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Abstract

A novel boundary element formulation for two-dimensional fracture mechanics is pre-

sented in this work. The formulation is based on the derivation of a supplementary bound-

ary integral equation to be used in combination with the classic displacement boundary

integral equation to solve anisotropic fracture mechanics problems via a single-region ap-

proach. The formulation is built starting from the observation that the displacement

field for an anisotropic domain can be represented as the superposition of a vector field,

whose components satisfy a suitably defined anisotropic Laplace equation, and the gra-

dient of the Airy stress function. The supplementary boundary integral equation is then

obtained using such representation into the integral expression of the aforementioned

Laplace equation and employing the relationship between the stress function gradient and

the boundary tractions. The supplementary equation neither requires the computation of

hyper-singular integrals nor does it introduce additional variables for the problem, as it

involves boundary displacements and tractions only. Numerical results are obtained for

both uncracked and cracked bodies and show the accuracy and potential of the proposed

approach.
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1. Introduction

Fracture mechanics is nowadays a well established discipline, comprising a broad array

of methodologies that support engineers in the design and maintenance of materials and

structures. In general, the solution of fracture mechanics problems is obtained using

numerical methods that allow to tackle the complexities induced by the occurrence of5

general boundary conditions or constitutive material behaviours.

One of the most popular numerical methods for addressing fracture mechanics and

elasticity problems is the Finite Element Method (FEM). A powerful extension of the

FEM for fracture mechanics applications is the Extended Finite Element Method, dubbed

as XFEM [1, 2, 3], in which the approximation of the unknown field, namely the displace-10

ment field, is suitably enriched to account for the presence of the crack, representing a

strong field discontinuity. However, both FEM and XFEM require the discretisation of

the whole domain to be analysed and therefore a careful pre-processing mesh preparation

stage.

A valid alternative technique for general elasticity and fracture mechanics applications15

is the Boundary Element Method (BEM), which reformulates such classes of problems in

terms of boundary variables only [4, 5], thus leading to simpler pre-processing and lower

numbers of degrees of freedom.

In fracture mechanics, however, the BEM modelling of geometrically coincident crack

surfaces requires specific treatment, as the straightforward collocation of the displacement20
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boundary integral equations to geometrically superimposed but physically distinct nodes

leads to numerical degeneracies not allowing to resolve the presence of crack [5].

To address such an issue several different techniques have been proposed in the litera-

ture. One of the earliest approaches was the use of specific Green’s functions that intrin-

sically account for the presence of the crack in the domain and avoid the discretisation25

the crack itself [6, 7, 8]; however such a technique is based on the knowledge of different

Green’s functions for different crack geometries, which in many cases are difficult, if not

impossible, to evaluate. Another powerful and versatile approach for modelling cracked

domains using the BEM is the multi-region technique, which is based on a subdivision

of the domain into subregions whose boundaries contain the crack [9, 10, 11]. Then, to30

retrieve the behaviour of the original domain, continuity/equilibrium interface conditions

are enforced on the newly introduced boundaries, whereas traction-free boundary condi-

tions are enforced over the crack surfaces. Advanced applications of such an approach,

used in conjunction with cohesive zone modelling, have been developed for materials

micro-mechanics [12, 13, 14, 15, 16]. However, multi-region formulations have the disad-35

vantage of requiring a higher discretisation effort and introducing additional displacement

and traction unknowns along the additional fictitious boundaries.

As opposed to the multi-region method, the so-called Dual Boundary Element Method

(DBEM) has been developed by Aliabadi and coworkers [17, 18] as a single-region tech-

nique for fracture mechanics. The DBEM is based on the use of the standard displacement40
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boundary integral equation on one boundary of the crack and the traction boundary in-

tegral equation on the other boundary of the crack. The DBEM has been successfully

employed for fracture mechanics problems in anisotropic elasticity [19, 20], dynamics [21],

thermoelasticity [22, 23], and has been recently combined with the multi-region approach

and the cohesive-law technique to model fracture micro-mechanics in polycrystalline ma-45

terials [24, 25].

An alternative DBEM has been proposed by Dav̀ı and Milazzo [26, 27] for isotropic

and orthotropic materials. The methodology consists of two steps: i) the displacement

field is first represented as the linear superposition of a vector field, whose components

satisfy a suitably defined Laplace equation, and the gradient of the Airy stress function;50

ii) this decomposition is then used within the integral representation of the mentioned

Laplace equation and, by using the relationship between the gradient of the stress func-

tions and the boundary tractions, a supplementary integral equation is obtained, to be

used in conjunction with the classical displacement integral equation for avoiding the

degeneracies arising in cracks modelling with standard BEM. The supplementary equa-55

tion does not involve hyper-singular integrals and it has been used to solve single-region

fracture problems in isotropic and orthotropic domains.

