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a  b  s  t  r  a  c  t

Many  diseases  exhibit  subcritical  transmission  (i.e.  0 <  R0 < 1) so  that  infections  occur  as  self-limited  ‘stut-
tering  chains’.  Given  an  ensemble  of  stuttering  chains,  information  about  the  number  of  cases  in each
chain  can  be  used  to  infer  R0, which  is  of  crucial  importance  for monitoring  the risk  that  a  disease  will
emerge  to  establish  endemic  circulation.  However,  the  challenge  of imperfect  case  detection  has  led
authors  to  adopt  a variety  of  work-around  measures  when  inferring  R0, such  as  discarding  data  on iso-
lated  cases  or aggregating  intermediate-sized  chains  together.  Each  of  these  methods  has  the potential
to  introduce  bias,  but  a  quantitative  comparison  of these  approaches  has  not  been  reported.  By  adapting
a  model  based  on a negative  binomial  offspring  distribution  that  permits  a variable  degree  of transmis-
sion  heterogeneity,  we present  a  unified  analysis  of  existing  R0 estimation  methods.  Simulation  studies
show  that  the  degree  of  transmission  heterogeneity,  when  improperly  modeled,  can  significantly  impact
the bias of  R0 estimation  methods  designed  for imperfect  observation.  These  studies  also  highlight  the
importance  of isolated  cases  in assessing  whether  an  estimation  technique  is  consistent  with  observed
data.  Analysis  of  data  from  measles  outbreaks  shows  that  likelihood  scores  are  highest  for  models  that
allow  a flexible  degree  of  transmission  heterogeneity.  Aggregating  intermediate  sized  chains  often  has

similar  performance  to analyzing  a  complete  chain  size  distribution.  However,  truncating  isolated  cases
is  beneficial  only  when  surveillance  systems  clearly  favor  full observation  of  large  chains  but  not  small
chains.  Meanwhile,  if data  on  the  type  and  proportion  of  cases  that  are  unobserved  were  known,  we
demonstrate  that  maximum  likelihood  inference  of  R0 could  be  adjusted  accordingly.  This  motivates  the
need  for  future  empirical  and  theoretical  work  to  quantify  observation  error  and  incorporate  relevant
mechanisms  into  stuttering  chain  models  used  to estimate  transmission  parameters.
. Introduction

For many emerging or potentially re-emerging diseases, out-
reaks occur as isolated pockets of infection because relatively
eak transmissibility prevents epidemic spread. In these circum-

tances, continual presence of disease requires introduction of a
rimary infection by spillover from a non-human reservoir or by
eographic importation. Once a primary infection is present, any
ubsequent secondary transmission results in a ‘stuttering chain’

f transmission that eventually dies out because transmissibil-
ty is relatively weak. This subcritical transmission is a defining
haracteristic of stage III zoonoses, such as monkeypox, Nipah
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virus, H5N1 avian influenza, and Leishmania infantum (Taylor et al.,
2001; Woolhouse and Gowtage-Sequeria, 2005; Wolfe et al., 2007;
Lloyd-Smith et al., 2009). Subcritical transmission is also seen with
vaccine preventable diseases such as measles and polio when local
vaccination coverage is sufficiently high (Jansen et al., 2003; King
et al., 2004; Gay et al., 2004; O’Reilly et al., 2012; Minor, 2012).

The exact conditions under which all chains go extinct can be
described in terms of the reproductive number, R0, which is the
average number of cases caused by a typical infected individual. All
transmission chains will be self-limited when 0 < R0 < 1. (For sim-
plicity of presentation, we will use the symbol R0 to represent all
reproductive numbers in this study, although this symbol is often
reserved for the basic reproductive number associated with a fully
susceptible population.)
Although subcritical transmission is ubiquitous, study of its
dynamics has recently been highlighted as a gap in the modeling
literature (Lloyd-Smith et al., 2009). In particular, robust infer-
ence of R0 from stuttering chain data is of crucial importance for

dx.doi.org/10.1016/j.epidem.2013.05.002
http://www.elsevier.com/locate/epidemics
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.epidem.2013.05.002&domain=pdf
mailto:blumberg.seth@gmail.com
mailto:seth.blumberg@ucsf.edu
mailto:jlloydsmith@ucla.edu
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etermining whether a disease is close to the R0 = 1 threshold
hat would permit epidemic or endemic spread. Knowledge of R0
lso indicates the relative burden of primary infections versus sec-
ndary transmission (De Serres et al., 2000). In addition, monitoring
ow R0 changes through time can help to identify shifts in trans-
issibility owing to environmental or evolutionary change, and

ence to elucidate the ecological and evolutionary drivers of disease
mergence (Pepin et al., 2010; Antia et al., 2003; Arinaminpathy and
cLean, 2009).
The larger the reproductive number, the more secondary trans-

ission will occur and so stuttering chains are expected to contain
ore cases. Since secondary transmission is stochastic in nature,

0 cannot be inferred from the number of cases in a single chain.
owever the distribution of chain sizes contains enough infor-
ation to infer transmission parameters (De Serres et al., 2000;

ansen et al., 2003; Farrington et al., 2003; Ferguson et al., 2004;
lumberg and Lloyd-Smith, 2013). If there is a large amount of
ata with no observation errors, then estimation of R0 from chain
ize data is straightforward. In this case the maximum likelihood
ML) value for the reproductive number is R̂0 = 1 − (1/�), a sim-
le function of the observed average chain size, � (De Serres et al.,
000). However, there are many issues that interfere with this ideal
esult. One complicating factor, exemplified by surveillance data for
uman monkeypox (Rimoin et al., 2010; Jezek and Fenner, 1988),

s that data are often sparse and imperfect, owing to logistical chal-
enges in conducting surveillance because many of these diseases
ccur in remote places where poor health infrastructure impedes
eliable reporting. Therefore, in many settings the observed chain
ize distribution will suffer from an unknown amount of obser-
ation error. A second complicating factor is that transmission
eterogeneity may  impact the observed chain size distribution,
ecause the existence of super-spreaders causes chains to be small

n most cases and very large in a few others (Lloyd-Smith et al.,
005; Garske and Rhodes, 2008; Nishiura et al., 2012; Blumberg
nd Lloyd-Smith, 2013). If heterogeneity is not properly accounted
or, studies may  be inclined to ignore isolated cases as ‘unreliable
ata’ because of discrepancy with model predictions. Because of
he inter-relationship between the true chain size distribution, the
bserved distribution, and transmission parameters, different esti-
ation approaches are likely to infer different values for R0 and

ssociated confidence intervals.
A number of different methods have been published that use the

ize distribution of stuttering transmission chains to infer R0. A uni-
ying theme of these approaches is that they frame stuttering chain
ransmission in terms of a branching process (Becker, 1974, 1977;
all et al., 2002; Harris, 2002; Lange, 2010). In this framework,
ransmission is completely described by an ‘offspring distribution’
hat gives the probability that an infected case will transmit infec-
ion to any given number of secondary cases. Many authors choose
o use an offspring distribution that makes implicit assumptions
bout the amount of transmission heterogeneity. Some studies,
articularly those inspired by SIR-type models that assume con-
tant rates of transmission, recovery and death, specify that the
ffspring distribution is described by a geometric distribution
Ferguson et al., 2004; Farrington et al., 2003; Jansen et al., 2003).
ther studies assume that the offspring distribution is described by

he more homogeneous Poisson distribution (De Serres et al., 2000;
ay et al., 2004; Farrington et al., 2003; King et al., 2004). However,

t has been found that the negative binomial distribution is a more
ersatile choice, because it can describe a flexible degree of trans-
ission heterogeneity and can fit data from a range of infectious

iseases (Lloyd-Smith et al., 2005).

The negative binomial distribution has two parameters: R0 and

he dispersion parameter, k. While R0 represents the average repro-
uctive number for the population as a whole, the dispersion
arameter specifies how much variation there may  be in individual
idemics 5 (2013) 131– 145

levels of infectiousness. Since the variance of the negative binomial
distribution is R0(1 + (R0/k)), there is a high degree of individual
variation in infectiousness when k is less than one. When k = 1 the
negative binomial simplifies to a geometric distribution, and when
k→ ∞ it reduces to a Poisson distribution. It is possible to let k be
a free parameter that is estimated jointly with R0 from chain size
data (Blumberg and Lloyd-Smith, 2013). Thus the use of a nega-
tive binomial offspring distribution provides a general framework
to compare previously published methods that use chain size data
to estimate R0 for subcritical transmission.

