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ABSTRACT OF THE THESIS

Double Robust, Flexible Adjustment

Methods for Causal Inference:

An Overview and an Evaluation

by

Nathan Isaac Hoffmann

Master of Science in Statistics

University of California, Los Angeles, 2024

Professor Chad J. Hazlett, Chair

This thesis is a guide to some of the latest methods in double robust, flexible covariate

adjustment for causal inference, and it compares these methods to more traditional statistical

methods and flexible “single robust” methods. It does this by using both simulated data

where the treatment effect estimate is known, and then using comparisons of experimental

and observational data from the National Supported Work Demonstration. Methods covered

include Augmented Inverse Probability Weighting (AIPW), Targeted Maximum Likelihood

Estimation (TMLE), and Double/Debiased Machine Learning (DML). Results suggest that

some of these methods do outperform traditional methods in a wide range of simulations, but

only slightly. In particular, the top performers are TMLE and AIPW in conjunction with

flexible machine learning algorithms. But G-computation with the same flexible machine

learning algorithms obtains almost identical results, and simple regression methods are nearly

comparable in bias and are much more computationally efficient.
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Introduction

In causal inference, functional form misspecification of underlying models can bias estimates

of treatment effects (Hernán & Robins, 2020; Morgan & Winship, 2015). There have been

two important developments that attempt to overcome this. First, methodologists have

developed machine learning methods that allow greater flexibility in estimation, adjusting for

covariates in data-driven, complex ways (Balzer & Petersen, 2021; Brand et al., 2023). The

second development is double robust methods (Bang & Robins, 2005; Kang & Schafer, 2007),

which estimate two models: one for treatment exposure and another for the outcome. These

models are robust to misspecification of either one of these “nuisance” models.

A number methods unifying these two developments have proliferated. These double

robust methods for flexible covariate adjustment use machine learning methods to adapatively

model the data generating processes at play. These models purportedly overcome the

shortcomings of both traditional statistical methods and machine learning methods. Common

statistical methods – such as OLS regression and matching on propensity scores estimated

from logistic regression – have rigid functional form assumptions and fail to calculate stable

estimates when the number of covariates is large relative to the number of observations.

Machine learning methods, on the other hand, are often difficult to interpret. They can also

suffer from overfitting, where the flexibility of the model becomes a weakness and predictions

out-of-sample are poor, yet efforts to correct for overfitting can introduce regularization

bias (Hastie et al., 2009). Double robust methods with machine learning dispose of the

constricting functional form assumptions of common statistical methods, and they correct for

the regularization bias of flexible machine learning methods. They can also accommodate large

numbers of covariates and produce easily interpretable treatment effect estimates. Despite

their apparent advantages, these methods remain rarely utilized by social scientists. Part of

the barrier has been lack of familiarity with these methods. It has also been unclear how

these methods compare, or whether such methods actually perform better than traditional

methods in finite samples.

This thesis makes advances on these fronts. First, it is a guide to some of the latest
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methods in double robust, flexible covariate adjustment for causal inference, explaining

the methods to a social scientist audience. Methods covered include Augmented Inverse

Probability Weighting (AIPW), Targeted Maximum Likelihood Estimation (TMLE), and

Double or Debiased Machine Learning (DML). This thesis reviews the theory behind these

methods as well as simple R implementations.

Second, this thesis evaluates these methods. They are tested on simulations from Dorie

et al. (2019), which cover a range of data-generating processes where ignorability holds – i.e.,

there are no unmeasured confounders. They are then used to estimate experimental and

observational effects from real-world data, the National Support for Work Demonstration

(NSW) originally analyzed by LaLonde (1986). In these evaluations, double robust methods

are compared to “single robust” methods (i.e., ones with one nuisance model). These include

traditional or simpler statistical methods commonly used by social scientists: ordinary least

squares (OLS) regression, matching on propensity scores estimated from logistic regression

(PSM), and inverse probability weighting (IPW). They are also compared to two more flexible

methods that may overcome the misspecification issues that double robust methods aim to

overcome: G-computation and the Lin estimator (Lin, 2013).

Results from simulations where ignorability holds show that some double robust methods

outperform traditional statistical methods, but only slightly. AIPW and TMLE perform the

best, at least when used in conjunction with flexible machine learning algorithms, while DML

does slightly worse than traditional methods. G-computation with flexible machine learning

performs as well as the lowest-error double robust methods. Despite their lower average error,

the computation times of these flexible methods are high. With its still relatively low error

and much faster computation time, OLS remains a sensible choice as an estimator, and the

Lin estimator – which is as quick as standard OLS regression – performs only slightly worse

than the best double robust methods.

Results from the NSW study highlight the importance of ignorability. When observational

samples are not comparable to the experimental sample, or when important covariates are not

included, all methods – double robust or traditional – fail to recover experimental estimates.

When appropriate covariates are included, most methods perform well.
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Motivation

Literature Review

Although previous work has compared different methods for covariate adjustment, there has

not yet been a thorough comparison and evaluation of the recent and popular double robust

methods of AIPW, TMLE, and DML for a social scientist audience.

Although some introductions to double robust methods exist, they do not discuss them in

the context of covariate adjustment for causal inference, or their treatment is overly technical

for a social scientist audience. For example, Kang & Schafer (2007) provide an an excellent

overview and evaluation of double robust methods, but in the context of missing data, and

the authors consider AIPW but not TMLE or DML. Bang & Robins (2005) introduce double

robust models for both causal inference and missing data, but their treatment is rather

technical, and they only discuss AIPW. Lundberg et al. (2022) provide brief schematic

overviews of double robust methods for a social scientist audience, but they do not evaluate

these methods.

Existing evaluations of double robust methods have focused on only one double robust

method and compared it to few traditional statistical methods. Dorie et al. (2019) compare

estimations from a number of different flexible methods, but these do not include AIPW or

DML. Chatton et al. (2020) compare four methods – G-computation, IPW, full matching,

and TMLE – but authors only consider one double robust method, and their focus is on

omitted variable bias rather than determining which method is the most useful. Cousineau

et al. (2022) evaluates the performance of optimization-based methods for causal inference,

but these do not include the double robust methods covered in the current paper. Knaus

(2022) reviews DML-based methods in an econometrics setting but does not compare them

to traditional statistical methods for covariate adjustment.

An evaluation of multiple double robust methods that compares them to traditional

statistical methods as well as flexible “single robust” methods is needed to understand just

how practically useful these methods are for a social science audience. This thesis does this
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as well as provides a gentle introduction to these methods.

Historical Overview

According to Bang & Robins (2005), double robust methods have their origins in missing data

models. Robins et al. (1994) and Rotnitzky et al. (1998) developed augmented orthogonal

inverse probability-weighted (AIPW) estimators in missing data models. Drawing on the

fact that causal inference is fundamentally a missing data problem, Scharfstein et al. (1999)

showed that AIPW was double robust and extended to causal inference.

But Kang & Schafer (2007) argue that double robust methods are older. They cite work

by Cassel et al. (1976), who proposed “generalized regression estimators” for population

means from surveys where sampling weights must be estimated. Arguably, double robust

methods go back even further than this. The form of double robust methods is similar to

residual-on-residual regression, which dates back to the Frisch-Waugh-Lowell (FWL) theorem

(Frisch & Waugh, 1933; Lovell, 1963):

βD = Cov(Ỹi, D̃i)
Var(D̃i)

where D̃i is the residual part of Di after regressing it on Xi, and Ỹi is the residual part of

Yi after regressing it on Xi. This formulation writes the regression coefficient as composed

of an outcome model (Ỹi) and exposure model (D̃i), the two models used in double robust

estimators. Of the methods considered in this thesis, double machine learning (DML) makes

this connection most explicit by using residual-on-residual regression as part of its estimation

strategy.

There are also links between double robust methods and matching with regression

adjustment. This work goes back at least as far as Rubin (1973), who suggested that

regression adjustment in matched data produces less biased estimates that either matching

(exposure adjustment) or regression (outcome adjustment) do by themselves.

Today, double robust methods abound (e.g. Arkhangelsky et al., 2021; Dukes et al., 2022;
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Kennedy, 2023; Ratkovic, 2023; Słoczyński & Wooldridge, 2018). Although double robust

methods exist for instrumental variables (Okui et al., 2012; Wang & Tchetgen Tchetgen,

2018), difference-in-differences (Sant’Anna & Zhao, 2020), longitudinal data (Tran et al.,

2019; Yu & van der Laan, 2006), and other causal applications, this thesis focuses on three

of the most popular and foundational methods for covariate adjustment in a cross-sectional

setting.

Aims of Double Robust Methods

Double robust methods for covariate adjustment aim to overcome what many consider to

be the shortcomings of both traditional statistical methods and flexible machine learning

methods (Díaz, 2020). Statistical methods that are popular with social scientists – such

as OLS regression and matching on propensity scores from logistic regression – have two

main weaknesses that double robust methods address. First, they assume simple (linear or

transformed linear) functional forms. In the presence of highly nonlinear data generating

processes, they may provide biased estimates. Second, these methods cannot handle large

numbers of covariates relative to sample size, i.e. sparsity. While some machine learning

methods can produce estimates even when the number of covariates exceeds the number of

observations (such as lasso), OLS fails in this case due to the X>X matrix not being of full

rank and hence not invertible. In cases with many covariates, but not more than the number

of observations, estimation is unstable with many traditional statistical methods.

Flexible machine learning methods also have their drawbacks. First, naive application

of these methods can result in overfitting, with predictive accuracy maximized in sample

but treatment effect estimation being biased. When regularization is used to correct for

overfitting, “regularization bias” can result. Furthermore, results of these machine learning

methods can be difficult to interpret without further processing. Machine learning methods

have often been developed with a focus on prediction rather than on producing treatment

effect point estimates.

