𝐽ℓ
]𝑇 , 𝑑 = 𝑘𝑗𝜃 + 𝑑𝑗

˙̃
𝜃

A, B, 𝑥, are the same as those described in Section 2.3. Notice that with the
formulation shown in (4.4), the transmission error is now contained in the distur-
bance input, 𝑑, and it affects the system through B𝑑. Figure 4.5 shows the block
diagram of the closed-loop system with the plant formulation shown in (4.4). 𝑟𝑚
is the motor position reference and 𝜃𝑚 is the motor position. 𝑟ℓ is the load side
acceleration reference and 𝜃ℓ is the load side acceleration. 𝑃ℓ(𝑠) and 𝑃𝑚(𝑠) are the
transfer functions from the input 𝑢 to the outputs 𝜃ℓ and 𝜃𝑚, respectively while
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--

Figure 4.5: Block diagram of the closed-loop control system

𝑃ℓ𝑑(𝑠) and 𝑃𝑚𝑑(𝑠) are the transfer functions from the disturbance 𝑑 to the outputs
𝜃ℓ and 𝜃𝑚, respectively. 𝑒ℓ = 𝑟ℓ − 𝜃ℓ is the load side acceleration error. 𝐶(𝑠) is a
modified PID controller given in Section 3.2.
Figure 4.6 shows the experimental results of the system in Figure 4.5 where

the plant is replaced by the single-joint indirect drive setup described in Section
2.2. Figure 4.6(a) shows the time response of the load side acceleration error,
𝑒ℓ, when the motor reference 𝑟𝑚 is designed such that the desired motor speed is
maintained constant at 34 rad/sec. Figure 4.6(b) shows the load side acceleration
error amplitude spectrum. Ideally, the load side acceleration should remain zero at
the steady state but in real situation, a periodic error with the frequency at twice
the motor rotation speed and the higher harmonics can be observed on the load side
acceleration as shown in the figure. Notice that the first harmonic has the largest
error amplitude.

4.3 Transmission Error Compensation Algorithms

4.3.1 Adaptive Disturbance Cancellation Scheme

The general structure of the continuous-time adaptive compensation is shown in
Figure 4.7. From (4.2) and (4.4), the time-varying unknown disturbance, 𝑑(𝑡), can
be written as a sum of 𝑁𝑠 sinusoids of known frequencies as follows

𝑑(𝑡) = 𝑘𝑗𝜃 + 𝑑𝑗
˙̃
𝜃

=

𝑁𝑠∑
𝑖=1

[𝑘𝑗𝐴𝑖 sin(𝜔𝑜𝑖𝑡+ 𝜙) + 𝑑𝑗𝐴𝑖𝜔𝑜𝑖 cos(𝜔𝑜𝑖𝑡+ 𝜙)]

=
𝑁𝑠∑
𝑖=1

[𝛼𝑖(𝑡) cos(𝜔𝑖𝑡) + 𝛽𝑖(𝑡) sin(𝜔𝑖𝑡)] (4.5)

where 𝛼𝑖(𝑡) and 𝛽𝑖(𝑡) are the Fourier coefficients and are estimated in real-time.
The subscripts 𝑖 refers to the 𝑖-th frequency component of the disturbance. In the
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Figure 4.6: Load side angular acceleration response before compensation
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compensation scheme, it is desired to remove the vibrations observed at the output
of the system by forming a control input, 𝑢𝑓(𝑡), that exactly cancels the vibrations.
Notice that the compensation scheme shown in Figure 4.7 is different from the

conventional AFC scheme where the disturbance, 𝑑(𝑡), is usually an additive output
disturbance. Hence, in order to cancel the vibration caused by the input disturbance,
the control input has the form

𝑢𝑓(𝑡) =

𝑁𝑠∑
𝑖=1

[𝑎̂𝑖(𝑡) cos(𝜔𝑖𝑡) + 𝑏̂𝑖(𝑡) sin(𝜔𝑖𝑡)] (4.6)

where the estimates of the coefficients must be adapted to the nominal values, i.e.

𝑎̂𝑖(𝑡) = 𝑎𝑖(𝑡)

𝑏̂𝑖(𝑡) = 𝑏𝑖(𝑡)

Notice that B ∕= B𝑑 in (4.4) implies that 𝑎𝑖(𝑡) ∕= 𝛼𝑖(𝑡), and 𝑏𝑖(𝑡) ∕= 𝛽𝑖(𝑡). An
adaptive algorithm to adjust the estimates 𝑎̂𝑖(𝑡) and 𝑏̂𝑖(𝑡) consists of the update
laws [27]

𝑑

𝑑𝑡
𝑎̂𝑖(𝑡) = 𝛾𝑖𝑒ℓ(𝑡) cos(𝜔𝑖𝑡)

𝑑

𝑑𝑡
𝑏̂𝑖(𝑡) = 𝛾𝑖𝑒ℓ(𝑡) sin(𝜔𝑖𝑡) (4.7)

where the parameter 𝛾𝑖 is the constant adaptation gain, i.e. the step-size. The
load side acceleration error, 𝑒ℓ(𝑡), is used to update the coefficients 𝑎̂𝑖(𝑡) and 𝑏̂𝑖(𝑡)
correctly so that the compensation signal, 𝑢𝑓(𝑡), may suppress the oscillation shown
on the load side effectively.
Implementation of (4.7) requires a discrete time representation of the equations.

In this chapter, (4.7) is implemented with the backward Euler approximation

𝑎̂𝑖(𝑘) = 𝑎̂𝑖(𝑘 − 1) + 𝑇𝛾𝑖𝑒ℓ(𝑘)(cos𝜔𝑖𝑇𝑘)
𝑏̂𝑖(𝑘) = 𝑏̂𝑖(𝑘 − 1) + 𝑇𝛾𝑖𝑒ℓ(𝑘)(sin𝜔𝑖𝑇𝑘) (4.8)

where 𝑇 is the sampling time.

Analysis of the single frequency cancellation case

It was shown in [5] that, for the adaptive compensation scheme shown in Figure 4.7,
there is an equivalent linear time-invariant (LTI) representation of the transfer func-
tion from 𝑒ℓ to 𝑢𝑓 . The resulting continuous-time transfer function for multiple
harmonics is

𝐶𝑓𝑚(𝑠) =

𝑁𝑠∑
𝑖=1

𝛾𝑖
𝑠

𝑠2 + 𝜔2𝑖
(4.9)
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Figure 4.7: The proposed adaptive compensation scheme
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Figure 4.8: Block diagram of the proposed speed control system

Notice that when only canceling a single frequency disturbance, 𝐶𝑓𝑚(𝑠) can be
simplified as

𝐶𝑓(𝑠) = 𝛾
𝑠

𝑠2 + 𝜔2
= 𝛾𝐶𝑓𝑜(𝑠) (4.10)

where 𝜔 denotes the disturbance frequency, at which high disturbance rejection
is required. Notice that 𝐶𝑓(𝑠) in (4.10) represents a peak filter with the center
frequency at 𝜔. The compensation scheme for the single frequency case is shown
in Figure 4.8. With this structure, the analysis on the disturbance rejection and
stability properties for the case of canceling a single frequency disturbance is shown
below.
Without loss of generality, it is assumed that 𝐶(𝑠) is designed to assure the

system’s basic stability/performance requirements. A feedback loop with peak filter
𝐶𝑓(𝑠) using load side acceleration information is added to the original servo control
system as shown in Figure 4.5. With this structure, the load side acceleration
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feedback loop is connected to the motor feedback loop in a parallel form such that
the filter 𝐶𝑓(𝑠) can be easily enabled or disabled whenever necessary. Moreover,
the parallel connection considered here has a very useful interpretation in terms of
shaping the original loop as discussed below.
Note that the sensitivity function from the disturbance input 𝑑 to the load side

acceleration error 𝑒ℓ as shown in Figure 4.8 is given by:

𝑆ℓ =
𝑁ℓ

1 + 𝑃𝑚𝐶 + 𝑃ℓ𝐶𝑓

=
𝑁ℓ

1 + 𝑃𝑚𝐶

1 + 𝑃𝑚𝐶

1 + 𝑃𝑚𝐶 + 𝑃ℓ𝐶𝑓
= 𝑆ℓ𝑜𝑆𝑓 (4.11)

where

𝑁ℓ = 𝑃ℓ𝑑 + 𝑃ℓ𝑑𝑃𝑚𝐶 − 𝑃ℓ𝐶𝑃𝑚𝑑
𝑆ℓ𝑜 =

𝑁ℓ
1 + 𝑃𝑚𝐶

𝑆𝑓 =
1

1 + 𝑇ℓ𝑜𝐶𝑓

𝑇ℓ𝑜 =
𝑃ℓ

1 + 𝑃𝑚𝐶

Note that 𝑆ℓ𝑜 and 𝑇ℓ𝑜 are the sensitivity function and complementary sensitivity
function of the system shown in Figure 4.8, respectively. Equation (4.11) shows
that the sensitivity function, 𝑆ℓ, of the closed-loop system is the multiplication of
two subsystem 𝑆ℓ𝑜 and 𝑆𝑓 , which implies that the controllers can be designed by a
two-stage approach. In the first stage, the baseline controller 𝐶(𝑠) can be designed
for basic closed-loop stability and disturbance rejection performance indicated by
𝑆ℓ𝑜. In the second stage, the filter 𝐶𝑓(𝑠) can be designed based on the pseudo-
plant 𝑇ℓ𝑜 as shown in (4.11) such that 𝑆𝑓 is shaped to a desired curve for rejecting
disturbances in some frequency ranges. Noting that (4.10) and (4.11), the closed-
loop system in Figure 4.8 will be stable if 𝛾 is chosen such that all the zeros of 𝑄(𝑠)
have negative real parts, where

𝑄(𝑠) = 1 + 𝛾𝑇ℓ𝑜(𝑠)𝐶𝑓𝑜(𝑠) (4.12)

Note that 𝐶𝑓𝑜 was defined in (4.10).
Figure 4.9 shows the frequency response from the disturbance input, 𝑑, to the

amplitude of the velocity error. The solid and dotted lines are the load side and
motor side responses for the original control system, respectively. The dot and cross
markers lines are the responses of the load side and motor side for the system with
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Figure 4.9: Frequency response from the disturbance input, d, to the velocity error
before and after applying 𝐶𝑓(𝑠)

filter, respectively. Notice that the filter, 𝐶𝑓𝑜(𝑠), used in the figure has a center
frequency, 𝜔 = 2𝜋 ⋅ 11 rad/sec in (4.10). It can be seen from the figure that the
amplitude of the load side oscillation of velocity decreases significantly at the center
frequency of the peak filter. The motor side velocity error is slightly enlarged,
however, around the center frequency of the filter in order to compensate the effect
of the transmission error on the load side.

4.3.2 Modified Schemes for Performance Enhancement

Compensation with Variable Step-Size Parameter

The purpose of the control system in Figure 4.7 is to reduce the amplitude of the
load side vibration. From the LTI analysis, a larger 𝛾𝑖 would yield a smaller load
side error magnitude at the steady state and a faster convergence rate of the update
laws. As discussed in the previous section, however, the adaptation gain, 𝛾𝑖, has
an upper bound constrained by both the plant and the baseline controller 𝐶(𝑠)
in order to guarantee stability. Moreover, similar to adding a peak filter in the
feedback loop, having the adaptive cancellation scheme in the system drastically
degrades the transient performance because of the pairs of complex poles near the
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imaginary axis. The objective is to increase the noise attenuation while having a
satisfactory transient response. To achieve this goal, a step-size adjustment method
proposed in [41] is used here because of its simplicity and sensibility to changes in
the error signal. The algorithm is controlled by the square of the error shown as
follows

𝛾𝑖(𝑘) = 𝑔𝑖𝛾𝑖(𝑘 − 1) + ℓ𝑖𝑒2ℓ(𝑘 − 1) (4.13)

The constant gain 𝑔𝑖 is a forgetting factor with values between 0 < 𝑔𝑖 < 1 and
ℓ𝑖 > 0 is the step-size parameter for the adaptation of 𝛾𝑖. The algorithm adaptively
changes the step-size, 𝛾𝑖, of the update laws in (4.8) to achieve better vibration
attenuation while having satisfactory transient performance.
Substituting the variable step-size, 𝛾𝑖(𝑘), in the update equation for the filter

coefficients (4.8), are obtained

𝑎̂𝑖(𝑘) = 𝑎̂𝑖(𝑘 − 1) + 𝑇𝛾𝑖(𝑘)𝑒ℓ(𝑘)(cos𝜔𝑖𝑇𝑘)
𝑏̂𝑖(𝑘) = 𝑏̂𝑖(𝑘 − 1) + 𝑇𝛾𝑖(𝑘)𝑒ℓ(𝑘)(sin𝜔𝑖𝑇𝑘) (4.14)

In this chapter, the initial step-size 𝛾𝑖(𝑘) is set to zero and is bounded by the
maximum value, 𝛾𝑚𝑎𝑥, to ensure stability of the algorithm. The gains 𝑔𝑖 and ℓ𝑖 are
chosen manually.

