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Abstract
Motivation: Since the development of single-cell RNA sequencing (scRNA-seq) technologies, clustering analysis of single-cell gene expression
data has been an essential tool for distinguishing cell types and identifying novel cell types. Even though many methods have been available for
scRNA-seq clustering analysis, the majority of them are constrained by the requirement on predetermined cluster numbers or the dependence
on selected initial cluster assignment.

Results: In this article, we propose an adaptive embedding and clustering method named scAce, which constructs a variational autoencoder to
simultaneously learn cell embeddings and cluster assignments. In the scAce method, we develop an adaptive cluster merging approach which
achieves improved clustering results without the need to estimate the number of clusters in advance. In addition, scAce provides an option to
perform clustering enhancement, which can update and enhance cluster assignments based on previous clustering results from other methods.
Based on computational analysis of both simulated and real datasets, we demonstrate that scAce outperforms state-of-the-art clustering
methods for scRNA-seq data, and achieves better clustering accuracy and robustness.

Availability and implementation: The scAce package is implemented in python 3.8 and is freely available from https://github.com/sldyns/
scAce.

1 Introduction

Advances in single-cell RNA sequencing (scRNA-seq) technol-
ogies have made them powerful tools for understanding het-
erogeneous gene expression in diverse cell populations and
for quantifying single-cell activities in the study of develop-
ment, physiology, and disease. In computational analysis of
scRNA-seq data, unsupervised clustering is a crucial approach
for identifying distinct cell populations based on their gene ex-
pression levels (Kiselev et al. 2019, Sheng and Li 2021, Li
2022). By unsupervised clustering, it is possible to identify
clusters of cells and then annotate them as known or novel
cell types based on prior knowledge of marker genes and bio-
logical pathways. However, due to the high sparsity and high-
dimensional nature of scRNA-seq data (Petegrosso et al.
2020, Qi et al. 2020), it is challenging to cluster single cells di-
rectly using generic clustering methods.

To better account for the characteristics of scRNA-seq
data, new clustering methods tailored for single-cell gene ex-
pression levels have been developed. Earlier methods, such as
Seurat (Satija et al. 2015), SC3 (Kiselev et al. 2017), and
CIDR (Lin et al. 2017), treat dimensionality reduction and
cell clustering as two successive steps. They first use principal
component analysis to reduce the dimensions of the gene ex-
pression matrix or the cell-cell distance matrix, and then

utilize a generic clustering method, such as the Louvain
(Blondel et al. 2008) or hierarchical clustering (Ward et al.
1963) to obtain the inferred cluster labels. More recent meth-
ods such as scScope (Deng et al. 2019) use an autoencoder, a
deep-learning-based model, to learn low-dimensional latent
representation of data and then perform cell clustering on the
low-dimensional features. Another example is graph-sc
(Ciortan and Defrance 2022), which uses a convolutional
graph autoencoder to process a gene-to-cell graph before
applying the K-means or Leiden (Traag et al. 2019) clustering
algorithm. Since the latent space learned by traditional
autoencoders is discontinuous and unregularized, deep em-
bedding methods based on variational autoencoder (VAE)
networks have gained popularity in scRNA-seq analysis.
VAEs can learn a continuous latent representation of the
input data by constraining the distribution of the latent varia-
bles to follow a prior distribution. VAE-based methods such
as VASC (Wang and Gu 2018) and siVAE (Choi et al. 2023)
focus more on the cell embedding problem, while other meth-
ods such as scVI (Lopez et al. 2018), scVAE (Grønbech et al.
2020), and scGMAAE (Wang et al. 2023) can simultaneously
achieve cell embedding and clustering.

As most clustering methods for scRNA-seq data rely on ex-
ternal or internal dimensionality reduction as an intermediate
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step, the quality of the low-dimensional representation has
significant impact on the downstream clustering accuracy.
Instead of treating dimensionality reduction and clustering as
two separate tasks, some clustering methods based on deep
embedding aim to simultaneously learn low-dimensional
embeddings and clusters (Xie et al. 2016, Guo et al. 2017).
By adapting this idea of deep embedding clustering to cluster
single cells, multiple methods have been proposed for scRNA-
seq data. For example, DESC (Li et al. 2020) applies deep
embedding clustering to scRNA-seq data after normalization
and gene selection, with cluster centers initialized by the
Louvain algorithm. scDeepCluster (Tian et al. 2019) and
scDCC (Tian et al. 2021) extended this idea by incorporating
a zero-inflated negative binomial (ZINB) model, which was
first proposed in the DCA method for scRNA-seq denoising
(Eraslan et al. 2019), into an autoencoder network. Even
though these methods based on deep embedding sometimes
lead to better clustering results by allowing for nonlinear
transformations, one limitation they share is that their optimi-
zation procedure depends on cell clusters initialized by a ge-
neric algorithm such as K-means or Louvain. The K-means
algorithm requires a cluster number as input to perform clus-
tering, while the Louvain algorithm requires a resolution pa-
rameter to control the size of the clusters. If these parameters
are mis-specified or if the initial clustering results contain too
many incorrect mixtures of cell populations, these errors will
propagate to the iterative update of neural networks, affecting
the accuracy of final clustering results.