In this work, we revisit the approach proposed by Dav̀ı and Milazzo and extend it to

the generally anisotropic case. More specifically: i) it is shown that a representation of

the displacement field similar to the mentioned one can be used also in the anisotropic60
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case; ii) then, a supplementary integral equation is obtained after introducing such a

decomposition into the integral representation of a suitably introduced anisotropic Laplace

equation. The obtained integral equation for anisotropic elasticity keeps the same features

as those obtained for the isotropic and orthotropic cases and and it is used for solving

fracture mechanics problems in generally anisotropic bodies.65

The paper is organised as follows: Section (2) introduces the classic displacement

boundary integral equations; Section (3) and Section (4) are devoted to the derivation

of the displacement decomposition and to the derivation of the supplementary boundary

integral equation, respectively, whereas the application of the proposed formulation in

the context of fracture mechanics is presented in Section (5). Section (6) discusses a few70

details of the numerical discretisation of the proposed method and Section (7) presents

the performed numerical tests on both uncracked and cracked domains. Section (8) draws

the study conclusions.

2. Displacement boundary integral equations

Let us consider a two-dimensional generally anisotropic linear elastic domain V with

boundary S = ∂V . The boundary integral representation of the displacement field at a

point x0 = {x0, y0} ∈ S is classically given as follows [5]

ĉ(x0)u(x0) +−
∫
S

T (x,x0)u(x)dS(x) =

∫
S

U(x,x0)t(x)dS(x), (1)

where u = {ux, uy} and t = {tx, ty} denote the displacement and traction fields at the75

boundary of V respectively and ĉ(x0) is a 2× 2 matrix of the free terms, which depend
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on the smoothness of the boundary S at x0. In Eq. (1), U(x,x0) and T (x,x0) are

2× 2 matrices containing the components of the displacement and traction fundamental

solutions respectively; their expressions for non-degenerate anisotropic and for degenerate

isotropic materials [28] can be found in [4, 5].80

Eq.(1) represents the starting point for the boundary element implementation and it

has been widely employed to model general elasticity problems. However, it is well known

that Eq.(1) does not allow to represent the presence of cracks within the considered

domain using a single-region approach [5]. To overcome this limitation, Aliabadi and

co-workers [17, 18] introduced the so-called Dual Boundary Element Method, where a85

supplementary integral equation is used in combination with the displacement boundary

integral equation (1). The supplementary equation is obtained by deriving the integral

representation of the boundary tractions t and involves the evaluation of hyper-singular

integrals. In what follows, we present the derivation of an alternative additional integral

equation that avoids the computation of hyper-singular integrals.90

3. Displacement decomposition

In this Section, we derive a representation of the displacement field u in terms of the

gradient of the stress function and an auxiliary vector field, which is proved to verify a

specifically defined anisotropic Laplace equation.

It is known that, for a 2D linear elastic anisotropic body, the stress field σ = {σxx, σyy, σxy}
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can be derived from a single stress function φ(x) [29]. By choosing

σxx = φ,yy, σyy = φ,xx, σxy = −φ,xy (2)

the equilibrium equations are identically fulfilled. By using Eqs.(2), the two-dimensional

elastic anisotropic constitutive law can be written as follows

εxx = s11φ,yy + s12φ,xx − s16φ,xy (3a)

εyy = s12φ,yy + s22φ,xx − s26φ,xy (3b)

εxy = s16φ,yy + s26φ,xx − s66φ,xy (3c)

where εxx, εyy and εxy denote the engineering strain components and the s11, s22, s66,

s12, s16 and s66 are the compliance coefficients of a generic elastic anisotropic body.

Equivalently, using the strain-displacement relations, one can write

ux,x = s11φ,yy + s12φ,xx − s16φ,xy (4a)

uy,y = s12φ,yy + s22φ,xx − s26φ,xy (4b)

ux,y + uy,x = s16φ,yy + s26φ,xx − s66φ,xy. (4c)

In Eqs.(2-3) and in the subsequent sections the comma used as a subscript denotes deriva-95

tives with respect to the coordinates identified by the subscripts following the comma

itself.

Let us then consider the following vector field v = {vx, vy} chosen to satisfy the

following relations

vx,x = κ1φ,xx + φ,yy + κ3φ,xy (5a)

vy,y = λ1φ,xx + φ,yy + λ3φ,xy (5b)

which allows to express φ,yy and φ,xx as follows

φ,yy = vx,x − κ1φ,xx − κ3φ,xy (6a)

φ,xx =
1

λ1
vy,y −

1

λ1
φ,yy −

λ3
λ1
φ,xy. (6b)
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Upon substituting Eqs.(6a) and (6b) into Eqs.(4a) and (4b) respectively and integrating,

it is possible to write the displacement u in terms of the vector field v and the gradient

of the stress function φ, i.e.

ux = s11vx + (s12 − s11κ1)φ,x − (s16 + s11κ3)φ,y (7a)

uy = s22
1

λ1
vy −

(
s26 + s22

λ3
λ1

)
φ,x +

(
s12 − s22

1

λ1

)
φ,y (7b)

where the coefficients κ1, κ3, λ1 and λ3 will be obtained in the sequel. Eventually, taking

the derivative of Eq.(7a) with respect to y and the derivative of Eq.(7b) with respect to

x, and substituting into Eq.(4c), the following identity is obtained

s11vx,y + s22
1

λ1
vy,x =

(
2s26 + s22

λ3
λ1

)
φ,xx + (2s16 + s11κ3)φ,yy−(

2s12 + s66 − s11κ1 − s22
1

λ1

)
φ,xy.