Compensation with the Consideration of Measurement Bias

In order to suppress the vibrations on the load side, the adaptation laws, (4.8) and
(4.14), use the load side error information obtained from the accelerometers. The
solid line in Figure 4.10 shows the experimental result of the acceleration response
obtained from the accelerometer while doing motor side speed regulation. It can be
seen from the figure that the measured signal is noisy and contains a bias. To deal
with the bias problem, a Kalman filter accompanied by a low pass filter is proposed
to estimate the magnitude of the bias.
The Kalman filter addresses the problem of estimating the state 𝑥(𝑘) of a discrete

time process governed by the linear stochastic difference equation with a noisy
measurement

𝑥(𝑘 + 1) = A𝑥(𝑘) +B𝑢𝐾𝐹 (𝑘) + 𝑤(𝑘)

𝑦(𝑘) = C𝑥(𝑘) + 𝑣(𝑘) (4.15)

where the random variables 𝑤(𝑘) and 𝑣(𝑘) represent the process and measurement
noise, respectively. In addition, they are assumed to be independent, white, zero
mean, and normal random process with probability distributions where 𝑝(𝑤) ∼
𝑁(0, 𝑄) and 𝑝(𝑣) ∼ 𝑁(0, 𝑅).
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Figure 4.10: Comparison of responses from the measurement output and the
Kalman filter output

In the Kalman filter setup, the following equations are utilized to calculate the
state estimate 𝑥̂(𝑘).
Time update:

𝑥̂(𝑘 + 1∣𝑘) = A𝑥̂(𝑘∣𝑘) +B𝑢𝐾𝐹 (𝑘)

M(𝑘 + 1) = AP(𝑘)A𝑇 +𝑄 (4.16)

Measurement update:

K(𝑘 + 1) = M(𝑘 + 1)C𝑇 [CM(𝑘 + 1)C𝑇 +𝑅]−1

𝑥̂(𝑘 + 1∣𝑘 + 1) = 𝑥̂(𝑘 + 1∣𝑘) +K(𝑘 + 1)[𝑦(𝑘 + 1)− C𝑥̂(𝑘 + 1∣𝑘)]
P(𝑘 + 1) = [I − K(𝑘 + 1)C]M(𝑘 + 1) (4.17)

Notice that K(𝑘) is the Kalman filter gain. M(𝑘) and P(𝑘) are the a priori and the
a posteriori estimate error covariance, respectively.
Figure 4.10 shows the comparison of the measurement output and the Kalman

filter output. It can be seen from the figure that Kalman filter is able to estimate
the bias of the measured acceleration signal. Figure 4.11 shows the block diagram of
the modified adaptive compensation system with the consideration of measurement
bias. Kalman filter uses the information of measurement output and control input

and then outputs the estimate, ˆ̈𝜃ℓ. After passing
ˆ̈𝜃ℓ through a low pass filter, the

bias value,
ˆ̈
𝜃ℓ𝑏𝑖𝑎𝑠 , can be obtained. It is then subtracted from the real measurement,

𝜃ℓ, to generate the feedback signal to the adaptation algorithms in (4.8) and (4.14).
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Figure 4.11: The proposed compensation scheme with the consideration of mea-
surement bias

4.4 Experimental Study

4.4.1 Experimental Setup

The proposed methods are applied to a single-joint indirect drive train as described
in Section 2.2.
For the experiments, three feedback controller gains, [𝐾𝑝, 𝐾𝑣, 𝐾𝑖] in (3.5) are set

to [10, 0.3, 1]. Notice that for the controller structure used here, the control input,
𝑢(𝑘), contains a bias which corresponds to the control effort for compensating the
friction effects. When implementing the Kalman filter, this control input bias must
be removed to obtain an accurate acceleration bias estimate from the accelerometers.
This can be easily done by subtracting the feedforward friction compensation signal
from the actual control input, 𝑢(𝑘), i.e. 𝑢𝐾𝐹 (𝑘) = 𝑢(𝑘)−𝑓𝑚sgn(𝑣𝑚) where 𝑓𝑚 is the
motor side friction coefficient and 𝑣𝑚 is the motor velocity reference. 𝑓𝑚 is set to
0.1004 in this chapter based on the previously identified result. The variance, 𝑄 and
𝑅, in the Kalman filter, (4.16) and (4.17), are set to 0 and 0.076, respectively. They
are designed such that the Kalman filter can provide the accurate bias estimate. The
cutoff frequency of the low pass filter is chosen to be below the disturbance frequency
in order to extract the bias information from the acceleration measurement estimate.
The desired load side trajectory is shown in Figure 4.12. It is obtained by the

4𝑡ℎ order trajectory generation method explained in Section 3.4.3. The motor side
reference is set to be the load side reference times the gear ratio. It can be seen from
the figure that, the payload of the single-joint robot moves from the zero position
to the desired position at a constant speed in 2.5 seconds and then back to the zero
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Figure 4.12: Load side reference trajectory

position.
Since the oscillation introduced by the harmonic drive is periodic with frequency

twice the angular speed of the motor shaft, for simplicity, the sine and cosine
functions in the compensation algorithms, (4.6), are modified to be sin(2𝜃𝑚) and
cos(2𝜃𝑚), respectively. Moreover, the higher harmonics of the disturbance frequency
are not considered in the implementation. Equations (4.6) and (4.8) become

𝑢𝑓(𝑘) = 𝑎̂(𝑡) cos(2𝜃𝑚(𝑘)) + 𝑏̂(𝑡) sin(2𝜃𝑚(𝑘))

𝑎̂(𝑘) = 𝑎̂(𝑘 − 1) + 𝑇𝛾𝑒ℓ(𝑘)(cos 2𝜃𝑚(𝑘))
𝑏̂(𝑘) = 𝑏̂(𝑘 − 1) + 𝑇𝛾𝑒ℓ(𝑘)(sin 2𝜃𝑚(𝑘))

4.4.2 Experimental Results

Figure 4.13 shows the responses of the load side acceleration error of the original
compensation algorithm, i.e. fixed step-size scheme, and the modified compensation
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Figure 4.13: Load side acceleration error responses before and after

algorithm, i.e. variable step-size scheme. The dashed line represents the acceleration
error without the compensation while the solid line, and the dotted line represents
the error response of the system with the original and the modified compensation
scheme, respectively. It can be seen from the figure that with the original algo-
rithm, the acceleration error was amplified during transient response. The modified
algorithm, on the other hand, adaptively changes the step-size of the update laws,
(4.14), to attenuate the error. Notice that the step-size 𝛾 in the original algorithm
and the parameters, 𝑔 and ℓ, for adapting 𝛾 in modified algorithm were chosen so
that the two compensation schemes achieve same level of error attenuation at steady
state.
The load side acceleration error responses of the algorithms considering mea-

surement bias are shown in Figure 4.14. The solid and dotted lines represent the
error response of system with the original and with the modified compensation
scheme, respectively. It is observed from the figure that removing the bias of the
acceleration measurement by a Kalman filter, (4.16) and (4.17), further improves the
convergence rate. Notice that now with the original compensation scheme, the error
is not amplified during transient while still maintaining the same level of vibration
reduction performance as the modified scheme at the steady state.
Figure 4.15 shows the adaptation transient of the Fourier coefficients, 𝑎̂(𝑡) and
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Figure 4.14: Load side acceleration error responses considering measurement bias
before and after

𝑏̂(𝑡). It can be seen from the figure that the convergence rate of algorithms with the
consideration of measurement bias is much faster than the ones without. Moreover,
by removing the bias term in the measurement, the Fourier coefficients can be
estimated more accurately to compensate for the input disturbance. Notice that, for
the same trajectory, the coefficients 𝑎̂(𝑡) and 𝑏̂(𝑡) for each algorithm both converge
to similar values but not exactly the same. Other than the bias and measurement
noise discussed above, the phase differences while performing each experiment can
also contribute to this phenomenon. Figure 4.16 shows the amplitude spectrum of
the load side position error from the load side encoder on the single-joint indirect
drive setup. It confirms the effectiveness of the proposed methods and the modified
algorithms.

4.5 Summary

In this chapter, an adaptive cancellation algorithm was presented to suppress the
oscillatory phenomena caused by the transmission error of harmonic drives. The
acceleration information was used in the adaptation laws to effectively reduce the
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Figure 4.15: Estimation of the Fourier series coefficients 𝑎̂(𝑡) and 𝑏̂(𝑡)

oscillations on the load side. Two modification schemes were proposed to deal with
the deteriorate transient response and acceleration measurement bias. Experimen-
tal results showed the effectiveness of the proposed methods, and the load side
oscillation due to the transmission error was reduced significantly.
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Chapter 5

Iterative Learning Control for
Indirect Drive Trains

5.1 Introduction

In industrial applications, a robot often performs the same task repeatedly. When
the robot follows a trajectory repeatedly using the same control every cycle, the
trajectory tracking error will become repetitive from one trial to another. In such
situation, the iterative learning control (ILC) method becomes promising and prac-
tical. ILC is a well-established method for control of repetitive processes. It was
first introduced in 1970s and became popular in 1980s when Arimoto [1] proposed
the learning schemes for the robotic applications. Some other examples of applying
iterative learning control on robot manipulators can be found in [33, 43].
In the literature, iterative learning control is in general considered to be an ap-

proach for the purpose of trajectory tracking [4, 7, 23, 45, 68]. In [68], the author
studies the learning control based on the load side position measurement with slow
sampling rates (e.g. vision sensors). Two approaches are provided to deal with
such learning control problems: one approach uses a multirate Kalman smoother
to obtain the load side position estimate at the desired sampling rate by fusing the
position measurement and additional load side acceleration measurements at fast
sampling rates and another approach utilizes an interlacing technique to obtain the
slow sampling rate position measurement, and updates the learning controller at
the desired sampling rate using only the available slow sampling rate measurement.
The effectiveness of both approaches on the load side position tracking performance
are demonstrated by experiments. In this chapter, however, a different setting is
proposed by designing the iterative learning controller for the purpose of disturbance
rejection. Disturbance rejection aspects of iterative learning control have been cov-
ered earlier in [11, 12, 48], where disturbances such as initial state variations and
measurement disturbances are addressed.
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The iterative learning controller uses the error information of the past cycles
to correct control action in the current cycle. Clearly, the error signal plays a
substantial role in learning control. In industrial applications, based on availability,
the error signals can be chosen as the load side (end-effector) tracking errors, or
motor side tracking errors. Although these errors are related to each other, the
performance of the learning controllers using different error signals may be different.
To apply the iterative learning control to the drive trains, the conventional approach
is to assume that the robot is rigid, such that all relevant signals can be calculated
from the motor angles. In [49], the motor side measurement is used in the learning
controller without considering the gear effects. In reality, however, there are always
mechanical flexibilities in both joints and links. Moreover, the performance of the
drive train system is often evaluated by the load side position. If the load side sensor
information is available, it is desired to use the load side measurement in the learning
controller to directly compensate for the effects of the gear nonlinearities and other
disturbances on the load side tracking performance. Different iterative learning
control ideas applied to flexible mechanical systems have been studied previously in
[43, 64]. In these papers, it is assumed that the load side position can be measured.
In stead of such an assumption, it is assumed in this chapter that only the load
side acceleration can be measured in addition to the motor side position and an
estimation scheme is proposed to provide the estimated load side information.
This chapter is organized as follows. Section 5.2 presents the description of the

system in the matrix form. Section 5.3 provides the problem formulation. The
design of the motor side and load side iterative learning controller is presented in
Section 5.4 and 5.5, respectively. Section 5.6 discusses the proposed estimation
scheme for the load side position. The effectiveness of the learning controllers are
shown by the experimental results in Section 5.7. Finally, Section 5.8 presents the
conclusions.