In light of the above limitation, some clustering methods at-
tempt to reduce the dependence on predetermined parameters
(such as cluster number) by starting with a relatively large
number of micro clusters and gradually merging similar ones
into larger clusters. For example, both SCCAF (Miao et al.
2020) and ADClust (Zeng et al. 2022) obtain initial clusters
via the Louvain algorithm. Then, SCCAF iteratively updates
the cluster labels by training a classifier on the clusters and
evaluating the similarities between the clusters based on a
confusion matrix; ADClust uses a unimodality test to evaluate
the similarity between clusters and identify those that could
be merged. Although cluster merging has reduced their reli-
ance on the initial cluster number, as we will show in our
results, their merging process uses non-data-adaptive stopping
criteria and could be prone to under-clustering or over-
clustering on certain datasets.

Inspired by these preceding endeavors in clustering analysis,
we propose a method named scAce for scRNA-seq data to si-
multaneously achieve embedding of gene expression data and
clustering of single cells. The scAce method constructs a VAE
network to learn smoother low-dimensional embeddings com-
pared with those methods based on traditional autoencoders.
It utilizes a data-adaptive clustering approach based on the
idea of cluster merging, and the merging process is controlled
by evaluating intra-cluster and inter-cluster distances. By iter-
atively updating the VAE network and the cluster labels,
scAce improves both the embedding and clustering of single
cells. Another feature of the scAce method is that it enables
clustering enhancement by taking the clustering results of an-
other method as its initialization, and then uses its network
model to further enhance the accuracy of final clusters. We
have assessed the clustering performance of scAce in compari-
son with state-of-the-art clustering methods. The results show
that scAce is more accurate and robust on both simulated and
real scRNA-seq data. In addition, with its cluster

enhancement option, scAce is able to correct and improve pre-
vious clustering results produced by other clustering methods.

2 Materials and methods

2.1 An outline of the scAce method

The scAce method is consisted of three major steps, a pre-
training step based on an improved variational autoencoder
(b-VAE) (Higgins et al. 2017), a cluster initialization step to
obtain initial cluster labels, and an adaptive cluster merging
step to iteratively update cluster labels and cell embeddings
(Fig. 1). We introduce each of these steps in detail below.

Pretraining. The input of scAce is a scRNA-seq read count
matrix X 2 R

m�n, based on which scAce will obtain the nor-
malized expression matrix ~X 2 R

m�n (Supplementary
Methods), where m and n are the numbers of genes and cells
after preprocessing, respectively. In the VAE, the expression
levels are first encoded to obtain the mean and variance param-
eters in the hidden layer. Then, the decoder receives a hidden
variable Z 2 R

d�nðd� mÞ generated in the lower-dimensional
space produced by the encoder. Based on Z, the decoder learns
three parameters (mean, dispersion, and inflated zero propor-
tion) of a ZINB distribution for every gene (Fig. 1A).

Cluster initialization. scAce provides two options to per-
form cluster initialization (Fig. 1B). The first option is used
when scAce is applied in a de novo manner, and an existing
clustering result is not available. In this case, scAce uses the
Leiden algorithm in Scanpy (Wolf et al. 2018) to obtain the
initial cluster assignments and centroids. For each cluster,
the initial cluster centroid is the center of the cluster based on
the hidden variable Z obtained from the pretraining step
and the Euclidean distance. The resolution parameter of the
Leiden algorithm is set to a large value (defaults to 2) so that
the clusters have high purity. The second option is used when
enhancement of an existing clustering result (e.g. obtained using
Seurat) is desired. When using this option, scAce takes the clus-
ter labels from the existing clustering result, and applies an
adaptive cluster splitting method (see Supplementary Methods)
to split the current clusters into smaller and purer clusters based
on intra-cluster distances. Then, scAce uses the new clusters af-
ter cluster splitting as the initial cluster assignment and obtains
cluster centroids as described above.

The purpose of cluster splitting in clustering enhancement or
using a large resolution parameter in the de novo initialization is
to ensure that each of the initial clusters contains cells of the
same cell type or state. Even though there might be multiple clus-
ters in the initial assignment that belong to the same cell types,
they will be merged into the same cluster at the adaptive cluster
merging step. This approach was inspired by the observation
that methods depending on initial clustering results of the K-
means or Louvain algorithm are likely to generate mixed clusters
if the initial ones contain a large proportion of mixtures.