(8)

Let us now suppose that the components of the vector field v, namely the functions vx

and vy, satisfy the following anisotropic Laplace equation

vi,xx + �1vi,yy + 2�2vi,xy = 0 (9)

where i = x, y and the coefficients �1 and �2 are in general different for vx and vy. The

expressions of the derivative vi,xx, vi,yy and vi,xy are obtained as follows: vx,xx and vx,xy

are obtained upon taking the derivative of Eq.(5a) with respect to x and y, respectively;100

similarly, vy,xy and vy,yy are obtained upon taking the derivative of Eq.(5b) with respect

to x and y, respectively; finally, vx,yy and vy,xx are obtained from Eq.(8) upon taking the

derivative with respect to y and x, respectively. Let us consider vx first.

Let vx satisfy the following Laplace anisotropic equation

vx,xx + a1vx,yy + 2a2vx,xy = 0. (10)

Upon substituting the expressions of vx,xx, vx,xy vx,yy from Eqs.(5a) and (8) into Eq.(10),

one obtains

Axxxφ,xxx +Axxyφ,xxy +Axyyφ,xyy +Ayyyφ,yyy = 0, (11)
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where

Axxx = κ1 −
s22
s11

a1 (12a)

Axxy = 2a2κ1 + κ3 + 2
s26
s11

a1 (12b)

Axyy = 1− a1
2s12 + s66

s11
+ a1κ1 + 2a2κ3 (12c)

Ayyy = 2a2 + 2
s16
s11

a1 + a1κ3. (12d)

Eq.(11) is identically equal to zero if the coefficients Axxx, Axxy, Axyy and Ayyy are

identically zero. Upon forcing Eqs.(12a-d) to be zero, it is therefore possible to obtain105

the expression for the coefficients κ1, κ3, a1 and a2. It is interesting to note that in

Eqs.(12a-d) the coefficients λ1 and λ3 do not appear.

Similarly, let vy satisfy the following Laplace anisotropic equation

vy,xx + b1vy,yy + 2b2vy,xy = 0. (13)

Using the expressions of vy,xx, vy,xy vy,yy from Eqs.(5b) and (8) into Eq.(13), one has

Bxxxφ,xxx +Bxxyφ,xxy +Bxyyφ,xyy +Byyyφ,yyy = 0, (14)

where

Byyy = b1 −
s11
s22

λ1 (15a)

Bxyy = 2b2 + b1λ3 + 2
s16
s22

λ1 (15b)

Bxxy = 1− λ1
2s12 + s66

s22
+ b1λ1 + 2b2λ3 (15c)

Bxxx = 2b2λ1 + 2
s16
s22

λ1 + λ3. (15d)

Eq.(14) is identically equal to zero if the coefficients Bxxx, Bxxy, Bxyy and Byyy are

identically zero. Upon forcing Eqs.(15a-d) to be zero, it is therefore possible to obtain the
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coefficients λ1, λ3, b1 and b2. It is interesting to note that in Eqs.(15a-d) the coefficients110

κ1 and κ3 do not appear.

Eventually, it is interesting to note that Eqs.(15) are retrieved from Eqs.(12) if in

Eqs.(12) the coefficients κ1, κ3, a1 and a2 are replaced with λ1, λ3, b1 and b2, respectively.

In particular, it possible to notice that, after the aforementioned substitution, Byyy ≡

Axxx, Bxyy ≡ Ayyy, Bxxy ≡ Axyy and Bxxx ≡ Axxy. Therefore, prior to obtaining the

explicit expression of the coefficients, it is the possible to assert that: (i) a1 ≡ b1, a2 ≡ b2,

κ1 ≡ λ1 and κ3 ≡ λ3; (ii) vx and vy satisfy the same anisotropic Laplace equation; (iii)

the following conjugate relationships hold

vx,x = vy,y (16a)

a1vx,y + a2vy,y = −(vy,x + a2vx,x). (16b)

The explicit expression of the introduced coefficients is then obtained for the cases of

isotropic, orthotropic and generally anisotropic materials.

3.1. Isotropic materials

In the isotropic case, i.e. s11 = s22, s16 = s26 = 0 and 2s12 + s66 = 2s11, the following

solution is obtained for the coefficients κ1, κ3, a1 and a2:

κ1 = 1 (17a)

κ3 = 0 (17b)

a1 = 1 (17c)

a2 = 0. (17d)
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3.2. Orthotropic materials115

In the orthotropic case, i.e. s16 = s26 = 0, the following solution is obtained for the

coefficients κ1, κ3, a1 and a2:

κ1 = a1s22/s11 (18a)

κ3 = 0 (18b)

a2 = 0 (18c)

and a1 is one of the roots of the following sixth-order polynomial

[s22a
2
1 − (2s12 + s66)a1 + s11](s22a

2
1 − s11)2 = 0. (19)

3.3. Anisotropic materials

In the generally anisotropic case, a suitable manipulation of Eqs.(12a-d) leads to

κ1 = a1s22/s11 (20a)

κ3 = 2
a1(a1s16s22 − s11s26)

s11(s11 − a21s22)
(20b)

a2 =
a1(a1s26 − s16)

s11 − s22a21
(20c)

where a1 is one of the roots of the following sixth-order polynomial

Σ6a
6
1 + Σ5a

5
1 + Σ4a

4
1 + Σ3a

3
1 + Σ2a

2
1 + Σ1a1 + Σ0 = 0 (21)

being

Σ6 = s322 (22a)

Σ5 = −s222(2s12 + s66) (22b)

