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RESEARCH Open Access

Connectivity, not region-intrinsic properties,
predicts regional vulnerability to
progressive tau pathology in mouse
models of disease
Chris Mezias1* , Eve LoCastro2, Chuying Xia1 and Ashish Raj1,2*

Abstract

Spatiotemporal tau pathology progression is regarded as highly stereotyped within each type of degenerative condition.
For instance, AD has a progression of tau pathology consistently beginning in the entorhinal cortex, the locus coeruleus,
and other nearby noradrenergic brainstem nuclei, before spreading to the rest of the limbic system as well as the cingulate
and retrosplenial cortices. Proposed explanations for the consistent spatial patterns of tau pathology progression, as well as
for why certain regions are selectively vulnerable to exhibiting pathology over the course of disease generally focus on
transsynaptic spread proceeding via the brain’s anatomic connectivity network in a cell-independent manner or on
cell-intrinsic properties that might render some cell populations or regions uniquely vulnerable. We test connectivity based
explanations of spatiotemporal tau pathology progression and regional vulnerability against cell-intrinsic explanation, using
regional gene expression profiles as a proxy. We find that across both exogenously seeded and non-seeded tauopathic
mouse models, the connectivity network provides a better explanation than regional gene expression profiles, even
when such profiles are limited to specific sets of tau risk-related genes only. Our results suggest that, regardless of the
location of pathology initiation, tau pathology progression is well characterized by a model positing entirely cell-type
and molecular environment independent transsynaptic spread via the mouse brain’s connectivity network. These
results further suggest that regional vulnerability to tau pathology is mainly governed by connectivity with regions
already exhibiting pathology, rather than by cell-intrinsic factors.

Introduction
Tauopathic degenerative conditions, such as Alzheimer’s
Disease (AD), are united by exhibiting transregionally
spreading proteinopathy, resulting in stereotyped spatio-
temporal progression patterns [5, 30, 31]. The central
questions are how transregional spread occurs, why the
macroscale patterning of tau protein pathology progres-
sion seen in both patient [5] and mouse model [17] stud-
ies is so consistent, and what underlies regional
vulnerability to tau pathology. Prior clinical and mouse
model research suggests both anatomic connectivity [23]
and molecular signatures of vulnerable regions, as
reflected in regional gene expression profiles [12], might

underlie transregional tau pathology progression. Con-
nectivity based progression theories posit that spatiotem-
poral tau pathology development will follow fiber tracts,
while cell intrinsic hypotheses assert that individual cellu-
lar factors, for which we use regional gene expression as a
proxy, underwrite spatial pathology progression. Although
the concept that propagation of tau pathology is deter-
mined by brain connectivity has been extensively studied
and proved experimentally by different research groups [2,
9, 20], no previous study has directly and quantitatively
tested the role of connectivity in comparison with cell in-
trinsic properties like regional gene expression.
Several lines of evidence using clinical and mouse

model work support theories that give primacy to
connectivity. Graph theoretic modeling on large sets of
public patient data, in particular the network diffusion
(ND) model [33] and the epidemic spread model [21],
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suggest that connectivity with regions already exhibiting
pathology predicts the unfolding pattern of atrophy and
amyloid deposition, respectively. These models, which
used mathematical equations to predict the spread of
pathology on the brain network, significantly recreate
both the cross-sectional patterns of regional volumetric
loss [33] and longitudinal volumetric loss and glucose
metabolic deficits [34]. Observational data on the
cellular localization of misfolded tau in transgenic mice
indicates particularly heavy buildup at both post and
presynaptic synapses [16, 41]. P301S mice injected with
tauopathic seeds show tau proliferation into regions that
are spatially distal but well connected to the seed region
[2, 4, 19, 20]. Mice transgenic for only wildtype human
tau (hTau) injected with proteopathic seeds show tau
progression into areas heavily connected with the inocu-
lated region [9].
However, whether progression of tau inclusions is

primarily driven by anatomic connectivity with af-
fected regions is controversial. Some authors assert
regional tau deposition is a matter of neuronal-
subtype dependent mechanisms [43]. Gene expression
alterations can occur in “early Braak stages or when
only a few NPs can be detected [indicating] that mul-
tiple neurobiological systems must be affected and en-
gaged before...neuropathological lesions become
manifest” [14]. Due to the existence of gene expres-
sion differences between brain areas, some
hypothesize, without considering spread due to cell-
extrinsic factors such as anatomic connectivity, “that
large-scale regional vulnerabilities in AD are likely
due to the many small differences in gene expression
patterns between brain regions” [28].
A more precise argument in favor of cell-intrinsic and

regional gene expression based hypotheses for explaining
regional vulnerability is that upstream regulators of tau
pathophysiology are innately arranged within the brain in
a manner that explains spatiotemporal tau pathology pro-
gression. For example, regional differences in neuronal
subtype composition, as measured by gene expression
profile or morphological comparison, are posited to
underwrite selective regional vulnerability to protein
pathology, as certain pyramidal neuron subtypes appear
particularly vulnerable to tau inclusions [13, 18, 37, 38].
Lower regional expression of MAPT in the cerebellum, as
compared with the rest of the brain, is hypothesized to
underlie cerebellar resistance to degeneration in tauo-
pathic disorders such as AD [8], while higher local expres-
sion of pro-aggregation and pro-inflammatory factors
corresponds with the likelihood of observing tau path-
ology in a given region [11, 12].
We accordingly undertake the present study to disen-

tangle whether connectivity or regional gene expression
plays a more critical role in tau proliferation patterns. We