Adaptive cluster merging. In the step of adaptive cluster
merging, scAce iteratively performs network update and clus-
ter merging based on the initial VAE network obtained from
the pretraining step and the clusters from the cluster initializa-
tion step (Fig. 1C). At each iteration of network update, scAce
constructs a loss function consisted of two components. The
first component is the loss of the VAE network and the second
component is a clustering loss defined based on cluster labels
and centroids. Given this loss function, the VAE network is
updated to improve cell embeddings. At each iteration of clus-
ter merging, scAce decides if a pair of clusters should be
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merged into a single cluster by comparing inter-cluster and
intra-cluster distances. Network update and cluster merging
are performed alternately in scAce until no clusters can be
merged in the cluster merging step.

2.2 Pretraining: ZINB-based variational autoencoder

network

Since the latent space learned by traditional autoencoders are
discontinuous and unregularized, which is not ideal for gener-
ative modeling, we use a VAE network with a Gaussian prior
(Kingma et al. 2022) to learn the latent space of single-cell
gene expression data. In addition, we use ZINB as the genera-
tive distribution in the decoder to model the scRNA-seq count
data. For gene i in cell j (i ¼ 1; . . . ;m; j ¼ 1; . . . ;n), we assume
that its count follows a ZINB distribution with the following
parameterization:

ZINBðx; lij; hij;pijÞ ¼ pijd0ðxÞ þ ð1� pijÞNBðx; lij; hijÞ; (1)

where NBðx; lij; hijÞ denotes a negative binomial (NB) distri-
bution; lij and hij are the mean and dispersion parameters of
the NB distribution, respectively; d0ðxÞ is the Dirac delta func-
tion which takes the values of 1 when x¼ 0 and 0 when
x 6¼ 0; pij denotes the inflated zero proportion.

We now introduce the architecture of the VAE network in
detail (Fig. 1A). Given the normalized single-cell gene expres-
sion matrix ~X 2 R

m�n, the encoder first obtains the mean and
variance parameters of the Gaussian distributions in the

hidden space. Then, the network uses the resampling tech-
nique to obtain the hidden Gaussian variables Z 2 R

d�n,
which serves as the input of the decoder. Lastly, the output of
the decoder are the parameters of the ZINB distributions. We
denote the mean parameters as M¢½lij� 2 R

m�n, the disper-
sion parameters as H¢½hij� 2 R

m�n, and the inflated zero pro-
portions as P¢½pij� 2 R

m�n. The VAE model is therefore
summarized as follows:

H ¼ fHð~XÞ; lx ¼Wlx
H;

log rx ¼Wrx H; Z ¼ rx � �þ lx;
D ¼ fDðZÞ; M ¼ S� expðWlDÞ;
H ¼ expðWhDÞ; P ¼ sigmoidðWpDÞ

;

8>>><
>>>:

(2)

where:

• ~X 2 R
m�n is the input normalized gene expression matrix;

• H 2 R
d1�nðd < d1 < mÞ is the output of fHð�Þ, where

fHð�Þ is a layer of fully connected neural network with the
ReLU activation function;

• lx 2 R
d�n and rx 2 R

d�n are the mean and standard devi-
ation parameters of the hidden Gaussian variables; Wlx

2
Rd�d1 and Wrx 2 Rd�d1 are the corresponding weights;

• Z 2 R
d�n is drawn from the learned Gaussian distribu-

tions and serves as the input of the decoder fDð�Þ; each ele-
ment in � 2 R

d�n is an independent standard Gaussian
variable, and � denotes the element-wise multiplication;

Figure 1. Overview of the scAce method. (A) Pretraining. scAce takes the single-cell gene expression matrix as its input to train a VAE network. The

encoder learns low-dimensional hidden variables for the single cells, which serve as the input of the decoder. For each gene, the VAE learns and outputs

three parameters of a ZINB distribution (mean, dispersion, and inflated proportion of zero). (B) Cluster initialization. With de novo initialization, the Leiden

algorithm is used to obtain initial cluster labels. With clustering enhancement, initial cluster labels are obtained by applying a cluster splitting approach to a

set of existing clustering results (from another clustering method). (C) Adaptive cluster merging. Given the pretrained VAE network and the initial cluster

labels, the network parameters, cell embeddings, cluster labels, and centroids are iteratively updated by alternately performing network update and

cluster merging steps. The final results of cell embeddings and cluster labels are output by scAce after the iteration process stops.
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• fDð�Þ is a layer of fully connected neural network with the
ReLU activation function;

• D 2 R
d2�nðd < d2 < mÞ is the output of the decoder

fDð�Þ; Wl 2 R
m�d2 ;Wh 2 R

m�d2 ; and Wp 2 R
m�d2 are the

weight parameters.