Σ4 = s22(4s16s26 − s11s22) (22c)

Σ3 = 4s11s12s22 − 4s216s22 − 4s226s11 + 2s11s22s66 (22d)

Σ2 = s11(4s16s26 − s11s22) (22e)

Σ1 = −s211(2s12 + s66) (22f)

Σ0 = s311. (22g)
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3.4. Displacement decomposition in matricial form

Finally, as soon as the values of a1, a2, κ1 and κ3, and therefore of b1, b2, λ1 and λ3,

are obtained, it is possible to write Eqs.(7a) and (7b) in matricial form as follows

u = Lv −Λ∇φ (23)

where ∇φ = {φ,x, φ,y} denotes the gradient of the stress function, and

L = s11

 1 0

0 1
a1

 and Λ =

 s11λ− s12 s16 + s11κ

s26 + s22
κ
λ s22

1
λ − s12

 (24)

being λ = λ1 = κ1 and κ = λ3 = κ3. Eq.(23) denotes the displacement decomposition

that will be used to derive an additional integral equation for anisotropic elasticity as

shown in the following section.120

4. Alternative displacement boundary integral equation

The starting point for the proposed derivation is the integral representation of the

components of the vector field v, vx and vy, which satisfy the anisotropic Laplace equation

(10) or (13). Since vx and vy verify the same Laplace equation, it is easy to show that

the vector field v verify the following integral equation

c(x0)v(x0) +−
∫
S

p∗(x,x0)v(x)dS(x) =

∫
S

v∗(x,x0)p(x)dS(x), (25)

where c(x0) denotes the free term and p(x) represents the flux of v(x) , which is given

by

p(x) =
∂v

∂ñ
(x) ≡ [v,x(x) + a2v,y(x)]nx(x) + [a2v,x(x) + a1v,y(x)]ny(x) (26)

being n = {nx, ny} the normal unit vector of the boundary S at the point x. In Eq.(25),

v∗(x,x0) and p∗(x,x0) are the kernels of the integral equation and their expression is

given as follows:

v∗(x,x0) = − 1

2π
√
a1 − a22

ln r̃ (27a)
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and

p∗(x,x0) =
∂v∗

∂ñ
(x,x0), (27b)

where r̃ =
√
r2x + 2(a2/a1)rxry + r2y/a1 being rx = x− x0 and ry = y − y0.

It is interesting to note that if s = {sx, sy} = {−ny, nx} denotes the unit vector

tangent to S at x, and if we consider the conjugate relationships expressed in Eqs.(16),

the following identity holds for the vector field v

∂v

∂ñ
= A

∂v

∂s
with A =

 a2 1

−a1 −a2

 . (28)

It is also noted that the boundary tractions t can be expressed in terms of the gradient

of the stress function φ, i.e.

t = Ψ
∂∇φ
∂s

, with Ψ =

 0 1

−1 0

 (29)

It is now possible to transform Eq.(25) into an integral equation involving boundary

displacements and tractions only. More specifically, substituting Eqs.(23), (28) and (29)

into Eq.(25), one obtains the following integral equation125

c(x0)u(x0) + c(x0)Λ∇φ(x0) +−
∫
S

P (x,x0)u(x)dS(x)+

+−
∫
S

P ∗φ(x,x0)∇φ(x)dS(x) =

∫
S

V (x,x0)t(x)dS(x), (30)

where the following kernels have been introduced

V (x,x0) = LAL−1ΛΨ−1v∗(x,x0), (31a)

P (x,x0) = Ip∗(x,x0) +LAL−1
∂v∗

∂s
(x,x0), (31b)

P ∗φ(x,x0) = Λp∗(x,x0). (31c)
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Figure 1: Example of a (a) simply- and a (b) doubly-connected domain. The arrows denotes the paths

along which the tractions resultants are computed.

Eq.(30) can be seen as a boundary integral representation of the stress function gradi-

ent. The sought alternative displacement boundary integral equation is obtained in the

subsequent sections. However, as shown next, it is necessary to distinguish between the

cases of simply- and multiply-connected domains.

4.1. Simply-connected domains130

In simply-connected domains, it is always possible to define a curve going from a point

x0 on the boundary S to another point x ∈ S, as sketched in Fig.(1a). Along such a

path, it is possible to define the resultant R of the tractions t as

R(x,x0) =

∫ x

x0

t(x̃)dS(x̃), (32)

whereby, upon integration of Eq.(29), one obtains

R(x,x0) = Ψ[∇φ(x)−∇φ(x0)]. (33)
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Substituting Eq.(33) into Eq.(30), one obtains the sought alternative displacement bound-

ary integral equation for simply-connected domains as follows

c(x0)u(x0) +−
∫
S

P (x,x0)u(x)dS(x) =

=

∫
S

V (x,x0)t(x)dS(x)−−
∫
S

P φ(x,x0)R(x,x0)dS(x) (34)

where the kernel P φ(x,x0) = P ∗φ(x,x0)Ψ−1 has been introduced and the identity

c(x0) = −−
∫
S
p∗(x,x0)dS(x) has been used.