Chain size analysis methods also differ in their approach to
dealing with the aforementioned challenges of modeling imper-
fectly observed stuttering chain data. A specific point of contrast
is that past inference methods differ in the relative impor-
tance they attribute to isolated cases. Several studies exclude
isolated cases from their analysis as they fear these cases may
be less likely to be observed than those in larger transmission
chains, or that isolated cases may  be more prone to false-positive
error (Gay et al., 2004; King et al., 2004; De Serres et al., 2000). In
contrast, other approaches aggregate intermediate chain sizes on
the basis that the most important characteristics of the chain size
distribution are the number of isolated cases and the size of the
largest chain (Ferguson et al., 2004).

The quantitative impact on R0 estimation arising from these
different assumptions and work-around measures has not been
studied. Here, we present a unified analysis where we compare all
the methodological variants mentioned above. We  first compare
the results of applying these methods to measles data collected in
the United States and Canada. As previous analyses have noted, we
show that several models are unable to match the observed number
of isolated cases. We find that this mismatch can be alleviated by the
use of a negative binomial offspring distribution, but the impact of
imperfect case detection remains a concern. Therefore, we  explore
how imperfect case detection affects the bias of R0 estimation, by
considering two  existing models for how observation error arises
(Ferguson et al., 2004). One observation model assumes that every
case has the same independent probability of being observed, while
the other model assumes that cases in large chains are more likely
to be observed than isolated cases. In order to reconcile an apparent
conflict between allowing a flexible degree of transmission hetero-
geneity and compensating for imperfect observation, we  also show
that it is possible to formulate a likelihood function that incor-
porates both of these concerns. Because this framework requires
quantitative knowledge about the observation process, we  identify
a need for new techniques that characterize imperfect surveillance
so that estimation of R0 can be adjusted accordingly.

2. Methods

We  use the term ‘chain’ to describe a primary infection and all
secondary cases linked to it by one or more generations of trans-
mission. This is sometimes called a ‘cluster’, ‘outbreak’ or ‘minor
outbreak’ by other authors. We  consider a ‘cluster’ to be a spatio-
temporal aggregation of cases, which may  contain overlapping
chains (as sometimes observed in the field).

2.1. Data

We  analyze measles data from the United States and Canada.
The case ascertainment for measles is relatively strong because its
symptoms are distinctive, reported cases were thoroughly investi-

gated and effort was  made to trace the transmission of each case so
that the size of stuttering chains could be accurately determined
(Gay et al., 2004; King et al., 2004). However, the possibility of
missed cases is a valid concern (Harpaz et al., 2004).
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Table  1
Distribution of transmission chain sizes for measles.

Chain size Number of chains
United States (’97–’99)

Number of chains
Canada (’98–’01)

1 122 35
2  13 5
3  10 3
4  6 1
5  5 0
6  2 1
8  2 1
9  1 0

11  1 0
13  1 0
15  1 0
17  0 1
30  0 1
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The United States data consist of all confirmed measles cases
eported to the Centers for Disease Control and Prevention for
997–1999 (Gay et al., 2004). The Canadian data consist of the con-
rmed measles cases collected by the Notifiable Disease Reporting
ystem and enhanced measles surveillance system from 1998 to
001 (King et al., 2004). The United States data set consists of 336
ases distributed among 165 infection clusters, while the Cana-
ian data set consists of 274 cases distributed among 49 clusters
Table 1).

With one exception of a United States cluster of size six which
ad two primary cases (that we count here as a chain of size six), all
lusters were reported to contain just one primary infection due to
eographic importation. However, the imported case was  explic-
tly identified in only 64% of the United States clusters and 73%
f the Canadian clusters, indicating that some cases were missed
y surveillance. Keeping these limitations in mind, we treat each
luster as a single transmission chain.

.2. Simulations

.2.1. Model assumptions
Following convention for branching process models of transmis-

ion dynamics, we assume that the number of infections caused by
ach case is independent and identically distributed. Then a single
ffspring distribution describes the probabilities that a given case
ill cause any number of infections.

.2.2. Simulations
Transmission chains were simulated by first choosing the num-

er of offspring for the chain’s lone primary case according to
he offspring distribution. Then, if the primary case generates
econdary cases, the offspring of each secondary case is drawn ran-
omly from the same offspring distribution. This routine is repeated
or all successive secondary cases and the chain size is determined
y the total number of cases that have arisen before the chain
oes extinct. Every chain eventually goes extinct because all our
imulations have R0 < 1.

For most simulations, a negative binomial offspring distribution
as used to model the offspring distribution (Lloyd-Smith et al.,

005; Garske and Rhodes, 2008; Nishiura et al., 2012; Blumberg
nd Lloyd-Smith, 2013). However, for Fig. A.7, the simulations were
ased on a Weibull–Poisson offspring distribution, which corre-
ponds to a Weibull distributed infectious period (Lu and Shi, 2012).

o implement this scenario, a normalized infectious period was  first
hosen according to a Weibull distribution with mean one. Then the
umber of offspring was  chosen according to a Poisson distribution
ith a mean equal to R0 times the chosen infectious period.
idemics 5 (2013) 131– 145 133

To investigate the impact of imperfect observation, each sim-
ulated chain was re-evaluated according to one of two possible
observation models (Ferguson et al., 2004). In the ‘independent’
observation model, each case is observed with an independent
probability p. In the ‘size-dependent’ observation model, each case
has an independent probability of being a ‘sentinel’ case. Then, if
a chain contains at least one sentinel case, all cases in the chain
are observed (representing retrospective and prospective inves-
tigation). Otherwise no cases in the chain are observed. For both
models, the observed chain size distribution is conditioned on
chains containing at least one observed case (i.e. one cannot observe
chains that have no observed cases).

2.3. Chain size statistics

2.3.1. Chain size distribution for perfect observation
Branching process theory provides a link between the offspring

distribution and the chain size distribution (Dwass, 1969; Becker,
1974). Specifically, for a negative binomial offspring distribution,
the probability, rj, of a transmission chain having overall size j
is given by Nishiura et al. (2012) and Blumberg and Lloyd-Smith
(2013),

rj = �(kj + j − 1)
�(kj)�(j + 1)

(R0/k)j−1

(1 + (R0/k))kj+j−1
. (1)

This formula is valid for R0 < 1 and R0 > 1, but in the case of R0 > 1 the
sum of the probabilities does not equal one because some chains
may  escape extinction.

When R0 < 1 and all cases are observed, the average size of a
transmission chain, �, can be derived by noting that the expected
number of cases in each generation follows a geometric series (De
Serres et al., 2000):

� = 1 + R0 + R2
0 + · · · = 1

1 − R0
. (2)

2.3.2. Observed chain size distribution for independent
observation error

In our first model of imperfect detection we assume that each
case has an independent probability pind of being detected. Then the
probability, s′

j
, of observing j cases in an arbitrary stuttering chain

becomes

s′
j =

∞∑
k=j

rk ·
(

k

j

)
· pj

ind
· (1 − pind)k−j. (3)

Here the sum is over the possible range of true chain sizes for which
j cases can be observed. The quantity within the summation is the
joint probability that the true number of cases in a stuttering chain
is k and that j of the k cases are actually observed. The overall prob-
ability, r′

j
, that a chain has an observed size j differs from s′

j
since a

normalization factor is needed to account for the probability that
some chains will not be observed at all. Thus,

r′
j =

s′
j

1 − s′
0

. (4)

Under the assumption of independently observed cases, the
overall probability, pobs, of observing a randomly chosen case is
equal to pind.
2.3.3. Observed chain size distribution for size-dependent
observation error

In our second model of imperfect detection we  assume that
each case has an independent probability psent of being a sentinel
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ase that guarantees all cases in the chain will be observed. The
robability, vj that a chain of true size j is unobserved is,

j = (1 − psent)
j.

Thus the probability, s′
0, that a randomly chosen chain is unob-

erved is,

′
0 =

∞∑
k=1

rk · vk.

The overall probability that a chain has an observed size of j is
he probability of a chain having true size j times the probability it
ncludes at least one sentinel case, normalized by the probability
hat the chain is observed at all. Accordingly,

′
j = rj · (1 − vj)

1 − s′
0

. (5)

Under the assumption of size-dependent chain observation, the
verall probability pobs of seeing a randomly chosen case is greater
han psent, because non-sentinel cases can be observed. The overall
robability can be calculated by properly normalizing the propor-
ion of chains that are observed according to,

obs =
∑∞

j=1j · rj · (1 − vj)

�
. (6)

Unfortunately this relationship cannot be easily inverted to
btain a closed form relationship between pobs and psent. How-
ver, the relationship between these variables can be determined
umerically for a given pair of R0 and k values.