In this model, we use the exponential activation function to
generate the mean parameters (M) and dispersion parameters
(H) because these parameters should be nonnegative. We also
use the sigmoid activation function to calculate P so that the
values are between 0 and 1. Given this model, the loss func-
tion of the VAE network is derived as

LVAE ¼ � 1
n

Xm
i¼1

Xn

j¼1

log ZINBðxij; lij; hij;pijÞ

� b
2n

Xd

i¼1

Xn

j¼1

ð1þ logðrxÞ2ij � ðlxÞ2ij � ðrxÞ2ijÞ:
(3)

The first term in LVAE represents the negative log-likelihood
function, and the second term is derived from the Kullback–
Leibler divergence KL

�
qðZjXÞjjpðZÞ

�
(Supplementary

Methods). b � 1 is an adjustable parameter that reflects the
strength of the disentanglement constraint.

2.3 Adaptive cluster merging

Given results of the pretraining and cluster initialization steps,
scAce first performs a network update, and then iteratively
performs cluster merging and network update to obtain the fi-
nal clustering results (Fig. 1C). The network update step and
the cluster merging step are performed alternately, and the it-
eration stops if no clusters can be merged after a network up-
date step. The final cluster labels and cell embeddings are the
output of scAce.

At each step of network update, given the current cluster
labels, scAce updates the VAE network parameters and clus-
ter centroids using the deep embedded clustering technique. A
loss function is constructed to represent the quality of the
clustering results based on the current cell embeddings and
cluster labels. This function is then combined with the loss
function of the VAE network to simultaneously update the
network parameters and cluster centroids. After the update,
scAce switches to the cluster merging step.

At each step of cluster merging, given the current cell
embeddings (from updated VAE network) and cluster cent-
roids, scAce first assigns cells to their closest centroids to up-
date the cluster labels. Then, using a data-adaptive criterion,
scAce merges pairs of clusters with highly similar gene expres-
sion profiles into the same cluster. When two clusters are
merged, the new centroid of the merged cluster is updated as
the center of that cluster based on the current data embed-
ding. The merging process is repeated until no more clusters
can be merged given the data-adaptive criterion. Then, scAce
switches to the network update step.

Network update. Suppose at the beginning of a network
update step there are K clusters and corresponding centroids.
We calculate the probability that cell i ði ¼ 1; 2; . . . ;nÞ
belongs to cluster j ðj ¼ 1;2; . . . ;KÞ as the conditional
probability (qijj) of cell i given the centroid of cluster j
(denoted as cj). The conditional probability is obtained using
the student’s t-distribution as a kernel to measure the

similarity between the embedded cells and cluster centroids
(Xie et al. 2016):

qijj ¼
ð1þ jjzi � cjjj2Þ�1

PK
j0¼1 ð1þ jjzi � cj0jj2Þ�1 : (4)

To improve cluster quality by putting more emphasis on
cells assigned with a high confidence, we define an auxiliary
target distribution based on the distribution represented by
the conditional probabilities:

pijj ¼
q2

ijj=fjPK
j0¼1 q2

ijj0=fj0
; (5)

where fj ¼
Pn

i¼1 qijj. The model is then trained to increase
the similarity between the current distribution and the target
distribution. The goal is to minimize the sum of the KL
divergence over all the cells:

LC ¼
Xn

i¼1

XK

j¼1

pijj log
pijj
qijj

: (6)

Then, in order to update the network parameters, the over-
all loss function is defined as a weighted sum of LVAE and LC:
L ¼ LVAE þ kLC; where k > 0 is a parameter controlling the
relative weights of network loss and clustering loss. By mini-
mizing the loss function L, the network parameters are opti-
mized, and the embeddings of the single cells and cluster
centroids are updated, thus updating the cluster labels. After
the cluster labels are updated, we recalculate the conditional
probabilities in Equation (4) and repeat the above process to
update cluster labels until the proportion of cells that
change their cluster labels between two consecutive repeats is
smaller than 5%. The purpose of this repeating process is to
ensure that the network update has reached a stable state be-
fore cluster merging.

Cluster merging. Given the updated data from the previous
network update step, we use a data-adaptive criterion to de-
cide if two smaller clusters should be merged into a larger
cluster (Lei et al. 2016). To define this criterion, we first intro-
duce the intra-cluster distance. Suppose there are K clusters in
a given iteration. For the ith cluster (i ¼ 1; . . . ;K), its intra-
cluster distance is defined as

dintra
i ¼ 1

jNij
X
q2Ni

jjzq � cijj; (7)

where Ni denotes the indices of cells in cluster i; jNij is the
number of cells in cluster i; ci denotes the centroid of cluster i;
zq is the current embedding of cell q. In addition, we define
the inter-cluster distance between clusters i and j as

dinter
ij ¼ jjci � cjjj; (8)

where ci and cj denote the centroids of clusters i and j,
respectively.

