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Abstract 

The use of abstract higher-level knowledge (overhypotheses) 

allows humans to learn quickly from sparse data, and make 

predictions in new situations. Previous research has suggested 

that humans may be the only species capable of abstract 

knowledge formation, but this remains controversial, and there 

is also mixed evidence for when this ability emerges over human 

development. Kemp et al. (2007) proposed a computational 

model of overhypothesis formation from sparse data. We 

provide the first direct test of this model: an ecologically valid 

paradigm for testing two species, capuchin monkeys (Sapajus 

spp.) and 4-5-year-old human children. We compared 

performance to predictions made by models with and without 

the capacity to learn overhypotheses. Children’s choices were 

consistent with the overhypothesis model predictions, whereas 

monkeys performed at chance level.  

Keywords: Overhypotheses, abstraction, generalization, animal 

cognition, computational modeling, cognitive development 

Introduction 

For long-lived species that exploit a complex environment 

it might be beneficial to transfer adaptive behavior across 

situations, through the formation of abstract generalizations. 

For example, if a primate learns that one tree grows figs, a 

second papaya and a third nuts, at a more abstract level she 

is also exposed to the regularity: “Trees carry a uniform fruit 

type”. Learning this abstraction would make just one bite of 

fruit from a new tree sufficient to decide whether or not 

continued foraging in this tree would be beneficial.           

In the developmental literature the term ‘overhypotheses’ 

(Goodman, 1955) describes such higher-order 

generalizations at an abstract level that inform inferences 

about more specific hypotheses (Kemp, Perfors, & 

Tenenbaum, 2007). Kemp et al. (2007) developed a 

computational model that suggested that, in principle, 

overhypotheses can be learned quickly from sparse data and 

used to make wide-ranging predictions in new situations.  

Evidence for a possible early emergence of this ability 

during human infancy comes from a study using looking-

time methodology. Dewar and Xu (2010) presented 9-

month-olds with sampled evidence supporting the 

                                                           
* Equal contribution 

overhypothesis that containers are filled with objects of the 

same shape. In a test situation, infants looked longer when 

two differently shaped objects were drawn from the same 

container, contradicting this overhypothesis, than when two 

uniformly shaped objects were sampled.  

Despite this evidence for early overhypothesis formation, 

other methods show contrasting results. A common method 

to assess understanding of the abstract concepts “same” and 

“different” is the relational matching-to-sample (RMTS) 

task. Here, participants are presented with an example 

stimulus pair (either two of the same or two different items) 

as well as two test pairs, and must select the pair with the 

matching abstract relation to the example. Hochmann et al. 

(2017) showed that children begin to succeed in a 2-item 

RMTS task by the age of 5 but not earlier (see Kotovsky & 

Gentner, 1996 for a similar result). However, labeling the 

relations verbally enables children to succeed in the RMTS 

task as early as age 2 (Christie & Gentner, 2014).  

In contrast, in an anticipatory looking time procedure, 

Hochmann, Carey and Mehler (2018) showed that 7 and 12-

month-olds were sensitive to the abstract relation of same 

but not different. Similarly, 18- to 30-month-old children 

correctly selected either a matching or a dissimilar pair of 

objects following evidence that their relation was causally 

relevant (Walker & Gopnik, 2014).  

In addition, only a few non-human species master the 

RMTS task, usually after lengthy training regimes (e.g. 

Truppa, Mortari, Garofoli, Privitera, & Visalberghi, 2011; 

see also Smirnova, Zorina, Obozova & Wasserman (2015)), 

and often only with multi-stimulus arrays instead of 

stimulus pairs (see Wasserman & Young, 2010 for a review; 

the latter also helping 3-year-olds succeed, Hochmann et al., 

2017). As a result, some have suggested that the RMTS task 

can be solved by perceptual processes alone, and that 

abstract knowledge is a uniquely human capability (Penn, 

Holyoak, & Povinelli, 2008; Vonk, 2015). In a different set 

of tasks, chimpanzees and bonobos have been suggested to 

use relative spatial relations such as “top” or “middle” to 

find hidden food rewards (Haun & Call, 2009; Christie, 

Gentner, Call & Haun, 2016). However, it is not clear 

whether searching based on relative rather than absolute 
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spatial relations represents the same kind of abstract 

knowledge as concepts such as “same” and “different”.            