.3.4. Observed average chain size
The expected value for the observed average chain size, �*, can

e computed by making an explicit calculation, or equivalently by
aking a correction to pobs · � to account for some chains being

nobserved. Specifically,

∗ =
∞∑

j=1

j · r′
j = pobs · �

1 − s′
0

. (7)

In the case of independent observation error, pind · � < �* < �,
ecause although some cases are unobserved, �* is biased upwards
elative to pind · � since some chains are completely unobserved.
n the case of size-dependent observation, �* > � because larger
hains are more likely to be observed than smaller ones.

The observed average size of all chains for which at least two
ases were observed (i.e. at least one secondary infection occurred)
s

∗
s = �∗ − r′

1
1 − r′

1
. (8)

.4. Maximum likelihood inference

When we treat data at face value and ignore the complications
f imperfect observation, the likelihood of a given chain size distri-
ution is,

C (R0, k) =
∞∏

j=1

rnj
j . (9)

here nj is the number of chains of size j that are observed. To

ncorporate an observation process model into the inference of R0,
he likelihood is adjusted by replacing the true chain size probabil-
ty (rj) with the probability for observing a chain of size (r′

j
) in Eq.

9).
idemics 5 (2013) 131– 145

Maximum likelihood estimation of R0 and k is achieved by max-
imizing the likelihood function with respect to both parameters.
Denoting the ML  values as R̂0,MLE and k̂MLE , straightforward cal-
culus shows that when estimation of R0 is based on the complete
chain size distribution and perfect observation is assumed,

R̂0,MLE = 1 − 1
�

(10)

where � denotes the observed average chain size (Blumberg and
Lloyd-Smith, 2013). The value of k̂MLE is not analytically tractable,
but can easily be calculated numerically.

Univariate confidence intervals for R0 and k, and bivariate con-
fidence regions for both parameters, are determined by likelihood
profiling (Bolker, 2008). Since our method is based on data in which
all chains go extinct, the ML  value of R0 will always be less than one.
However, the confidence interval for R0 may  include R0 > 1 because
due to the stochastic nature of transmission, all observed chains
may  go extinct even if R0 > 1. Since the chain size distribution prob-
ability (Eq. (1)) holds for R0 > 1, the likelihood function remains
well-defined for finite chain sizes (Blumberg and Lloyd-Smith,
2013). To create a general model that incorporates the possibility
of non-extinction when R0 > 1, a more formal approach would be
to include an arbitrarily large censoring limit in the likelihood cal-
culation for the maximum observable chain size (Farrington et al.,
2003).

2.5. Modified likelihoods for truncated or aggregated data

To compare the R̂0,MLE estimator to previously published results,
we consider two  modifications of the likelihood calculation. The
first modification is to truncate the data set to include only chains
of size two  or greater in the likelihood function (De Serres et al.,
2000; Farrington et al., 2003; Jansen et al., 2003; Gay et al., 2004).
The second modification is to aggregate portions of the data set,
and build a likelihood using only the number of isolated cases, the
total number of stuttering chains, the size of the largest stuttering
chain, and the number of chains having the largest size (Ferguson
et al., 2004).

2.5.1. Truncated likelihood
When excluding isolated cases, the likelihood of a stuttering

chain size distribution is obtained by renormalizing the chain size
probabilities:

LT =
∞∏

j=2

( rj

1 − r1

)nj
. (11)

We  defined four estimators for R0 based on LT that differ only
in their assumptions about transmission heterogeneity. To repli-
cate existing literature on truncated estimation, R̂0−T,k=1 assumes
a geometric offspring distribution and R̂0−T,k→∞ assumes a Poisson
offspring distribution. In order to quantify the impact of improp-
erly assigning a value of k we created two new truncated estimators.
The R̂0−T,k=k′ estimator assumes the true value of k is known and
R̂0−T,k=? assumes no prior information is provided for k. For R̂0−T,k=?
the likelihood is maximized over both R0 and k, but for the three
other truncated estimators the likelihood is maximized over R0
only.

2.5.2. Aggregated likelihood
When intermediate size stuttering chains are aggregated

together the likelihood can be written as
LA = rn1
1 ·
(

M−1∑
k=2

rk

)N−n1−nM

· rnM
M (12)
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here M is the size of the largest stuttering chain. By analogy with
he truncated estimators, the aggregated likelihood formula serves
s the basis of four estimators of R0: R̂0−A,k=1 assumes a geometric
ffspring distribution, R̂0−A,k→∞ assumes a Poisson offspring distri-
ution, R̂0−A,k=k′ assumes the true value of k is known, and R̂0−A,k=?
ssumes nothing is known about k. As before, the R0 estimate for
he first three estimators is obtained by maximizing the likelihood
ver R0 for the appropriate value of k, and the R̂0−A,k=? estimate is
btained by maximizing over both R0 and k.

An even more parsimonious version of aggregating the chain
ize distribution is to simply record the number of primary infec-
ions, Ns and secondary infections, Np. The likelihood can then be
ritten as a binomial sampling probability,

B = (1 − R0)Np · RNs
0 . (13)

The sampling probability for a secondary infection is set as
0 because straightforward calculus then ensures the associated
stimate, R̂0,binomial , is equivalent to R̂0,MLE . However, the corre-
ponding confidence intervals of R̂0,binomial and R̂0,MLE differ. The LB

unction helps to assess the extent to which data can be aggregated
efore a significant amount of information is lost.

.6. Estimator characterization

This section explains the measures used to characterize the R0
stimators. We  use R̂0 to denote any one of the aforementioned
stimators, and R0 to denote the true value used to simulate data.

.6.1. Estimator error
To summarize the error of R0 inference, we simulate M datasets

or fixed values of R0, k and N. Then we define the root mean square
bsolute error as

a =

√√√√ lim
M→∞

1
M

M∑
i=1

(R̂0i
− R0)

2
. (14)

here R̂0i
is the ML  value of R0 for the ith simulated dataset. In

ractice, the limit is taken to a reasonable number of simulations
ased on convergence of ˛a (we typically set M = 2000).

.6.2. Estimator bias
The bias of R0 estimation is computed as

 = lim
M→∞

1
M

M∑
i=1

R̂0i
− R0. (15)

To assess whether the bias of R0 estimation caused by imperfect
bservation can be determined simply from the observed average
ize of the chain data used for estimation, we derive an analytic
xpression for the bias of the R̂0,MLE , R̂0−T,k=1 and R̂0−T,k→∞ estima-
ors. For the R̂0,MLE estimator, this analytically determined bias, ıa,
s the difference between the R̂0 that corresponds to � = �∗, and
he true R0:

a = 1 − 1
�∗ − R0. (16)

For the R̂0−T,k=1 estimator, we let R̂0−T,k=1(�∗
s ) equal the value of

0 that produces the expectation of observing �s = �∗
s when k = 1

s assumed. Then,
a = R̂0−T,k=1(�∗
s ) − R0. (17)

The absolute bias for R̂0−T,k→∞ is defined analogously.
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2.6.3. Fraction of error due to bias
The inference error for R0 is dependent on the estimator bias

and the inherently random nature of the processes generating the
data. The standard deviation of the R̂0 estimates from a set of iden-
tically programmed simulations, �R̂0

, summarizes the contribution

of randomness. To the extent that the distribution of R̂0 values is
symmetrically distributed, the mean square absolute error can be
approximated by adding the two sources of error in quadrature.

˛2
a = �2

R̂0
+ ı2.

This equation shows that if there was negligible bias, the abso-
lute error would simply be �R̂0

. We  define the fraction of error due
to bias, �, as the fractional reduction of the absolute error in R0
occurring with optimal bias correction. Consequently,

� =
˛a − �R̂0

˛a
= 1 −

�R̂0

˛a
. (18)

2.6.4. Coverage probability
The 95% coverage probability for R̂0 inference equals the propor-

tion of simulated data sets for which the 95% confidence interval
includes the true value of R0. The coverage probability provides a
quantitative means of testing the accuracy of the ML  confidence
intervals.

3. Results

3.1. Analysis of measles data illustrates distinctions among R0
estimation methods

Measles provides an important case study for comparing R0
estimation techniques that are based on chain size data. On the
one hand, vaccination coverage for measles in the post-elimination
setting is sufficiently broad that all cases occur as isolated cases
or within self-limited stuttering transmission chains (Gay et al.,
2004). On the other hand, declining vaccine coverage in response to
the public’s perception of vaccine safety elevates the public health
importance of monitoring measles transmissibility (Jansen et al.,
2003; Bauch and Earn, 2004; Omer et al., 2009).