4.2. Multiply-connected domains

Without loss of generality, let us consider a doubly-connected domain as shown in

Fig.(1b). The domain V is supposed to have an external boundary Se and an internal hole

bounded by Sh. For such a domain it is possible to write Eq.(25) or Eq.(30) considering

that the boundary S consists of the external boundary and the hole boundary, i.e. S =

Se ∪ Sh. However, in this case it is not possible to integrate the tractions from a point

xh ∈ Sh to another point x ∈ Se without going through the domain. Therefore, different

tractions resultants must be defined for the external boundary and for the hole, which

leads to the following expressions:

R(x,xe) = Ψ[∇φ(x)−∇φ(xe)], x,xe ∈ Se, (35a)

R(x,xh) = Ψ[∇φ(x)−∇φ(xh)], x,xh ∈ Sh. (35b)

It follows that collocating at xe ∈ Se and using Eqs.(35), Eq.(30) becomes

c(xe)u(xe) +−
∫
Se

P (x,xe)u(x)dS(x) +

∫
Sh

P (x,xe)u(x)dS(x) =

=

∫
Se∪Sh

V (x,xe)t(x)dS(x)−
∫
Se

P φ(x,xe)R(x,xe)dS(x)−∫
Sh

P φ(x,xe)R(x,xh)dS(x)

(36)

15



whereas, collocating at xh ∈ Sh leads to135

c(xh)u(xh) +−
∫
Se∪Sh

P (x,xh)u(x)dS(x) + Λ(∇φ(xh)−∇φ(xe)) =

=

∫
Se∪Sh

V (x,xh)t(x)dS(x)−
∫
Se

P φ(x,xh)R(x,xe)dS(x)−∫
Sh

P φ(x,xh)R(x,xh)dS(x).

(37)

Eqs.(36) and (37) represent the sought alternative displacement boundary integral equa-

tion for multiply-connected domains when collocation is performed on the external bound-

ary or on the internal hole, respectively.

It is worth noting that Eqs.(37) contains the difference between the values of the stress

function gradient at the points xh and xe. The presence of this additional constant is140

consistent with the fact that it is not possible to find the solution of a multiply connected

domain in terms of a stress function without introducing additional conditions. The

technique to eliminate such a constant will be discussed in Section (7).

5. Application to fracture mechanics

Once the boundary integral equations (34) and (37) have been introduced, they can145

be used in combination with Eq.(1) to solve the fracture mechanics problem via a single-

region approach.

The collocation of Eq.(1) at x+
0 ∈ C leads to the following integral equation:

c(x+
0 )u(x+

0 ) + c(x−0 )u(x−0 ) +−
∫
S

T (x,x+
0 )u(x)dS(x)+

+−
∫
C

T (x,x+
0 )δu(x)dS(x) =

∫
S

U(x,x+
0 )t(x)dS(x). (38)
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Figure 2: Example of a cracked (a) simply- and (b) doubly-connected domain. The arrows denotes the

paths along which the tractions resultants are computed.

It is worth noting that such an equation is valid for both simply-connected and multiply-

connected domains provided that the boundary S appearing in Eq.(38) denotes the union

of the external and the internal boundaries.150

On the other hand, Eq.(34) or (37) must be suitably selected on the basis of the

location of crack within the domain. Considering a cracked simply-connected domain as

the one shown in Fig.(2a), it is always possible to define the tractions resultant between

two points of the boundary S. In fact, collocating Eq.(34) at x−0 ∈ C and assuming that

the crack is traction-free, one obtains

c(x−0 )u(x−0 ) + c(x+
0 )u(x+

0 ) +−
∫
S

P (x,x−0 )u(x)dS(x) +−
∫
C

P (x,x−0 )δu(x)dS(x) =∫
S

V (x,x−0 )t(x)dS(x)−−
∫
S

P φ(x,x−0 )R(x,x−0 )dS(x).

(39)

Finally, referring to the cracked doubly-connected domain shown in Fig.(2b), different

boundary paths must be considered to define the tractions resultants. Analogously to

the derivation of Eq.(37), collocating at x−h ∈ C of the domain shown in Fig.(2b) and

17



assuming that the crack C is traction-free, one obtains the following equation:

c(x+
h )u(x+

h )+c(x−h )u(x−h ) +

∫
Se∪Sh

P (x,x−h )u(x)dS(x)+

−
∫
C

P (x,x−h )δu(x)dS(x) + Λ(∇φ(x−h )−∇φ(xe)) =∫
Se∪Sh

V (x,x−h )t(x)dS(x)−
∫
Se

P φ(x,x−h )R(x,xe)dS(x)−∫
Sh

P φ(x,x−h )R(x,x−h )dS(x).

(40)

155

6. Discretization

The numerical discretisation of the alternative integral equations derived in the pre-

vious sections follows the same approach as that used in the discretisation of the dis-

placement boundary integral equation (1), which can be found in many textbooks on the

Boundary Element Method [4, 5]. The only boundary integrals that deserve particular160

attention are those related to the evaluation of the tractions resultants.

Let us consider two points x0 and x belonging to the same boundary S, which is

divided into Ne non-overlapping mesh elements. Let us also assume x0 is contained

within the m0-th element and x is contained within the m-element as shown in Fig.(3).

The tractions resultant R(x0,x) can then be written as the sum of the contributions of

each element between x0 and x, i.e.