Double robust methods attempt to overcome the downsides of both traditional and
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machine learning methods by incorporating flexible models into a framework that avoids

overfitting and regularization bias and provides easily interpretable estimates. These methods

are also motivated by the idea that many older methods ignore information present in the data.

Methods tend to model either only the outcome – as in OLS regression and G-computation –

or only the treatment assignment – as in propensity score matching or inverse probability

weighting. Double robust methods, on the other hand, model both of these.

Conceptual Overview

Double robust methods estimate two models: an outcome model:

µd(Xi) = E(Yi | Di = d,Xi) (1)

and an exposure model (or treatment or propensity score model):

π(Xi) = E(Di | Xi), (2)

where µd(·) is a model of the outcome, Di = di ∈ {0, 1} is the treatment assignment (where

0 is control and 1 is treated), Xi is a vector of covariates for unit i = 1, . . . , N , Yi is the

outcome, and π(·) is a model of the exposure. The covariates included in Xi can be different

for the two models.

The focus of this thesis is on the average treatment effect (ATE), which under the potential

outcomes framework (Rubin, 1974) is defined as

τ = E[Yi(1)− Yi(0)],

where Yi(1) and Yi(0) are the potential outcomes of Yi under treatment and control, respec-

tively. An estimator is called “double robust” if it achieves consistent estimation of the ATE

(or whatever estimand the researcher is interested in) as long as at least one of Equations

(1) or (2) is consistently estimated. This means that the outcome model can be completely
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misspecified, but as long as the exposure model is correct, our estimation of the ATE will be

consistent. This also means that the exposure model can be completely wrong, as along as

the outcome model is correct.

It is important to consider what is meant by a “correct” model specification (Keil et

al., 2018). These estimators are robust from a statistical standpoint, but not necessarily a

causal identification one. The researcher must know which variables are possible confounders

and to include them in the appropriate models, while not including colliders or mediators

(Hünermund et al., 2023). The simulations discussed in this thesis assume conditional

ignorability; rather than testing what happens when models are missing important covariates,

it focuses on accurate specification of the functional form of the treatment and outcome

models.

Assumptions

Most double robust methods require almost all of the standard assumptions necessary for most

methods that depend on selection on observables. Although some double robust methods

relax one or two of these, the methods discussed in this thesis rely on six standard assumptions

when estimating the ATE.

1. Consistency: Yi(d) = Yi | Di = d, i.e. under treatment (control), we observe the

potential outcome under treatment (control).

2. One version of treatment: All treated units receive the same version of treatment.

3. No interference: Yi(Di, Dj) = Yi(Di), i.e. the potential outcome for one unit depends

only on its own treatment, not the value of other units’ treatment.

4. Positivity/overlap: 0 < Pr(D = 1 | X = x) < 1 for all values of X, i.e. there is non-zero

probability of receiving treatment or control for every combination of covariates in the

data. This means we can find at least one control unit to compare every treated unit

to (and vice versa).
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5. Independent and identically distributed (IID) observations: In order to make population-

level inference, the sample needs to be representative of the population.

6. Conditional ignorability: {Yi0, Yi1} ⊥⊥ Di | Xi, i.e. there are no unmeasured confounders.

The first three assumptions are embedded in the potential outcomes notation. Assumptions

2 and 3, together, are also called the Stable Unit Treatment Value assumption (SUTVA,

Rubin, 1980). Special attention should be paid to Assumption 6: double robust methods

will not work if we do not measure an important confounder that affects both treatment and

exposure. But notably, the double robust methods covered in this tutorial make no functional

form assumptions.

Overview of Techniques

Each of the methods reviewed in this thesis can be thought of as a collection of estimation

techniques. Each involves a model for the outcome and another for the treatment exposure,

but choice of estimation technique for these two models is left to the discretion of the user.

The ways these estimated models relate and are combined into a final effect estimate vary

between double robust methods.

Augmented Inverse Probability Weighting (AIPW)

The oldest of these modern methods, AIPW arose in the context of missing data imputation

(Robins et al., 1994). Scharfstein et al. (1999) showed that AIPW was double robust and

extended to causal inference. Introductions to AIPW exist in the contexts of political science

(Glynn & Quinn, 2010) and econometrics (Funk et al., 2011). The AIPW R package provides

a simple implementation of the method (Zhong et al., 2021).

AIPW combines estimates from a model for the treatment exposure, π(X), and a model

for the outcome, µ(X). The name comes from the close similarity to inverse probability

weights (IPW), but whereas IPW only weights for probability of treatment, AIPW “augments”

these weights with an estimate of the response surface.
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Formally, the model can be written as the difference between an estimated outcome for

treated units and an estimated outcome for untreated units (see the demonstration below):

τ̂AIP W = 1
n

n∑
i=1

(
Di(Yi − µ̂1(Xi))

π̂(Xi)
+ µ̂1(Xi)

)
− 1
n

n∑
i=1

(
(1−Di)(Yi − µ̂0(Xi))

1− π̂(Xi)
+ µ̂0(Xi)

)

In practice, AIPW weights may be very small or very large, a problem that inverse

probability weights also suffer from. This can make AIPW prone to high variance. To remedy

this, the predicted probabilities of treatment are often truncated, setting extremely small or

large weights to some less extreme value (as in the AIPW R package, Zhong et al., 2021).

Below is R code to implement AIPW with truncation of extreme weights. As with all of

the double robust methods reviewed here, we begin with predicted values (such as from a

machine learning algorithm) for the outcome for treated units mu1_pred and untreated units

mu0_pred as well as predicted values for treatment assignment probability pi_pred. We also

have d, the vector of actual treatment assignments, and y, the observed outcome values.

require(tidyverse)

aipw_calc <- function(mu1_pred, mu0_pred, pi_pred, d, y){

n <- length(mu1_pred)

# Truncate extreme values of the weights

pi_pred <- case_when(

pi_pred < .01 ~ .01,

pi_pred > .99 ~ .99,

T ~ pi_pred)

# Calculate the predicted outcome value for treated units

y1_pred <- (d*(y-mu1_pred))/pi_pred + mu1_pred

9



# Calculate the predicted outcome value for untreated units

y0_pred <- ((1-d)*(y-mu0_pred))/(1-pi_pred) + mu0_pred

# Calculate the ATE

ate <- (1/n)*(sum(y1_pred)) - (1/n)*sum(y0_pred)

return(ate)

}

Glynn & Quinn (2010) provide an alternate but equivalent formula, where the basic

inverse probability weight (IPW) estimator (which incorporates only the exposure model π̂)

is corrected using a weighted average of two outcome regression estimates:

τ̂AIP W = 1
n

n∑
i=1

{[
DiYi

π̂(Xi)
− (1−Di)Yi

1− π̂(Xi)

]

− Di − π̂(Xi)
π̂(Xi)(1− p̂i(Xi))

[(1− π̂(Xi))µ̂1(Xi) + π̂(Xi)µ̂0(Xi)]
}
.

Targeted Maximum Likelihood Estimation (TMLE)

Extending and improving previous double robust methods, van der Laan & Rubin (2006)

first proposed TMLE using a parametric framework and the efficient influence curve (Hines

et al., 2022) to obtain estimates and standard errors. Mark van der Laan has gone on to

collaborate on both a gentle introduction (Gruber & Laan, 2009), two textbooks (van der

Laan & Rose, 2011; Van Der Laan & Rose, 2018), and an R package (Gruber & Laan, 2012)

for implementing the method. Schuler & Rose (2017) and Luque-Fernandez et al. (2018)

provide introductions for epidemiologists.

TMLE begins by estimating the relevant part of the data-generating distribution P (Y ),

i.e. the conditional density Q = P (Y | X). It next estimates the exposure model. Although

any estimation method can be used for these steps, the originators of the method suggest

using a “SuperLearner,” i.e. ensemble learning with cross-validation (van der Laan et al.,

10



2007). Next, the exposure model is used to calculate a “clever covariate,” which is similar

to an IPW. The coefficient for this clever covariate is estimated using maximum likelihood –

whence the “MLE” in “TMLE.” Finally, the estimate of Q is updated in a function involving

the clever covariate. This process can be iterated, but usually one iteration is enough. The

estimate of the distribution Q can be used to calculate the estimand of interest.

Formally, first generate estimates of µd(Xi) = E(Y | D = d,Xi) and π(Xi) = P (D = 1 |

Xi). Next, calculate the clever covariates for each individual in the data. These quantities

are similar to inverse probability weights, with H0i for untreated and H1i for treated units:

H0i(D = 0,X = xi) = 1− di

1− π̂(xi)
, H1i(D = 1,X = xi) = di

π̂(xi)
.

In the next step, we estimate fluctuation parameters ε = (ε0, ε1) through maximum

likelihood of the following logistic regression with fixed intercept logit(µdi):

logit[E(Y = 1 | D,X)] = logit(µ̂di) + ε0H0i + ε1H1i

Here we are assuming that Y is a dichotomous variable taking the values of 0 or 1; the

method is extended to continuous outcomes simply by normalizing the value of Y to fall

between 0 and 1. Then we generate updated (“targeted”) estimates of potential outcomes:

µ̂∗0(xi) = expit[logit(µ̂0(xi)) + ε̂H0i]

µ̂∗1(xi) = expit[logit(µ̂1(xi)) + ε̂H1i]

where expit(·) is the inverse logit function.

Finally, we estimate the parameter of interest – in this case, the ATE:

τ̂T MLE = 1
n

n∑
i=1

[µ̂∗1(xi)− µ̂∗0(xi)]

Here is R code to implement TMLE, again with predicted outcome values mu1_pred and

mu0_pred and predicted probability of treatment pi_pred. Since the outcome is bounded
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and continuous, it is transformed to fall between 0 and 1 via Ỹi = [Yi −min(Y )]/[(max(Y )−

min(Y )].