In summary, the question of whether abstract knowledge 

formation is an evolutionary primitive, shared with other 

species and emerging early in human development, or a 

recently-evolved, late-developing skill, is complicated by 

considerable methodological differences between the tasks 

used across ages and species. Further, as in other areas of 

cognitive development, there is something of a dissociation 

between looking time results that suggest an early-emerging 

conceptual competence, and later emerging success on 

choice-based measures by older children. One concern is 

that successful discrimination in infant looking time tasks 

may not require the same kind of conceptual competence as 

paradigms requiring participants to use their knowledge to 

make a choice (e.g., Hood, 2004). 

We therefore designed a task that could be used across 

species, to examine abstract knowledge formation in an 

ethologically valid context without extensive training or 

explanation, based on the original idea of overhypothesis 

formation by Goodman (1955). Importantly this allowed us 

to test a theoretical computational model for how limited 

data can be sufficient for overhypothesis formation in this 

task (Kemp et al., 2007). Similar to Dewar and Xu’s (2010) 

infant looking time study, we adapted Goodman’s thought 

experiment, in which bags of marbles can be either uniform 

or mixed in color, to create a choice paradigm suitable for 

older children and capuchin monkeys. We presented 

sampled evidence from three containers either supporting 

the overhypothesis that rewards are sorted by their size or 

by their type. At test, participants were presented with two 

new containers and one example item from each: a small, 

high-valued reward from A and a large, low-valued reward 

from B (Figure 1). Participants then chose between two 

covert samples from these new containers. Differential 

choice between conditions—namely, choosing A to obtain 

a high-valued option in the type condition, but choosing B 

to obtain a large item in the size condition—would reflect 

sensitivity to the overhypotheses governing object sorting.   

 

Computational Model 

Probabilistic hierarchical Bayesian models have frequently 

been proposed as computational models of children’s rapid 

early learning (Kemp et al., 2007; Tenenbaum, Kemp, 

Griffiths, & Goodman, 2011). They demonstrate how, in 

principle, knowledge can be acquired at multiple levels of 

abstraction simultaneously, after only seeing small amounts 

of data. Kemp et al. (2007) show how more abstract 

hypotheses can constrain the hypothesis space at lower 

levels, leading to rapid inferences when encountering new 

but related situations. Due to the interdependence of 

concrete observations and higher-order concepts, these 

models do not exhibit the tension between low-level and 

higher-level learning often discussed in the animal 

literature. However, while the Kemp et al. model has 

successfully characterized existing findings in the 

developmental literature, the model’s predictions have not 

been directly empirically tested in children or animals.  

Here, we extended the Kemp et al. (2007) model with a 

rational choice rule, allowing us to directly compare the 

model's predictions for which test container (A or B) 

learners should choose to receive a reward from with new 

empirical data. We infer the relative utilities of the different 

reward types, based on the participants’ choices in 

preference testing, following the inverse preference model 

developed by Lucas et al. (2014).  

 

Model Overview.  

Figure 1 provides an overview of both our task and of the 

computational model. In this model, items are sampled from 

evidence containers, each of which has a distribution of 

items with different features (i.e., item type and size). These 

distributions capture a first level of abstract knowledge 

(level 1), describing the kinds of items likely to be found in 

this specific container. Simultaneously, the model also 

represents a more abstract level of knowledge (level 2), 

which describes the probability distribution over 

containers—the extent to which containers in general tend 

to be mixed or uniform, and the distribution of features 

across containers. Using this hierarchical structure, the 

model captures how specific observations of samples from 

individual containers can be used to simultaneously infer 

parameters at multiple levels of abstraction.  

  

Learning Overhypotheses.  

As in Kemp et al., (2007) we use a Dirichlet-multinomial 

model (Gelman, Carlin, Stern & Rubin, 2003). The 

individual sees evidence items yi with d feature dimensions 

(in our case d = 2: the item’s type and size), sampled from 

each evidence container i. We assume that items are drawn 

randomly and independently from each container and that 

the item’s type is determined independently of its size. The 

item types (sizes) are sampled from 𝒚𝒅
𝒊  ~ Multinomial (𝜽𝒅

𝒊 ), 

the distribution over item types (sizes) in that container. 

Each container’s distribution over item types (sizes), 𝜽𝒅
𝒊 , is 

in turn sampled from a Dirichlet distribution, parameterized 

by a scalar αd and a vector βd, 𝜽𝒅
𝒊 ∼ Dirichlet(αd, βd). These 

hyperparameters characterize the overhypothesis across 

containers. αd parameterizes the extent to which items in 

each container are uniform in type (size). βd represents the 

type (size) distribution across the entire set of containers. αd 

is in turn sampled from an exponential distribution, αd ∼ 

Exponential(1), and βd from a symmetric Dirichlet 

distribution, βd ∼ Dirichlet(1).  