The rationale underlying the adaptive criterion is that two
small clusters should be merged into a larger cluster when
their inter-cluster distance is small compared with the average
inter-cluster distance defined as
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d ¼ 2
KðK� 1Þ

XK

i¼1

XK

j¼iþ1

wijdinter
ij ; (9)

where wij is the assigned weight on the inter-cluster distance
between the ith and the jth clusters. This weight is used to ac-
count for the effect of cluster size on inter-cluster distances,
and is defined as

wij ¼
d

intra

1
2 ðdintra

i þ dintra
j Þ

¼
1
K

PK
i¼1 dintra

i
1
2 ðdintra

i þ dintra
j Þ

: (10)

For example, if the size of cluster i is large, then it will natu-
rally have relatively large inter-cluster distances with other
clusters. Consequently, it will have relatively smaller weights
to offset this effect. In summary, we find all cluster pairs
whose weighted intra-cluster distance (wijdinter

ij Þ is smaller
than d=2 and merge the cluster pair with the smallest
weighted distance.

Following this principle, after each merge, Equations (7–10)
are updated based on the new cluster memberships, and
the merging process is repeated until no more clusters meet
the merging criterion. In other words, we stop the cluster
merging step when wijdinter

ij > d=2 for any pairs of i and j
(i 6¼ j).

2.4 Implementation

The scAce package is implemented in python 3.8, using
Scanpy version 1.9.1 (Wolf et al. 2018) for preprocessing and
Pytorch version 1.10.0 for implementing the VAE network. In
the ZINB-based VAE network, b is set to 0:001�m during
pretraining and 0:01�m during adaptive cluster merging.
The values of d1;d;d2 were set to 512, 32, and 512 in our
analysis, and these are provided as tuning parameters in the
scAce software. The parameter k is set to 1 by default. A com-
parison for different values of k and b at the adaptive cluster
merging stage is presented in Supplementary Tables S1 and
S2. The required input of the scAce software is a scRNA-seq
read count matrix. If clustering enhancement of an existing
clustering result is desired, then the optional input of existing
cluster labels should also be provided. The output of scAce
includes the low-dimensional embeddings and final cluster
assignments of the single cells.

2.5 Clustering methods used for comparison

For comparison in performance evaluation, we considered
nine alternative clustering methods developed for scRNA-seq
data based on both citation number and publication time. We
restricted our considerations to methods that have software
functions to directly perform clustering. From the traditional
clustering methods (not using deep-learning methods), we se-
lected Seurat (Satija et al. 2015) and CIDR (Lin et al. 2017),
both of which are highly cited. From the clustering methods
based on classical autoencoders, we selected the most widely
used scDeepCluster (Tian et al. 2019) and DESC (Li et al.
2020). From clustering methods based on VAEs, we chose the
most widely used scVI method (Lopez et al. 2018) and the re-
cently published scGMAAE method (Wang et al. 2023). In
addition, we selected two clustering methods that also use
cluster merging approaches, SCCAF (Miao et al. 2020) and
ADClust (Zeng et al. 2022), and one clustering method based
on the graph neural network, graph-sc (Ciortan and Defrance
2022). For methods requiring a cluster number as input, the

number of real cell types was provided to the algorithms. The
main characteristics of scAce and the other nine methods are
summarized in Supplementary Table S3.

2.6 Datasets

For simulated data, we used the R package scDesign2 (Sun
et al. 2021) to generate a synthetic single-cell gene expression
matrix with ground truth cell type labels. In this simulated
dataset, there were 16 653 genes and 1150 cells belonging to
five cell types. The number of cells in each cell type was 600,
200, 200, 100, and 50, respectively. The last cell type
accounted for <5% of the cells and was used to represent a
rare cell type. The real scRNA-seq dataset used by scDesign2
to learn gene expression parameters was a peripheral blood
mononuclear cell (PBMC) dataset generated by the 10x
Genomics technology (Zheng et al. 2017).

For real data, we downloaded seven real scRNA-seq data-
sets with annotated cell type labels (Supplementary Table S4).
The seven datasets included three human datasets, three
mouse datasets, and one turtle dataset. For simplicity, the
datasets are referred to as Human pancreas (Baron et al.
2016) (3605 cells), Human PBMC (Zheng et al. 2017) (4271
cells), Human kidney (Young et al. 2018) (5685 cells), Mouse
ES (Klein et al. 2015) (embryonic stem, 2717 cells), Mouse
hypothalamus (Chen et al. 2017) (12 089 cells), Mouse kid-
ney (Adam et al. 2017) (3660 cells), and Turtle brain
(Tosches et al. 2018) (18 664 cells).