# Functions for normalization and de-normalization

normalize <- function(x, y){(x - min(y)) / (max(y) - min(y))}

denormalize <- function(x, y){x * (max(y) - min(y))}

tmle_calc <- function(mu1_pred, mu0_pred, pi_pred, d, y){

# Normalize the outcome variable

mu1_pred <- normalize(mu1_pred, y)

mu0_pred <- normalize(mu0_pred, y)

y_tilde <- normalize(y, y))

n <- length(y)

# Calculate clever covariates

H0 = (1-d)/(1-pi_pred)

H1 = d/pi_pred

# Estimate fluctuation parameter through maximum likelihood estimation

epsilon <- glm(y_tilde ~ -1 + H0 + H1 +

offset(qlogis((d==1)*mu1_pred + (d==0)*mu0_pred)),

family = binomial(link = 'logit')) %>%

tidy() %>%

pull(estimate)

# Targeted estimates of the potential outcomes

target_0 <- plogis(qlogis(mu0_pred + epsilon[1]*H0))

target_1 <- plogis(qlogis(mu1_pred + epsilon[2]*H1))
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# Estimate ATE

ATE <- mean(target_1 - target_0)

return(denormalize(ATE, y))

}

Double/Debiased Machine Learning (DML)

The most recently developed of the methods reviewed here, DML was proposed in an

econometrics context (Chernozhukov et al., 2018) and has since seen a flurry of development

(Chernozhukov et al., 2022; Dukes et al., 2022; Farbmacher et al., 2022; Jung et al., 2021;

Kennedy, 2023; Semenova & Chernozhukov, 2021). The R package DoubleML (Bach et al.,

2021) provides straightforward implementation of the method.

DML is motivated by the need to handle problems with high-dimensional nuisance

parameters, i.e. a large number of measured confounders. Flexible machine learning is

appropriate for this task, but such methods suffer from regularization bias, where efforts to

control the overfitting of models can bias estimates. DML removes this bias in a two-step

procedure. First, it solves the auxiliary problem of estimating the treatment exposure model

E(D | X) = π(X). It then uses this model to remove bias: Neyman orthogonalization allows

the creation of an orthogonalized regressor, essentially partialing out the effect of covariates

X from treatment D. The debiased D is then used to estimate the conditional mean of the

outcome E(Y | X) = µ(X), which can be used to calculate the estimand of interest.

More formally, suppose we want to estimate τ in the following framework:1

yi = τdi + g0(xi) + ui,

di = m0(xi) + vi.

1Note that this basic DML setup assumes a partially linear model and targets the ATE. If we are interested
in the CATE and heterogeneous effects, Chernozhukov et al. (2018, p. C35) present an alternative score
function that closely resembles AIPW. See also Jacob (2021) and Nie & Wager (2021).
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The idea is to estimate g0 and m0 separately, then use an orthogonalized or debiased

score function – here, residual-on-residual regression – to obtain an estimate of τ , which we

can designate τ̂ . However, this leaves a term in the asymptotic distribution of τ̂ that biases

the estimate. To avoid this, DML uses sample splitting (Angrist & Krueger, 1995).

We randomly split the sample of n observations into two sets, I and Ic, each of size n/2.2

Using any prediction algorithm, we then estimate the response and treatment models using

only set Ic:

1) Estimate treatment model m̂0 in the equation di = m̂0(xi) + v̂i,∀i ∈ Ic.

2) Estimate the outcome model ĝ0 in the equation yi = ĝ0(xi) + ûi,∀i ∈ Ic.

Next, we use the estimated models to perform residual-on-residual regression on the left

out set I to obtain an estimate of τ :

τ̂(Ic, I) =
(∑

i∈I

v̂idi

)−1∑
i∈I

v̂i(yi − ĝ0(xi)),

where v̂i = di − m̂0(xi). Using half the sample results in efficiency loss. To rectify this, we

repeat the above procedure, switching the split sets. We then have τ̂(Ic, I) and τ̂(I, Ic). The

cross-fitting DML estimator is:

τ̂DML = τ̂(Ic, I) + τ̂(I, Ic)
2 .

R code to implement DML is shown below. Since DML involves sample splitting, this

code is a little different from the above examples. We start with observed outcome values y,

treatment assignment d, and covariate matrix x. First, a pre-processing function dml_pre()

randomly splits the sample, outputting I and Ic sets of each of these variables. The second

step predicts outcome values and treatment probabilities for each half of the sample, using

models fit to the other half. In the code chunk here, generalized random forests from the

2In practice, we can split the sample into any number of folds, and more than two sets might be better.
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grf package are used to predict these, but any prediction algorithm can be used. Finally, a

post-prediction function dml_post() performs the residual-on-residual regression for each

half of the sample and finds the average of the two estimates to produce an ATE estimate.

# Pre-processing: sample splitting

dml_pre <- function(y, d, x, seed = 1758){

set.seed(seed)

n <- length(y)

n_2 <- round(n/2)

# Split the sample

random_vec <- sample(1:n, n, replace = F)

I <- random_vec[1:n_2]

I_c <- random_vec[(n_2+1):n]

return(list(

y_I = y[I],

d_I = d[I],

x_I = x[I,],

y_I_c = y[I_c],

d_I_c = d[I_c],

x_I_c = x[I_c,]

))

}

# Predictor function: in this case, generalized random forests

grf_dml <- function(y_I, d_I, x_I, y_I_c, d_I_c, x_I_c){

# Train on the I_c sample, predict on the I sample

mu_mod1 <- grf::regression_forest(X = x_I_c, Y = y_I_c,
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tune.parameters = "all")

mu_pred1 <- predict(mu_mod1, newdata = x_I)$predictions

pi_mod1 <- grf::regression_forest(X = x_I_c, Y = d_I_c,

tune.parameters = "all")

pi_pred1 <- predict(pi_mod1, newdata = x_I)$predictions

# Train on the I sample, predict on the I_c sample

mu_mod2 <- grf::regression_forest(X = x_I, Y = y_I,

tune.parameters = "all")

mu_pred2 <- predict(mu_mod2, newdata = x_I_c)$predictions

pi_mod2 <- grf::regression_forest(X = x_I, Y = d_I,

tune.parameters = "all")

pi_pred2 <- predict(pi_mod2, newdata = x_I_c)$predictions

return(list(

mu_pred1 = mu_pred1,

pi_pred1 = pi_pred1,

mu_pred2 = mu_pred2,

pi_pred2 = pi_pred2

))

}

# Implement DML: takes outputs from pre_dml() and grf_dml()

dml_post <- function(y_I, d_I, x_I, y_I_c, d_I_c, x_I_c,

mu_pred1, pi_pred1, mu_pred2, pi_pred2){

# Residual-on-residual regression for each sample separately
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v1 <- d_I - pi_pred1

delta1 <- (sum(v1 * d_I))ˆ-1 * sum(v1 * (y_I - pi_pred1))

v2 <- d_I_c - pi_pred2

delta2 <- (sum(v2 * d_I_c))ˆ-1 * sum(v2 * (y_I_c - pi_pred2))

# Average estimates from each sample

ate <- (delta1 + delta2)/2

return(ate)

}

dml_pre_out <- dml_pre(y = y, d = d, x = x)

grf_dml_out <- do.call(grf_dml, dml_pre_out)

dml_post_out <- do.call(dml_post, append(dml_pre_out, grf_dml_out))

A simple demonstration using AIPW

To demonstrate double robustness, this section presents one of the simpler double robust

estimators, AIPW. As shown above, we can write this estimator as follows:

τ̂ = 1
N

N∑
i=1

(
Di(Yi − µ̂1(Xi))

π̂(Xi)
+ µ̂1(Xi)

)
− 1
N

N∑
i=1

(
(1−Di)(Yi − µ̂0(Xi))

1− π̂(Xi)
+ µ̂0(Xi)

)

For each individual in the sample, this estimator calculates two quantities:

• The treated potential outcome

Ŷ1i = Di(Yi − µ̂1(Xi))
π̂(Xi)

+ µ̂1(Xi) (3)
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• The control potential outcome

Ŷ0i = (1−Di)(Yi − µ̂0(Xi))
1− π̂(Xi)

+ µ̂0(Xi) (4)

Let’s focus on the treated model, Equation (3). First, assume that the outcome model

µ1(Xi) is correctly specified and the exposure model π(Xi) is incorrectly specified. Let’s also

assume (for now) that we’re dealing with a treated unit, i.e. Di = 1. Then

E[µ̂1(Xi)] = E[Y1 | Xi].

This means that

E[Yi − µ̂1(Xi)] = 0,

and hence

E[Ŷ1i] = 0 + µ̂1(Xi) = µ̂1(Xi).

So the model relies only on the outcome model. The incorrectly specified exposure model

completely disappears from the equation. If we’re dealing with a control unit (Di = 0), we

get the same result:

Ŷ1i = 0(Yi − µ̂1(Xi))
π̂(Xi)

+ µ̂1(Xi) = µ̂1(Xi).

Now, what if the exposure model π(Xi) is correctly specified and the outcome model

µ1(X) is incorrect? First, we rewrite the estimator for the treated outcome:

Ŷ1i = Di(Yi − µ̂1(Xi))
π̂(Xi)

+ µ̂1(Xi)

= DiYi

π̂(Xi)
− Diµ̂1(Xi)

π̂(Xi)
+ π̂(Xi)µ̂1(Xi)

π̂(Xi)

= DiYi

π̂(Xi)
−
(
Di − π̂(Xi)
π̂(Xi)

)
µ̂1(Xi). (5)
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Since the exposure model is correctly specified, we have Di = π̂(Xi) on average, so

E[Di − π̂(Xi)] = 0.

This means that the second term in Equation (5) is 0, so

E[Ŷ1i] = E

[
DiYi

π̂(Xi)

]
.

This shows that when the exposure model is correct, then the estimator depends only on the

exposure model. We can make similar arguments for the control model for Ŷ0i in Equation

(4).