5.2 Matrix Description of the System

The controller structure of the single-joint indirect drive train system with an itera-
tive learning controller is shown in Figure 5.1. The indirect drive train is represented
by the nominal plant models, 𝐺ℓ and 𝐺𝑚, obtained in Section 2.2. 𝑟ℓ(t), 𝜃ℓ(𝑡), and,
𝜃𝑚(𝑡) are the reference load side trajectory, the load side position, and the mo-
tor side position, respectively. The subscript 𝑗 denotes the iteration number. The
feedback controller, 𝐶, is a modified PID controller explained in Section 3.2 and
the feedforward controller, 𝐶𝑓𝑓1, is the filter that translates the load side reference
trajectory, 𝑟ℓ(𝑡), to the motor side reference trajectory, 𝑟𝑚(𝑡), explained in Section
3.2. The iterative learning controller is shown in the dashed box. It uses the error
signal, 𝑒𝑗−1(𝑡), and the compensation signal, 𝑢𝑐,𝑗−1(𝑡) from the previous iteration
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Figure 5.1: Controller structure of an indirect drive system with an iterative learning
controller

and generates the output of the learning controller, 𝑢𝑐,𝑗(𝑡), which is used as a com-
plement input signal that directly alters the control signal to the plant [53]. 𝑑(𝑡) is
the fictitious input disturbance that causes the vibrations in the system and 𝑢𝑓𝑓(𝑡)
is the feedforward torque which will be designed and explained in the following
sections.
In Figure 5.1, the closed-loop transfer functions from the desired load side trajec-

tory, 𝑟ℓ(𝑡), the learning compensation signal, 𝑢𝑐(𝑡), the feedforward torque, 𝑢𝑓𝑓(𝑡),
and the disturbance, 𝑑(𝑡), to the motor side position, 𝜃𝑚(𝑡), and the load side posi-
tion, 𝜃ℓ(𝑡), can be obtained as

𝜃𝑚,𝑗(𝑡) =
𝐺𝑚(𝑠)𝐶(𝑠)𝐶𝑓𝑓1(𝑠)

1 +𝐺𝑚(𝑠)𝐶(𝑠)
𝑟ℓ(𝑡) +

𝐺𝑚(𝑠)

1 +𝐺𝑚(𝑠)𝐶(𝑠)
(𝑑𝑗(𝑡) + 𝑢𝑓𝑓(𝑡)− 𝑢𝑐,𝑗(𝑡))

= 𝑇𝑚𝑟𝑐(𝑠)𝑟ℓ(𝑡) + 𝑇𝑚𝑐(𝑠)(𝑑𝑗(𝑡) + 𝑢𝑓𝑓(𝑡)− 𝑢𝑐,𝑗(𝑡)) (5.1)

𝜃ℓ,𝑗(𝑡) =
𝐺ℓ(𝑠)𝐶(𝑠)𝐶𝑓𝑓1(𝑠)

1 +𝐺𝑚(𝑠)𝐶(𝑠)
𝑟ℓ(𝑡) +

𝐺ℓ(𝑠)

1 +𝐺𝑚(𝑠)𝐶(𝑠)
(𝑑𝑗(𝑡) + 𝑢𝑓𝑓(𝑡)− 𝑢𝑐,𝑗(𝑡))

= 𝑇ℓ𝑟𝑐(𝑠)𝑟ℓ(𝑡) + 𝑇ℓ𝑐(𝑠)(𝑑𝑗(𝑡) + 𝑢𝑓𝑓(𝑡)− 𝑢𝑐,𝑗(𝑡)) (5.2)

Notice that in (5.2), 𝑠 represents the operator 𝑑/𝑑𝑡 in time domain. Equations (5.1)
and (5.2) can be written in the discrete-time form by using the zero-order-hold
(ZOH) method

𝜃𝑚,𝑗(𝑘) = 𝑇𝑚𝑟(𝑞)𝑟ℓ(𝑘) + 𝑇𝑚(𝑞)(𝑑𝑗(𝑘) + 𝑢𝑓𝑓(𝑘)− 𝑢𝑐,𝑗(𝑘)) (5.3)

𝜃ℓ,𝑗(𝑘) = 𝑇ℓ𝑟(𝑞)𝑟ℓ(𝑘) + 𝑇ℓ(𝑞)(𝑑𝑗(𝑘) + 𝑢𝑓𝑓 (𝑘)− 𝑢𝑐,𝑗(𝑘)) (5.4)
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where 𝑘 is the sampling point and 𝑞 is the one step advance operator. Notice that in
the learning control problem, we are only interested in the dynamics of the system
defined over a finite interval of time. From (5.3) and (5.4), the relationship between
the input and the resulting output time history can be formulated in the lifted form

Y𝑚,𝑗 = T𝑚𝑟Rℓ +T𝑚(D𝑗 +U𝑓𝑓,𝑗 − U𝑐,𝑗) (5.5)

Yℓ,𝑗 = Tℓ𝑟Rℓ +Tℓ(D𝑗 +U𝑓𝑓,𝑗 − U𝑐,𝑗) (5.6)

where

Y𝑚,𝑗 = [𝜃𝑚,𝑗(𝑚), ..., 𝜃𝑚,𝑗(𝑚+𝑁 − 1)]𝑇
Yℓ,𝑗 = [𝜃ℓ,𝑗(𝑚), ..., 𝜃ℓ,𝑗(𝑚+𝑁 − 1)]𝑇
U𝑐,𝑗 = [𝑢𝑐,𝑗(0), ..., 𝑢𝑐,𝑗(𝑁 − 1)]𝑇
D𝑗 = [𝑑𝑗(0), ..., 𝑑𝑗(𝑁 − 1)]𝑇

U𝑓𝑓 = [𝑢𝑓𝑓,𝑗(0), ..., 𝑢𝑓𝑓,𝑗(𝑁 − 1)]𝑇
Rℓ = [𝑟ℓ(0), ..., 𝑟ℓ(𝑁 − 1)]𝑇

𝑚 and 𝑁 denote the system delay and the duration of the input signal, respectively.
T𝑚 is a lower triangular matrix formed by the impulse response coefficients of 𝑇𝑚.
That is, if

𝑇𝑚(𝑞) = 𝑡0 + 𝑡1𝑞
−1 + 𝑡2𝑞

−2 + ⋅ ⋅ ⋅ (5.7)

then the matrix form of T𝑚 is constructed as

T𝑚 =

⎛
⎜⎜⎜⎜⎜⎝
𝑡0 0 0 ⋅ ⋅ ⋅ 0
𝑡1 𝑡0 0 ⋅ ⋅ ⋅ 0
𝑡2 𝑡1 𝑡0 ⋅ ⋅ ⋅ 0
...

. . .
. . .

. . . 0
𝑡𝑁−1 ⋅ ⋅ ⋅ 𝑡2 𝑡1 𝑡0

⎞
⎟⎟⎟⎟⎟⎠ , (5.8)

T𝑚𝑟, Tℓ, and Tℓ𝑟 can be defined analogously. In (5.8), the diagonal terms of
the matrix is a constant. Moreover, it is assumed that the initial conditions are
zero, i.e., 𝜃𝑗(𝑘) = 0 for 𝑘 < 0, and the system delay, 𝑚, is zero. Notice that if the
system is time varying in the sense that the dynamics change during one iteration,
it is straightforward to let the coefficients in (5.8) vary along the diagonals. It is,
however, assumed here that the same T𝑚, T𝑚𝑟, Tℓ, and, Tℓ𝑟 are valid in each
iteration.

5.3 An Optimization-based Approach to ILC

The optimization approach to iterative learning control has been developed for
many years and the previous contributions can be found in [17, 21, 35]. The idea
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of the optimization-based ILC is to determine the input, U𝑐,𝑗+1, for the system
described in (5.5) and (5.6) such that the error, E𝑗+1, becomes as small as possible
by minimizing the criterion

J = E𝑇
𝑗+1W𝑒E𝑗+1 +U𝑇

𝑐,𝑗+1W𝑢U𝑐,𝑗+1 (5.9)

where W𝑒 and W𝑢 are the weighting matrices which determine the trade off
between the performance and the input energy. U𝑐,𝑗+1 is the compensation signal
generated by the learning controller. The error signal, E𝑗+1, can be chosen as either
the motor side or the load side error signal, if available.
The conventional optimization-based design of the iterative learning controller

[49] is to use the motor side position error, E𝑚,𝑗 = R𝑚 − Y𝑚,𝑗 , as the error signal,
E𝑗, in (5.9). It is because the motor position measurement, Y𝑚,𝑗 , can be easily
obtained by the motor encoder and is often already used in the design of the feedback
controller, 𝐶. In this approach, it is hoped to indirectly reduce the load side position
error by improving the motor side performance. On the other hand, if the load
side position measurement, Yℓ,𝑗, is available, the load side tracking error, Eℓ,𝑗 =
Rℓ − Yℓ,𝑗, can be used as the error signal, E𝑗 , in (5.9). Based on the choice of
the error signal, two different iterative learning controllers can be obtained. In
this chapter, the learning controller is called as the motor side or the load side
iterative learning controller, if the motor side or the load side position error is used,
respectively.
By minimizing (5.9), it is then possible to find an optimal input, U𝑐,𝑗+1 to the

system, (5.5) and (5.6) with respect to the criterion (5.9).

5.4 Motor Side Iterative Learning Controller

To obtain the motor side iterative learning controller, (5.9) is rewritten using the
motor side position error as

J𝑚,𝑗+1 = E𝑇
𝑚,𝑗+1W𝑒E𝑚,𝑗+1 +U𝑇

𝑐,𝑗+1W𝑢U𝑐,𝑗+1 (5.10)

From (5.10) and (5.5), it follows that the derivative of J𝑚,𝑗+1 with respect to U𝑐,𝑗+1

is

∂J𝑚,𝑗+1

∂U𝑐,𝑗+1

=
∂

∂U𝑐,𝑗+1

((R𝑚 − Y𝑚,𝑗)
𝑇W𝑒(R𝑚 − Y𝑚,𝑗)) +

∂

∂U𝑐,𝑗+1

(U𝑇
𝑐,𝑗+1W𝑢U𝑐,𝑗+1)

= T𝑇
𝑚W𝑒(C𝑓𝑓1 − T𝑚𝑟)Rℓ − T𝑇

𝑚W𝑒T𝑚D𝑗+1 − T𝑇
𝑚W𝑒T𝑚U𝑓𝑓

+(T𝑇
𝑚W𝑒T𝑚 +W𝑢)U𝑐,𝑗+1 (5.11)
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Figure 5.2: Disturbance observer structure - Motor side ILC

The optimal input, U∗
𝑐,𝑗+1, with respect to the criterion (5.10) can be obtained by

setting
∂J𝑚,𝑗+1

∂U𝑐,𝑗+1
= 0 and it follows,

U∗
𝑐,𝑗+1 = Δ

−1T𝑇
𝑚W𝑒T𝑚D𝑗+1 +Δ

−1T𝑇
𝑚W𝑒T𝑚U𝑓𝑓 +Δ

−1T𝑇
𝑚W𝑒(T𝑚𝑟 − C𝑓𝑓1)Rℓ

(5.12)

where Δ = (T𝑇
𝑚W𝑒T𝑚 +W𝑢)

If W𝑢 = 0, i.e., the input energy is not penalized and the feedforward controller
is designed such that U𝑓𝑓 = −△−1T𝑇

𝑚W𝑚(T𝑚𝑟−C𝑓𝑓1)Rℓ, the updating scheme of
the iterative learning controller, (5.12), becomes

U∗
𝑐,𝑗+1 = D𝑗+1 (5.13)

Equation (5.13) represents the intuitive approach for the disturbance rejection
problem in Figure 5.1 where the compensation input generated by the learning
controller is equal to the input disturbance, D𝑗+1, such that the effect of D𝑗+1 can
be exactly canceled. Note that in general, D𝑗+1 is not available when U𝑐,𝑗+1 is
calculated. However, if the disturbance, D𝑗+1, does not change dramatically from
one iteration to another and a model of the system is available, the disturbance,
D𝑗+1, can be replaced by the disturbance estimate, D̂𝑗+1, where D̂𝑗+1 can obtained
by a disturbance observer from the previous iteration.
Thus, equation (5.12) can be rewritten by replacing D𝑗+1 with its estimate as

U𝑐,𝑗+1 = Δ
−1T𝑇

𝑚W𝑒T𝑚D̂𝑗+1 +Δ
−1T𝑇

𝑚W𝑒T𝑚U𝑓𝑓 +Δ
−1T𝑇

𝑚W𝑒(T𝑚𝑟 − C𝑓𝑓1)Rℓ

(5.14)

Disturbance observer (DOB) is an approach particularly for handling distur-
bances in motion control system. It was introduced by Ohnishi (1987) [51] and
refined by Umeno and Hori (1991) [63]. The disturbance observer estimates the dis-
turbance, 𝑑(𝑡), which is defined as the difference between the actual output and the
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output of the nominal model due to the disturbance, 𝑑(𝑡), applied to the nominal
model. Figure 5.4 shows the structure of the disturbance observer using motor side
information. In the figure, the motor position, 𝜃𝑚, is processed by the inverse of
the motor side nominal dynamics of the plant, 𝐺−1

𝑚 . This results in the disturbance
estimate for the motor side learning controller:

𝑑𝑗+1(𝑡) = 𝐺
−1
𝑚 𝑦𝑚,𝑗(𝑡)− 𝑢𝑗(𝑡) (5.15)

If the plant, 𝐺𝑚, has the non-minimum phase zero, the zero phase error tracking
(ZPET) method [58] is used to obtain the inverse of the plant, 𝐺−1

𝑚 . Equation (5.15)
can be formulated in the matrix form where

D̂𝑗+1 = G−1
𝑚 Y𝑚,𝑗 − U𝑗 (5.16)