Plotting the measles data from the United States and Canada
shows a noticeable upper tail to the chain size distributions that is
suggestive of a high degree of transmission heterogeneity (Fig. 1A).
The significance of this upper tail is highlighted when the data are
plotted in terms of the distribution of chain size associated with a
randomly chosen case (i.e. chain sizes are weighted in proportion
to the number of cases they contain) (Fig. 1B). These observations
highlight the importance of understanding how the number of iso-
lated cases and the degree of transmission heterogeneity impact R0
estimation.

Comparison of five previously published methods for estimating
R0 shows that each approach yields a distinct result when applied
to measles data for the United States (Fig. 1C). Of the methods con-
sidered, the R̂0,MLE estimate is the only one that incorporates all
observed chain sizes. Further, while each method assumes that
transmission by each case is independent of all other cases, the
R̂0,MLE method is the only one that makes no a priori assumptions
about the degree of individual-level transmission heterogeneity.
The ML  estimate for R̂0,MLE is 0.51 (95% CI: 0.40–0.65), which cor-
roborates previous conclusions that local elimination has been
sustained (i.e. there is no statistical support for R0 > 1).

We consider two  truncated methods, which ignore isolated

cases and assume that the underlying offspring distribution is
either geometric (R̂0−T,k=1) or Poisson (R̂0−T,k→∞) distributed. These
methods estimate R0 as 0.60 (95% CI: 0.48–0.74) and 0.66 (95%
CI: 0.55–0.78) respectively, yielding estimates larger than R̂0,MLE .
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Fig. 1. Inference of R0 and k for measles data. (A) Distribution of chain sizes for measles data in the United States (1997–1999) and Canada (1998-2001). (B) Weighted
distribution of the same data, showing the distribution of cases according to the size of the chain they belong to. (C) Results of inferring R0 and k for measles in the United
States.  Markers depict the maximum likelihood estimates (MLE) as determined by five different approaches. The full-distribution MLE  assumes a negative binomial offspring
distribution and uses the complete chain size distribution to infer both R0 and k. The contour line shows the corresponding 95% confidence region. The truncated estimates
only  consider chains that are size two or greater. The aggregated estimates are based on the number of isolated cases, the total number of chains and the size of the largest
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his is because the R̂0−T,k=1 and R̂0−T,k→∞ estimators assume a
ower degree of transmission heterogeneity than is supported by
he observed chain size distribution, and so they lead to higher R0
stimates in order to fit the large chains in the observed truncated
hain size distribution (discussed further in Appendices A.1 and B).

The two aggregated methods considered, R̂0−A,k=1 and
ˆ0−A,k→∞, do not distinguish different intermediate sized chains.
hese aggregated methods have the lowest R0 estimates
R̂0−A,k=1 = 0.47, 95% CI: 0.36–0.61; R̂0−A,k→∞ = 0.42, 95% CI:
.33–0.53). This is because of the focus on isolated cases, which
ake up a relatively large fraction of the observed chains. Because

hese estimators assume relatively homogeneous transmission,
hich tends to give a low frequency of isolated cases, the estimated

alue of R0 drops accordingly (discussed further in Appendices A.2
nd B).

In analyzing the measles data from Canada, a few key dif-
erences are evident when the same five R0 estimation methods
re compared (Fig. 1D). Importantly, the R̂0,MLE estimator shows
hat the data may  be consistent with R0 > 1 (R̂0,MLE = 0.82, 95% CI:
.61–1.13). The possibility of R0 > 1 arises because the stochastic
ature of transmission may  cause all observed chains to stutter to
xtinction even though endemic transmission is feasible.

When the truncated estimators are applied to the Canadian
easles data, their ML  estimates again exceed R̂0,MLE , for the same

easons as for the United States data (R̂0−T,k=1 = 0.88, 95% CI:
.73–1.06; R̂0−T,k→∞ = 0.91, 95% CI: 0.79–1.03). The truncated esti-
ators also allow for the possibility that R0 > 1, although their

onfidence intervals are narrower than for R̂0,MLE because the
robability of only observing self-limited clusters when R0 > 1 is

ower when transmission is assumed to be relatively homoge-
eous. In contrast to the analysis of United States data, when
he aggregated estimators are applied to Canadian measles data

hey yield ML  estimates exceeding R̂0,MLE (R̂0−A,k=1 = 0.85, 95% CI:
.71–1.00; R̂0−A,k→∞ = 0.85, 95% CI: 0.73–0.96). This is because
he very large Canadian chain containing 155 cases drives up R0
stimates.
distribution with k = 1 (lower cross marks) or a Poisson offspring distribution with

Previous analyses of measles in the United States (Gay et al.,
2004) and Canada (King et al., 2004) used two  R0 estimation meth-
ods that are closely related to the methods we have considered
above (to prevent crowding and keep the focus on the specific
impact of truncated or aggregated chain size distributions, these
estimates are not shown in Fig. 1C and D). One of these estimators
equated R0 with the fraction of non-imported cases. The corre-
sponding R0 estimates are 0.68 (95% CI: 0.60–0.78) for the United
States data and 0.87 (95% CI: 0.76–0.98) for the Canada data. In prin-
ciple this estimate should be identical to our R̂0,MLE estimator (De
Serres et al., 2000; Blumberg and Lloyd-Smith, 2013), but instead
the earlier estimates are slightly higher because an imported case
was not observed in all measles chains. The original analyses also
conducted ML  estimation of R0 by assuming a Poisson offspring
distribution and discarding both isolated cases and chains of size
two. The resulting R0 estimates are 0.63 (95% CI: 0.51–0.76) for the
United States data and 0.87 (95% CI: 0.76–0.98) for the Canadian
data.

3.2. Likelihood scores help to rule out some models

When chain size distribution models are compared to the orig-
inal data and likelihood scores are calculated, the subtleties of
the various estimation methods become more clear (Fig. B.8 and
Table 2). Focusing on the United States data, when all chain size
data are used in the likelihood calculation (LC), the best scores
occur for the R̂0,MLE prediction, as expected since this is the only
method which uses the full chain size distribution. The only other
model that is close is R̂0−A,k=? (i.e. an aggregated estimator where
k is inferred from the data). The data are clearly incompatible with
homogeneous transmission, as seen by the fact that the two mod-
els that assume a Poisson offspring distribution have particularly

low likelihoods. The truncated estimator models perform worse
than the aggregated models, which is understandable since the
number of isolated cases is included in the LC calculation, but this
information is not used in truncated estimation.
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Table  2
Log likelihood scores for measles data from the United States and Canada. The rel-
ative log likelihood scores are either based on all observed chains (�LC) or on the
truncated distribution in which isolated cases are discarded (�LT). The R̂0,MLE cal-
culation is used as the reference point for both �LC and �LT . Positive values of �LC

and �LT correspond to higher likelihood values than the reference.

Estimator USA measles (’97–’99) Canada measles (’98–’01)

�LC �LT �LC �LT

R̂0,MLE 0.0 0.0 0.0 0.0
R̂0−T,k=1 −4.5 0.3 −3.6 −0.1
R̂0−T,k→∞ −16.3 0.6 −10.1 −0.5
R̂0−T,k=? −16.3 0.6 0.0 0.0
R̂0−A,k=1 −3.3 −1.8 −3.4 −0.2
R̂0−A,k→∞ −12.9 −10.2 −9.1 −1.0

l
s
p
c
I
b
t
h
i
a

i
t
b
2
u
d
a
w
h
r
d

a
t
m
b

3
o

a
2
h
f
p
t
b
S
i
s
m
a
a
t
d

(Fig. A.5).
R̂0−A,k=? −0.3 −0.3 −0.1 −0.1

When isolated cases are removed from the likelihood calcu-
ation, differences among the resulting likelihood scores (LT) are
maller. The smaller differences arise in part because fewer data
oints are used and in part because the most significant model dis-
repancies for LC concern the predicted number of isolated cases.
nterestingly, while the assumption of a Poisson offspring distri-
ution provides the highest LT for the truncated estimators for
he United States data, this assumption provides the lowest likeli-
ood for the aggregated estimators. This highlights the potential for

nconsistency between estimation of R0 based on truncated versus
ggregated chain size distributions.