3 Results

3.1 scAce improves clustering accuracy and

robustness on both simulated and real data

To evaluate the performance of scAce in clustering scRNA-
seq data, we first applied it and the other nine clustering
methods on the simulated data. We generated data of five cell
types by the scDesign2 package (Sun et al. 2021), which can
learn gene expression parameters and gene–gene correlations
from real data (Section 2). For methods that require a cluster
number as input (scDeepCluster, scGMAAE, and graph-sc),
we input the real cell type number; for other methods includ-
ing scAce, the cluster numbers were automatically determined
by the methods.

When comparing the clustering results (Fig. 2A) with the
ground truth cell type labels (Fig. 2B), we found that scAce
was the only method that achieved an ARI of 1 with a clear
separation of the five cell types in the low-dimensional space.
In contrast, scVI, SCCAF, and Seurat would divide some cell
types into smaller clusters, while ADClust and CIDR were un-
able to distinguish the rare cell type from other major cell
types. DESC and graph-sc also achieved a high ARI, but both
methods misclassified a small proportion of cells from the
rare cell type. It is also worth noting that among the seven
methods which do not require a cluster number as input,
scAce and DESC were the only two methods that identified
the correct number of clusters.

In order to further evaluate the robustness of different
methods, we repeatedly applied the methods to a subset of the
simulated cells. Each time, we randomly chose 95% of
the cells in the dataset to create a new dataset, and performed
the clustering analysis on the new data. The experiments were
repeated 10 times. scAce achieved the highest median ARI
and NMI values among the ten methods (Fig. 2C and D),
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demonstrating its high robustness compared with alternative
methods.

After confirming scAce’s accuracy on the simulated data,
we then applied scAce and the other nine methods on seven
real scRNA-seq datasets and evaluated their clustering ac-
curacy (Section 2). Based on the mean ARI scores across the
seven datasets, scAce achieved the best clustering accuracy,
followed by DESC, graph-sc, scDeepCluster, and ADClust
(Fig. 3A). The different cell types were clearly separated in
the low-dimensional embeddings obtained by scAce,
whereas the other methods had difficulty deriving embed-
dings that correctly reflected cellular identities for at least
one dataset (Fig. 3B and C and Supplementary Figs S1 and
S2). Compared with other clustering methods based on
standard autoencoders (ADClust, DESC, and
scDeepCluster), the embeddings obtained by scAce tended
to be smoother, as VAE allows the latent variables to be
continuous and smooth. When compared with scVI and
scGMAAE, which also use VAEs to obtain cell embeddings,
scAce’s clustering accuracy was higher than both on all
seven datasets.

To further evaluate and compare the robustness of the clus-
tering methods, we then applied them to subsets of 95% cells
randomly selected from each real dataset, and repeated 10
times for each dataset. Based on both ARI and NMI scores,
scAce again achieved the highest clustering accuracy across
the repeated experiments (Supplementary Figs S3 and S4). For
example, the average ARI of scAce across all experiments was
0.76, followed by graph-sc (average ARI¼ 0.66), and DESC
(average ARI¼0.65). As for NMI, the average of scAce is
0.80, followed by DESC (average NMI¼ 0.78), and graph-sc
(average NMI¼ 0.76).

3.2 scAce improves clustering accuracy by adaptive

cluster merging

In order to investigate the necessity of the adaptive cluster
merging step in scAce, we compared the clustering results of
scAce (as described in Section 2) with the initial clustering
results when setting the resolution parameter in the Leiden al-
gorithm such that the initial cluster number was the same as
the true cell type number. The ARI values under the two set-
tings show that the results of scAce were more accurate than
the initial clustering without performing adaptive cluster
merging on six datasets (Supplementary Fig. S5A). The clus-
tering accuracy of the two settings was similar on the Mouse
ES dataset as the initial result already achieved an ARI close
to 1 (Supplementary Fig. S5B). For the other more challenging
datasets, scAce was able to achieve higher clustering accuracy
even without prior knowledge about the true cell type
number.

Of the nine alternative methods that were compared,
SCCAF and ADClust also discover and merge clusters that
might represent the same cellular identity in an iterative man-
ner. In order to better compare the effectiveness and accuracy
of the three methods, we studied the intermediate results of
these methods in the initial and subsequent iterations. Their
clustering results in the first iteration show that all three meth-
ods initially obtained a relatively large number of clusters
(Supplementary Fig. S6A and B). Even though multiple
clusters might correspond to the same cell type, most of these
clusters had high purity, allowing for improvement by cluster
merging through additional iterations.