To model overhypothesis formation, we infer 

𝑝(𝛼𝑑 , 𝜷𝑑|𝒀𝒅) (referred to as 𝑝(𝛼, 𝜷|𝒀) for simplicity 

below), the posterior distribution over (α, β), given the 

observed items yi, drawn from the N evidence containers,  
 

𝑝(𝛼, 𝜷|𝒀)  ∝ ∫ ∏ 𝑝(𝒚𝒊|𝜽𝒊)𝒑(𝜽𝒊|𝛼, 𝜷)𝑝(𝛼)𝑝(𝜷) 𝑑𝜃𝑁
𝑖=1   (1) 

 

estimated using the Metropolis-Hastings algorithm. Here 

we used 5 chains with 2000 samples and a burn in of 1000. 
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Predicting the content of the test buckets  

 We would like to predict the type (size) of the jth (unseen) 

sample from the new test container i+1, given already 

known samples from this test container, -j (everything not 

j), and the overhypotheses inferred from the evidence 

containers. For a Dirichlet-Multinomial distribution, 

𝑝(𝑦𝑗
𝑖+1| 𝒚−𝒋

𝒊+𝟏, 𝛼, 𝜷), the posterior predictive distribution for 

the type (size) of the next item in the container, given the 

previously seen items and the hyperparameters 𝛼, 𝜷, has a 

simple closed form solution. Marginalizing over 𝑝(𝛼, 𝜷|𝒀), 

the posterior distribution over possible values of α and β, 

estimated from the evidence containers give us, 
 

𝑝(𝑦𝑗
𝑖+1| 𝒚−𝒋

𝒊+𝟏) = ∬ 𝑝(𝑦𝑗
𝑖+1| 𝒚−𝒋

𝒊+𝟏, 𝛼, 𝜷)𝑝(𝛼, 𝜷|𝒀) 𝑑𝛼, 𝑑𝜷     (2) 
 

Approximated by averaging 𝑝(𝑦𝑗
𝑖+1| 𝒚−𝒋

𝒊+𝟏, 𝛼, 𝜷) across 

sampled values of 𝑝(𝛼, 𝜷|𝒀). 

 

Predicting choice of test item 

Given the distribution over possible next items from each 

test container, we would like to predict the learner’s choices. 

We assume that learners are choosing which box to take the 

next item from based on the expected utility of the next item 

from each container. As in Lucas et al. (2014), we assume 

that the utility of an item x is just the product of the utility 

of its individual features. For simplicity we assume that 

utility scales linearly with item size, sx, so that the utility of 

item x, is ux = 𝑠𝑥 ∙ 𝛿𝑡𝑥 , where 𝛿𝑡𝑥
 is the learner’s utility for one 

unit of item type tx. The utility of a container is calculated 

by summing the utilities of each possible item, weighted by 

its probability of being the next item. As in previous work, 

we assume that learners become exponentially more likely 

to choose a container i as its expected utility increases. 
 

𝑃(𝑐 = 𝑖|𝑢) =  
𝑒𝑢𝑖

∑ 𝑒
𝑢𝑗

𝑗
    (3) 

 

 

 

Inferring reward utilities. 

To compute the relative utilities of the different reward 

items, prior to the main experiment, we conducted a series 

of preference tests, where participants chose which of two 

reward items they wanted. For simplicity, we only included 

the categorical item types high, medium and low-value. 

Comparisons included choices between different item types 

of fixed size, between different sizes of the same type, as 

well as mixed comparisons between large items of low value 

and small items of high value.  

Following the preference inference model described in 

Lucas et al. (2014), we assume that learners choose items 

based on their relative utilities as in equation 3. We infer 

item type utilities u from learner’s choices c, separately for 

each species, by computing the posterior probability 

𝑝(𝑢|𝑐) ∝ 𝑝(𝑐|𝑢)𝑝(𝒖), estimated using the Metropolis-

Hastings algorithm. Following Lucas et al. (2014), we 

assume that the type preferences δ are normally distributed, 

with 𝜇 = 0, and variance σ2 = 2 (however the inferred 

preferences are robust to different values of σ2). Here we 

used one chain with 10000 samples and a burn in of 500. 