Since all chain size data are used for inference, a completely
ndependent set of data is not available to test the model predic-
ions. However, data on the number of generations of transmission
efore extinction can also be used for inference of R0 (Gay et al.,
004; Farrington et al., 2003) and the likelihood of these data can be
sed as an additional basis for model comparison. For United States
ata (Gay et al., 2004), model comparison results based on gener-
tion of extinction parallel those based on chain size distributions,
ith the R̂0,MLE and R̂0−A,k=? estimators having the highest likeli-
oods (Appendix C). This consistency across model comparisons is
e-assuring and supports the use of branching process theory to
escribe transmission.

The likelihood scores obtained when the different estimators
re applied to the Canadian measles data show similar trends to
he United States analyses (Table 2). The main difference is that the

agnitudes of the likelihood differences are smaller, in large part
ecause the data set is smaller.

.3. Evaluating the potential bias caused by imperfect
bservation of cases

The truncated and aggregated estimators were designed to
ddress the reality of imperfect case observation (De Serres et al.,
000; Ferguson et al., 2004; Farrington et al., 2003). However a
ead-to-head comparison of these estimators in the context of dif-

erent assumptions about the observation process has not been
erformed. For instance, the truncated estimators are based on
he reasonable conjecture that the number of isolated cases would
e the least accurate component of the chain size distribution (De
erres et al., 2000). However, any observation errors that affect the
solated case count may  also decrease the observed size of larger
tuttering chains. In this case, it is less clear that the truncated esti-
ators would perform better than an estimator that is based on

ll observed chain sizes. To understand how different estimation

pproaches are impacted by imperfect observation, we  determined
he estimation bias when R0 inference is performed on simulated
ata subject to independent or size-dependent observation.
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3.3.1. Independent observation error decreases R0 estimates
In the independent observation model, many small chains will

be completely unobserved and large chains are likely to appear
smaller than they actually are. Thus the observed number of smaller
chains will represent a mix  of some chains that are truly the spec-
ified size and some larger chains that are only partially observed.

When we simulate imperfect data using the independent obser-
vation model, the resulting bias in R0 estimation depends on
the transmission parameters, the observation probability and the
estimator utilized (Fig. 2). In general, the bias becomes more
negative as observation probability declines. In the case of the full-
distribution and truncated estimators, this is because the observed
average chain size decreases as observation probability decreases
(Fig. A.5A). For the aggregated estimators, it is because indepen-
dent observation error potentially increases the observed number
of isolated cases, while likely decreasing the observed size of the
largest chain. In many circumstances, it appears that the fraction of
cases unobserved would have to be substantial (i.e. around 50%) in
order for there to be a significant change in bias (i.e. a decrease
of 0.1) relative to perfect observation. This blunted dependence
of bias on observation probability is due to the average chain size
growing faster than linearly with R0. For the full-distribution and
truncated estimators, excellent agreement between analytical (Eqs.
(16) and (17)) and simulation results confirms that the estimator
bias is primarily a function of the observed average chain size (data
not shown).

Paradoxically, when estimating R0 there may  be circumstances
in which two wrongs make a right, as the bias due to imperfect
observation can balance out the bias due to incorrect assumptions
about transmission heterogeneity. For instance, assuming a higher
k than the true value can compensate for the bias of truncated esti-
mators under independent observation error (seen when dashed
lines cross the x-axis in Fig. 2A and B). These paradoxical circum-
stances should be distinguished from those circumstances in which
bias is minimized because the assumptions of the inference meth-
ods accurately reflect the mechanisms of transmission and case
observation.

3.3.2. Size-dependent observation, which increases R0 estimates,
can sometimes be compensated for by truncated estimation
methods

In the size-dependent observation model, large chains are likely
to be observed in their entirety but small chains and isolated cases
are likely to be under-counted. Thus when the observation process
follows the size-dependent model, the bias becomes more positive
as the overall observation probability decreases (Fig. 3).

Importantly, with size-dependent observation, the truncated
estimators are consistently less biased than R̂0,MLE when the
assumed transmission heterogeneity matches the true heterogene-
ity (best seen by comparing the black and dashed red lines in Fig. 3C
and D). Of course, this reflects the original intention that truncated
estimators would apply to data for which accurate reporting of
large chains is favored over reporting of small chains. However this
benefit can be dramatically reversed when the estimator underesti-
mates the true degree of transmission heterogeneity (Fig. 3A). Thus
excluding isolated cases from data analysis is reasonable if there is
convincing evidence that isolated cases are more prone to surveil-
lance bias than cases in large chains, but accurate assumptions
about heterogeneity remain important. In circumstances where
case detection is perfect, truncating data runs the risk of introduc-
ing bias or expanding the confidence intervals more than necessary
The aggregated estimators are the most sensitive to size-
dependent observation (best seen in the solid colored lines of Fig. 3B
and C). This is consistent with the aggregated estimators’ focus
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Fig. 2. Absolute bias of R0 estimation associated with independent observation error. Simulated observation scenarios used to measure absolute bias are created by
assuming that each case has an independent and identical probability of being detected. The curves in each panel show how the bias varies as a function of the observation
probability and estimator choice. Results are shown for the R̂0,MLE , R̂0−T,k=1, R̂0−T,k→∞ , R̂0−A,k=1 and R̂0−A,k→∞ estimators. Each panel corresponds to a different pair of true R0

and k values.

Fig. 3. Absolute bias of R0 estimation associated with size-dependent observation error. The panels are analogous to those in Fig. 2 except that each case has an identical
and  independent probability of being a sentinel case that activates complete observation of the chain they are part of. Chains without a sentinel case are not observed at all.
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he  observation probability plotted here is the overall probability that a randomly 

entinel case (Eq. (6)).

n the observed number of isolated cases, because size-dependent
bservation is particularly prone to missing these cases.

.4. Correcting for imperfect observation is feasible when the
bservation process is well-characterized

Until now we have acknowledged that surveillance data suf-
er from observation error, but have always inferred R0 with the
ssumption that the data are good enough to be taken at face
alue. Following earlier work, the hope was that a work-around
olution (i.e. truncated or aggregated estimation) may  avoid the
eed to correct explicitly for imperfect observation. However, if the
echanisms underlying imperfect observation correspond well to

 simple model and the overall observation probability can be quan-

ified, then it is straightforward to adjust R̂0,MLE accordingly so that
nference remains unbiased.

To explore this possibility, we re-analyzed the measles data
ets subject to the assumption that the observation model and
 case is observed, which can be significantly higher than the probability of being a

observation probability were known. Correcting for independent
observation probability increased the R0 estimates for measles, and
correcting for size-dependent observation decreased the estimates
(Fig. 4 and Table 3). However the differences in likelihood scores
are very small. This suggests there is little information content
from which to infer observation probabilities from these chain size
distributions. Instead, the natural tradeoff between observation
probability and R0 estimates implies additional data are needed
to choose an appropriate observation model and infer observation
probabilities.

Unexpectedly, the confidence intervals tend to shrink rather
than expand when observation is imperfect. This is due to the pecu-
liarity that when the observation probability is low, many more
chains occur than are actually observed. As an extreme example,

it becomes less likely that R0 > 1 and only finite sized chains are
observed when the observation probability is low, because it is
likely that at least one primary case (even if it was not observed)
would lead to a chain that escapes extinction. Another intriguing
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shown  for three different assumptions about the observation process. The black contour assumes all cases are observed. The green contour assumes each case is observed
w 50% p
i  of the
o

o
v
T
e
d

4

i
h
h
t
a
a
c
b
a
m

s
t
R
i
i
e
t
t
a
t
P
d
(
t

T
L
p

ith  an independent probability of 50%. The blue contour assumes each case has a 

t  is part of. (B) Analogous to panel A but for measles in Canada. (For interpretation
f  the article.)

utcome of this exploration is that correcting for imperfect obser-
ation tends to decrease the maximum likelihood value of k (Fig. 4).
his suggests that whenever the R̂0,MLE infers a high degree of het-
rogeneity under the assumption of perfect observation, the true
egree of heterogeneity might be even greater.