This demonstration shows that this estimator achieves double robustness: The estimator

is robust to misspecification of either the exposure or the outcome model (but not both).

The other two double robust methods considered in this thesis can be shown to have the

same property, but proving so is more complicated.

Evaluation Strategy

These double robust methods have many similarities. How do the results they give compare?

This section tests the performance of each in practice using two strategies. First, results are

compared using simulated data from a causal inference competition (Dorie et al., 2019). The

true treatment effect is known and all potential confounders are observed, so these simulations

allow assessment of bias and related quantities. Second, these methods are applied to

data from LaLonde’s (1986) study of the National Supported Work Demonstration (NSW).

The NSW randomly provided training to disadvantaged workers, allowing an experimental

estimate of the effect of the intervention, and data assembled by Dehejia & Wahba (1999)

compares these experimental estimates to observational ones.

The three double robust methods are compared to two sets of traditional or “single robust”

methods used as benchmarks (see Table 1 for an overview of all methods used). By “single

robust,” I mean methods that are not robust to any misspecification. First are one-model
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Table 1: Double and single robust methods used for evaluation

Type Models Method Label Estimators

Single Robust One
Linear
Regression ols OLS

Single Robust One
Propensity
Score Matching psm logit

Single Robust One

Inverse
Probability
Weights ipw

logit, generalized
random forests,
super learner

Single Robust Two G-Computation g-comp

generalized
random forests,
super learner

Single Robust Two Lin Estimator lin OLS

Double Robust Two

Augmented
Inverse
Probability
Weights aipw

OLS/logit,
generalized
random forests,
super learner

Double Robust Two

Targeted
Maximum
Likelihood
Estimation tmle

OLS/logit,
generalized
random forests,
super learner

Double Robust Two

Double/Debiased
Machine
Learning dml

OLS/logit,
generalized
random forests,
super learner

methods. The most classic method considered – linear regression – models only the response

surface. It is estimated using ordinary least squares regression (“OLS”), entering each variable

separately without any interactions or higher-order terms. Two other one-model methods

model only the treatment assignment mechanism. In propensity score matching (PSM),

propensity scores are estimated from logistic regression with each variable entered separately

and without any higher order terms, then matched using the MatchIt package. Finally,

stabilized inverse probability weights (IPW, Austin & Stuart, 2015, p. 3663) are used for

weighted OLS regression. These IPWs are estimated using propensity scores estimated by
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each of the three under-the-hood estimation techniques described below; extreme propensity

scores are truncated so that they range from 0.01 to 0.99.

The second set of single robust methods are two-model methods, which estimate separate

models for treated and untreated units. In theory these could solve the misspecification

problem that double robust methods are meant to solve, but they could still suffer from

overfitting. G-computation (Robins, 1986; Snowden et al., 2011) uses some estimation

technique to predict outcomes under treatment and control for each unit in the dataset. The

ATE estimate is the difference in the average prediction under treatment and the average

prediction under control. The second two-model method is the Lin estimator (Lin, 2013).

This method aims to solve issues with the bias induced by OLS regression in a randomization

framework by interacting the treatment indicator with mean-centered covariates. Hazlett &

Shinkre (2024) show that this method is equivalent to estimating two separate OLS regression

models for the treated and control units.

Because many of these methods allow the user to choose the underlying estimation

method, results compare three techniques. The first technique uses a logistic regression for

the exposure model and an OLS regression for the outcome model. Second is generalized

random forests (GRF, Athey et al., 2019) using the grf R package, with separate models for

exposure and outcome. The final technique is the SuperLearner (as promoted by the makers

of TMLE) using the SuperLearner package (Polley et al., 2023), again with separate models

for exposure and outcome. GLM, glmnet (a weighted average of lasso and ridge regression,

Friedman et al., 2021), and XGBoost (Chen & Guestrin, 2016) models are considered for

the SuperLearner. These three estimation techniques are used for each of the three double

robust methods and for IPW. GRF and SuperLearner are also used for G-computation

(OLS predictions with G-computation return identical results to OLS regression coefficient

estimates).

For the simulations, results compare only point estimates from these methods. For

evaluation of the experimental LaLonde data, I use bootstrapping with 100 samples to obtain

standard errors and confidence intervals. Using AIPW as written above results in some wildly

biased estimates, due to dividing by some very small propensity scores. Hence I present
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estimates from a truncated AIPW estimator, where predicted exposure model values are set

to 0.01 if they are less than 0.01 and to 0.99 if they are greater than 0.99.

Simluations with Dorie et al. (2019) Data

In 2016, the Atlantic Causal Inference Conference hosted a competition for causal inference

methods that adjust on observables. Dorie et al. (2019) published the results of this

competition, along with the data used in the competition. Below, I test double robust

methods on the 20 data sets used for the “do-it-yourself” part of the competition. The data

represent a hypothetical twins study investigating the impact of birth weight on IQ. The

data have 4,802 observations and 52 covariates. The authors of the study specify a different

data generating process for the potential outcomes in each data set. In all cases, ignorability

holds (all potential confounders are observed), but the authors vary the following:

• degree of nonlinearity

• percentage of treated

• overlap for the treatment group

• alignment (correspondence in variables used to generate the assignment mechanism and

the response surface)

• treatment effect heterogeneity

The true treatment effect also varies, but as a function of the other DGP characteristics.

It has a mean of 3.6, standard deviation of 1.6, and range of -1.7 to 12.

Main results

The 20 data sets used here cover a range of these attributes; see the supplemental material

from Dorie et al. (2019) for details. I use 10 simulations of each data set, resulting in 200

data sets. I then calculate bias, percent bias (the estimator’s bias as a percentage of its

standard error), root mean squared error (rmse), and median absolute error (mae). I also

present the number of datasets for which the method fails and the median computation time
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for each data set, in seconds.3 In the main text I present average bias and RMSE, while the

appendix contains tables with full results (Table 5).

Bias results for the full range of simulations are shown in Figure 1. Bias is quite low

for many of the methods, however IPW (logit) and AIPW (OLS/logit) have high bias and

variance, while TMLE (OLS/logit) has moderately high bias and variance. With an average

true treatment effect of 3.6, bias with absolute value greater than 1 is substantial. The

traditional methods, however, achieve fairly low bias in general.

Figure 2 orders methods by RMSE and presents both bias and RMSE. The lowest RMSE

is achieved by three of the methods using SuperLearner estimators (AIPW, TMLE, and

G-computation) with values of about 0.35, followed closely by the same three methods using

GRF, with values closer to 0.5. The computationally efficient Lin estimator does not do

much worse, with an RMSE of 0.6, and OLS and PSM achieve acceptable RMSE of 0.7 to 0.9.

Interestingly, DML with the computationally efficient OLS/logit estimators achieves lower

RMSE than with GRF or SuperLearner (0.8 compared to 0.9 and 1.6, respectively). The only

estimators with RMSE that exceed 2 are TMLE (OLS/logit) with 2.3, IPW (logit) with 8.1,

and AIPW (OLS/logit) with 10.1. These methods all use logit models to estimate probability

of treatment, and these high error rates are likely due to extreme values of these estimates.

Overall, traditional methods perform surprisingly well in comparison with the double

robust methods, and flexible single robust methods may be as effective as double robust

methods. Even in the full range of datasets – which include highly nonlinear exposure and

outcome data-generating processes – OLS, propensity score matching, and the Lin estimator

obtain some of the smallest bias and RMSE. While double robust methods achieve the

lowest RMSE, the choice of underlying estimator appears more important than the choice of

method. AIPW and TMLE both do well with a flexible underlying estimator, while DML

does worse than OLS. Of the estimators considered, the SuperLearner (which considers

GLM, glmnet, and XGBoost models) appears to be best for the double robust methods, with

GRF following closely. G-computation does only a hair worse than these two double robust

3Simulations were run on a 2020 MacBook Pro laptop computer with a 2 GHz Quad-Core Intel Core i5
Processor and 16 GB of memory.
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methods without explicitly accounting for regularization bias. Notably, the method with the

longest computation time – DML with a SuperLearner – takes nearly 2,000 times as long as

OLS (an average of 129 seconds per simulation compared to 0.061 seconds).
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Figure 1: Bias of Monte Carlo simulations using the first 20 datasets from Dorie et al. (2019),
10 replications each.

Linear DGPs

Due to their functional form assumptions, traditional methods may perform better when the

data generating processes are linear. To test this, I use 100 simulations of each of the two

datasets from Dorie et al. (2019) with linear data generating processes for both exposure

and outcome (numbers 1 and 3). In these two datasets, the average true treatment effect is

3.9 with a standard deviation of 1.5.

Figure 3 shows the bias from each simulation for each method (in the Appendix, Table

6 shows the full results). Similarly to the full set of simulations, bias is fairly low for most

methods. IPW (logit) and AIPW (OLS/logit) again suffer from greater bias than other
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Figure 2: Root mean squared error and bias for Monte Carlo simulations using the first 20
datasets from Dorie et al. (2019), 10 replications each. Values greater in absolute value than
4 are plotted at 4 and labeled with their actual value.
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methods, though not to quite as extent as in the full range of simulations. Unsurprisingly,

methods that assume linearity – OLS, PSM, the Lin model – achieve low bias and variance.

IPW does less well than expected, even when treatment assignment is modeled with flexible

GRF and SuperLearner.

Figure 4 orders the methods by RMSE and presents both RMSE and bias. The methods

achieving the lowest RMSE are again three of the SuperLearner methods (TMLE, AIPW,

and G-computation) followed by the Lin estimator, DML (OLS/logit), and OLS. The only

methods with RMSE above 1 are IPW (logit) and AIPW (OLS/logit), again likely due to

unstable logit predictions.