 

Model Predictions. 

Using this approach, we inferred strong preferences for high 

vs low value items for both species (children: 0.62; 

monkeys: 1.19). We used each species item utilities, 

separately inferred from their preference task data, to make 

a priori choice predictions for our experiment. Model 

predictions based on Level 2 abstraction (abstraction across 

containers) make clear contrasting choice predictions 

between the size and type conditions for both species after 

only one trial (one set of 3 evidences containers; Figure 2a). 

Predictions across subsequent trials, after seeing up to 6 sets 

of evidence containers get asymptotically more extreme 

(Figure 2b). In contrast, for a lesioned model capable of only 

Level 1 abstraction, and thus not learning from the evidence 

containers, the test container with the small, high value item 

is the preferred choice independent of condition.  

 

Figure 1: Hierarchical Bayesian model of overhypothesis formation. The parameters α and β describe an overhypothesis at 

the second level of abstraction: α represents the extent to which containers in general tend to be uniform for a given feature 

dimension, and β captures the feature variability across all containers. Feature distributions of a specific container (θi, Level 

1 abstraction), are constrained by overhypotheses at Level 2, and in turn constrain the items yi sampled from that container. 
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Experiment 1: Abstraction across containers 

Methods 

Participants. Participants were 80 4- to 5- year-old children 

(M age = 4.9 yrs, 50% female), recruited at two local 

museums in Toronto, Canada. Eight additional children 

were excluded from analysis because they ended the game 

early (n = 5) or due to experimenter error (n=3). Seventeen 

brown capuchin monkeys (Sapajus spp., M age = 6.5 yrs, 

29% female) completed a preparatory food preference 

testing. Due to motivation decline only 11 monkeys finished 

the main study and are included in the data analysis.  

 

Materials & Procedure. For the monkeys, nine different 

types of food items (divided into 3 categories: high, medium 

and low value) and 5 item sizes were used. Rewards for 

children were stickers picturing either animals (high value) 

or simple shapes (low value). Size was manipulated by the 

number of stickers on a strip, varying from 1 to 5. To 

encourage consistent sticker preferences across children, 

they were given the task of filling in a zoo map with as many 

animals as possible, making animal stickers more valuable 

than shape stickers. Prior to the main experiment, both 

species received preference testing, details of this procedure 

are given below. All sessions were video recorded. 

Main Experiment. For both species the procedure in each 

trial was very similar. The experimenter successively 

sampled four example items from each of 3 evidence 

containers into transparent cups (monkeys), or onto metal 

frames (children), starting always on the left side. 

Depending on the condition, the items from one container 

were either all of the same type but of varying sizes (type 

condition) or all identical in size but different in type (size 

condition, see Figure 1). During the sampling, the 

experimenter closed her eyes and kept her head upright to 

create the illusion of random sampling.  

Subsequently, two new test containers were brought 

forward, with the other containers and their evidence still in 

view of the participants off to the side. The experimenter 

first simultaneously sampled one evidence item from each 

test container. This was always a small, high-valued reward 

from container A and a large, low-valued reward from 

container B (item types counterbalanced). The experimenter 

then sampled another item from each container 

simultaneously, this time keeping the reward items hidden 

in her closed hands. The closed hands were extended 

towards the participants so that they could indicate their 

choice by reaching towards one of the hands. Participants 

were rewarded with the chosen item. Reward items were 

chosen to be in line with the condition overhypothesis (i.e., 

of the expected type or size), at least of medium value in the 

size condition, and otherwise randomly sampled.  

For monkeys, the experimenter crossed her hands in half 

of the trials (a procedure they are familiar with) to ensure 

they tracked the hidden sample in the experimenter’s hand 

and were not just pointing towards the sampled items. For 

children, hands were never crossed. In comparison to the 

monkeys, children’s pointing was not restricted by a choice 

panel and thus they were able to clearly indicate a specific 

hand rather than only a side (unlike the monkeys children 

also had no prior experience with this procedure and showed 

confusion about the hands crossing in a pilot study).  

Due to the small available sample, monkeys experienced 

both conditions, size and type, in a within-subject ABAB 

design, with the first condition counterbalanced across 

monkeys. Here, two different kinds of containers, bags and 

boxes (counterbalanced), were used, so that any 

overhypothesis could be tied to a specific kind of container. 

Monkeys received 16 sessions with 3 trials each, with 4 

sessions per block. Children were tested in a between-

subject design to allow us to test them in a single session in 

a science museum. and thus only presented with one 

container type (boxes). They received one session of 6 trials.  