Note that even though the inverse of plant is normally not realizable, because
the learning controller is applied in the iteration domain, it is now possible to obtain
the future time information within one iteration.
By using (5.16) and (5.5), (5.14), i.e., the motor side iterative learning controller,

can be obtained as

U𝑐,𝑗+1 = Δ−1T𝑇
𝑚W𝑒T𝑚(G

−1
𝑚 Y𝑚,𝑗 − U𝑗) + Δ

−1T𝑇
𝑚W𝑒T𝑚U𝑓𝑓

+Δ−1T𝑇
𝑚W𝑒(T𝑚𝑟 − C𝑓𝑓1)Rℓ

= −Δ−1T𝑇
𝑚W𝑒T𝑚G−1

𝑚 E𝑚,𝑗 −Δ−1T𝑇
𝑚W𝑒T𝑚(CT𝑚 − I)U𝑐,𝑗 (5.17)

with a feedforward controller

U𝑓𝑓 = (G−1
𝑚 C𝑓𝑓1)Rℓ (5.18)

Notice that (5.17) can be formed into the standard iterative learning controller
form

U𝑐,𝑗+1 = Q𝑚(U𝑐,𝑗 + L𝑚E𝑚,𝑗) (5.19)

where

Q𝑚 = −Δ−1T𝑇
𝑚W𝑒T𝑚(CT𝑚 − I)

L𝑚 = [G𝑚(CT𝑚 − I)]−1

Notice that by using (5.5) and (5.18), (5.19) can be written as

U𝑐,𝑗+1 = Q𝑚(U𝑐,𝑗 + L𝑚(C𝑓𝑓1Rℓ − Y𝑚,𝑗))

= Q𝑚(I − L𝑚T𝑚)U𝑐,𝑗

+Q𝑚L𝑚[(C𝑓𝑓1 − T𝑚𝑟 +T𝑚G−1
𝑚 C𝑓𝑓1)Rℓ +T𝑚D𝑗] (5.20)
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It has been shown in the literature [6] that the motor side iterative learning
control system, (5.20), is asymptotically stable if the spectral radius of Q𝑚(I −
L𝑚T𝑚) is smaller than one, i.e.,

𝜌(Q𝑚(I − L𝑚T𝑚)) < 1 (5.21)

Furthermore, if the maximum singular value is smaller than one, i.e.

𝜎(Q𝑚(I − L𝑚T𝑚)) < 1 (5.22)

then the iterative learning control system is asymptotically stable, and the motor
side learning signal U𝑐,𝑗 converges monotonically.

5.5 Load Side Iterative Learning Controller

The load side iterative learning controller can be obtained in a similar way as the
motor side learning controller described in the previous section. The optimization
criterion, (5.9), for the load side iterative learning controller can be rewritten using
the load side position error, Eℓ,𝑗 = Rℓ − Yℓ,𝑗, as

Jℓ,𝑗+1 = E𝑇
ℓ,𝑗+1W𝑒Eℓ,𝑗+1 +U𝑇

𝑐,𝑗+1W𝑢U𝑐,𝑗+1 (5.23)

Thus, the optimal input, U𝑐,𝑗+1, with respect to the criterion (5.23) can be
obtained as

U∗
𝑐,𝑗+1 = Δ

−1T𝑇
ℓ W𝑒TℓD𝑗+1 +Δ

−1T𝑇
ℓ W𝑒TℓU𝑓𝑓 +Δ

−1T𝑇
ℓ W𝑒(Tℓ𝑟 − I)Rℓ (5.24)

where Δ = (T𝑇
ℓ W𝑒Tℓ +W𝑢)

Notice that for the load side learning controller, the relationship represented in
(5.13) can be derived analogously and the disturbance in the 𝑗+1𝑡ℎ iteration, D𝑗+1,

in (5.24) is now replaced by the load side disturbance estimate, D̂𝑗+1.

U𝑐,𝑗+1 = Δ
−1T𝑇

ℓ W𝑒TℓD̂𝑗+1 +Δ
−1T𝑇

ℓ W𝑒TℓU𝑓𝑓 +Δ
−1T𝑇

ℓ W𝑒(Tℓ𝑟 − I)Rℓ (5.25)

Figure 5.5 shows the disturbance observer structure using load side information.
In the figure, the load side position measurement, 𝜃ℓ, is processed by the inverse
of the load side nominal plant, 𝐺−1

ℓ . In real applications, however, the load side
position measurement, 𝜃ℓ, is often not available. Thus, a load side position estima-
tion algorithm which uses the load side acceleration measurement, 𝜃ℓ, and the input
torque, 𝑢, is used to find the load side position estimate, 𝜃ℓ, instead of the real load
side position measurement, 𝜃ℓ. The estimation process of 𝜃ℓ will be explained in the
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Figure 5.3: Disturbance observer structure - Load side ILC

following section. The resulting load side disturbance estimate can be formulated
in the matrix form

D̂𝑗+1 = G−1
ℓ Ŷℓ,𝑗 − U𝑗 (5.26)

By using (5.25) and (5.26), the load side iterative learning controller can be
obtained as

U𝑐,𝑗+1 = Δ−1T𝑇
ℓ W𝑒Tℓ(G

−1
ℓ Ŷℓ,𝑗 − U𝑗) + Δ

−1T𝑇
ℓ W𝑒TℓU𝑓𝑓

+Δ−1T𝑇
ℓ W𝑒(Tℓ𝑟 − I)Rℓ

= −Δ−1T𝑇
ℓ WℓTℓG

−1
ℓ Eℓ,𝑗 −Δ−1T𝑇

ℓ WℓTℓ(CT𝑚 − I)U𝑐,𝑗 (5.27)

with a feedforward controller

U𝑓𝑓 = (Tℓ𝑟 − CC𝑓𝑓1)Rℓ (5.28)

Notice that (5.27) can also be written in the standard iterative learning controller
form:

U𝑐,𝑗+1 = Qℓ(U𝑐,𝑗 + LℓEℓ,𝑗) (5.29)

where

Qℓ = −Δ−1T𝑇
ℓ W𝑒Tℓ(CTℓ − I)

Lℓ = [Gℓ(CTℓ − I)]−1

As explained in Section 5.4, the load side iterative learning control system,
(5.29), can be shown to be asymptotically stable if the spectral radius ofQℓ(I−LℓTℓ)
is smaller than one, i.e.

𝜌(Qℓ(I − LℓTℓ)) < 1 (5.30)
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Furthermore, if the maximum singular value is smaller than one, i.e.

𝜎(Qℓ(I − LℓTℓ)) < 1 (5.31)

then the iterative learning control system is asymptotically stable, and the load side
learning signal U𝑐,𝑗 converges monotonically.

5.6 Load Side Position Estimation

As mentioned in the previous chapters, precise load side (end-effector) measure-
ments are usually not available in industrial robots due to the cost and assembly
issues. Therefore, low-cost MEMS sensors, such as gyroscopes and accelerometers
are widely used in motion control applications and are integrated on the load side
for estimation purposes. Problems such as non-negligible biases, limited bandwidth,
and noises from inexpensive sensors, however, can set restrictions on the direct uti-
lization of the load side sensor signals.
The single-joint indirect drive train system is equipped with two accelerometers

on the payload as described in Section 2.2. A Kalman filter that makes use of the
acceleration measurement was introduced in Section 4.3. It was used for eliminating
the bias in the acceleration measurement by processing the estimated acceleration
signal through a low pass filter. The method was shown to be sufficient for the
purpose of eliminating the bias effect. To accurately provide the load side position
estimate, however, the Kalman filter in Section 4.3, which only considers the plant
dynamics is not adequate due to the apparent sensor dynamics. In order to obtain
the precise load side position estimate, the sensor dynamics have to be considered
in the estimation process.
The sensor dynamics that includes the effect of bias and noise can be described

in general as

𝑧̇𝑏𝑖𝑎𝑠(𝑡) = 𝑛𝑏(𝑡)

𝑧𝑚(𝑡) = 𝑧𝑟(𝑡) + 𝑧𝑏𝑖𝑎𝑠(𝑡) + 𝑛𝑧(𝑡) (5.32)

where 𝑧𝑏𝑖𝑎𝑠(𝑡) is the bias in the sensor measurement which is modeled and governed
by the noise, 𝑛𝑏(𝑡). 𝑧𝑚(𝑡) is the measured signal obtained at the sensor output and
𝑧𝑟(𝑡) is the corresponding actual signal at the system output. 𝑛𝑧(𝑡) is the sensor
noise.
The state space equation for the single-joint indirect drive train system, (2.3),

with the consideration of sensor dynamics, (5.32), can be written as

ḟ(𝑡) = A𝑎𝑢𝑔f(𝑡) +B𝑎𝑢𝑔,𝑢𝑢(𝑡) +B𝑎𝑢𝑔,𝑤w𝑐(𝑡)

h(𝑡) = C𝑎𝑢𝑔f(𝑡) + v𝑐(𝑡) (5.33)
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where

A𝑎𝑢𝑔 =

[
A 0
0 0

]
, B𝑎𝑢𝑔,𝑢 =

[
B
0

]
, w𝑐(𝑡) =

[
𝑛𝑢(𝑡)
𝑛𝑏(𝑡)

]
,

v𝑐(𝑡) =

[
𝑛𝑠𝑚(𝑡)
𝑛𝑎ℓ(𝑡)

]
, h(𝑡) =

[
𝜃𝑚(𝑡)

𝜃ℓ(𝑡)

]
, f(𝑡) =

[
𝑥(𝑡)

𝜃ℓ,𝑏𝑖𝑎𝑠(𝑡)

]
,

C𝑎𝑢𝑔 =

[
1 0 0 0 0
𝑘𝑗
𝑁𝐽ℓ

𝑑𝑗
𝑁𝐽ℓ

−𝑘𝑗
𝐽ℓ

−𝑑𝑗+𝑑ℓ
𝐽ℓ

1

]
, B𝑎𝑢𝑔,𝑤 =

[
0 1

𝐽𝑚
0 0 0

0 0 0 0 1

]𝑇
where A, B, 𝑥, and the entries in the matrices B𝑎𝑢𝑔,𝑤 and C𝑎𝑢𝑔 are the same as those

in (2.4). 𝜃𝑚(𝑡), and 𝜃ℓ(𝑡) are the measured motor side position and load side acceler-

ation, respectively. 𝜃ℓ,𝑏𝑖𝑎𝑠(𝑡) is the bias in the acceleration measurement. 𝑛𝑢(𝑡) and
𝑛𝑏(𝑡) are respectively the noise of the motor torque, 𝑢(𝑡), and the accelerometer bias,

𝜃ℓ,𝑏𝑖𝑎𝑠(𝑡). 𝑛𝑠𝑚(𝑡) and 𝑛𝑎ℓ(𝑡) are the measurement noise of the motor side position,
𝜃𝑚(𝑡), and the load side acceleration, 𝜃ℓ(𝑡). w𝑐(𝑡) ∼ 𝑁(0,Q𝑐) and v𝑐(𝑡) ∼ 𝑁(0,R𝑐)
are the process and measurement noise, respectively.
Introduce a sampling time, △𝑡, as a zero order hold on the input side of the

plant, (5.33) can be written in the discrete-time state space form as

f(𝑘 + 1) = A𝑎𝑢𝑔𝑧f(𝑘) +B𝑎𝑢𝑔𝑧,𝑢𝑢(𝑘) +B𝑎𝑢𝑔𝑧,𝑤w(𝑘)

h(𝑘) = C𝑎𝑢𝑔𝑧f(𝑘) + v(𝑘) (5.34)

where

A𝑎𝑢𝑔𝑧 = 𝑒A𝑎𝑢𝑔△𝑡, B𝑎𝑢𝑔𝑧,𝑢 =

∫ △𝑡

0

𝑒A𝑎𝑢𝑔𝜂B𝑎𝑢𝑔,𝑢𝑑𝜂

B𝑎𝑢𝑔𝑧,𝑤 =

∫ △𝑡

0

𝑒A𝑎𝑢𝑔𝜂B𝑎𝑢𝑔,𝑤𝑑𝜂

w(𝑘) and v(𝑘) are the discrete time process and measurement noise where w(𝑘) ∼
𝑁(0,Q) and v(𝑘) ∼ 𝑁(0,R). Notice that the relationship of the variance matrices,
Q, Q𝑐, R, and R𝑐, are approximately Q = Q𝑐△𝑡 and R = R𝑐/△𝑡 as shown in
[56]. For the system shown in (5.34), a Kalman filter that provides the system state
estimates, f̂, can be found as

f̂(𝑘 + 1∣𝑘 + 1) = f̂(𝑘 + 1∣𝑘) +K(𝑘 + 1)[h(𝑘 + 1)− C𝑎𝑢𝑔𝑧 f̂(𝑘 + 1∣𝑘)] (5.35)
where

f̂(𝑘 + 1∣𝑘) = A𝑎𝑢𝑔𝑧 f̂(𝑘∣𝑘) +B𝑎𝑢𝑔𝑧,𝑢𝑢(𝑘)

M(𝑘 + 1) = A𝑎𝑢𝑔𝑧P(𝑘)A
𝑇
𝑎𝑢𝑔𝑧 +B𝑎𝑢𝑔𝑧,𝑤QB𝑇

𝑎𝑢𝑔𝑧,𝑤

K(𝑘 + 1) = M(𝑘 + 1)C𝑇
𝑎𝑢𝑔𝑧[C𝑎𝑢𝑔𝑧M(𝑘 + 1)C𝑇

𝑎𝑢𝑔𝑧 +R]−1

P(𝑘 + 1) = [I − K(𝑘 + 1)C𝑎𝑢𝑔𝑧]M(𝑘 + 1)



72

Table 5.1: The noise variance used in experiments

Q(𝑛𝑢) R(𝑛𝑠𝑚) R(𝑛𝑎ℓ) Q(𝑛𝑏)
10−4 8.2247× 10−9 3.2841× 10−3 10−5

Notice that K(𝑘) is the Kalman filter gain. M(𝑘) and P(𝑘) are the a priori and
the a posteriori estimate error covariance, respectively. Notice that w(𝑘) and v(𝑘)
are often interpreted as fictitious noise terms and their variance can be adjusted to
assign a reasonable set of closed loop eigenvalues to the estimator. In practice, they
are chosen such that the estimator dynamics is five to ten times faster than that of
the controller or fast enough to suppress the effect of perturbations [10].