. Discussion

Given the potential global impact of emerging and re-emerging
nfectious diseases, it is not surprising that a number of techniques
ave been developed to analyze the stuttering chains that are the
allmark of subcritical transmission. Our goal has been to quantita-
ively compare these techniques, amidst a variety of assumptions
bout transmission heterogeneity and case observation. Our use of

 negative binomial offspring distribution to model the complete
hain size distribution provided a unified foundation for our study,
ecause it allowed a flexible degree of transmission heterogeneity
nd could be easily modified to accommodate different observation
odels.
Imperfect observation is a reality of collecting data on sporadic

tuttering transmission chains, and so there is a compelling need
o understand how this challenge impacts various approaches to
0 estimation. This has been a major focus of this manuscript, but

n order to develop a theoretical framework for understanding the
mpact of imperfect observation, we first examined how different
stimators perform on perfect data. When inference is based on
he complete or aggregated chain size distribution, we found that
reating k as a free parameter leads to the smallest estimation errors
nd most reliable confidence intervals (Figs. A.6 and A.7). This con-
rasts with the standard practice of assuming either a geometric or

oisson offspring distribution. However, it is difficult to assess the
egree of transmission heterogeneity from a truncated distribution
Appendix A.1). This is a problem because improper assump-
ions concerning the degree of heterogeneity can introduce bias in

able 3
og likelihood scores based on different observation models for measles data. The ‘perfe
oint.  The ML values for R0 and associated 95% confidence intervals are also shown.

Observation model USA measles (’97–’99) 

�LC R̂0

Perfect observation 0.0 0.51 

50%  independent observation 0.1 0.59 

50%  sentinel case probability 0.6 0.38 
robability of being a sentinel case that activates complete observation of the chain
 references to color in this figure legend, the reader is referred to the web version

truncated estimation of R0 and lead to unreliable confidence inter-
val coverage (Fig. A.5).

The potential dangers of using a truncated estimator are
highlighted in our analysis of measles. It seems more likely that iso-
lated measles cases would be under-observed than over-observed,
because isolated cases require astute clinical intervention in order
to activate national surveillance protocols. However, the best-fit
predictions of the truncated estimators all under-estimate the
observed number of isolated cases (Fig. B.8A and D). An alterna-
tive explanation for the high observed proportion of isolated cases
is that there is a high degree of transmission heterogeneity. When
k is allowed to be a free parameter in the R̂0,MLE or R̂0−A,k=? estima-
tors, the number of isolated cases is predicted accurately (Fig. B.8B
and E). Ironically, specific assumptions concerning the degree of
transmission heterogeneity can lead to inconsistency between the
motivation for truncating isolated cases (which can be beneficial for
size-dependent observation) and the use of truncated estimators.
In particular, our explicit correction for size-dependent observa-
tion led to a decreased estimate for R0 relative to R̂0,MLE (Fig. 4 and
Table 3) while use of R̂0−T,k→∞ produced a higher estimate than
R̂0,MLE (Fig. 1C and D). The crux of this inconsistency is our finding
that poorly modeled heterogeneity can sometimes overwhelm the
bias due to imperfect observation (Figs. 2 and 3).

The strong performance of aggregated estimators for perfectly
observed data suggests that there may  be circumstances where
resources should be deployed to optimize accurate counts of iso-
lated cases, total chains and the size of the largest chains, without
spending extra effort characterizing intermediate-sized chains. We
note, however, that these circumstances will be difficult to iden-
tify a priori, and that this surveillance design would sacrifice other

benefits accruing from fully characterizing all transmission chains.
Also, when data are sparse the use of an aggregated distribution
can lead to larger confidence intervals for R0 estimation than when
the full chain size distribution is used.

ct observation’ model, corresponding to R̂0,MLE , is used as the likelihood reference

Canada measles (’98–’01)

�LC R̂0

(0.40–0.65) 0.0 0.82 (0.61–1.13)
(0.48–0.71) −0.1 0.85 (0.66–1.10)
(0.28–0.51) −0.5 0.73 (0.49–1.12)
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The challenge of imperfect observation is complicated by the
any reasons that cases can go unobserved. Cases may  be missed

ue to laboratory errors, logistical hurdles of acquiring samples
n a timely manner, failure to report suspected cases, or subcli-
ical infections that do not garner medical attention. Since each of
hese mechanisms can have a distinct impact on the observed chain
ize distribution (e.g. subclinical infections may  affect each case
ndependently, while delayed recognition of outbreaks may  cause
arge chains to have higher observation probabilities), different
bservation process models are applicable in different scenarios.
ur consideration of independent observation and size-dependent
bservation provides an initial characterization of how imperfect
bservation impacts inference of R0. However our treatment is far
rom complete as other types of observation error may  be present.
or instance, it is sometimes difficult to differentiate one trans-
ission chain from another, and improper assignment of cases to

hains can affect the recorded chain size distribution.
Overall, our simulation studies and analysis of measles data

mphasize the need for inference approaches that address
mperfect observation based on mechanistic adjustments to the
ikelihood function. When reliable information exists concerning
he mechanism of imperfect observation and the overall obser-
ation probability, then the likelihood calculation can incorporate
mperfect observation explicitly (Fig. 4). Major challenges in cor-
ecting for imperfect observation are that the overall observation
robability is often unknown and it is unclear which observation
odel is most suitable. As we found with our analysis of measles,

his type of information is difficult to obtain solely from the chain
ize distribution (Table 3), suggesting the importance of gathering
dditional data with which to study these essential processes.

. Conclusions

Analysis of measles data showed that existing methods for infer-
nce of R0 from chain size data yield distinct results (Fig. 1). To
econcile these differences we used simulation studies to show that
mproperly modeled heterogeneity leads to bias in R0 estimation.
his bias can be positive or negative depending on which part of the
hain size distribution is used for inference and how heterogeneity
s modeled. When observation is perfect, we found that allowing a
exible degree of heterogeneity led to the smallest bias.

Meanwhile, the reality of imperfect observation cannot be
voided, and prior approaches to estimating R0 with a trun-
ated or aggregated chain size distribution were designed with
his limitation in mind. Unfortunately, truncated estimators are
ften problematic because ignoring isolated cases makes it diffi-
ult to infer the degree of heterogeneity, which can produce large
stimation errors even when observation is perfect. Meanwhile,
ggregated estimators can be very sensitive to error in the observed
umber of isolated cases.

As a way forward, we have shown that the observation process
an be incorporated directly into the likelihood of the observed
hain size distribution. This provides a unified approach for incor-
orating a flexible degree of heterogeneity and a mechanistic
bservation model into inference of R0. This offers the potential
o make unbiased inference from imperfect data.

A key shortcoming is that many empirical reports do not include
uantitative descriptions of the observation process. This makes

t difficult to determine the overall observation probability and
hat mechanisms go We  hope that our results will stimulate new

urveillance strategies that allow more explicit characterization of

he observation process. For instance, future studies may  find that
nowing the number of cases that were retrospectively identified,
r the fraction of chains containing a known primary infection is
elpful for estimating the overall observation probability. This type
idemics 5 (2013) 131– 145

of integrative approach will improve our ability to reliably monitor
emerging diseases that are a risk for endemic or epidemic spread.
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Appendix A. Comparing R̂0,MLE to other R0 estimation
methods

Having observed significant differences when applying the var-
ious R0 estimators to epidemiological data (Fig. 1), we conducted a
set of simulation studies in order to understand the nature of the
discrepancies. In particular, we explored how different degrees of
transmission heterogeneity affect the estimation of R0 from per-
fectly observed simulated data using truncated and aggregated
estimators.

A.1. Accurate and precise estimation of R0 from truncated data
requires that the degree of heterogeneity be known accurately a
priori

The expected mean chain size in truncated data sets, �s, depends
on the degree of transmission heterogeneity (Fig. A.5A). For fixed
mus, the estimated R0 increases as the assumed value of k increases.
Therefore, the higher the assumed or inferred value of k, the higher
the estimate of R0 from truncated data will be.

When the number of data points is large, the error of esti-
mating R0 from a truncated distribution for which the true k is
known (R̂0−T,k=k′ ) is similar to the error of estimating R0 from the
full chain size distribution (R̂0,MLE) (Fig. A.5B). However the error
is relatively large when a truncated distribution is used and k is
inferred (R̂0−T,k=?). Meanwhile, when a geometric or Poisson off-
spring distribution is assumed (R̂0−T,k=1 or R̂0−T,k→∞), the error
of the truncated estimator error is negligible only when the true
value of k is close to its assumed value (i.e. when k is close to 1 or
approaches ∞ respectively).