With these linear DGPs, there seems little reason to sacrifice computational efficiency

for a very slight reduction in RMSE. The Lin estimator has an RMSE of 0.28 compared to

the lowest-RMSE method, TMLE (SuperLearner), of 0.25, and computes in 0.15 seconds

compared to the latter’s 126 seconds. Even standard OLS has quite a low RMSE of 0.39.

While DML performs better with the linear DGPs than the full range of simulations, it

still obtains higher RMSE than at least certain AIPW and TMLE variants. Finally, G-

computation again shows its strength, outperforming most other methods when it is estimated

using a SuperLearner.

Do results vary by DGP?

While the AIPW, TMLE, and G-computation with a SuperLearner may be the top performing

methods overall, this does not mean that there are some data-generating processes (DGPs)

where some other method may do better. Across the the 20 datasets, Dorie et al. (2019)

vary six DGP characteristics: degree of nonlinearity, the percentage treated, overlap for the

treatment group, alignment (correspondence in variables used to generate the exposure and

response models), and treatment effect heterogeneity. To test how the methods perform

across different values of these characteristics, I begin with the 200 simulations from the

20 datasets used in the main results (Figures 1 and 2, Table 5). I limit datasets to those

generated by a particular value of a DGP characteristic, and I then calculate RMSE for each
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Figure 3: Bias of Monte Carlo simulations using the two datasets from Dorie et al. (2019),
with linear data generating processes, 100 replications each ("linear").

Table 2: Data generating process: Three lowest RMSE methods by DGP for Monte Carlo
simulations using the first 20 datasets from Dorie et al. (2019), 10 replications each.

DGP parameter dgp_value Lowest RMSE Second-lowest Third-lowest

Treat. assign. linear aipw, superl.: 0.303 tmle, superl.: 0.304 g-comp, superl.: 0.309
Treat. assign. polynomial aipw, superl.: 0.362 tmle, superl.: 0.363 g-comp, superl.: 0.366
Treat. assign. step tmle, superl.: 0.323 aipw, superl.: 0.328 g-comp, superl.: 0.33
Prob. of treat. 0.35 tmle, superl.: 0.282 aipw, superl.: 0.284 g-comp, superl.: 0.292
Prob. of treat. 0.65 aipw, superl.: 0.414 g-comp, superl.: 0.414 tmle, superl.: 0.416
Overlap full g-comp, superl.: 0.124 aipw, superl.: 0.127 tmle, superl.: 0.132
Overlap one-term aipw, superl.: 0.35 tmle, superl.: 0.35 g-comp, superl.: 0.354
Response surface exponential aipw, superl.: 0.307 tmle, superl.: 0.307 g-comp, superl.: 0.315
Response surface linear g-comp, superl.: 0.406 aipw, superl.: 0.406 tmle, superl.: 0.408
Response surface step tmle, superl.: 0.323 aipw, superl.: 0.328 g-comp, superl.: 0.33
Alignment 0 g-comp, superl.: 0.104 aipw, superl.: 0.106 tmle, superl.: 0.11
Alignment 0.25 aipw, superl.: 0.493 tmle, superl.: 0.494 g-comp, superl.: 0.495
Alignment 0.75 tmle, superl.: 0.267 aipw, superl.: 0.267 g-comp, superl.: 0.274
Treat. heterogeneity high tmle, superl.: 0.355 aipw, superl.: 0.356 g-comp, superl.: 0.36
Treat. heterogeneity none g-comp, superl.: 0.17 aipw, superl.: 0.176 tmle, superl.: 0.193
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Figure 4: Root mean squared error and bias for Monte Carlo simulations using the two
datasets from Dorie et al. (2019), with linear data generating processes, 100 replications each
("linear"). Values greater in absolute value than 4 are plotted at 4 and labeled with their
actual value.

Table 3: Data generating process: Fourth- to sixth-lowest RMSE methods by DGP for Monte
Carlo simulations using the first 20 datasets from Dorie et al. (2019), 10 replications each.

DGP parameter dgp_value Fourth-lowest Fifth-lowest Sixth-lowest

Treat. assign. linear aipw, grf: 0.457 g-comp, grf: 0.529 lin: 0.534
Treat. assign. polynomial aipw, grf: 0.439 g-comp, grf: 0.495 lin: 0.583
Treat. assign. step aipw, grf: 0.446 g-comp, grf: 0.481 tmle, grf: 0.487
Prob. of treat. 0.35 aipw, grf: 0.419 g-comp, grf: 0.508 tmle, grf: 0.555
Prob. of treat. 0.65 aipw, grf: 0.481 g-comp, grf: 0.499 lin: 0.566
Overlap full g-comp, grf: 0.242 aipw, grf: 0.272 ols: 0.51
Overlap one-term aipw, grf: 0.452 g-comp, grf: 0.514 tmle, grf: 0.583
Response surface exponential aipw, grf: 0.418 g-comp, grf: 0.487 tmle, grf: 0.534
Response surface linear aipw, grf: 0.494 g-comp, grf: 0.544 lin: 0.588
Response surface step aipw, grf: 0.446 g-comp, grf: 0.481 tmle, grf: 0.487
Alignment 0 ipw, superl.: 0.194 ols: 0.228 lin: 0.234
Alignment 0.25 lin: 0.512 aipw, grf: 0.566 g-comp, grf: 0.588
Alignment 0.75 aipw, grf: 0.395 g-comp, grf: 0.472 tmle, grf: 0.561
Treat. heterogeneity high aipw, grf: 0.458 g-comp, grf: 0.505 tmle, grf: 0.583
Treat. heterogeneity none aipw, grf: 0.297 psm: 0.365 ols: 0.378
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method for only these datasets. For example, alignment is 0 for datasets 8 and 16 (meaning

there is 0 correlation between the terms included in the treatment and outcome models), so

for this value of the DGP RMSE is calculated only for those two datasets.

Tables 2 and 3 shows the six top-performing methods by lowest RMSE for each each value

of the DGP characteristics. Across DGPs, the same methods dominate as in the full range of

simulations: the SuperLearner with AIPW, TMLE, and G-compuation. In fact, these three

methods take the top three spots for every DGP variation in the simulations.

Table 3 shows the fourth- to sixth-lowest RMSE methods for each DGP variation. GRF

with AIPW, G-computation, and TMLE take most of these spots, but the Lin estimator and

OLS appear a few times.

Overall, there is little variation across different types of DGPs in which method performs

the best. Flexible estimators take the top spots (though notably not those used with DML),

and traditional methods do fairly well across the board.

Do results vary by sample size?

In the above simulations, double robust methods have only slightly outperformed traditional

methods. Is the issue with previous results simply that the sample size of the simulation

data (n = 4, 802) is too small for double robust methods to seriously outperform traditional

methods? The double robust methods reviewed here have been shown to have lower bias

asymptotically, so perhaps their superiority to traditional or single robust methods will be

starker in larger samples. To test this, this section uses simulated datasets of varying sizes,

from 150 to 96,040 (20 times the original sample size). These datasets are also derived from

the Dorie et al. (2019) aciccomp2016 package, using parameter set 7, a fairly nonlinear DGP

with high heterogeneity. For sample sizes less than 4,802, the sample is randomly drawn from

a randomly generated 4,802-unit sample. For sample sizes greater than 4,802, the design

matrix (but not the outcome variable) is duplicated, then fed into the dgp_2016 function.

This preserves covariate distributions but retains stochasticity in the outcome.

Table 4 presents the four methods with the lowest RMSE for each sample size (Table 7
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Table 4: Sample size: Four lowest RMSE methods by sample size for Monte Carlo simulations
using dataset 7 from Dorie et al. (2019), 20 replications each

size Lowest Second-lowest Third-lowest Fourth-lowest

150 dml, grf: 1.09 ipw, superl.: 1.18 tmle, superl.: 1.234 ipw, grf: 1.237
300 aipw, superl.: 0.852 g-comp, superl.: 0.89 tmle, superl.: 0.901 aipw, grf: 0.981
600 g-comp, superl.: 0.746 aipw, superl.: 0.767 aipw, grf: 0.809 tmle, superl.: 0.81
1200 psm: 0.548 g-comp, superl.: 0.602 aipw, superl.: 0.619 aipw, grf: 0.655
2400 g-comp, superl.: 0.378 aipw, superl.: 0.381 tmle, superl.: 0.401 aipw, grf: 0.496
4802 aipw, superl.: 0.272 g-comp, superl.: 0.278 tmle, superl.: 0.288 tmle, grf: 0.395
9604 tmle, superl.: 0.26 aipw, superl.: 0.281 aipw, grf: 0.288 g-comp, superl.: 0.327
24010 g-comp, superl.: 0.137 tmle, superl.: 0.137 aipw, superl.: 0.14 aipw, grf: 0.245
48020 tmle, superl.: 0.139 tmle, grf: 0.16 aipw, superl.: 0.199 aipw, grf: 0.205
96040 aipw, superl.: 0.16 g-comp, superl.: 0.215 tmle, grf: 0.229 aipw, grf: 0.242

in the Appendix presents full results). Again, AIPW, TMLE, and G-computation methods

that incorporate the SuperLearner or GRF dominate. There are two exceptions: In the

tiny sample of 150, IPW (SuperLearner) and IPW (GRF) figure into the best four methods.

PSM is the best-performing method in samples of 1200, but it fails to estimate 17 of the 20

datasets. (With 58 covariates, some of the methods fail in smaller samples.)

Figure 5 presents RMSE for all sample sizes for all methods. In the smallest samples, GRF

and SuperLearner are able to provide estimates, while traditional methods fail. Beginning

at 1,200 observations, all methods are able to provide estimates for all datasets, with the

exception of PSM, which fails to calculate even in some large samples. For most methods,

RMSE decreases nearly monotonically as sample size grows. Two exceptions are IPW (logit)

and AIPW (OLS/logit), whose error is highest in the maximum sample of 96,040, likely due

to extreme logit estimates. In addition, the rank order of methods is nearly constant across

sample sizes. DML does not achieve lower RMSE than OLS, PSM, or the Lin estimator in

most sample sizes, and methods using the SuperLearner or GRF perform the best across

sample sizes.