5.7 Experimental Study

5.7.1 Experimental Setup

The proposed iterative learning controllers are applied to the single-joint indirect
drive train setup described in Section 2.2. Notice that the experimental setup is
quipped with a load side encoder. The load side position measurement, however, is
used only for evaluating the performance of the proposed controllers. The reference
load side trajectory is shown in Figure 5.4. It is obtained by the 4𝑡ℎ order trajectory
generation method explained in Section 3.4.3. It can be seen from the figure that,
the payload of the single-joint indirect drive train moves from the zero position
to the desired position with an acceleration phase, a constant speed phase and a
deceleration phase and then returns to the zero position in the same manner in 3.4
seconds. The controller gains, [𝐾𝑝, 𝐾𝑣, 𝐾𝑖], of the modified PID controller, 𝐶, are
chosen to be [30, 0.3, 1] for the experiments. The controller gains, [𝐾𝑓1, 𝐾𝑓2], of
the feedforward controller, 𝐶𝑓𝑓1, are chosen to be [10

−5, 0.0275].
The noise variance used in the experiments are shown in Table 5.1. The noise of

the motor side position, 𝜃𝑚, is bounded by the encoder resolution 𝛿𝜃𝑚. This gives
the approximate output noise variance R(𝑛𝑚) = 𝛿𝜃

2
𝑚/12. The noise variance for the

load side accelerometer output, 𝜃ℓ, can be obtained by zero-acceleration experiment,
which gives R(𝑛𝑎ℓ) = 3.2841 × 10−3(𝑟𝑎𝑑/𝑠𝑒𝑐2)2. Since no torque measurement is
available in this experimental setup, the noise variance of the motor torque output,
Q(𝑛𝑢), can not be determined experimentally, and thus could be designed for the
controller performance. Also, the noise variance of the measurement bias, Q(𝑛𝑏),
can be used as the design parameter [10].
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Figure 5.4: Desired load side trajectory
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5.7.2 Experimental Results

Load side position estimation

A position estimation algorithm was proposed in Section 5.6. Notice that if the
estimation algorithm is not available, the load side position, 𝜃ℓ, can be approximated
based on the system dynamics model using the load side acceleration measurement,

𝜃ℓ, and motor side position measurements, 𝜃𝑚. From (2.3), the load side dynamics
of the single-joint indirect drive train is

𝐽ℓ𝜃ℓ + 𝑑ℓ𝜃̇ℓ = 𝑘𝑗

(
𝜃𝑚
𝑁

− 𝜃ℓ
)
+ 𝑑𝑗

(
𝜃̇𝑚
𝑁

− 𝜃̇ℓ
)

Assuming that the damping terms in the above equation can be ignored, the load
side position can be estimated as

𝜃ℓ𝑤𝑜 =
𝜃𝑚
𝑁

− 𝐽ℓ
𝑘𝑗

¯̈𝜃ℓ (5.36)

It follows that the load side estimation error for (5.36) can be found as

𝑒ℓ𝑤𝑜 = 𝜃ℓ − 𝜃ℓ𝑤𝑜 (5.37)

where 𝜃ℓ is the measured load side position.
The solid and dashed lines in Figure 5.5 show the load side position estimation

error, 𝑒ℓ𝑤, and, 𝑒ℓ𝑤𝑜, respectively. 𝑒ℓ𝑤𝑜 is defined in (5.37) and 𝑒ℓ𝑤 = 𝜃ℓ − 𝜃ℓ𝑤. 𝜃ℓ𝑤
is the load side position estimate obtained by the estimation algorithm proposed
in Section 5.6. It can be seen from the figure that the estimated load side position
𝜃ℓ𝑤𝑜 in (5.36) suffers from the bias and the noises of the acceleration measurement,

𝜃ℓ while the load side position estimate, 𝜃ℓ𝑤, obtained in Section 5.6 provides a
more satisfactory estimation. Figure 5.6 shows the bias estimation of the load
side acceleration measurement. It is clear that the estimation method proposed in
Section 5.6 is superior compare to the method in (5.36) and it is effective to estimate
the measurement bias and thus reduce the bias effects in the utilization of sensor
signals.

Motor side iterative learning controller

Figure 5.7 shows the results of the motor side learning controller after 10 iterations.
The weighting matrices in (5.10) are chosen to be W𝑢 = 10−2 ⋅ I and W𝑒 = 102 ⋅
I where I is the identity matrix. Figure 5.7(a) shows the motor position error
where the dashed and solid lines represent the time responses before and after
applying the motor side iterative learning controller, respectively. Figure 5.7(b)
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Figure 5.5: Comparison of the load side position estimation error
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Figure 5.7: Motor side iterative learning controller results
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shows the load side position error where the solid and dashed lines represent the
time responses before and after applying the motor side iterative learning controller,
respectively. It can be observed from Figure 5.7(a) that the motor side learning
controller reduces the motor side vibrations effectively. The load side position error
as shown in Figure 5.7(b), however, was deteriorated by the motor side learning
controller. The load side tracking error during the constant speed phase of the
trajectory was increased with a phase error. It is shown in the figure that with
the presence of the disturbance, the perfect disturbance rejection on the motor side
will result in a nonzero error on the load side. Since the load side iterative learning
controller directly learns the error from the load side, it is expected that the load
side learning controller will perform better than the motor side one in terms of load
side tracking performance.

Load side iterative learning controller

Figure 5.8 shows the results of the load side iterative learning controller after 10
iterations with the weighting matrices, W𝑢 = 10−2 ⋅ I and W𝑒 = 105 ⋅ I. Figure
5.8(a) shows the load side acceleration responses where the dashed and solid line
represent the responses before and after applying the load side learning controller,
respectively. Figure 5.8(b) shows the load side position error responses where the
dashed and solid line represent the responses before and after applying the load
side iterative learning controller, respectively. The load side learning controller
reduces the vibrations on the load side effectively not only in the acceleration and
deceleration phase but also the constant speed phase. The experimental results
clearly show that the load side learning controller is more effective to improve the
load side performance.

Comparison

The performance of the learning controllers is further evaluated in the iteration
domain by the root-mean-square (RMS) values of the error signals. Notice that the
RMS of the error signal is computed as

𝑒𝑅𝑀𝑆 =

(∑
𝑘

𝑒2(𝑘)

) 1
2

Figure 5.9 shows the convergence of the load side position error signals where
the the circle (∘) and the square (□) represent the error from the load side and
the motor side iterative learning controller for each iteration, respectively. It can be
seen from the figure that both motor side and load side iterative learning controllers
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Figure 5.9: Comparison of motor side and load side iterative learning controllers

converge in approximately five iterations. The motor side learning controller, how-
ever, amplifies the load side position error while the load side learning controller
reduces the position error effectively.

5.8 Summary

An optimization-based iterative learning control scheme for the purpose of distur-
bance rejection was proposed in this chapter. Two different learning controllers, the
motor side and load side learning controller, designed based on different error signal,
namely the motor side error, and the load side error, were obtained. A load side
position estimation algorithm based on Kalman filtering was proposed and the load
side position estimate was used in the load side learning controller. The effectiveness
of the estimation scheme was shown with the experimental result. Both learning
controllers show good convergence property. However, it was shown that the load
side iterative learning controller demonstrates much more substantial reduction of
the load side vibration than the motor side learning controller when the load side
performance is of interest.
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Chapter 6

Identification of Dynamics of a
Robot Manipulator

6.1 Introduction

An accurate model of the robot dynamics is an essential prerequisite for many re-
search topics. An accurate model is important not only for the controller design, but
also for the development of better or new functionalities, such as collision detection,
sensorless force control for assembly, and sensorless lead through teaching. Sys-
tem identification also provides an opportunity to gauge the hardware and software
capability prior to controller implementation.
In practice, a SISO system and friction identification are performed to obtain

estimates for the system and friction parameters, respectively. Robot manipula-
tors, however, are highly nonlinear, coupled multivariable control systems and un-
fortunately, SISO system identification does not incorporate this coupling effect.
Consequently, SISO sytem identification estimations are not always sufficient to
capture the complex dynamics of robot manipulators. As a result, complemen-
tary methods such as gain scheduling method, automatic gain tuning method, and
adaptive control method are usually applied to improve system performance. If the
multi-dimensional system model is identified precisely, it is expected that a MIMO
controller can be designed to give better performance over the whole workspace. In
addition, it will enable more realistic simulations to evaluate control performance
before verifying with experiments. Therefore, a system identification method from
the standpoint of control system design is motivated.
The development of the robust control techniques ensures the achievement of

stability and specific performance in the presence of plant uncertainties [15]. Note
that nearly all robust control design methods require explicit worst-case bounds on
the plant uncertainties. A mathematically convenient way to formalize the problem
of robust control is to describe the system by a nominal model with a bounded



81

model error. Hence a good system model is a necessary prerequisite for robust
controller design.
The remainder of this chapter is organized as follows. Section 6.2 will first intro-

duce the description of hardware setup. Next, Section 6.3 will discusses the single-
input-single-output (SISO) system identification of the M-16𝑖B industrial robot
provided by FANUC Ltd. Finally, the multi-input-multi-output (MIMO) system
identification will be discussed in Section 6.4. The approaches, experimental setup,
data processing procedures, and results are summarized in each section.

6.2 Robot Instrumentation

6.2.1 Hardware Setup

Figure 6.1: M-16iB FANUC robot

Figure 6.1 shows the M-16𝑖B industrial robot used in the current research. The
M-16𝑖B robot is equipped motor encoders, which will enable motor side data ac-
quisition. Additionally, an accelerometer (Kistler, Type 8330A3)[38] is attached on
the payload to measure load side acceleration. And finally, while not used for the
SISO system identification, a three-dimensional position measuring system, Com-
puGauge 3D[13], is also available. It is possible to synchronize the time data with
the end-effector position data.
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Figure 6.2: Hardware setup

Robot Controller

The commercial M-16𝑖B robot controller is capable of position and velocity feed-
back control. While it is possible to move the robot along any desired trajectory
using the provided controller, it does not allow for flexibilities such as adjusting the
controller parameters or algorithm. As a result, MATLAB is used to design the
control algorithms and a digital to analog servo adapter (DSA) is used to transfer
the information to the robot.
By using DSA, the control signal (i.e. motor torque command) is generated by

the target computer and is then converted to output current by the robot controller.
Although the robot controller is not directly generating signals to control the robot,
it is still used to amplify the output from the target computer. Additionally, the
robot controller is also used to activate the motor brakes in the robot. Notice that
the brake function is turned on and off directly with a digital input/output (DIO)
board installed on the target computer.