We then compared how the correspondence between true
cell types and identified clusters changed in the cluster merg-
ing process, using the Mouse kidney dataset as an example
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Figure 2. Comparison of the 10 clustering methods on the simulated dataset. (A) UMAP plots of the cell embeddings produced by the 10 methods. Each

point represents a cell and each color represents an inferred cluster. The number of inferred clusters (K) and the ARI values of the clustering results are

marked on top of the corresponding plots. (B) Same UMAP plots as shown in (A) but colored by the five true cell types. (C) Boxplots of ARI values

obtained by applying the ten clustering methods to randomly selected subsamples of the complete simulated data. (D) Boxplots of NMI values obtained

by applying the 10 clustering methods to randomly selected subsamples of the complete simulated data.
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(Supplementary Figs S6 and S7). While the initial clustering of
the three methods all showed high purity, the final clustering
accuracy varied considerably. ADClust initially obtained 42
clusters, which were updated to 19 and 11 clusters in the sec-
ond and third iteration, respectively. Even though each of
these clusters only corresponded to a single cell type, starting
from the fourth iteration, ADClust merged several groups of
cells from different cell types into the same cluster. Its final re-
sult led to five clusters, all of which were mixtures of cells
from multiple cell types. As for the SCCAF method, it stopped
its merging process right after the initial iteration, leading to
17 clusters. It divided each of the eight cell types into multiple
clusters, which made downstream annotations and compari-
sons error-prone. In contrast, scAce initially obtained 25 clus-
ters, and gradually updated them to 17, 10, 9, and 8 clusters
in the second to fifth iteration, respectively. Throughout this
process, scAce was able to maintain the high purity of the
identified clusters, and thus ultimately obtained clustering
results that were in close agreement with the ground truth cell
types (ARI¼ 0.93). Similar results were observed on the other
six datasets (Supplementary Fig. S8).

To further investigate the observed advantages of scAce, we
evaluated the performance of other clustering methods when
they were combined with the same cluster initialization and
cluster merging approaches as proposed in scAce. Among the
nine alternative methods, we studied the four methods which

can take initialized clusters as input (scDeepCluster, DESC,
SCCAF, and ADClust), and performed cluster initialization as
in scAce. After obtaining the clustering results from these
methods, we then performed an additional cluster merging
step as in scAce. Compared with scAce (average ARI¼ 0.82),
the second and third best method in this comparison was
scDeepCluster (average ARI¼ 0.72) and ADClust (average
ARI¼ 0.61), respectively (Supplementary Fig. S9A). Our
results show that simply combining the proposed cluster ini-
tialization and cluster merging approaches with other existing
methods does not optimize the clustering results
(Supplementary Figs S9 and S10). In contrast, the adaptive
cluster merging approach used by scAce leads to improved
results by combining cluster merging with network update in
an iterative manner.

3.3 scAce is robust to cluster initialization

In the cluster initialization step, scAce uses the Leiden algo-
rithm to obtain the initial clustering results. To evaluate the
robustness of scAce to the selection of the initial clustering
algorithm, we also applied scAce by using the Louvain or
K-means algorithm to perform cluster initialization. The
resolution parameter in Louvain was set to 2. For the cluster
number in K-means, we tried different numbers between
15 and 30, and selected the number that maximized the corre-
sponding silhouette coefficient.
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Figure 3. Comparison of clustering methods on real datasets. (A) ARI and NMI values obtained from the 10 methods on the seven real datasets. The

methods are ordered based on the mean ARI/NMI values. (B) UMAP plots of the cell embeddings produced by the four methods with the highest average
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We calculated the final ARI and NMI values of scAce given
the three different algorithms for cluster initialization. The
difference in ARI values was between 0.001 and 0.069 across
the seven real datasets, and the difference in NMI values was
between 0.001 and 0.059 (Supplementary Fig. S11). Our
results show that scAce is robust to the selection of the initial
clustering algorithm. In fact, regardless of which initial clus-
tering algorithm is used, as long as the initial clusters are of
high purity, scAce is expected to merge highly similar small
clusters into larger ones in the adaptive merging process. In
addition to its robustness to initial clustering algorithms, we
also observed that scAce was robust to the resolution parame-
ter in the Leiden algorithm when its value was between 1.4
and 2.0 (Supplementary Table S5).

3.4 scAce enhances the performance of existing

clustering methods

We provide a clustering enhancement option in the scAce
method, which allows it to start from cluster labels inferred
by another scRNA-seq clustering method and use its cluster
splitting, VAE network update, and cluster merging steps to
adaptively improve the clustering results (see Section 2 and
Supplementary Methods). To evaluate the effectiveness of this
option, we implemented clustering enhancement by applying
scAce with initial cluster labels obtained by Seurat or CIDR,
both of which do not utilize neural networks or cluster merg-
ing approaches. Our results show that, given initial cluster
labels from either Seurat or CIDR, scAce obviously improved
the final clustering accuracy on most real datasets, in terms of
both ARI and NMI scores (Fig. 4).