In sum, although methods incorporating SuperLearner or GRF do the best in most sample

sizes, traditional methods still perform fairly well, achieving low RMSE once the sample size

is large enough for them to stably compute.
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Figure 5: RMSE of Monte Carlo simulations using dataset 7 from Dorie et al. (2019) with
varying sample sizes, 20 replications each
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LaLonde NSW Data

As another evaluation of these methods, I use data from LaLonde’s (1986) study of the

National Supported Work Demonstration (NSW), as provided by Dehejia & Wahba (1999).

Between March 1975 and July 1977, the NSW randomly provided training to disadvantaged

workers. LaLonde used earnings in 1978 as the outcome of interest; comparing earnings in

this year for treated and untreated workers allows an experimental estimate of the effect

of the intervention. Restricting the sample to men, this study had 297 treated and 425

control participants. Covariates include age, education in years of schooling, earnings in

1975, and dichotomous variables for Black and Hispanic race, married, and not having a high

school degree. Following Dehejia & Wahba (1999), I add a variable indicating whether each

respondent’s earnings in 1975 was $0 – i.e., they were unemployed.

LaLonde compared these experimental estimates to control samples drawn from the Panel

Study of Income Dynamics (PSID) and Westat’s Matched Current Population Survey-Social

Security Administration File (CPS). The PSID-1 sample (n = 2,490) contains all male

household heads under 55 who did not classify themselves as retired in 1975, and the PSID-3

sample (n = 128) further restricts this to men who were not working in the spring of 1976 or

1975. The CPS-1 sample (n = 15,992) includes all CPS males under 55, and CPS-3 (n =

429) restricts this two those who were not working in March 1976 whose earnings in 1975

were below the poverty level. Restricting these observational samples gets closer to the group

eligible for the NSW.

Following Dehejia & Wahba (1999), I present results for the original samples analyzed by

LaLonde (1986), but I also include results using a subsample of the experimental group that

has 1974 earnings data available (185 treated and 260 control participants) and include this

additional covariate, along with an indicator variable for no earnings in 1974.

Results are presented in Figure 6, with a table in the Appendix (Table 8). Standard

errors are based on 100 bootstrap samples. We first focus on the original LaLonde dataset,

which did not include 1974 earnings. The “experimental” estimates provide a baseline for

the comparison, suggesting that the program resulted in an earnings gain of about $800.
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Figure 6: ATE estimates and 95-percent bootstrap standard error confidence intervals for
Lalonde NSW data as provided by Dehejia and Wahba (1999), with CPS and PSID comparison
groups. Standard errors shown in parentheses. Covariates include age, education in years of
schooling, earnings in 1975, and dichotomous variables for Black and Hispanic race, married,
not having a high school degree, and having no earnings in 1975. The "With 1974 earnings"
estimates additionally include earnings in 1974 as a covariate, along with an indicator for
having no earnings in 1974.
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Some methods calculate widely different results for the experimental estimates, highlighting

their instability. Echoing results from the simulations, methods that include logit models are

particularly unstable.

If selection on observables holds, then we should be able to recover experimental estimates

from the non-experimental control groups. Most of the methods do not perform very well,

estimating treatment effects with the wrong sign. The exception is in the PSID-3 sample,

where 12 of the 17 methods estimate treatment effects with the correct (positive) sign. This

sample is chosen to be closer to the experimental sample.

Including 1974 earnings data results in much better estimates with the observational

control groups. OLS, PSM, G-computation (SuperLearner), AIPW (SuperLearner), TMLE

(SuperLearner), and DML (OLS/logit) compute fairly stable estimates across the samples. On

the other hand, the estimates produced by IPW (logit), IPW (GRF), IPW (SuperLearner),

the Lin estimator, and DML (GRF) vary widely across samples.

These results highlight the importance of selection on observables holding. Without

including 1974 earnings as a covariate, it appears that selection on observables does not

hold, as most methods provide highly inaccurate estimates with the wrong sign. Once 1974

earnings are included, most of the methods provide estimates much closer to the experimental

values.

Conclusion

This thesis aims to provide an introduction to and evaluation of double robust methods

for covariate adjustment in causal inference. By comparing AIPW, TMLE, and DML to

more traditional statistical methods such as OLS and PSM as well as flexible “single robust”

methods such as G-computation and the Lin estimator, it allows evaluation of whether these

methods are worth the effort and (computational) time for social scientists to adopt them.

Results are nuanced. In the full range of simulated data, AIPW and TMLE with a

SuperLearner or GRF are able to obtain smaller RMSE than OLS or PSM. However these
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differences are quite small, and G-computation with the same flexible machine learning

methods performs just as well as the double robust methods. DML does not perform as well

as AIPW or TMLE (however, a version of DML that allows for heterogeneous effects might

perform better; see Chernozhukov et al. (2018, p. C35)). The Lin estimator performs slightly

better than OLS or PSM, without any increase in computation time. Methods relying on

logit models to estimate propensity weights have the most error; researchers should use these

methods with caution.

Methods that come out on top in the full range of simulations also tend to do the best

regardless of the data generating process, though the Lin estimator and OLS rise in the

rankings when the true treatment and outcome models are linear. AIPW, TMLE, and

G-computation with a SuperLearner or GRF perform the best, followed closely by the Lin

estimator, OLS, and PSM. As sample size varies, the same rank order generally holds, though

traditional methods are unable to produce estimates in small samples when there are many

covariates, while the double robust methods are able to do so.

Results from the experimental LaLonde data are more difficult to interpret. The sample

appears much more important than the choice of method. In the original LaLonde data,

most methods fail to estimate treatment effects in the observational data with the same

sign as the experimental estimate. The exception is the PSID-3 sample, which includes

only men who were not working in the spring of 1976 or 1975 and is thus more comparable

to the individuals were recruited to the NSW study. When 1974 earnings are included as

a covariate, many of the methods provide estimates across samples that are close to the

experimental estimates. OLS, PSM, G-computation (SuperLearner), AIPW (SuperLearner),

TMLE (SuperLearner), and DML (OLS/logit) appear the most reliable, while IPW (logit),

IPW (GRF), IPW (SuperLearner), the Lin estimator, and DML (GRF) prove unstable. It

is surprising that the Lin estimator provides unstable results in the NSW data, while it is

among the lowest-RMSE methods in the simulation study. This highlights the complexity of

doing causal inference with observational data where ignorability may not hold.

This thesis has a number of limitations. First, although it considers some of the most

popular double robust, machine learning, traditional, and single robust methods, there are
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many methods that it could not evaluate, including variations and extensions of the three

methods. Second, although the simulations are meant to cover a wide range of data generating

processes, they only consider continuous outcomes and binary treatments; simulations with

binary or categorical outcomes and continuous or multi-armed treatments may yield different

results. Finally, in considering only functional form misspecification, the simulations in this

thesis do not consider situations where ignorability does not hold. In particular, it does

not evaluate situations where causal identification is misspecified (Keil et al., 2018). Future

research should assess violations of this and other assumptions underlying these methods.

In conclusion, if researchers want small gains in accuracy, they may opt for AIPW,

TMLE, or G-computation with a flexible machine learning algorithm. But these methods are

computationally costly, taking over two minutes per dataset of 4,802 observations and 52

covariates, while OLS, PSM, and the Lin estimator each take a fraction of a second. While

double robust methods are useful for social scientists to understand, in most applications,

OLS or PSM provide similar results. However, in certain circumstances these double robust

methods may be a better choice. Especially when paired with a highly flexible estimator

like a SuperLearner or GRF, these methods may be slightly more accurate, and they can be

useful when the number of covariates is high or even exceeds the number of observations. In

longitudinal settings with time-varying confounders, they may be more useful (Tran et al.,

2019). They can also be useful as a sensitivity check; if researchers obtain similar estimates

across traditional and double robust methods, they can be more confident in the reliability of

their estimates.
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Appendix

Table 5: Main datasets: Results of Monte Carlo simulations using the first 20 datasets from
Dorie et al. (2019), 10 replications each. Percent bias is calculated as the estimator’s bias as
a percentage of its standard error, rmse is root mean squared error, mae is median absolute
error, and comp_time is median computation time measured in seconds for each dataset.

method estimator bias percent_bias rmse mae comp_time fail_count
ols NA 0.250 0.157 0.74 0.41 0.061 0
psm NA 0.203 0.131 0.86 0.53 0.668 6
ipw logit -6.690 -1.590 8.14 6.37 0.560 0
ipw grf 0.433 0.266 0.81 0.46 32.227 0
ipw superlearner 0.389 0.234 0.73 0.43 130.013 0
g-comp grf -0.115 -0.073 0.50 0.26 32.222 0
g-comp superlearner 0.074 0.048 0.35 0.10 130.006 0
lin NA 0.209 0.117 0.59 0.28 0.152 0
aipw ols_logit -8.240 -1.547 10.06 7.63 0.555 0
aipw grf 0.060 0.039 0.45 0.22 32.223 0
aipw superlearner 0.072 0.047 0.34 0.11 130.007 0
tmle ols_logit -1.583 -0.676 2.27 1.47 0.575 0
tmle grf 0.349 0.230 0.58 0.33 32.241 0
tmle superlearner 0.073 0.047 0.34 0.10 130.027 0
dml ols_logit 0.311 0.192 0.79 0.42 0.665 0
dml grf 0.380 0.247 0.86 0.51 31.574 0
dml superlearner 0.152 0.068 1.64 0.46 129.160 0
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Table 6: Linear datasets: Results of Monte Carlo simulations using the two datasets from
Dorie et al. (2019), with linear data generating processes, 100 replications each ("linear").
Percent bias is calculated as the estimator’s bias as a percentage of its standard error,
rmse is root mean squared error, mae is median absolute error, and comp_time is median
computation time measured in seconds for each dataset.