Real-Time System

Commercial programs that include control toolboxes, such as MATLAB [44] and
LABVIEW [46], provide engineers with various advantages. For example, graphical
user interfaces (GUI) allow users to design control algorithms in a more intuitive
and convenient manner. Furthermore, various other toolboxes, such as System
Identification toolbox, Controller Design toolbox, and Signal Processing toolbox
provide many useful functions to help users quickly analyze control systems. For
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SISO system identification, MATLAB installed on a Windows platform is used to
design and implement control algorithms.
In real-time systems, it is critical that hardware performance is not hindered by

software computational limitations. Thus, it is important to ensure that the software
runs as quickly and consistently as possible. A Windows platform, however, does
not guarantee this sort of real-time environment due to unexpected interferences
from virus scanning software and other event logging processes.
To overcome these problems, two computers are used for the real-time control

system setup. A host computer operated the Windows platform and allowed users
to utilize the conveniences of MATLAB. Another computer, called the target com-
puter, is used to process the generated signals and to interface with the robot. The
target computer ran an environment based on the XPCtarget system to ensure real-
time processing. The current minimum sampling time for XPCtarget is 0.5 msec.
Additionally, the robot motor positions, motor velocities, and motor currents are
accessible to the target computer through a high-speed serial bus (HSSB) interface.
And finally, the load side acceleration information is also available to the target
computer through a data acquisition board manufactured by National Instrument.
The host computer and target computer are connected via Ethernet. The con-

trol algorithms is designed and compiled on the host computer and then transferred
to the target computer. Once the target computer begins running the control al-
gorithm, the connection between the two computer is automatically disengaged,
thus allowing the target computer to run without any interference from the host
computer. Additional hardware information about the accelerometer mounting and
payload design can be found in [66, 68].

6.2.2 Software Setup

In order to expedite the system identification process, a customized GUI is designed
in MATLAB as shown in Fig. 6.3. The GUI allows the user to quickly specify system
parameters, identify experimental conditions, and analyze collected experimental
data. More specifically, the GUI allows users to quickly set up the proper MATLAB
work environment, load the desired system model, select the type of experiment to
perform as well as configure the experiment parameters, set controller parameters,
and generate frequency response plots for the experimental measurements.

6.3 SISO System Identification

6.3.1 System Modeling

For SISO system identification, each joint is individually actuated. When a joint is
being actuated, the remaining five joints are assumed to be rigid, hence the joints
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are assumed to be decoupled. As a result, it is intuitive to model each joint as a
two-inertia mechanism discussed in Section 2.3.
The transfer functions from the torque command, 𝑢, to the motor velocity, 𝜃𝑚,

and the load side acceleration, 𝜃ℓ, were obtained in Section 2.4:

𝜃𝑚(𝑠)

𝑢(𝑠)
=

𝐽ℓ𝑠
2 + (𝑑𝑗 + 𝑑ℓ)𝑠+ 𝑘𝑗

𝐽𝑚𝐽ℓ𝑠3 + 𝐽𝑑𝑠2 + 𝐽𝑘𝑠+ 𝑘𝑗(𝑑𝑚 +
𝑑ℓ
𝑁2 )

𝜃ℓ(𝑠)

𝑢(𝑠)
=

𝑑𝑗𝑠
2 + 𝑘𝑗𝑠

𝑁 [𝐽𝑚𝐽ℓ𝑠3 + 𝐽𝑑𝑠2 + 𝐽𝑘𝑠+ 𝑘𝑗(𝑑𝑚 +
𝑑ℓ
𝑁2 )]

where

𝐽𝑑 = 𝐽𝑚(𝑑𝑗 + 𝑑ℓ) + 𝐽ℓ

(
𝑑𝑗
𝑁2

+ 𝑑𝑚

)
𝐽𝑘 = 𝐽𝑚𝑘𝑗 +

𝐽ℓ𝑘𝑗
𝑁2

+ (𝑑𝑗 + 𝑑ℓ)𝑑𝑚 +
𝑑𝑗𝑑ℓ
𝑁2

If the system is lightly damped, the damping values 𝑑𝑚, 𝑑𝑗, and 𝑑ℓ can be
neglected. By using this simplification, the anti-resonant frequency, 𝜔𝑎𝑟, for the
system in (2.5) is approximately:

𝜔𝑎𝑟 =

√
𝑘𝑗
𝐽ℓ

(6.1)

Similarly, the approximate resonant frequency for (2.5) is:

𝜔𝑟 =

√
𝑘𝑗
𝐽ℓ
+

𝑘𝑗
𝐽𝑚𝑁2

(6.2)

These approximations are used to obtain the initial estimations for the plant pa-
rameters 𝑘𝑗 and 𝐽ℓ in the SISO system identification process.
It is important to note that while the joint flexibility parameters, 𝑘𝑗 and 𝑑𝑗, are

commonly used to capture the motor side to load side dynamics in Rotor-Vector(RV)
reducers and harmonic drives, these parameters may not be ideal or even sufficient
for modeling other devices. In the M-16𝑖B robot, it is known that 𝐽1, 𝐽2, an 𝐽3
use RV reducers and that 𝐽6 uses a harmonic drive. The motor mechanisms driving
𝐽4 and 𝐽5 are known to be customized FANUC designs. But for lack of additional
detail regarding these designs, 𝐽4 and 𝐽5 are also modeled using the two-inertia
model for the SISO system identification process.

6.3.2 System Identification Approach

Posture Selection

To ensure that the two-inertia model is valid, the robot joint motions must be
decoupled from each other during the system identification process. As a result,
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Table 6.1: Joint angles for SISO system identification

Joint Angles (Deg)
Joint ID 𝐽1 𝐽2 𝐽3 𝐽4 𝐽5 𝐽6
𝐽1 ID 45 90 0 0 0 90
𝐽2 ID 0 0 90 90 0 -90
𝐽3 ID 45 90 90 90 0 -90
𝐽4 ID 45 90 90 0 90 -90
𝐽5 ID 45 0 0 90 0 0
𝐽6 ID 45 0 0 0 90 0

the robot postures for the system identification process are selected to produce the
largest inertia with respect to the moving joint while trying to reduce coupling
motions in between joints. The joint angles used for each experiment can be found
in Table 6.1 and the robot postures are visually shown in Figure 6.4.

Identification Procedure

Figure 6.5 shows the system identification procedure. Since the system is repre-
sented using a linear time-invariant (LTI) model, LTI techniques and assumptions
can be used to perform the SISO system identification. The system’s response to
a certain frequency can be obtained by harmonically driving the system at that
specific frequency(Figure 6.5(a)). The excitation frequency can be then varied such
that the system dynamics are captured over a broad frequency range.
Once the system output measurements are recorded, the frequency response is

then calculated by finding the magnitude and phase at each particular frequency.
After a plot of the frequency response is obtained, a least square fit is used to em-
pirically obtain the system parameters(Figure 6.5(b)). In the system identification
process, the unknown parameters are: 𝐽𝑚, 𝐽ℓ, 𝑑𝑚, 𝑑ℓ, 𝑑𝑗, and 𝑘𝑗. Note that the load
side inertia, 𝐽ℓ, to be identified in this chapter is the total inertia considering the
combination effect of 𝐽1 to 𝐽6. Take 𝐽1 for example, as shown in Fig. 6.4(a), 𝐽ℓ is the
inertia considering the effects from 𝐽2-𝐽6. Therefore, 𝐽ℓ obtained from SISO system
identification is not directly related to the inertia/mass of each joint. However, the
corresponding inertia/mass for each joint can be easily calculated according to the
standard robot manipulator textbooks. On the other hand, 𝐽𝑚, 𝑑𝑚, 𝑑ℓ, 𝑑𝑗, and 𝑘𝑗
obtained from the SISO identification experiments will be used directly as the joint
parameters.
For identifying these parameters or fitting transfer function, a good initial guess

for each parameter is important. The gear ratio 𝑁 is assumed to be exactly known
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from the gear catalogue. Based on available technical documentation, a good esti-
mate has been established for 𝐽𝑚 for each case in Figure 6.4. By treating 𝐽𝑚 and
𝑁 as knowns and neglecting damping, the initial estimate is obtained for 𝐽ℓ and 𝑘𝑗
by using (6.1-6.2) and are expressed as:

𝐽ℓ =
𝐽𝑚𝑁

2(𝜔2𝑟 − 𝜔2𝑎𝑟)
𝜔2𝑎𝑟

𝑘𝑗 = 𝐽𝑚𝑁
2(𝜔2𝑟 − 𝜔2𝑎𝑟)

where 𝜔𝑎𝑟 and 𝜔𝑟 are read from the calculated frequency response plot as the antires-
onance frequency and resonance frequency, respectively. The initial estimates for
the damping parameters 𝑑𝑚, 𝑑𝑗 , and 𝑑ℓ are obtained through a friction identification
process discussed in [25] (Figure 6.5(d)). Once all of the initial system parameters
are estimated, constrained non-linear optimization is used to obtain more accurate
system parameter estimates (Figure 6.5(e)). The constrained non-linear optimiza-
tion problem is formulated as follows:

min
𝑥̂

∑
𝜔 ∈ Ω

𝐹 (𝑥̂, 𝜔)

s.t. 𝐴𝑥̂ ≤ 𝑏
where:

𝐹 (𝑥̂, 𝜔) =
∣∣∣∣∣∣𝐺̂(𝑥̂, 𝜔)−𝐺𝑚(𝜔)∣∣∣∣∣∣2

𝑥̂ =
[
𝐽𝑚 𝐽ℓ 𝑑𝑚 𝑑ℓ 𝑑𝑗 𝑘𝑗

]T
𝐴 ∈ ℝ

𝑛×6

𝑏 ∈ ℝ
𝑛×1∣∣∣∣∣∣𝐺̂(𝑥̂, 𝜔)∣∣∣∣∣∣ is the magnitude of the transfer function evaluated with the estimated

parameter vector, 𝑥̂, at frequency 𝜔. ∣∣𝐺𝑚(𝜔)∣∣ is the magnitude of the measured
frequency response at frequency 𝜔. Ω is the set of frequencies at which measurements
are taken. Matrix 𝐴 and vector 𝑏 are selected to enforce 𝑛 constraints on the
adjustable parameters.

Closed Loop Identification

The experiments for system identification are done in both open and closed loop
form. Ideally, an open loop system identification will produce the most accurate
results. But due to system instability from gravity effects, open loop identification
is not always possible. For 𝐽2 and 𝐽3, only closed loop identifications are performed.
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Both open and closed loop identification, however, are initially performed for the
remaining four joints to verify the fidelity of the closed loop results.
It is worth mentioning that for both open and closed loop experiments, the

joints not being actuated are held rigid by either closed loop feedback or mechanical
brakes. Experiments using both methods are conducted and will be discussed in a
later section.
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Figure 6.6: Controller structure in closed-loop identification

The controller structure used in the closed loop system identification is a PID
controller, 𝐶(𝑠), as shown in Figure 6.6. 𝑟ℓ is the load side position reference.
𝐹 (𝑠) is used to obtain the motor side position reference, 𝑟𝑚. The feedback and
feedforward controllers have the same structure as those in Section 3.2. For the
purpose of system identification, 𝑟ℓ is held at zero and a sinusoidal input is inserted
through 𝑢𝑟𝑒𝑓 . 𝑢𝑓𝑓 is the feedforward torque for gravity compensation. 𝑃 (𝑠) denotes
the dynamic plant of the two-inertia system.
The gains of 𝐶(𝑠) are selected so that 𝑃 (𝑠) can be accurately identified in a closed

loop manner. More specifically, the closed loop transfer function of Figure 6.6 can
be expressed as:

𝑌 (𝑠)

𝑈𝑟𝑒𝑓(𝑠)
=

𝑃 (𝑠)

1 + 𝑃 (𝑠)𝐶(𝑠)
(6.3)

The parameters of 𝐶(𝑠) are selected such that 𝑃 (𝑠)𝐶(𝑠) ≪ 1 at the relevant
identification frequencies so that (6.3) is approximately to be 𝑃 (𝑠) while still main-
taining basic control performance, i.e. rejection of unsafe motions.
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Table 6.2: Feedback parameters for SISO system identification

Identified Joint Feedback Controller Gains
𝐽1 𝐽2 𝐽3 𝐽4 𝐽5 𝐽6

𝐽1 𝐾𝑝 0 10 10 20 20 20
𝐾𝑣 0 0.2280 0.05072 0.08592 0.0046 0.003986

𝐽2 𝐾𝑝 10 5 10 20 20 20
𝐾𝑣 0.1533 0.1 0.05072 0.08592 0.0046 0.003986

𝐽3 𝐾𝑝 10 10 2 20 20 20
𝐾𝑣 0.1533 0.2280 0.01 0.08592 0.0046 0.003986

𝐽4 𝐾𝑝 10 10 10 0 20 20
𝐾𝑣 0.1533 0.2280 0.05072 0 0.0046 0.003986

𝐽5 𝐾𝑝 10 10 10 20 0 20
𝐾𝑣 0.1533 0.2280 0.05072 0.08592 0 0.003986

𝐽6 𝐾𝑝 10 10 10 20 20 0
𝐾𝑣 0.1533 0.2280 0.05072 0.08592 0.0046 0

6.3.3 Experimental Procedure

For each joint, two different identification experiments are conducted. The sine
sweep experiment harmonically excites the joint from 1 Hz to 100 Hz over a 180 sec
span. The objective of the sine sweep experiment is to capture an initial estimate
of the joint frequency response. Once the sine sweep experiment is completed, the
next experiment conducted is the sine by sine test. The sine by sine test is similar
to the sine sweep, but instead of continuously increasing the excitation frequency,
the sine by sine test excites the joint at a particular frequency for a set amount of
time, stops, and then proceeds to the next excitation frequency. There are several
motivations for the sine by sine experiment. First, it produces a more accurate
frequency response estimate than the sine sweep since the excitation frequency is
stationary during each test. Second, it gives the user additional flexibility in setting
test parameters. For example, the sine by sine test allows users to excite lower
frequencies for longer durations than higher frequencies, which is desirable since
data acquisition is slower at lower frequencies.
The two experiments: sine sweep, and sine by sine, on each joint is conducted

three times under different condition. For the first set of experiments, the unexcited
joints are held in place using closed loop feedback. In the second set of experiments,
the unexcited joints are locked in place with the robot’s mechanical brakes. The
closed loop gains and torque amplitudes used for both sets of experiments are listed
in Table 6.2 and Table 6.3. Note that the integral gain, 𝐾𝑖, is set to be zero. The
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Table 6.3: Torque amplitudes for SISO system identification

Joint Amplitudes (N⋅m) 𝐽1 𝐽2 𝐽3 𝐽4 𝐽5 𝐽6
With Payload 1.6 1.6 1.0 0.5 0.2 0.2
Without Payload 1.0 1.0 0.4 0.3 0.15 0.1

closed loop gains and torque amplitudes are the same as before.