Importantly, as for the monkeys, they did not receive any 

explicit instruction concerning the abstract rules governing 

the reward distribution.  

Reward Preference Testing. Prior to the main experiment, 

we conducted preference testing to ensure that participants 

preferred bigger over smaller (size comparisons) and high 

over low-value rewards (type comparisons). Further small, 

high-value items were compared to large, low-value items 

(mixed comparisons). Monkeys received 9 kinds of size 

comparisons, one for each food type. There were also 6 

kinds of type and mixed comparisons respectively, as each 

of the three high-value items was compared to two low-

value items. Finally, the least liked high-value item was 

compared to all 3 medium valued items to ensure a clear 

preference. Monkeys received 10 trials for each of the 24 

comparisons, presented over 24 sessions. Food items were 

presented in a covered forced choice procedure, where the 

monkeys first saw the food on the experimenter’s palms and 

then had to choose between her closed fists.  

Children first received a warm-up of 3 trials in which they 

were familiarized with the closed-hands choice procedure. 

Due to the constraints of museum testing, children were 

presented with a reduced preference procedure of two 

preference trials each for the type and size comparisons. A 

subset of n=58 children also received two mixed trials. 

Following preference testing, for the main experiment, 

novel stickers were used, and children were asked to find a 

lot of animals for a new, blank zoo map.  

Results 

Reward Preference Testing. In the type comparisons, both 

species significantly preferred high-value items over 

equally sized low-value alternatives (Capuchins: M = 0.86, 

SD = 0.12, t(16)=11.78, p<0.001; Children: (M = 0.94, SD 

= 0.18, t(79) = 22.33, p < 0.001). Capuchins further 

preferred the least liked high value item over equally sized 

pieces of medium-valued foods (M = 0.89, SD = 0.06, 

t(16)=25.07, p<0.001). Both groups also significantly 

preferred large over small items (Capuchins: M = 0.83, SD 

= 0.06, t(16)=23.96, p<0.001; Children: M = 0.83, SD = 

0.32, t(79) = 9.11, p < 0.001). In the mixed comparisons 
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both groups expressed a significant preference for the small, 

high-valued items over the big, low-value option 

(Capuchins: M=0.96, SD = 0.04, t(16) = 48.52, p <0.001; 

Children: (M = 0.92, SD = 0.21, t(57) = 15.68, p < 0.001). 

Further, no difference in performance was found between 

the choice presentation with crossed and straight hands. 

Main Experiment. Monkeys were equally likely to choose 

the sample from the container with the small high-value 

example in both conditions (paired t(10)= 0.27, p = 0.79), 

and chose at chance level (12/24 trials) between the two 

hidden samples (type: M = 12.45, SD = 1.37, t(10) = 1.10, 

p = 0.30; size: M = 12.27, SD = 1.95, t(10) = 0.46, p = 0.65). 

Unlike the preference testing, multiple monkeys 

expressed a bias regarding the side of their chosen reward 

sample or the side of the container (7/11 monkeys chose 

either a consistent hand-side or a consistent container-side 

in more than 80% of trials). They did not reach more 

frequently to the side of the small, high-valued sample (M = 

0.52). There was no improvement from the first block to the 

second in either condition (type: Mfirst = 0.52, Msecond = 0.52; 

size: Mfirst = 0.51, Msecond = 0.51).  

Children chose the sample from the container with the 

small, high-value example item more often in the type 

condition than the size condition, t(77.50) = -5.18, p < 

0.001. When compared to chance (3/6 trials), only the 

choices in the type condition were significantly different 

(type: M = 4.28, SD = 1.41, t(39) = 5.70, p < 0.001; size: M 

= 2.7, SD = 1.30, t(39) = -1.45, p = 0.15).  

The Level 2 models for both species predict a clear 

distinction between both conditions in the tendency to 

choose the item from the container with the small, high-

value example item (Figure 2). Choice predictions are 

stronger for monkeys as the inferred utilities for low and 

high-value items based on their reward preferences are more 

extreme. When compared to the empirical data, the 

monkey’s chance level performance is in stark contrast to 

the predictions of a model that learns overhypotheses, using 

item utilities inferred from the monkey’s food preferences. 

For children the level 2 overhypothesis model predictions 

qualitatively fit the data well and the trajectory across trials 

shows a similar trend for both data and model predictions. 