Examination of the fraction of error due to bias (�) shows that
when a specific value for k is chosen, up to ninety percent of the
error in estimating R0 from a truncated distribution is due to bias
when the true k is far from the assumed value (Fig. A.5C). In con-
trast, the fraction of error is essentially zero when the true value of
k matches the assumed value. Because �s decreases as k increases,
k = 1 marks the point for which the bias of R̂0−T,k=1 goes from posi-
tive to negative. Meanwhile, the bias of R̂0−T,k→∞ is always positive.
Interestingly, despite the relatively large error of estimating R0
when k is inferred from a truncated distribution, the fraction of this
error due to bias is relatively small. Taken together these results
indicate that when isolated cases are ignored, knowledge of k is
important for precise and unbiased R0 inference. However, based
on the imprecision of the R̂0−T,k=? estimator, it appears difficult to
precisely determine k from a truncated chain size distribution.
When a value of k is assumed, the 95% coverage probability
of the truncated estimators shows that the calculated confi-
dence intervals are only accurate when the true k is close to the
assumed value (Fig. A.5D). In contrast, when k is inferred from the
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Fig. A.5. Evaluating R0 estimators when data sets are truncated by ignoring isolated cases. (A) Size of stuttering chains as a function of R0. The average size of all chains, �, is
independent of k (black line, Eq. (2)). Meanwhile, the average size of chains containing at least one secondary infection, �s , depends on k (colored lines, Eq. (8) with pobs = 1). B)
Root  mean square absolute error of the R0 estimate (Eq. 14) as a function of the true dispersion parameter. The R̂0,MLE estimator (which uses the full chain size distribution) is
shown  for reference. As explained in the text, the truncated estimators differ only in the way  they model transmission heterogeneity. The colored lines correspond to R̂0−T,k=?

(blue) R̂0−T,k=1 (green),R̂0−T,k→∞ (red), and R̂0−T,k=k′ (magenta) and are all based on Eq. (11). The true R0 is fixed at 0.5. The qualitative behavior is similar for different values
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or  the same estimators and transmission parameters shown in panel B. In panels 

ariance, N = 1000 for all simulations. The full-distribution (R̂0,MLE) results are hidde

runcated distribution, the coverage probability tends to exceed
5% suggesting that the confidence intervals are too permissive.
hese coverage probability results indicate a tradeoff when using a
runcated likelihood for whether or not to fix k. The benefit of fixing

 value for k is a more precise estimate that works well if k is fairly
ccurately known. However if the degree of transmission hetero-
eneity is unknown, then assigning a specific value for k brings the
isk of a biased estimate with falsely narrow confidence intervals,
esulting in an over-estimation of accuracy. In contrast, inferring
0 from truncated chain size distributions while allowing a flexible
alue for k has the potential advantage of conservative confidence
ntervals, but the disadvantage of larger uncertainties.

.2. Accurate and precise estimation of R0 from aggregated data
oes not require a priori knowledge about transmission
eterogeneity

When intermediate-valued chain sizes are aggregated together,
he likelihood function is strongly influenced by the size of the
argest observed chain, which in turn depends on R0, k and N
Fig. A.6A). The largest chain is sensitive to R0 and k because these
arameters impact the expected chain size distribution, but there

s also a dependence on the size of the data set because the explo-
ive potential of heterogeneous transmission may  only be evident
hen there are many stuttering chains in a data set. These features
rovide the intuitive foundation for understanding why  improper
ssumptions about k can lead to biased R0 estimates when the
ikelihood is based on an aggregated chain size distribution.

When the true k is used, R0 estimation based on an aggregated
hain size distribution is unbiased, the absolute error is essentially
s good as or better than all other estimators, and the 95% coverage
robability is appropriately valued (Fig. A.6B–D). When a partic-
lar value of k is assumed (e.g. R̂0−A,k=1 and R̂0−A,k→∞), one sees

ualitatively similar trends as the corresponding truncated like-

ihood functions (e.g. R̂0−T,k=1 and R̂0−T,k→∞). Namely, when the
rue k differs from the assumed k, the absolute error increases due
o worsening bias. Interestingly, when no assumptions are made
 estimation bias (Eq. 18). (D) Coverage probability of the 95% confidence intervals
ach data point is based on 2000 simulations. To minimize the effects of sampling
anels B–D because they are essentially identical to the performance of R̂0−T,k=k′ .

about k and it is inferred from the data, the absolute error of aggre-
gated estimation (e.g. R̂0−A,k=?) is remarkably close to that obtained
from using the full chain size distribution. Further, R̂0−A,k=? is unbi-
ased and the 95% coverage probability is appropriately valued. This
is consistent with prior observations that the fraction of chains that
are isolated cases provides useful information for inference of k
from contact tracing data (Lloyd-Smith et al., 2005; Lloyd-Smith,
2007). Overall, this supports the assertion that the key content of
the stuttering chain size distribution can be summarized by rela-
tively few parameters (Ferguson et al., 2004), but argues against
pre-determining the appropriate value of k when using an aggre-
gated likelihood. Nevertheless, it is still preferable to use R̂0,MLE

when complete chain size data are available, because for small
datasets the absolute error and the associated confidence interval
of R̂0−A,k=? can be twice as large as the values based on complete
distribution (data not shown).

The observation that R̂0−A,k=? performs comparably to R̂0,MLE

motivates the possibility that an even simpler likelihood function
can be derived that depends only on the fraction of cases that
are secondary infections. Since the corresponding ML  estimate,
R̂0,binomial , is identical to R̂0,MLE , the absolute bias and error of these
two estimators are identical. However, the same is not true for
the coverage probability. Rather, the LB function over-estimates
the accuracy of R̂0,binomial , particularly when transmission hetero-
geneity is significant (Fig. A.6D). This result shows that while an
unbiased R0 estimate can be obtained from knowing just the frac-
tion of cases due to secondary transmission, accurate confidence
intervals require more information about the distribution of chain
sizes.

A.3. Simulations based on a Weibull–Poisson offspring
distribution confirm results based on a negative binomial
offspring distribution
The results of Sections A.1 and A.2 are potentially circular as the
simulations and inference methods all assume a negative binomial
offspring distribution. To check whether the results are robust to
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Fig. A.6. Evaluating R0 estimators in which intermediate stuttering chain sizes are aggregated together. (A) Across many simulated chain size distributions, the median size
of  the largest chain depends on R0, k and the number of observed chains, N. (B–D) Analogous to panels B–D in Fig. A.5 except that the colored curves correspond to the
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n alternate choice of offspring distribution, we performed iden-
ical analysis (e.g. inference remains based on a negative binomial
ffspring distribution) on simulations using a Weibull–Poisson off-
pring distribution (Fig. A.7).

To compare results for simulations based on Weibull–Poisson
ffspring distribution to those based on a negative binomial off-

pring distribution, we had to identify a mapping between the two
arameters that describe the distributions. The negative binomial
istribution is equivalent to a Gamma-Poisson mixture. Mathe-
atically, this is equivalent to choosing an individual reproductive
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ig. A.7. Comparing R0 estimators when simulations are based on a Weibull–Poisson 

eibull–Poisson distribution. (D–F) Analogous to Fig. A.6B–D.
 inferred. The binomial estimator, R̂0,binomial , which has the same value but different
f cases that are secondary (Eq. (13), cyan line in panel D). (For interpretation of the
rticle.)

number based on a Gamma  distribution and then determining the
number of offspring according to a Poisson distribution with a
mean equal to the chosen reproductive number (Lloyd-Smith et al.,
2005). Thus one can think of a negative binomial offspring distri-
bution as corresponding to a gamma-distributed infectious period
and a Weibull–Poisson offspring as corresponding to a Weibull-

distributed infectious period (assuming transmission is constant
during the infectious period). For a given, R0 and k, the ‘matched’
Weibull–Poisson distribution was  determined by first identifying
the matched Weibull distribution that had a mean and variance
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offspring distribution. (A–C) Analogous to Fig. A.5B–D but based on a ‘matched’
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qual to that of a Gamma  distribution with parameters R0 and k.
hen, the equivalent Weibull–Poisson distribution was  found by
imulating many draws from a Poisson distribution with a mean
hosen from the matched Weibull distribution.