R(x,x0) =

∫ bm0

x0

t(x̃)dS(x̃) +

m−1∑
ε=m0+1

∫
ε

t(x̃)dS(x̃) +

∫ x

am

t(x̃)dS(x̃) (41)

where bm0 is the end point of element m0, ε = m0 + 1, . . . ,m− 1 identifies the elements

of S that one needs to travel to go from bm0 to am, and am is the start point of the

18
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e = m

Figure 3: Scheme for the discretization of the traction resultants.

element m. Using a local variable ξ to map the geometry and the primary variables,

namely displacements and tractions, of the boundary elements, one has

x(ξ) =

µ∑
β=1

Mβ(ξ)xεβ (42a)

and

u[x(ξ)] =

ν∑
α=1

Nα(ξ)uεα, t[x(ξ)] =

ν∑
α=1

Nα(ξ)tεα, (42b)

where: Mβ(ξ) and Nα(ξ) are the shape functions approximating the geometry of the

boundary and the unknown boundary fields, respectively; xεβ are the coordinates of the

points used to approximate the ε-th boundary element; uεα and tεα the nodal values of

displacements and tractions, respectively; µ and ν are the number of geometrical points165

and the number of the degrees of freedom of the element, respectively; and Jε(ξ) ≡

|dx(ξ)/dξ| denotes the Jacobian of the map x = x(ξ) for the ε-th boundary element.

Using the approximation introduced with Eqs.(42a) and (42b), the discretized version

19



of the tractions resultant in Eq.(41) can be written

R(x,x0) =

ν∑
α=1

(∫ 1

ξ0

Nα(ξ)Jm0(ξ)dξ

)
tm0α+

m−1∑
ε=m0+1

ν∑
α=1

(∫ +1

−1
Nα(ξ)Jε(ξ)dξ

)
tεα +

ν∑
α=1

(∫ ξ

−1
Nα(ξ̃)Jn(ξ̃)dξ̃

)
tmα =

ν∑
α=1

Θm0α(ξ0, 1)tm0α +

m−1∑
ε=m0+1

ν∑
α=1

Θεα(−1, 1)tεα +

ν∑
α=1

Θmα(−1, ξ)tmα

(43)

where

Θεα(a, b) ≡
∫ b

a

Nα(ξ)Jε(ξ)dξ (44)

and ξ0 is the value of the local variable ξ on the element containing x0 at which x(ξ0) = x0.170

Eq.(43) shows that the tractions resultants are written in terms of the tractions degrees of

freedom. Therefore, the discrete version of the alternative integral equations introduced

in the previous sections can be written in the form HU = GT as classically done for the

displacement boundary integral equations [5].

7. Numerical results175

7.1. Notched and cracked domain solution

The derived alternative equation is first employed to model the elastic response of both

notched and cracked domains. The results are presented for different domains assuming

isotropic as well as generally anisotropic behavior.

For the isotropic case the material properties has been set as E = 1.0GPa and ν = 0.3

being E the Young’s modulus and ν the Poisson’s ratio. The stiffness matrix used for the

20



anisotropic case reads as

C =


0.5637 0.2963 0.3158

0.2963 0.5637 0.3158

0.3158 0.3158 0.3111

 GPa (45)

and corresponds to the in-plane behaviour of a [30/60/60/30] symmetric laminate with180

2.5 mm thick orthotropic plies having E1 = 15.5 GPa, E2 = 1.0 GPa; G12 = 0.45 GPa

and ν12 = 0.3. It is worth noting that these constants characterize a non-degenerate

anisotropic material and thus the expressions of the fundamental solution given in [5] can

be used in computations.

Numerical tests are performed using quadratic elements with the semi-discontinuous185

option to deal with corners. Tractions boundary conditions are considered and the tech-

nique proposed by Lutz et al.[30] is used to avoid the rigid body degrees of freedom. The

obtained results are compared with a reference solution, which for uncracked domains is

obtained using Eq.(1) only, whereas, for cracked domains is computed using Eq.(1) and

a multi-region approach.190

Figures (4a) and (4b) shows the geometry and the mesh, respectively, of a notched

square domain. The domain is loaded by uniform tractions over the top and bottom edges

whereas the remaining boundaries are kept traction-free. The analysis has been carried

out by collocating Eq.(34) over the notch of the domain as sketched in Fig.(4a), and Eq.(1)

on the remaining boundaries. The accuracy of the proposed formulation is then shown195

in Figs.(5a) and (5b), which report the comparison between the results obtained and the
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(a) (b)

Figure 4: Notched square domain: (a) Geometry and loads: r = w/5; (b) Mesh.

reference solution for the cases of isotropic and anisotropic behaviour, respectively. In

the following figures the results of the reference solutions are depicted as black dashed

line whereas red continuous line is used for the present approach results.

The second test involves a square domain with an internal hole, i.e. a doubly-connected200

domain. The domain is shown in Fig.(6a) and is loaded by uniform tractions over the

top and bottom edges, whereas the remaining boundaries, including the internal hole, are

kept traction-free. The employed mesh of the domain is shown in Fig.(6b).