 

Discussion 
As predicted by the model fit separately to their 

preference data, children made different choices in the size 

and type conditions despite the evidence from the test 

containers being the same in both cases, suggesting that they 

formed overhypotheses. However, their performance only 

differed significantly from chance in the type condition, 

which could suggest that they are only capable of forming 

abstract rules about certain reward properties. Alternatively, 

children might have a strong prior towards sorting by type, 

which is possibly more common in children’s experience, or 

the two features might have had an unequal salience based 

on pre-existing preferences or the task description (see also 

Kemp et al., 2007 for discussion of the ‘shape bias’ in word 

learning). However, children did show a preference for 

larger items when presented with a simple choice in the 

preference test, suggesting they attended to this dimension. 

Interestingly, the overhypothesis model fit to children’s 

preferences also predicted a smaller distinction from chance 

in the size condition, suggesting that this result may 

nonetheless be consistent with the overhypotheses. Future 

work could try to increase sample size or change utilities to 

differentiate lack of attention to the size dimension from a 

smaller predicted difference in utility between containers. 

The monkeys’ performance suggests that they were not 

able to form overhypotheses about the food distribution 

pattern across containers. Their failure on the second level 

of abstraction could be due to a failure to form abstractions 

about containers in general (Level 2 overhypotheses), or 

based on the inability to infer the content distributions of 

each evidence container (Level 1 overhypotheses) based on 

the sampled evidence. However, as with any negative result 

from a complex task, there could be other limiting factors, 

specifically the sampling procedure required sustained 

attention and inhibition skills which could be an impeding 

factor for the performance of monkeys (Tecwyn, Denison, 

Figure 2: a) Model Predictions for a learner capable of Level 2 or Level 1 abstraction and empirical results (mean across 

trials ± SE) for the choice for the sample from the box with the small, high-valued example item for capuchin monkeys 

and children. Model predictions are shown for one trial with 3 evidence boxes. b) Children’s level 2 model predictions 

and data (M ± SE) over the course of six trials. Significant differences between the size and the type condition are indicated. 
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Messer, & Buchsbaum, 2017), a point we will return to in 

the general discussion.   

Experiment 2: Abstraction within a container 

To test the hypothesis that monkeys did not form Level 1 

generalizations about the contents of the containers in 

experiment 1 (precluding generalization over containers – 

Level 2), we conducted a second experiment, with reduced 

task demands. Here, we presented subjects with only two 

containers from which we sampled four evidence items 

each. Now, the choice items were sampled directly from 

these containers, so that no generalization to new containers 

(Level 2) was required. However, participants would still 

have to form Level 1 generalizations to choose successfully. 

 

    

Methods 

Participants. Participants were 47 4- to 5- year-old children 

recruited at two local museums in Toronto (M age = 5.0 yrs, 

50% female, n= 24 in type condition, n= 23 size condition). 

Two additional children were excluded because they ended 

the game early or due to experimenter error. The total 

sample of capuchin monkeys (Sapajus spp.) consisted of 13 

individuals. Ten had previously completed Experiment 1. 

Out of the 13 subjects, 11 participated in both conditions 

whereas two participated only in one of the conditions.  
 

Design and Procedure. All sessions were video recorded. 

The procedure was similar to Experiment 1. This time only 

two containers were presented on the table and four items 

were sampled from each successively. Subsequently, the 

experimenter extracted the two choice items directly from 

these containers, kept them hidden in her hand and 

requested the participant to choose. In the size condition, the 

same four types of rewards, two low- and two high-value, 

were drawn from both containers in a randomized order 

whereby one container only yielded small (size 1) and the 

other one only big (size 5) items. The reward was identical 

to one of the four types previously drawn from the container. 

In the type condition, items of the same type in the sizes 1, 

2, 4 and 5 were drawn from the container. Thereby one 

container offered only low-valued and the other only high-

valued items. The reward was a randomly sized piece of the 

expected type for this container. Monkeys received 3 

sessions of 8 trials each per condition with order of 

condition counterbalanced. Children received one session of 

6 trials in a between-subject design beginning with a 

preference testing of two size and two type comparisons.  