We visualized the cell embeddings and cluster labels
obtained by scAce right after pretraining and cluster initializa-
tion, and the final embeddings and labels after clustering en-
hancement, given initial results from Seurat (Supplementary
Fig. S12) and CIDR (Supplementary Fig. S13), respectively.
Compared with the original clustering results of Seurat and
CIDR, scAce obtained smaller and purer clusters after its ini-
tialization (Supplementary Methods). Supplementary Figures
S12B and S13B show the cell embeddings and cluster labels
given scAce’s final output, which demonstrates scAce’s ability
to enhance cluster assignment and learning of the latent space
through adaptive cluster merging.

3.5 Computational time and memory usage

We measured the running time and maximum memory usage
of scAce and the other nine methods on the seven real datasets
(Supplementary Fig. S14). In the experiments, CIDR, SCCAF,
and Seurat only needed to use CPUs, and the other seven
methods needed GPUs. All experiments used a single core.

The average running time of scAce ranked fourth, and Seurat
and ADClust were the fastest. Although scAce was slightly
slower than Seurat and ADClust, it was on average faster
than the other deep-learning-based methods (scGMAAE,
scVI, scDeepCluster, graph-sc, and DESC) (Supplementary
Fig. S14A). As for the memory usage, the maximum memory
usage of scAce was higher than most alternative methods, but
was on the same magnitude as that of other deep-learning-
based methods (Supplementary Fig. S14B).

4 Discussion

In this article, we propose the scAce method for unsupervised
clustering analysis of single cells using scRNA-seq data. Using
a variational autoencoder network that adaptively learns
both low-dimensional cell representations and cluster assign-
ment, scAce allows for accurate clustering of cells without the
need to predetermine the cluster number or other parameters
indicating preferences on cluster resolution. We evaluated the
performance of scAce in comparison with nine alternative
clustering methods for scRNA-seq data based on both simu-
lated and real datasets. Our results suggest that scAce outper-
forms existing state-of-the-art methods in terms of both
clustering accuracy and robustness. Based on the clustering
enhancement option of scAce, it is also possible to further im-
prove the accuracy of an existing clustering assignment gener-
ated by other methods.

Compared with existing deep embedding clustering algo-
rithms that use traditional autoencoders to obtain low-
dimensional representations, the VAE network used by scAce
obtains better low-dimensional embeddings of single cells and
therefore improves clustering results by enforcing a continu-
ous and smooth latent space representation of the gene ex-
pression data. Another feature of scAce that contributes to its
improved clustering performance is its ability to adaptively
update the cluster assignments in a deep embedding frame-
work. scAce starts with relatively large number of clusters
which have a high purity and iteratively merges similar clus-
ters together using the proposed adaptive cluster merging ap-
proach. This approach takes advantage of the trained VAE
network and simultaneously achieves network update and
cluster update to improve both cell embeddings and cluster
assignments.

When summarizing our computational results, we noticed
that even though scAce successfully identified the rare cell
type (with a cell proportion of 4%) in the simulated data, it
did not always identify the rare cell types in the real datasets.
Actually, none of the 10 methods evaluated in this work was
able to consistently identify rare cell types that only accounted
for between 0.027% and 1.498% of cells. In a recent

Seurat Seurat CIDR CIDR

before

after

Figure 4. ARI and NMI values of clustering results before and after scAce’s clustering enhancement for Seurat and CIDR.
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benchmark study of 14 clustering methods, it was also
reported that most methods significantly underestimated the
true cell type numbers when the proportion of cells in rare cell
types was around 2% (Yu et al. 2022). Since this is a system-
atic challenge, a future direction is to investigate how to fur-
ther improve the identification of rare cell types. One possible
solution is to first evaluate the heterogeneity of inferred cell
clusters (Li 2022, Liu et al. 2020), and then perform another
round of clustering analysis just using the cell clusters appear-
ing to be mixtures of multiple cell types. When the focus is to
discover rare cell types, an alternative solution is to modify
the adaptive cluster merging process in scAce and use a more
stringent merging criterion. Another future direction to con-
sider is how to extend scAce to account for the cell type hier-
archy. There have been a few methods which aim to use a tree
structure to recover hierarchical relationships among cell
types or account for this factor when evaluating clustering
results (Wu and Wu 2020, Peng et al. 2021). As scAce is
based on an adaptive cluster merging approach, it would be
possible to learn cluster hierarchy from the merging orders.

Although scAce has been developed as a clustering method
for scRNA-seq data, we believe that its VAE framework and
adaptive cluster merging approach can be extended to model
additional types of data collected from other technologies,
such as scATAC-seq and spatial transcriptomics (Lei et al.
2021). The framework can also be modified for noncount
data by changing the output format of the decoder and the
corresponding loss functions. Given the pivotal role of cluster-
ing analysis in single-cell studies and many other scientific
problems, we anticipate scAce to be a useful method for dis-
covering meaningful clusters in high-dimensional data.
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