6.3.4 Data Processing

Like any experimental measurement, it is impossible to collect data without any
form of noise contamination. Signal processing techniques, however, can usually be
used to reduce the effects of noise. For example, if a linear system is excited by a
sinusoidal input at a single known frequency it is expected to respond only at that
frequency. This information can be used to curve fit the measurements such that
only one frequency content is present. Figure 6.7 shows a particular measurement.
The solid line represents the unprocessed data while the dotted line represents
the fitted data. The fitted results are generated by performing a least squares
method between the measured results and a sinusoid with the same frequency as
the excitation. The least square formulation is as follows:

min
𝑥̂

∑
𝑘 ∈ Φ

𝐹 (𝑥̂, 𝜔, 𝑘)

(6.4)

where:

𝐹 (𝑥̂, 𝜔, 𝑘) = (𝑥̂1 sin(𝜔𝑘 + 𝑥̂2)− 𝑌𝑚(𝜔, 𝑘))2
𝑥̂ =

[
𝑥̂1 𝑥̂2

]
𝑥̂, 𝜔, 𝑌𝑚(𝜔), and 𝑘 are the parameter vector to be optimized, the excitation fre-
quency, the measured data, and the index respectively. Φ is the set of measured
indices. The fitted data allows for the extraction of the amplitude and phase of
the system response for a given input. Additionally, the input signal is also fit-
ted with the same least square fit. This fit will simplify the frequency response
calculation and will also allow simple phase correction; since in the real-time data
logging process, there may be some delay time between the start of the program
and the actual execution of the input signals. It is worthwhile to mention that the
main contribution of noise is from the inherent joint friction. Note that at higher
frequencies (i.e. higher velocities) the friction effects become less evident, hence the
least square estimate becomes more accurate at higher frequencies.
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Figure 6.7: Measured data and curve fitting results for 𝐽1

6.3.5 Results

As previously mentioned, the system identification experiments are performed three
times, each with different system configurations. For the first set, the joints not
being actuated are held rigid by the feedback controllers. Additionally, both open
and closed loop experiments are conducted for 𝐽1, 𝐽4, 𝐽5, and 𝐽6. Figure 6.8 shows
a comparison between typical closed loop and open loop frequency responses. From
the figure, it can be seen that amplitude and phase of the closed loop response
closely tracks those of the open loop response. As a result, it can be concluded
from Figure 6.8 that using only a closed loop measurement for 𝐽2 and 𝐽3 will not
compromise the accuracy of the estimated parameters.
After the initial set of experiments, however, the time history measurements

revealed a significant amount of joint coupling during the tests. The feedback
controller itself is not enough to hold the other joints at the same position. Since
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Figure 6.8: Closed-loop and open-loop comparison

the two inertia model used to fit the transfer function assumed the joints to be
decoupled, the joint coupling effects could compromise the integrity of the measured
data. To address the joint coupling effects, the robot’s mechanical brakes were used
to lock the unactuated joints in place. When the experiment was redone using the
mechanical brakes, the measured time histories showed a significant decrease in the
joint coupling effects. The decreased coupling motions, however, may still produce
inaccuracies in the parameter estimation. Hence the experiments were performed
for a third time, again with the mechanical brakes but without the payload. By
removing the payload, the inertial forces responsible for the joint coupling motions
will be decreased. This experimental setup produced measurements for 𝐽1, 𝐽2, and
𝐽3 which had almost no joint coupling motions. The lack of a payload, however,
did not leave enough system inertia to produce an accurate system identification
for 𝐽4, 𝐽5, and 𝐽6. As a result, the presented data in this chapter will take the 𝐽1,
𝐽2, 𝐽3 estimates from the third set of experiments and 𝐽4, 𝐽5, 𝐽6 estimates from the
second set of experiments. Additionally, (2.5) is used to fit the parameters. The
estimated parameter values are tabulated in Table 6.4.
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Table 6.4: Identified system parameters

Parameters Units 𝐽1 𝐽2 𝐽3
𝐽ℓ 𝑘𝑔𝑚2 7.9873× 101 1.4508× 102 8.2890
𝐽𝑚 𝑘𝑔𝑚2 1.5281× 10−3 1.4782× 10−3 3.7230× 10−4

𝑘𝑗 𝑁/𝑚 4.5353× 105 6.9777× 105 2.4689× 105
𝑑𝑗 𝑁𝑠/𝑚 1.1275× 103 2.3697× 103 2.2905× 102
𝑑ℓ 𝑁𝑠/𝑚 ≈ 0 1.4481× 102 6.8287× 101
𝑑𝑚 𝑁𝑠/𝑚 5.3654× 10−3 ≈ 0 ≈ 0

Parameters Units 𝐽4 𝐽5 𝐽6
𝐽ℓ 𝑘𝑔𝑚2 1.0123 3.2690× 10−1 3.8485× 10−1

𝐽𝑚 𝑘𝑔𝑚2 3.1020× 10−4 3.9000× 10−5 6.4300× 10−5

𝑘𝑗 𝑁/𝑚 7.0821× 103 2.2765× 104 1.8283× 104
𝑑𝑗 𝑁𝑠/𝑚 9.7423 7.1963× 101 5.2327× 101
𝑑ℓ 𝑁𝑠/𝑚 1.1454 ≈ 0 ≈ 0
𝑑𝑚 𝑁𝑠/𝑚 ≈ 0 1.2820× 10−3 1.9362× 10−3

6.4 MIMO System Identification

6.4.1 Problem Formulation

In this section, the problem involving identification of MIMO systems from noise
corrupted observations of their responses from 𝑛 inputs to 𝑚 outputs is addressed.
More specifically, the 𝑚 outputs and 𝑛 inputs are related according to

𝑦𝑖 =

𝑛∑
𝑗=1

𝐺𝑖𝑗(𝑞)𝑢𝑗 +

𝑟∑
𝑠=1

𝐻𝑖𝑠(𝑞)𝑒𝑠 for 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑚 (6.5)

where 𝑞 is the one step advance operator. The scalar transfer function 𝐺𝑖𝑗(𝑞) de-
scribes the unknown system dynamics that are to be identified. The output mea-
surements 𝑦𝑖 are corrupted by zero mean stationary white noise processes 𝑒𝑟 with
finite variances, and colored by stable filters 𝐻𝑖𝑠(𝑞). It is possible to simplify (6.5)
by using

𝑦 ≜ [𝑦1, 𝑦2, . . . , 𝑦𝑚)]
𝑇 , 𝑢 ≜ [𝑢1, 𝑢2, . . . , 𝑢𝑛]

𝑇 , 𝑒 ≜ [𝑒1, 𝑒2, . . . , 𝑒𝑟]
𝑇



96

𝐺(𝑞) =

⎡
⎢⎢⎢⎣
𝐺11(𝑞) 𝐺12(𝑞) ⋅ ⋅ ⋅ 𝐺1𝑛(𝑞)
𝐺21(𝑞) 𝐺22(𝑞) ⋅ ⋅ ⋅ 𝐺2𝑛(𝑞)
...

... ⋅ ⋅ ⋅ ...
𝐺𝑚1(𝑞) 𝐺𝑚2(𝑞) ⋅ ⋅ ⋅ 𝐺𝑚𝑛(𝑞)

⎤
⎥⎥⎥⎦

𝐻(𝑞) =

⎡
⎢⎢⎢⎣
𝐻11(𝑞) 𝐻12(𝑞) ⋅ ⋅ ⋅ 𝐻1𝑟(𝑞)
𝐻21(𝑞) 𝐻22(𝑞) ⋅ ⋅ ⋅ 𝐻21(𝑞)
...

... ⋅ ⋅ ⋅ ...
𝐻𝑚1(𝑞) 𝐻𝑚2(𝑞) ⋅ ⋅ ⋅ 𝐻𝑚𝑟(𝑞)

⎤
⎥⎥⎥⎦

so that (6.5) can be rewritten in matrix form

𝑦 = 𝐺(𝑞)𝑢+𝐻(𝑞)𝑒 (6.6)

The idea of MIMO system identification is to follow the example of the SISO case
and obtain the transfer function matrix 𝐺(𝑞) by curve fitting the experimental data.

6.4.2 Identification Approach

The FANUC M-16iB robot consists of six joints. Therefore, from (6.5), ignoring
the noise, the input/output relationship can be obtained as

𝑦𝑚𝑣𝑖 =

6∑
𝑗=1

𝐺𝑖𝑗(𝑞)𝑢𝑗 for 𝑖 = 1, ⋅ ⋅ ⋅ , 6 (6.7)

where 𝑢𝑗 is the 𝑗
𝑡ℎ input that’s being excited and 𝑦𝑚𝑣𝑖 is the motor velocity measured

from the 𝑖𝑡ℎ joint. 𝐺𝑖𝑗(𝑞) denotes the transfer function that relates the 𝑗
𝑡ℎ input

with the 𝑖𝑡ℎ output.
Figure 6.9 shows the controller structure of the FANUC M-16iB robot. The

linear transfer function 𝐺𝑖𝑗(𝑠) represents the approximation of robot dynamics. 𝑢𝑓𝑖
denotes the feedforward torque for the 𝑖𝑡ℎ joint. Notice that in this chapter, 𝑢𝑓𝑖
contains only the gravity compensation force and other feedforward torques such
as Coulomb and friction compensation terms are not included. Thus, it should be
relatively constant for small motions. The control algorithm for the M-16iB robot
is implemented in a decentralized form where 𝐶𝑖(𝑠) is the PID controller for the 𝑖

𝑡ℎ

joint as explained in Section 6.3.2. 𝑑𝑖 is the disturbance torque used to excite 𝑖
𝑡ℎ

joint for the system identification purpose.
Figure 6.10 gives one example of the time responses for the identification of

𝐺11(𝑠). Supposing that 𝐽1 is excited at a particular frequency by 𝑑1, 𝑢1 is expected
to be a combination of 𝑑1, 𝑢𝑓1, and 𝐶1(𝑠)𝑦𝑚1. The effects of 𝑑1, however, can
be isolated if the robot motions are small and 𝐶1(𝑠) is intelligently designed. In
particular, if the robot motions are small, the feedforward gravity compensation
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Figure 6.9: Controller structure of M-16iB robot system

is approximately constant and 𝐶1(𝑠) can be designed similarly to the controllers
used for the closed loop SISO system identification. As a result, the harmonic
component of the input comes solely from 𝑑1. Notice that only 𝐽1 is excited, i.e.,
𝑑2,⋅ ⋅ ⋅ ,𝑑6, are zero. Therefore, 𝑢2,⋅ ⋅ ⋅ ,𝑑6, only contains the feedforward torque which
is approximately constant.

y
m1(t) = G11(s)u1(t)+G12(s)u2(t)+G13(s)u3(t)

+G14(s)u4(t) +G15(s)u5(t) +G16(s)u6(t)

t

y
m1

u1

t

u2,u3,u4,u5,u6

t

Figure 6.10: Example of the time responses for the identification of 𝐺11(𝑠)

After obtaining the time domain measurement data, a fast Fourier transform
(FFT) can then be used to decompose the inputs, 𝑢𝑖, and the output, 𝑦𝑚𝑖, signals
into the frequency domain. At this point, the input and output magnitude and
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phase at the excitation frequency, 𝜔, can be obtained. Figure 6.11 shows the data
processing procedure for 𝐺11(𝑠). The input magnitude and phase are defined as
∣𝑈1(𝜔)∣ and Φ𝑈1(𝜔) while the output magnitude and phase are defined as ∣𝑌𝑚1(𝜔)∣
and Φ𝑌𝑚1(𝜔), respectively. The amplitude and phase of 𝐺11(𝜔) can be obtained
through amplitude division and phase subtraction of the input output signals. The
process shown in Figure 6.11 can be repeated with each input and output, 𝑢𝑗 and
𝑦𝑚𝑖, to obtain the amplitude and phase for 𝐺𝑖𝑗(𝜔). And finally, repeating these
steps across many frequencies will produce a frequency response for the transfer
functions.