Results and Discussion 

Children performed significantly above chance (3/6 trials) 

in the type condition (M = 4.42, SD = 1.28, t(23) = 5.41, p 

< 0.001) but not in the size condition (M= 3.30 , SD = 1.22, 

t(23) = 1.19, p = 0.25). Monkeys performed at chance level 

(12/24 trials) in both conditions (type: M = 12.09, SD = 

0.94, t(10) = 0.32, p = 0.76; size: M = 12.09, SD = 0.54, 

t(10) = 0.56, p = 0.59). The choice predictions of models 

based on the inferred feature distribution in each container 

(Level 1 abstraction) showed a clear tendency to choose the 

next item from the container with high-value items in the 

type condition and from the container with large items in the 

size condition. The strong type preferences of both species, 

lead to a greater predicted container preference in the type 

condition. Whereas the monkeys performed at chance level 

in both conditions, children’s performance resembled the 

model prediction in both conditions, showing strong 

performance in the type condition whereas choices in the 

size condition were at chance. This suggests that children 

are able to form abstractions at both levels whereas capuchin 

monkeys in our study were unable to engage in any level of 

abstraction, though we emphasize that the reasons for this 

failure remain ambiguous (lack of ability or task demands). 

General Discussion 

We presented two studies testing abstraction, and the 

predictions of the Kemp et al. (2007) overhypothesis model, 

using a choice paradigm in children and capuchin monkeys. 

Across both experiments, none of the capuchin monkeys 

showed the pattern predicted for a learner capable of 

forming overhypotheses along the item size or type 

dimensions. In contrast, children treated the same evidence 

differently when they had previously experienced that items 

were sorted by size or type. Their performance was well 

characterized by a hierarchical Bayesian model, fit to their 

actual reward preferences. They showed a significant 

difference between conditions after just a few trials.   

    The model predictions based on capuchin’s preferences 

support that the presented evidence was sufficient for the 

formation of overhypotheses, but the monkeys did not show 

this ability in this paradigm. The monkeys’ results are in line 

with low success rates achieved after long training regimes 

in previous studies on abstract concept formation and 

analogical reasoning in capuchins (Flemming, 2011; 

Kennedy & Fragaszy, 2008; Truppa et al., 2011). We can 

also rule out some other possible explanations for their 

failure. Monkeys did not show a preference for the side 

exhibiting the small, high-value item (showing some 

Figure 3: Model predictions (left) and empirical data (right, 

M ± SE) for the correct choices of children and monkeys in 

the type (high-value item) and size (large item) condition. 
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understanding of the procedure: they were not simply trying 

to acquire the samples). No individual monkey showed a 

difference between conditions, and the sample was 

sufficient to detect significant food preferences, suggesting 

that this was also not a sample size limitation.  

Still, it remains possible that other tasks demands masked 

monkeys’ abstract reasoning abilities. Monkeys and apes 

can infer a hidden item sampled from a clear population 

(Tecwyn et al.,  2017; Eckert, Rakoczy, & Call, 2017; 

Rakoczy et al., 2014). However, apes’ ability to make 

inferences about hidden populations based on visible 

samples (as in this study) was recently shown to be more 

limited (Eckert, Rakoczy, & Call, 2017). Future work will 

explore abstract reasoning with reduced task demands, e.g. 

by allowing the subjects to sample items themselves. 

Nevertheless, the approach taken here, in which subjects do 

not need to be trained to make arbitrary judgements about 

abstract relations but simply need to secure the best rewards, 

is a promising avenue for future research. 

The findings from 4-5 year-olds are in line with infants’ 

performance in causal learning and looking time procedures 

but stand in contrast to children’s limited spontaneous use 

of abstract concepts in RMTS tasks (Hochmann et al., 

2017), perhaps due to a reduced need for training. This 

approach could be extended to toddlers to bridge the gap 

across ontogeny.  

In summary, we conducted the first direct test of the 

hierarchical Bayesian approach described by Kemp et al. 

(2007) in children and animals, and extended it to make 

choice predictions based on item utilities. We have shown 

that it is a promising model for how children are able to form 

generalizations from sparse evidence. We suggest that 

further application of computational models to empirical 

data of overhypothesis formation is desirable to understand 

its development over early childhood, and to further 

understanding possible species differences. 
 

Acknowledgements 
We thank Justine Biado, Kiah Caneira and Kay Otsubo. This 

project has received funding from the European Research Council 

(ERC) under the European Union’s Horizon 2020 research and 

innovation programme (grant agreement No. [639072]). We 

acknowledge the support of the Natural Sciences and Engineering 

Research Council of Canada (NSERC), [funding reference number 

2016-05552] 

 

References 

Christie, S., & Gentner, D. (2014). Language helps children 

succeed on a classic analogy task. Cognitive Science, 38(2), 383-

397. 