In this case, the analysis is performed by collocating Eq.(37) over one half of the

internal hole and Eq.(1) on the remaining boundaries, see Fig.(6a). Moreover, it is205

worth recalling that Eq.(37) contains an additional unknown constant, namely the term

Λ(∇φ(xh)−∇φ(xe)). To eliminate such a constant, Eq.(37) is collocated at one additional

point of the hole’s boundary and subtracted from all the other equations stemming from
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(a) (b)

Figure 5: Deformed shape of the notched square domain: (a) isotropic and (b) anisotropic.

the collocation of Eq.(37). The obtained results are shown in Figs.(7a) and (7b) in the

cases of isotropic and anisotropic behaviour, respectively, and demonstrate the accuracy210

of the proposed formulation.

The third test involves a square domain with an edge crack. The domain is shown in

Fig.(8a) and is loaded by uniform tractions over the top and bottom edges, whereas the

remaining boundaries, including the crack lines, are kept traction-free. It is worth recalling

that in such a case of the edge crack, the domain can be considered as simply connected,215

thus allowing for the use of Eq.(39). The employed mesh of the domain is shown in

Fig.(8b) where it is possible to notice that the crack tip is modelled as continuous.

For this case, the reference solution is obtained via the multi-region approach. More

specifically, the domain is divided into two subdomains by introducing a fictitious bound-

ary that connects the crack tip and an arbitrary point of the domain; along such an220
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Figure 6: Square domain with a centered internal hole: (a) Geometry and loads: r = w/5; (b) Mesh.

(a) (b)

Figure 7: Deformed shape of the square domain with an internal hole: (a) isotropic and (b) anisotropic.
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Eq.(39)
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w/2

(a) (b)

Figure 8: Square domain with an edge crack: (a) Geometry and loads: a = w/5; (b) Mesh.

additional boundary the interface conditions of continuity and equilibrium are enforced.

The problem is then solved using the formulation proposed in the present work. In

particular, Eqs.(1) and (38) are used on the external boundary of the domain and on one

side of the edge crack, respectively. On the remaining side crack of the crack, Eq.(39)

is used, see Fig.(8a). The obtained results are shown Figs.(9a) and (9b) in the cases of225

isotropic and anisotropic behaviour, respectively .

The fourth test involves an internally cracked square domain. The domain is shown

in Fig.(10a) and is loaded by uniform tractions over the top and bottom edges, whereas

the remaining boundaries and the crack are traction-free. In this case, the presence of the

internal crack makes the domain doubly-connected. The employed mesh of the domain230

is shown in Fig.(8b) where it is possible to notice that also in this case the crack tips

are modelled as continuous. Although for the edge crack test the continuity of the crack
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(a) (b)

Figure 9: Deformed shape of the square domain with an edge crack: (a) isotropic and (b) anisotropic.

tip is not required, in this case it is necessary since collocating Eq.(40) at the crack tips

provides the additional equation that can be used to remove the additional unknown

constant appearing in the alternative equation itself.235

Also in this case, the analysis via the multi-region approach provides the reference

solution, which is obtained by introducing two additional boundaries where the same

interface conditions as the previous test are enforced.

The solution via the proposed formulation is then obtained by collocating Eqs.(1)

and (38) on the external boundary of the domain and on one side of the edge crack,240

respectively, and Eq.(40) on the remaining side crack. Eq.(40) is also collocated at the

crack tips to remove the additional constant. The obtained results are shown Figs.(11a)

and (11b) in the cases of isotropic and anisotropic behaviour, respectively.
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Figure 10: Square domain with a centered internal crack: (a) Geometry and loads 2a = w/5; (b) Mesh.

(a) (b)

Figure 11: Deformed shape of the square domain with an internal crack: (a) isotropic; (b) anisotropic.
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7.2. Stress Intensity Factor evaluation

To assess the accuracy of the proposed approach for fracture mechanics, the stress245

intensity factors in opening and sliding modes, namely KI and KII , are computed for

several test cases and the obtained results are compared with reference values available

in the literature. The stress intensity factors are evaluated using the path-independent

M integral [31, 32] as briefly recalled in the following.

Considering the current BEM solution and an auxiliary solution {u(i), ε(i),σ(i)}, the

M integral is defined as

M (i) =

∫
γ

(
W̃ (i)nx − t(i)Tu,x − tTu(i)

,x

)
dS, (46)

where γ is a generic contour that begins at one crack surface and ends at the opposite

crack surface, t(i) are the tractions defined on γ and associated to the auxiliary solution,

and W̃ (i) ≡ σ(i)T ε = σT ε(i). Moreover, it is possible to show that the expression of the

M integral can also be written as follows

M (i) = 2α11KIK
(i)
I + α12(KIK

(i)
II +KIIK

(i)
I ) + 2α22KIIK

(i)
II , (47)

where the coefficients α11, α12 and α22 are functions of the material properties and their

expressions can be found in [31], KI and KII denote the stress intensity factors related

to the BEM solution and K
(i)
I and K

(i)
II denote the stress intensity factors related to the

auxiliary solution. Therefore, choosing two independent solutions {u(1), ε(1),σ(1)} and

{u(2), ε(2),σ(2)} such that {K(1)
I ,K

(1)
II } = {1, 0} and {K(2)

I ,K
(2)
II } = {0, 1}, and using

Eq.(47), it is possible to write

M (1) = 2α11KI + α12KII (48a)

M (2) = α12KI + 2α22KII . (48b)

Eqs.(48a) and (48b) represents a system of equations that allows computing the stress250

intensity factors KI and KII under mixed mode crack opening conditions.