method estimator bias percent_bias rmse mae comp_time fail_count
ols NA -0.024 -0.017 0.39 0.123 0.058 0
psm NA -0.053 -0.039 0.52 0.125 0.570 12
ipw logit -2.383 -0.897 3.42 2.256 0.596 0
ipw grf 0.680 0.428 0.98 0.763 30.264 0
ipw superlearner 0.480 0.309 0.72 0.517 126.091 0
g-comp grf -0.343 -0.219 0.61 0.390 30.259 0
g-comp superlearner -0.042 -0.029 0.25 0.077 126.085 0
lin NA 0.027 0.017 0.28 0.072 0.155 0
aipw ols_logit -3.435 -1.012 4.75 2.062 0.592 0
aipw grf -0.035 -0.024 0.40 0.228 30.261 0
aipw superlearner -0.034 -0.023 0.25 0.076 126.086 0
tmle ols_logit -0.536 -0.339 0.91 0.329 0.609 0
tmle grf 0.305 0.220 0.48 0.331 30.276 0
tmle superlearner -0.023 -0.016 0.25 0.077 126.102 0
dml ols_logit 0.029 0.020 0.39 0.140 0.679 0
dml grf 0.496 0.336 0.76 0.576 28.689 0
dml superlearner 0.098 0.069 0.44 0.228 129.669 0
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Table 7: Sample size: Results of Monte Carlo simulations using dataset 7 from Dorie et
al. (2019) with varying sample sizes, 20 replications each. Percent bias is calculated as the
estimator’s bias as a percentage of its standard error, rmse is root mean squared error, mae
is median absolute error, and comp_time is median computation time measured in seconds
for each dataset.

method estimator size bias perc_bias rmse mae comp_time fail_count

ols NA 150 NaN NaN NaN NA 0.010 20
ols NA 300 -0.125 -0.148 1.63 1.769 0.012 17
ols NA 600 -0.042 -0.034 1.03 0.471 0.018 7
ols NA 1200 0.215 0.171 0.95 0.590 0.025 0
ols NA 2400 0.186 0.149 0.83 0.680 0.035 0
ols NA 4802 0.186 0.150 0.79 0.692 0.061 0
ols NA 9604 0.275 0.185 0.65 0.477 0.115 0
ols NA 24010 0.253 0.136 0.62 0.440 0.273 0
ols NA 48020 0.228 0.242 0.57 0.357 0.597 0
ols NA 96040 0.183 0.121 0.52 0.314 1.090 0
psm NA 150 NaN NaN NaN NA 0.013 20
psm NA 300 NaN NaN NaN NA 0.015 20
psm NA 600 NaN NaN NaN NA 0.085 20
psm NA 1200 0.441 0.230 0.55 0.514 0.151 17
psm NA 2400 0.201 0.150 1.01 0.626 0.274 6
psm NA 4802 0.174 0.137 0.93 0.761 0.579 1
psm NA 9604 0.203 0.140 0.66 0.467 1.528 1
psm NA 24010 0.190 0.105 0.55 0.318 7.664 1
psm NA 48020 0.198 0.223 0.60 0.334 27.511 1
psm NA 96040 0.128 0.093 0.37 0.165 113.044 1
ipw logit 150 0.331 0.185 1.46 1.008 0.077 0
ipw logit 300 -4.856 -1.395 5.99 3.923 0.098 0
ipw logit 600 -5.981 -1.964 6.87 5.217 0.140 0
ipw logit 1200 -7.081 -2.511 7.73 7.662 0.206 0
ipw logit 2400 -7.201 -2.436 7.88 7.618 0.319 0
ipw logit 4802 -7.888 -2.757 8.52 8.004 0.529 0
ipw logit 9604 -9.370 -2.434 10.30 9.599 1.135 0
ipw logit 24010 -6.516 -2.179 7.49 6.492 1.783 0
ipw logit 48020 -8.914 -2.652 9.66 8.666 3.513 0
ipw logit 96040 -8.635 -1.779 9.88 8.161 7.372 0
ipw grf 150 0.351 0.206 1.24 0.787 1.613 0
ipw grf 300 0.377 0.248 1.17 0.588 2.533 0
ipw grf 600 0.351 0.248 0.99 0.421 4.428 0
ipw grf 1200 0.425 0.303 0.99 0.552 7.752 0
ipw grf 2400 0.334 0.241 0.79 0.576 15.160 0
ipw grf 4802 0.320 0.240 0.69 0.492 36.832 0
ipw grf 9604 0.244 0.148 0.60 0.268 77.877 0
ipw grf 24010 0.299 0.162 0.59 0.294 217.183 0
ipw grf 48020 0.172 0.143 0.56 0.390 589.802 0
ipw grf 96040 0.128 0.077 0.34 0.182 1872.404 0
ipw superlearner 150 0.294 0.180 1.18 0.869 10.070 0
ipw superlearner 300 0.334 0.238 1.02 0.661 12.480 0
ipw superlearner 600 0.367 0.264 0.98 0.451 21.676 0
ipw superlearner 1200 0.392 0.285 0.94 0.583 37.717 0
ipw superlearner 2400 0.342 0.255 0.76 0.519 67.716 0
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ipw superlearner 4802 0.319 0.248 0.65 0.449 125.311 0
ipw superlearner 9604 0.249 0.152 0.56 0.157 251.578 0
ipw superlearner 24010 0.273 0.148 0.51 0.288 623.468 0
ipw superlearner 48020 0.103 0.090 0.46 0.322 1175.452 0
ipw superlearner 96040 0.021 0.013 0.31 0.131 2240.567 0
g-comp grf 150 -2.439 -1.828 2.77 2.528 1.611 0
g-comp grf 300 -1.758 -1.177 2.08 1.951 2.531 0
g-comp grf 600 -1.089 -0.769 1.42 1.187 4.426 0
g-comp grf 1200 -0.634 -0.498 0.99 0.655 7.751 0
g-comp grf 2400 -0.386 -0.324 0.71 0.378 15.157 0
g-comp grf 4802 -0.250 -0.219 0.56 0.192 36.828 0
g-comp grf 9604 -0.127 -0.073 0.37 0.239 77.868 0
g-comp grf 24010 -0.079 -0.045 0.27 0.156 217.163 0
g-comp grf 48020 -0.117 -0.115 0.24 0.103 589.773 0
g-comp grf 96040 -0.154 -0.098 0.26 0.123 1872.343 0
g-comp superlearner 150 -0.567 -0.385 1.33 0.607 10.035 0
g-comp superlearner 300 -0.359 -0.283 0.89 0.528 12.479 0
g-comp superlearner 600 -0.197 -0.157 0.75 0.293 21.673 0
g-comp superlearner 1200 0.048 0.041 0.60 0.301 37.716 0
g-comp superlearner 2400 0.006 0.005 0.38 0.150 67.708 0
g-comp superlearner 4802 -0.004 -0.003 0.28 0.089 125.308 0
g-comp superlearner 9604 0.122 0.078 0.33 0.107 251.571 0
g-comp superlearner 24010 0.019 0.011 0.14 0.050 623.449 0
g-comp superlearner 48020 -0.010 -0.010 0.25 0.053 1175.419 0
g-comp superlearner 96040 0.041 0.025 0.21 0.151 2240.497 0
lin NA 150 NaN NaN NaN NA 0.011 20
lin NA 300 -1.027 -0.557 2.93 2.322 0.011 17
lin NA 600 0.175 0.138 1.16 0.550 0.030 7
lin NA 1200 0.310 0.225 0.94 0.493 0.048 0
lin NA 2400 0.255 0.184 0.73 0.540 0.078 0
lin NA 4802 0.230 0.170 0.72 0.517 0.157 0
lin NA 9604 0.258 0.158 0.58 0.440 0.325 0
lin NA 24010 0.402 0.206 0.69 0.489 0.824 0
lin NA 48020 0.111 0.112 0.51 0.354 1.646 0
lin NA 96040 0.007 0.004 0.89 0.464 3.359 0
aipw ols_logit 150 -0.368 -0.140 1.86 0.681 0.075 0
aipw ols_logit 300 -6.828 -0.814 10.31 4.078 0.097 0
aipw ols_logit 600 -6.623 -1.890 7.53 5.425 0.139 0
aipw ols_logit 1200 -8.480 -2.252 9.23 8.810 0.204 0
aipw ols_logit 2400 -8.606 -2.188 9.48 8.856 0.318 0
aipw ols_logit 4802 -9.584 -2.455 10.41 10.369 0.527 0
aipw ols_logit 9604 -11.622 -2.343 12.81 11.258 1.127 0
aipw ols_logit 24010 -7.479 -2.309 8.59 6.902 1.772 0
aipw ols_logit 48020 -11.523 -2.400 12.66 11.548 3.481 0
aipw ols_logit 96040 -10.762 -1.780 12.29 9.426 7.334 0
aipw grf 150 -0.517 -0.349 1.32 0.927 1.612 0
aipw grf 300 -0.383 -0.285 0.98 0.581 2.532 0
aipw grf 600 -0.290 -0.222 0.81 0.330 4.426 0
aipw grf 1200 -0.116 -0.092 0.66 0.183 7.751 0
aipw grf 2400 -0.086 -0.071 0.50 0.213 15.158 0
aipw grf 4802 -0.073 -0.063 0.42 0.189 36.829 0
aipw grf 9604 -0.035 -0.021 0.29 0.227 77.869 0
aipw grf 24010 -0.001 -0.001 0.24 0.087 217.166 0
aipw grf 48020 -0.075 -0.074 0.20 0.055 589.777 0
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aipw grf 96040 -0.132 -0.084 0.24 0.107 1872.350 0
aipw superlearner 150 -0.347 -0.238 1.24 0.590 10.035 0
aipw superlearner 300 -0.283 -0.225 0.85 0.391 12.479 0
aipw superlearner 600 -0.169 -0.133 0.77 0.268 21.674 0
aipw superlearner 1200 0.057 0.048 0.62 0.300 37.717 0
aipw superlearner 2400 0.011 0.009 0.38 0.149 67.708 0
aipw superlearner 4802 -0.003 -0.002 0.27 0.081 125.308 0
aipw superlearner 9604 0.102 0.064 0.28 0.095 251.572 0
aipw superlearner 24010 0.023 0.013 0.14 0.050 623.451 0
aipw superlearner 48020 -0.016 -0.016 0.20 0.050 1175.424 0
aipw superlearner 96040 -0.020 -0.012 0.16 0.100 2240.504 0
tmle ols_logit 150 -0.138 -0.077 1.33 0.587 0.080 0
tmle ols_logit 300 -1.275 -0.650 2.12 0.954 0.101 0
tmle ols_logit 600 -1.648 -0.850 2.24 1.452 0.147 0
tmle ols_logit 1200 -1.350 -0.732 2.07 1.317 0.212 0
tmle ols_logit 2400 -1.359 -0.653 2.04 1.065 0.327 0
tmle ols_logit 4802 -1.283 -0.625 2.06 0.948 0.544 0
tmle ols_logit 9604 -0.680 -0.311 1.37 1.063 1.185 0
tmle ols_logit 24010 -1.124 -0.498 1.64 0.797 1.875 0
tmle ols_logit 48020 -1.248 -0.622 1.94 0.923 3.693 0
tmle ols_logit 96040 -0.864 -0.543 1.46 0.643 7.596 0
tmle grf 150 1.186 0.693 1.81 1.649 1.615 0
tmle grf 300 1.413 0.638 2.43 1.178 2.537 0
tmle grf 600 0.795 0.537 1.37 0.871 4.430 0
tmle grf 1200 0.573 0.422 0.94 0.704 7.756 0
tmle grf 2400 0.341 0.265 0.64 0.541 15.167 0
tmle grf 4802 0.225 0.183 0.40 0.416 36.842 0
tmle grf 9604 0.137 0.085 0.34 0.255 77.898 0
tmle grf 24010 0.113 0.064 0.28 0.143 217.227 0
tmle grf 48020 -0.003 -0.003 0.16 0.071 589.889 0
tmle grf 96040 -0.106 -0.067 0.23 0.113 1872.553 0
tmle superlearner 150 -0.031 -0.022 1.23 0.757 10.039 0
tmle superlearner 300 -0.110 -0.088 0.90 0.557 12.484 0
tmle superlearner 600 -0.088 -0.070 0.81 0.303 21.679 0
tmle superlearner 1200 0.089 0.075 0.66 0.298 37.722 0
tmle superlearner 2400 0.030 0.023 0.40 0.150 67.717 0
tmle superlearner 4802 0.005 0.004 0.29 0.098 125.321 0
tmle superlearner 9604 0.086 0.054 0.26 0.091 251.605 0
tmle superlearner 24010 0.014 0.008 0.14 0.048 623.518 0
tmle superlearner 48020 0.002 0.002 0.14 0.058 1175.546 0
tmle superlearner 96040 -0.140 -0.092 0.31 0.105 2240.722 0
dml ols_logit 150 -56.640 -0.281 204.19 3.448 0.093 0
dml ols_logit 300 -2.596 -0.162 15.70 2.425 0.140 0
dml ols_logit 600 -0.263 -0.050 5.01 0.902 0.196 0
dml ols_logit 1200 0.654 0.362 1.90 0.770 0.265 0
dml ols_logit 2400 -0.291 -0.105 2.47 0.656 0.450 0
dml ols_logit 4802 -0.098 -0.054 1.42 0.695 0.660 0
dml ols_logit 9604 0.263 0.174 0.64 0.432 1.173 0
dml ols_logit 24010 0.294 0.156 0.66 0.475 2.197 0
dml ols_logit 48020 0.218 0.227 0.58 0.327 3.121 0
dml ols_logit 96040 0.122 0.079 0.57 0.335 6.145 0
dml grf 150 -0.444 -0.260 1.09 0.996 1.756 14
dml grf 300 -0.270 -0.100 2.50 1.062 3.010 0
dml grf 600 0.379 0.238 1.38 1.014 4.722 0
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dml grf 1200 0.593 0.356 1.48 0.619 8.475 0
dml grf 2400 0.409 0.301 0.98 0.744 16.105 0
dml grf 4802 0.423 0.306 0.96 0.626 31.840 0
dml grf 9604 0.283 0.186 0.61 0.399 65.090 0
dml grf 24010 0.179 0.097 0.49 0.377 174.612 0
dml grf 48020 0.227 0.223 0.54 0.368 391.386 0
dml grf 96040 0.188 0.119 0.32 0.210 855.111 0
dml superlearner 150 -1.382 -0.229 5.75 1.051 9.933 0
dml superlearner 300 0.366 0.206 1.76 1.072 18.926 0
dml superlearner 600 1.394 0.356 3.98 0.898 23.790 0
dml superlearner 1200 1.884 0.427 4.73 0.884 40.678 0
dml superlearner 2400 1.729 0.423 4.38 1.166 75.058 0
dml superlearner 4802 1.672 0.456 3.96 1.027 129.318 0
dml superlearner 9604 0.110 0.062 1.15 0.586 242.361 0
dml superlearner 24010 -0.081 -0.037 1.31 0.630 574.176 0
dml superlearner 48020 -0.107 -0.028 3.49 0.573 1105.293 0
dml superlearner 96040 -0.092 -0.041 1.33 0.340 2218.412 0