FFT Amplitude division

Phase subtraction

u1(t)

y
m1(t)

|U1(ω)|

ΦU1(ω)

|Y
m1(ω)|

ΦYm1
(ω)

|G11(ω)|

� G11(ω)
G11(s)

Figure 6.11: MIMO system identification procedure for 𝐺11(𝑠)

It is always a key problem in system identification to find a suitable model
structure and within which a good model is to be found. For the MIMO system
identification presented in this chapter, black-box linear models are used to de-
scribe/approximate the system’s frequency response. The approximation problem
has been extensively and successfully handled within some well known linear black-
box structures [47, 52]. Once a model structure is chosen (e.g., the order and relative
degree of a transfer function), it should be matched as good as possible with the
frequency response data obtained from the experiments. Mostly, this is done by
minimizing a criterion that measures a goodness of the fit. The procedure is similar
to that done in Section 6.3.2.
The robot posture for the MIMO system identification experiments is shown in

Figure 6.2. It is known as the zero position where each motor angular position is
zero. Different from the SISO system identification, the results obtained through the
MIMO system identification approach is valid locally around this posture. In order
to obtain a nominal robot model with an uncertainty bound for a desired operational
trajectory, the MIMO system identification should be repeated at different postures
along the trajectory.
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6.4.3 Experimental Procedure

The experimental procedure for MIMO system identification is similar to that of
SISO system identification as described in Section 6.3.3. Both the sine sweep and
sine by sine tests are done for the robot at the zero position. Opposite from what
was explained in the previous section, the coupled joint motions are desired to be
identified. Thus, the previously mentioned methods to reduce joint coupling are
not used during the MIMO system identification. More specifically, the unactuated
joints are held in place through closed loop control while the controller gains are
reduced to approximate the open loop system. The payload also is left attached to
the robot during the experiments.

6.4.4 Results

The frequency responses from the input torque, 𝑢, to the motor velocity of each
joint, 𝑦𝑚 are obtained. Figure 6.12 and Figure 6.13 show the frequency responses
when actuating 𝐽1 and 𝐽2, respectively. It is well known that if one joint, 𝐽𝑝,
is decoupled from the actuated joint, 𝐽𝑞, the frequency response, 𝐺𝑝𝑞(𝑠), should
have really small magnitude values. It can be observed from Figure 6.12 that the
frequency responses of 𝐺12(𝑠)-𝐺16(𝑠) have very small magnitudes relative to the
frequency response of 𝐺11(𝑠). This is reasonable since the movement of 𝐽1 is not
coupled with other joints in the M-16iB robot and therefore the coupling between
𝐽1 and the other joints while 𝐽1 being actuated is very small. Note that for the
M-16iB robot, 𝐽2, 𝐽3, and 𝐽5 have the same rotation direction and the coupling
effect can be seen from Figure 6.13 where the magnitude plots of 𝐺22(𝑠), 𝐺23(𝑠),
and 𝐺25(𝑠) have larger values compared to the frequency responses of 𝐺21, 𝐺24, and
𝐺26.
Other than checking the magnitudes of the frequency responses from the mea-

surement data, the coherence is often used as a measure of the linear dependence
of the output on the input. It expresses the degree of linear correlation in the fre-
quency domain between the input and the output signal. The coherence function,
𝛾2𝑥𝑦(𝑓), is given by

𝛾2𝑥𝑦(𝑓) =
∣𝑆𝑥𝑦(𝑓)∣2
𝑆𝑥𝑥(𝑓)𝑆𝑦𝑦(𝑓)

(6.8)

where 𝑆𝑥𝑥 and 𝑆𝑦𝑦 are the autospectral densities of the input and output signals,
respectively and 𝑆𝑥𝑦 is the cross-spectral density between the input and the output
signals. By definition, the coherence function lies between 0 and 1 for all frequencies
𝑓 :

0 ≤ 𝛾2𝑥𝑦(𝑓) ≤ 1

If 𝑥(𝑡) and 𝑦(𝑡) are completely unrelated, the coherence function will be zero, while a
totally noise-free linear system would yield 𝛾2𝑥𝑦(𝑓) = 1. The coherence function may
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Figure 6.12: Frequency responses of MIMO system identification from 𝑢1

thus be viewed as a type of correlation function in the frequency domain. Note that
when a system is noisy or non-linear, the coherence function indicates the accuracy
of a linear identification as a function of frequency. A coherence test is therefore
employed on all the input-output data channels and is discussed next.
The linearity of the operating region is confirmed by a flat coherence of unity

between the input signal and the output responses. The coherence test for all
six joints were performed. Figure 6.14 shows the coherence spectra for the nine
channels for the first three joints. Good excitation was achieved from 0-100 Hz,
which includes all the important rigid-body modes. Strong interaction was observed
among the channels 𝑢1 to 𝑦𝑚1, 𝑢2 to 𝑦𝑚1, 𝑢2 to 𝑦𝑚2, 𝑢2 to 𝑦𝑚3, 𝑢3 to 𝑦𝑚1, 𝑢3 to 𝑦𝑚2,
and 𝑢3 to 𝑦𝑚3. Non-interaction between 𝑢1 to 𝑦𝑚2, and 𝑢1 to 𝑦𝑚3 can also be clearly
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visible in the figure. Since no strong coherence exists in the 𝑢1 to 𝑦𝑚2, and 𝑢1 to
𝑦𝑚3 channels, they are not investigated further for model fitting.
As a preliminary study, Figure 6.15 shows the curve fitting result for 𝐺11(𝑠).

The number of the pole and zero were first chosen from the frequency response plot
based on experience. Then, a least squares method as explained in Section 6.3.4 was
used to find the transfer function of the frequency response. The transfer function
obtained from the curve fitting result was found to be

𝐺11(𝑠) =
65.48𝑠2 + 1834𝑠+ 282300

0.1001𝑠3 + 6.742𝑠2 + 1038𝑠
(6.9)

Note that the system order for the transfer function, 𝐺11(𝑠), was chosen based
on experience. The model structure selection will be an interesting future research
topic. Furthermore, an uncertainty bound should be identified for the design of
a robust linear MIMO controller (e.g. 𝐻∞ robust control design methods). Note
that the error bound obtained includes the disturbances, noises and unmodeled
dynamics.

6.5 Summary

Chapter 6 presented some system identification work for the FANUC M-16iB robot.
The SISO, and MIMO identification experiments were performed and discussed. For
SISO system identification, both closed and open loop techniques were used. The
experimental procedure was presented and the identified parameter values and fre-
quency characteristics obtained from the experimental results were shown to be
reasonable. These parameters should be useful in future research. Next, the ap-
proach, procedure, and results for MIMO system identification experiments were
presented. There are still a number of problems for MIMO system identification.
For example, the transfer functions for the nominal model should be obtained using
nonlinear optimization algorithm. The results, however, confirmed the validity of
the identification method and should also be useful in future research.
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Figure 6.13: Frequency responses of MIMO system identification from 𝑢2
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Figure 6.14: Coherence spectrum of MIMO system identification
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Chapter 7

Conclusion

7.1 Contributions

In the control of indirect drive systems, precise end-effector (load side) tracking,
is an important requirement. The nonlinearities and flexibilities associated with
speed reducers, such as friction, hysteresis, and transmission error, however, make
it difficult to design servo controllers that guarantee good performances. To over-
come the limitations in indirect drive train systems, this dissertation suggested new
perspectives on the design of servo systems.
In Chapter 3, the controller gains for a single-joint indirect drive train system

were optimized by the real-time nonlinear programming (RTNLP) which involved
the estimation of the gradient of the cost function by perturbing the magnitude of
the controller gains. The RTNLP method tuned the controller gains by minimizing
a cost function that characterizes the desired behavior of the closed-loop system.
Thus, for the robot system including flexibilities introduced by the harmonic re-
ducer, the load side information could be easily included in the cost function to
reflect the desired performance attributes. For this purpose, the acceleration mea-
surement obtained from accelerometers mounted on the payload of the indirect
drive train was used as an indicator of the load side performance for gain tuning
because of easy installation of MEMS accelerometers. Eleven controller parameters
including the feedforward, the feedback, and the state feedback controller gains were
tuned. The experimental results were compared with the iterative feedback tuning
method. The effectiveness of the RTNLP method was demonstrated by experi-
ments and the tuned controller gains were shown to be suitable for achieving better
load side performance. Moreover, unlike the iterative feedback tuning method, the
RTNLP method did not require any additional experiments for the estimation of
gradient and the optimization process was totally automated.
Next, an adaptive cancellation algorithm to suppress the oscillatory phenomena

caused by the transmission error in harmonic drives was presented in Chapter 4.
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The transmission error was introduced and modeled. Then, an analysis scheme that
considers the transmission error effect as a disturbance input to the system was con-
structed. The adaptive disturbance cancellation algorithm was derived where the
acceleration information was used in the adaptation laws to effectively reduce the os-
cillations on the load side. To enhance the disturbance rejection performance while
maintaining the transient responses, two modifications were proposed. The vari-
able step-size scheme adaptively changed the update gains to avoid deteriorating
the transient response. The compensation scheme, which considers the measure-
ment bias, further improved the performance at the steady state by providing more
accurate load side acceleration information. Experimental results showed the ef-
fectiveness of the proposed methods, and the load side oscillation caused by the
transmission error was significantly reduced.
In Chapter 5, an optimization-based iterative learning control scheme for the

purpose of disturbance rejection was proposed. The approach is a systematic and
model-based design method, which allows to handle the trade-off between perfor-
mance and robustness. Two different learning controllers, the motor side and load
side learning controllers, designed based on different error signals, namely the motor
side error and the load side errors, were obtained. Even though the experimental
setup used was equipped with a load side encoder, the load side position informa-
tion was only used for the performance evaluation purpose. Therefore, a load side
position estimation algorithm based on Kalman filtering using load side accelera-
tion measurement was proposed, and the load side position estimate was used in
the load side learning controller. The effectiveness of the estimation scheme was
shown by experiments. The load side iterative learning controller demonstrated
more substantial reduction of the load side vibration compared to the motor side
learning controller.
Finally, Chapter 6 presented the system identification of the FANUC M-16iB

robot. The SISO and MIMO identification experiments were performed and dis-
cussed. For SISO system identification, both closed and open loop techniques were
used. The experimental procedure was presented and the identified parameter val-
ues and frequency characteristics obtained from the experimental results were shown
to be reasonable. The results will be useful in future research. Next, the approach,
procedure, and results for MIMO system identification experiments were presented.
The MIMO system identification results should be viewed as preliminary results
and there are still a number of problems to deal with. The results, however, con-
firmed the validity of the proposed MIMO identification approach and should also
be useful in future research.
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7.2 Future Research

The results in this dissertation raise several issues and can be expanded as future
research topics.

∙ Extensive investigation on the RTNLP method: In Chapter 3, the feedback
controllers were tuned based on a filtered step motor reference trajectory. Even
though in most industrial applications, the desired trajectories are normally
known in advance and the controller gains are usually tuned for the specified
trajectory, it is desirable to investigate the influences of different reference
trajectories on the resulting optimal controller gains. Moreover, the inves-
tigation of different performance indices for optimizing the controller gains
and their effects on trajectory tracking performance may be worth investigat-
ing. Furthermore, the tuning method should be extended and implemented
for the tuning of controllers that consider nonlinearities such as input/output
saturation and friction.

∙ Generalization of the SISO control algorithms to MIMO settings that will
include all six robot axes simultaneously: The control algorithms developed
in Chapters 3 ∼ 5 were successfully implemented on the single-joint indirect
drive train setup. The algorithms need to be tested in MIMO settings for
applications to robot manipulators and other industrial motion control sys-
tems. The FANUC M-16iB available in the Mechanical Systems and Control
Laboratory at Berkeley is an excellent testbed for this purpose. The SISO
method should be first applied on the first joint of the M-16iB robot. Then,
the algorithms for multi-joint robots can be developed with a decentralized
scheme by applying the SISO method to each joint.

∙ MIMO system identification of robot dynamics: The MIMO system identifi-
cation results were viewed as preliminary results and there are still a number
of problems to deal with. The order of the transfer function for fitting pur-
poses in Chapter 6 was chosen based on experience. The model structure
selection and the nonlinear optimization algorithm for transfer function fit-
ting should be explored. Moreover, uncertainty bounds for disturbances and
unmodeled dynamics should be estimated for the design of a robust linear
MIMO controller (e.g. 𝐻∞ robust control design) Furthermore, the nominal
model should be obtained for each of different configurations of the robot.
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