Christie, S., Gentner, D., Call, J., & Haun, D. B. M. (2016).  

Sensitivity to relational similarity and object similarity in apes 

and children. Current Biology, 26(4), 531-535. 

Dewar, K. M., & Xu, F. (2010). Induction, overhypothesis, and the 

origin of abstract knowledge evidence from 9-month-old 

infants. Psychological Science. 

Eckert, J., Rakoczy, H., & Call, J. (2017). Are great apes able to  

    reason from multi‐item samples to populations of food items?.    

    American journal of primatology, 79(10), e22693. 

Flemming, T. M. (2011). Conceptual thresholds for same and 

different in old-(Macaca mulatta) and new-world (Cebus apella) 

monkeys. Behavioural processes, 86(3), 316-322. 

Gelman, A., Carlin, J.B., Stern, H.S., & Rubin, D.B. 

(2003).Bayesian data analysis (2nd edn.). New York: Chapman 

& Hall. 

Goodman, N. (1955). Fact, fiction and forecast (Vol. 74). 

Cambridge, MA: Harvard University Press. 

Haun, D. B., & Call, J. (2009). Great apes’ capacities to recognize  

     relational similarity. Cognition, 110(2), 147-159. 

Hochmann, J. R., Tuerk, A. S., Sanborn, S., Zhu, R., Long, R., 

Dempster, M., & Carey, S. (2017). Children’s representation of 

abstract relations in relational/array match-to-sample tasks. 

Cognitive psychology, 99, 17-43. 

Hochmann, J. R., Carey, S., & Mehler, J. (2018). Infants learn a 

rule predicated on the relation same but fail to simultaneously 

learn a rule predicated on the relation different. Cognition, 177, 

49-57. 

Hood, B. M. (2004). Is looking good enough or does it beggar  

    belief?. Developmental Science, 7(4), 415-417. 

Kemp, C., Perfors, A., & Tenenbaum, J. B. (2007). Learning 

overhypotheses with hierarchical Bayesian models. 

Developmental science, 10(3), 307-321. 

Kennedy, E. H., & Fragaszy, D. M. (2008). Analogical reasoning 

in a capuchin monkey (Cebus apella). Journal of Comparative 

Psychology, 122(2), 167. 

Kotovsky, L., & Gentner, D. (1996). Comparison and   

    categorization in the development of relational similarity.     

    Child Development, 67(6), 2797-2822. 

Lucas, C. G., Griffiths, T. L., Xu, F., Fawcett, C., Gopnik, A., 

Kushnir, T., ... & Hu, J. (2014). The child as econometrician: A 

rational model of preference understanding in children. PloS 

one, 9(3), e92160. 

Penn, D. C., Holyoak, K. J., & Povinelli, D. J. (2008). Darwin's   

    mistake: Explaining the discontinuity between human and  

    nonhuman minds. Behavioral and Brain Sciences, 31(2), 109- ‘ 

    130. 

Rakoczy, H., Clüver, A., Saucke, L., Stoffregen, N., Gräbener, A.,  

    Migura, J., & Call, J. (2014). Apes are intuitive statisticians.     

    Cognition, 131(1), 60-68. 

Smirnova, A., Zorina, Z., Obozova, T., & Wasserman, E. (2015).  

    Crows spontaneously exhibit analogical reasoning. Current   

    Biology, 25(2), 256-260. 

Tecwyn, E. C., Denison, S., Messer, E. J., & Buchsbaum, D. 

(2017). Intuitive probabilistic inference in capuchin monkeys. 

Animal Cognition, 20(2), 243-256. 

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. 

(2011). How to grow a mind: Statistics, structure, and 

abstraction. science, 331(6022), 1279-1285. 

Truppa, V., Mortari, E. P., Garofoli, D., Privitera, S., & 

Visalberghi, E. (2011). Same/different concept learning by 

capuchin monkeys in matching-to-sample tasks. PLoS One, 

6(8), e23809. 

Vonk, J. (2015). Corvid cognition: Something to crow about?.  

     Current Biology, 25(2), R69-R71. 

Walker, C. M., & Gopnik, A. (2014). Toddlers infer higher-order 

relational principles in causal learning. Psychological Science, 

25(1), 161-169. 

Wasserman, E. A., & Young, M. E. (2010). Same–different 

discrimination: The keel and backbone of thought and 

reasoning. Journal of Experimental Psychology: Animal 

Behavior Processes, 36(1), 3. 

1737