28



x

y

w

w

2w
a

θ

σ

(a)

x

y

w

w

2w
a

θ

σ

(b)

Figure 12: Geometry and loads for the two considered mixed-mode problems taken from Ref.[33]: (a)

uniform traction problem and (b) cantilever plate problem. In the figures, a = w/2 and θ denotes the

orientation of the material’s axes with respect to the global reference system.

It is worth noting that the left-hand sides of Eqs.(48a) and (48b) are numerically

evaluated using i) Eq.(46), ii) the BEM solution computed using the proposed formulation

and iii) the explicit expression of the two auxiliary solutions, which can be found in [31].

In what follows, the above technique is employed to compute the stress intensity255

factors for a few test cases involving anisotropic material behaviors. For each test, the

mesh size of the domain and the number of quadrature points to compute the M integral

have been chosen to ensure the convergence and accuracy of the results.

In the first set of tests, a unidirectional graphite-epoxy rectangular lamina in pres-

ence of an edge crack is studied. Two different sets of boundary conditions, as shown260

in Fig.(12), are investigated. The material properties are taken from [33] and the stress

intensity factors are computed as functions of the orientation of the material’s principal
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Figure 13: Normalized stress intensity factors KI ≡ KI/(σ
√
πa) and KII ≡ KII/(σ

√
πa) as functions

of the material orientation for the mixed-mode problems schematized in Fig.(12): (a) uniform traction

problem and (b) cantilever plate problem.

axes. It is worth noting that, although the material is inherently orthotropic, its consti-

tutive behavior in a reference system not aligned with the material’s axes is characterized

by a fully populated stiffness matrix.265

The results corresponding to the boundary conditions shown in Figs.(12a) and (12b)

are reported in Figs.(13a) and (13b), respectively, and are compared with those available

in Ref.[33]. The obtained results corresponding to the boundary conditions shown in

Figs.(12b) are also reported in Tab.(1) and show the accuracy of the proposed formula-

tion.270

In the second set of tests, the stress intensity factors are computed for one cracks and

two cracks emanating from a hole centered in a unidirectional graphite-epoxy rectangular

lamina subjected to a uniform traction as shown in Figs.(14a) and (14b), respectively.
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Table 1: Stress intensity factors for an edge crack in a unidirectional graphite-epoxy laminate as functions

of the fiber orientation.

θ KI/(σ
√
πa) KII/(σ

√
πa)

present Ref.[33] present Ref.[33]

-90 8.8217 8.866 1.0265 1.037

-80 9.7720 9.721 0.3031 0.341

-70 10.8679 10.871 -0.4618 -0.547

-60 11.2718 11.269 -1.2776 -1.234

-50 11.2576 11.145 -1.9812 -1.899

-40 10.9754 10.871 -2.5628 -2.444

-30 10.3082 10.237 -2.4863 -2.336

-20 9.6571 9.621 -1.9458 -1.926

-10 9.0163 8.992 -0.5708 -0.501

0 8.7589 8.695 1.3141 1.358

10 8.8535 8.857 3.3110 3.171

20 9.2552 9.343 4.5087 4.646

30 9.6445 9.763 4.9782 4.966

40 10.0320 10.008 4.8746 4.778

50 9.9082 9.862 4.1799 4.101

60 9.6005 9.639 3.4310 3.410

70 9.1174 9.218 2.6321 2.707

80 8.6674 8.669 1.7990 1.775

90 8.8217 8.866 1.0265 1.037
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Figure 14: Geometry and loads for the problems taken from Ref.[34]: (a) one crack and (b) two cracks

emanating from a centered hole in a rectangular domain. In the figures, r/w = 0.5, a/w = 0.7 and θ

denotes the orientation of the material’s axes with respect to the global reference system.
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Figure 15: Normalized stress intensity factors KI ≡ KI/(σ
√
πa) and KII ≡ KII/(σ

√
πa) as functions

of the material orientation for the mixed-mode problems schematized in Fig.(14): (a) one-crack problem

and (b) two-crack problem.
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The material properties are taken from [34] and, similarly to the previous set of tests,

the stress intensity factors are computed as functions of the orientation of the material’s275

principal axes.

The results corresponding to the one-crack and to the two-crack problems are reported

in Figs.(15a) and (15b), respectively, and are compared with those available in Ref.[34],

showing, also in this case, the accuracy of the proposed formulation.

The reported tests show that the proposed formulation allows addressing fracture280

mechanics problems via a single region approach without the need of evaluating hyper-

singular integrals.

8. Conclusions

A novel boundary element formulation for fracture mechanics of generally anisotropic

two-dimensional bodies has been developed and numerically tested. The formulation is285

derived starting from the representation of the displacements as a linear superposition of

a vector field, whose components satisfy a specifically defined anisotropic Laplace equa-

tion, and the gradient of the stress function. The sough supplementary boundary integral

equation is then obtained using such displacement representation into the boundary in-

tegral representation of the mentioned anisotropic Laplace equation. The supplementary290

equation neither introduces hyper-singular integrals nor additional variables and allows

the solution of two-dimensional anisotropic fracture problems in a single-region. Numeri-
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cal results have been presented for simply- and doubly-connected cracked and uncracked

domains and have been compared with those obtained by classic formulations, confirming

the accuracy and potential of the proposed strategy.295

References
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