Overall, the new set of results confirms the trends seen in
igs. A.5 and A.6, but there are a few subtle differences. For one,
he aggregated estimator, R̂0−A,k=?, no longer performs as well as
ˆ0,MLE . In addition, the error of R̂0,MLE is slightly higher and its cov-
rage probability drops for low k. This is understandable because

ˆ0,MLE no longer represents a model that is an exact match of the
imulation model. Overall though, the performance of R̂0,MLE is still
ery robust and for many purposes the performance of R̂0−A,k=? may
lso be adequate. In contrast to our initial set of simulations, the

ˆ0−A,k=k′ performs worse than R̂0−A,k=? when k is small, presumably
ecause the negative binomial and Weibull–Poisson distributions
ave quite different shapes in this limit.

ppendix B. Comparison of data to model predictions

As is evident in the analysis of the United States measles
ata, models based on the truncated estimators (R̂0−T,k=1 and

ˆ0−T,k→∞) predict significantly fewer isolated cases than were actu-
lly observed (Fig. B.8A). The discrepancy is greater for the R̂0−T,k→∞
odel than for the R̂0−T,k=1 model. Since heterogeneous transmis-

ion causes more variance in the stuttering chain size distribution,
his suggests that the truncated data would be better modeled by
llowing more transmission heterogeneity in the offspring distri-
ution. This conclusion is supported by the ML  estimate of 0.3 (95%
I: 0.2–0.8) for k when the likelihood is based on the full chain
ize distribution. An alternative explanation for this discrepancy
etween data and the truncated estimator predictions is that there

s a preponderance of false positive isolated cases. However, for the
est agreement with the data, 15% and 30% of the observed isolated
ases would have to be false-positive infections for the R̂0−T,k=1 and

ˆ0−T,k→∞ predictions respectively. These proportions seem implau-
ibly high, and would need to be even higher if true isolated cases
re also more prone to be missed by surveillance.

The aggregated estimator model predictions show good agree-
ent with the number of isolated cases for measles in the United

tates, but poorer agreement with the number of chains of size
wo (Fig. B.8B). This is consistent with the aggregated likelihood
alculation’s explicit emphasis on the number of isolated cases and
ack of emphasis on the specific distribution of intermediate sized
hains. The mismatch of size two chains is worse for R̂0−A,k→∞ than
or R̂0−A,k=1, which is consistent with the ML value of 0.27 for k
btained using the R̂0−A,k=? method.

The model predictions illustrate that relative to the data for
easles in the United States, the truncated models shift more of

he probability distribution to higher chain sizes (i.e. lower prob-
bility for isolated cases) while the aggregated models shift more
f the probability distribution to smaller chain sizes (i.e. a higher
robability for isolated cases must be balanced by lower probabil-

ties for large chains). This explains why the truncated estimators
end to have higher values than R̂0,MLE , while the aggregated esti-

ators have lower values (Figs. 1C and B.8C). Meanwhile, when
ll truncated and aggregated models are compared together, the
arrowest confidence intervals occur when a Poisson offspring dis-
ribution is assumed and the widest confidence intervals occur
hen k is inferred. This is because the assumption of homogeneous

ransmission implies that there is less statistical variance in the

ata. However, because inaccurately modeled heterogeneity can

ntroduce bias, this does not necessarily mean that the Poisson-
ased confidence intervals are more accurate (Figs. 5D and 6D).
eanwhile, when k is allowed to vary, the confidence intervals
idemics 5 (2013) 131– 145 143

incorporate the possibility of low k which implies the potential for
large statistical variance and thus wider confidence intervals.

Analysis of measles data for Canada shows the same trend of the
truncated estimator models predicting fewer isolated cases than
are found in the data (Fig. B.8D). However, the Canadian models
differ from the United States models in that a higher fraction of
large chains are predicted. This is largely driven by the existence
of a chain of size 155 in the Canadian data. This large chain also
causes a heavier upper tail in the aggregated model predictions
(Fig. B.8E). In fact the aggregated models’ focus on the size of the
largest cluster combined with constraints of assuming a Poisson or
geometric offspring distribution cause a natural tension between
fitting the number of isolated cases and the upper tail of the dis-
tribution. Because of the large chain, the aggregated models do a
poorer job at fitting the number of isolated cases and thus there
is not much difference with the truncated model predictions. The
similarities between the aggregated and truncated predictions lead
to similar ML  values for R0 and associated confidence intervals
(Figs. 1D and 8F). As with the United States analysis, the Canadian
confidence intervals show a similar trend of having particularly
wide intervals when k is inferred. Overall, the Canadian confidence
intervals are wider because there are fewer chains in the data set.

Appendix C. Model predictions for the generation of
extinction

Past work has shown that the distribution for the generation in
which chains go extinct is dependent on R0 (Farrington et al., 2003).
While generation of extinction data is not entirely independent of
chain size data, analyzing the generation of extinction data helps to
confirm the results of Appendix B and provides an overall validation
of using branching process theory to describe disease transmission.
Here we review the theory for determining the distribution for the
generation of extinction. Then we  compare predictions for USA and
Canada measles.

C.1. Theory for the generation of extinction

The generating function for a negative binomial offspring distri-
bution is,

Q (s) =
(

1 + R0

k
(1 − s)

)−k

.

We define the primary case of a chain to be the first genera-
tion of a chain. The probability that a chain goes extinct after one
generation (i.e. that the primary case is a dead-end for transmis-
sion), q1, is Q(0) (Harris, 2002; Lange, 2010). The probability that
a generation goes extinct after z generations, qz, is Q(qz−1). Thus
the probability distribution for the generation of extinction can be
determined recursively. This dependence can be used to infer R0
(Gay et al., 2004), but we do not consider this type of inference in
our current study.

If data exist on the generation of extinction, and there are uz

number of chains that have a generation of extinction of z, then
the overall likelihood for the complete generation of extinction
distribution is,

LG
C =

∞∏
z=1

quz
z . (19)
By analogy to the truncated likelihood for chain size distribu-
tions, a truncated generation of extinction likelihood can also be
calculated by ignoring isolated cases. Since the first generation
of a chain always has exactly one case, this is equivalent to only
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Fig. B.8. Comparing model predictions to data. (A) Comparing United States measles data to predictions based on the complete chain size distribution (R̂0,MLE) versus a
truncated distribution (R̂0−T,k=1 and R̂0−T,k→∞). Errors bars show 95% confidence intervals for proportions of each chain size in the data. Table 2 contains the likelihood scores
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between the best performance for LC and LT once again highlights
the significance of isolated cases.

Table C.4
Log likelihood scores for generation of extinction data for measles in the United
States. The relative log likelihood scores are either based on all observed chains
(�LG

C
) or on the truncated distribution in which isolated cases are discarded (�LG

T
).

The R̂0,MLE calculation is used as the reference point for both likelihood calculations.
Positive values of �LG

C
and �LG

T
correspond to higher likelihood values than the

reference.

USA measles (’97–’99)

Estimator �LG
C

�LG
T

R̂0,MLE 0.0 0.0
R̂0−T,k=1 −3.6 2.2
R̂0−T,k→∞ −16.7 2.1
ˆ0−A,k=? estimators, the associated k̂ values are 0.32, ∞ and 0.27 for measles in the 

ncluding chains in which the generation of extinction is at least
wo. Thus,

G
T =

∞∏
z=2

(
qz

1 − q1

)uz

. (20)

.2. Generation of extinction data

The generation of extinction was recorded for the United States
easles data (see Table 2 in Gay et al.), but could not be found

or measles in Canada. There are a couple chains that were noted
o have no spread, but also included more than two cases. Since
he make-up of these chains were unclear, we chose to include
hese chains with the 122 isolated cases that go extinct in the first
eneration.

.3. Model predictions for the generation of extinction

Based on estimated R0 and either assumed or estimated k values,
he distribution for the generation of extinction can be predicted
Fig. C9). In general, the estimators that predict higher values for R0
lso predict a higher number of chains with long durations. Con-
istent with chain size analysis for measles in the United States,
he truncated estimators predict fewer chains having an extinc-
ion generation of one (i.e. isolated cases) than the full-distribution
nd aggregated estimators. The general agreement between model
redictions and data for measles in the United States confirms that

ranching processes are a reasonable model for subcritical trans-
ission of measles.
Since the generation of extinction are available for measles

n the United States, the likelihoods of these data can be
0,MLE 0−T,k=?

 States. The corresponding k̂ values are 0.21, 0.23 and 0.20 for measles in Canada.

compared (Table C.4). In general the relative likelihoods based on
the generation of extinction parallel those for chain size distribu-
tions (Table 2). In particular, when all chains are included in the
calculation (LG

C ), scores are best when a significant degree of hetero-
geneity is allowed, and the aggregated estimators perform better
than the truncated estimators. In contrast to our chain size anal-
ysis, the likelihood based on the generation of extinction for the
R̂0−A,k=? estimator exceeds that of R̂0,MLE , but the difference is not
statistically significant. When the likelihood is based on the trun-
cated generation of extinction distribution (LG

T ), the three models
based on the truncated estimators perform best. The discrepancy

G G
R̂0−T,k=? −16.7 2.1
R̂0−A,k=1 −2.5 −0.5
R̂0−A,k→∞ −5.8 −2.3
R̂0−A,k=? 1.0 1.0
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