42



Table 8: ATE estimates for Lalonde NSW data as provided by Dehejia and Wahba (1999),
with CPS and PSID comparison groups. Bootstrap standard errors shown in parentheses.
Covariates include age, education in years of schooling, earnings in 1975, and dichotomous
variables for Black and Hispanic race, married, not having a high school degree, and having
no earnings in 1975. The "With 1974 earnings" estimates additionally include earnings in
1974 as a covariate, along with an indicator for having no earnings in 1974.

’74? Method Experimental CPS-1 CPS-3 PSID-1 PSID-3

No ols 802 (511) -809 (530) -831 (430) -1672 (709) 510 (983)
No psm 788 (557) -564 (628) -560 (598) -2515 (884) -1680 (1546)
No ipw, logit 11 (64) -7299 (673) -7275 (685) -10357 (1508) 101 (1002)
No ipw, grf 827 (485) -7905 (679) -7827 (606) -13333 (1074) 375 (750)
No ipw, superl. 814 (480) -7607 (962) -7338 (1054) -13654 (1185) 939 (800)
No g-comp, grf 509 (341) -22 (138) -6 (59) -1004 (524) -60 (372)
No g-comp, superl. 673 (467) -1891 (853) -1594 (889) -2514 (1017) 192 (747)
No lin 795 (512) -5801 (1469) -5789 (1440) -11100 (1537) 262 (976)
No aipw, ols_logit -2 (62) -1041 (430) -1057 (387) -2256 (925) -320 (1200)
No aipw, grf 702 (432) -156 (146) -135 (89) -1617 (569) -144 (509)
No aipw, superl. 734 (469) -1915 (854) -1614 (870) -2811 (1022) 426 (769)
No tmle, ols_logit -2819 (1707) -714 (481) -737 (393) 59 (421) 909 (1086)
No tmle, grf 1650 (1131) -47 (135) -20 (83) -1896 (562) -284 (1354)
No tmle, superl. 1069 (720) -1907 (849) -1611 (886) -2476 (985) 1223 (1059)
No dml, ols_logit 750 (534) -1001 (578) -1026 (501) -2977 (921) 320 (1145)
No dml, grf 817 (502) -1876 (515) -1964 (512) -5180 (847) 142 (968)
No dml, superl. 869 (517) -647 (585) -636 (531) -2866 (963) 157 (1464)
Yes ols 1698 (758) 1083 (609) 1140 (635) -111 (899) 1089 (1022)
Yes psm 1717 (803) 1525 (751) 1606 (701) 54 (901) 968 (1563)
Yes ipw, logit 23 (169) -8115 (704) -7998 (584) -11317 (1910) 1034 (1088)
Yes ipw, grf 1655 (605) -7480 (1083) -7277 (1121) -12658 (2031) 965 (817)
Yes ipw, superl. 1652 (646) -5560 (1984) -5444 (1772) -11066 (2513) 2060 (919)
Yes g-comp, grf 981 (520) 87 (73) 85 (65) 45 (157) 609 (434)
Yes g-comp, superl. 1502 (706) 228 (916) 233 (844) -746 (849) 996 (796)
Yes lin 1603 (742) -4590 (4028) -4380 (3432) -8717 (4165) 1625 (1035)
Yes aipw, ols_logit 10 (182) 684 (581) 738 (570) -1249 (1256) 1381 (1357)
Yes aipw, grf 1398 (553) 60 (92) 69 (87) -264 (299) 586 (588)
Yes aipw, superl. 1576 (652) 251 (921) 260 (850) -901 (917) 1689 (894)
Yes tmle, ols_logit -4609 (2583) 1062 (582) 1115 (609) 956 (813) 54 (940)
Yes tmle, grf 3509 (1231) 72 (117) 75 (97) -455 (265) 441 (1658)
Yes tmle, superl. 2096 (864) 229 (914) 235 (844) -398 (890) 1943 (1180)
Yes dml, ols_logit 1599 (810) 1038 (676) 1059 (601) -621 (1048) 1090 (1591)
Yes dml, grf 1723 (742) -217 (717) -164 (757) -3565 (1047) 884 (1065)
Yes dml, superl. 1711 (754) 80 (702) 147 (720) -585 (1094) 1170 (1316)
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