first examine mouse experiments with exogenously seeded
tau to demonstrate that connectivity to seed region pre-
dicts subsequent regional tau deposition better than does
a given region’s gene expression profile similarity with the
seed region. We next examine whether higher expression
across genes that promote tau aggregation and those that
promote MAPT expression, as well as genes related to
noradrenergic neurotransmission, have the same predict-
ive power as connectivity with the seed region in deter-
mining tau progression. We find that connectivity
outperforms regional expression of these known risk fac-
tors. We next employ the Network Diffusion (ND) model
[33], a graph theoretic model of proteinopathy transmis-
sion over time, on the mesoscale mouse connectome [10].
We find that transmission based on the mouse brain’s
connectivity network outperforms a model transmitting
pathology based on regional gene expression profile simi-
larity in recapitulating empirical tau progression in trans-
genic mice.
These results address an open question in the field,

as some studies assert that even when tau pathology
is exogenously seeded, cell-intrinsic factors might still
be primary drivers of regional pathology vulnerability
[24]. By analyzing exogenously seeded mouse data we
were able to establish the cell-extrinsic basis of path-
ology progression. Interestingly, the same conclusion
was reached on non-exogenously seeded transgenic
mice, indicating that tau progression is driven by
connectivity rather than by regional gene expression
profiles, regardless of exogenous or endogenous
pathology initiation. However, we here include an
important caveat that region gene expression was
much more predictive of regional tau pathology in
non-seeded as compared with seeded mouse models.

Methods
Study selection
The datasets of spatiotemporal mouse pathology used in
the present research were chosen based on the following
criteria: a study had to characterize tau pathology in at
least 10 distinct brain regions across at least 2 time-
points spanning a total period of at least 6 months. The
average number of regions quantified across studies was
89 areas; specific numbers of regions quantified per
study are discussed below in this subsection. Every study
used mice with a C57/BL6 background so that mouse
strain effects did not confound the results. All mice pos-
sessing a tau mutation had to have the same transgene
background and so were all PS19 mice possessing the
P301S familial FTD derived tau mutation, with mutant
human tau transgene expression driven by the same pro-
moter (MoPrP). One dataset used mice possessing both
tauopathic and amyloidopathic transgenes, created by
crossing the P301S tau transgene mice as above with
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mice possessing the human APPswe transgene [17]. In 5
of the 6 datasets cited in the present research mice were
injected at between 2 and 3 months of age with a patho-
genic tau infusate; specific injectate details differ from
study to study, but included brain homogenate from
Down Syndrome and AD (102 regions quantified) as well
as CBD (96 regions quantified) tauopathy patients [4] as
well as mouse models ([9]; 11 regions quantified), purified
mutant tau [19], and synthetic short chain fibrils produced
using cDNA cloning in E. coli vectors [19] injected into
the hippocampus (148 regions quantified) and striatum
(132 regions quantified). The study using PS19 x APPswe
mice did not have exogenous seeding of pathology but still
characterized the spatial development of tau pathology
([17]; 45 regions quantified). All studies used semi-
quantitative, regionally realized tau pathology grading as
their regional pathology measurements. Specific methodo-
logical information on each study can be found in the
relevant citations, which are all listed above.

Connectivity networks
Connectivity data was taken from the supplementary
dataset published along with the mesoscale mouse con-
nectome from the ABI (MBCA; [29]). Total projection
volume between regions was generated by multiplying
element-wise by the rows the connectivity matrix times
the number of voxels in each seeding region. As the
MBCA connectivity matrix, retrieved from SI.4 in [29],
gave per-voxel normalized connectivity strength, our ad-
justment of connectivity to the size of each region approxi-
mates total connectivity; this procedure for approximating
total axon volume or connectivity between regions is laid
out in detail in SI.5 in [29]. We then averaged the resulting
directed connectivity matrix, NC, with its transpose, NT

C , to
get the standard undirected connectivity matrix used in
prior graph theoretic neuroscience models [7], including
the network diffusion model [33]. We employed
undirected networks rather than directed networks be-
cause recent studies on transsynaptic tau spread indicate
that directional transmission biases remain ambiguous
[41]. Following this, we applied a thresholding criteria of
getting rid of all values that were less than 0.05 the stan-
dard deviation of the nonzero entries of NC, resulting in a
network density < 0.14. The resultant network was a sparse
matrix of 426 × 426 regions, with each cell representing
thresholded approximate total axon volume.

Genetic proximity networks
In the present research, we created 3 distinct genetic
proximity networks: the first network used characterized
the interregional genetic expression profile similarity
across all 4500 genes in the Coronal Mouse Gene Ex-
pression Atlas from the Allen Institute [26]. The second

and third characterized the similarity in expression pro-
file across smaller subsets of genes; the subsets were
genes known to exert profound effects on misfolded tau
aggregation and tau gene expression [12], as well as
genes necessary for the synthesis and degradation and
the receptors of norepinephrine, the monoamine
neurotransmitter theorized to be an important factor in
tauopathic disease genesis [27]. Full lists of genes from
the tau pathology related and noradrenergic related
specific gene expression profile networks can be found
in Additional file 1: Table S1.
Interregional networks of gene expression profile simi-

larity or proximity were calculated using the following
method: First, a gene expression profile discrepancy
matrix, D, was created, where each entry in the matrix
was an integer corresponding to the number of genes,
between any two regions, that were more than 3-fold
differentially expressed, a methodology previously vali-
dated by the Allen Institute [15]. This discrepancy
matrix was then inverted and exponentiated to create a
proximity network with values normalized to a range
from 0 to 1, using the following equation:

NG ¼ e−D=λ ð1Þ

In Eq. (1) above NGrepresents the resulting gene
expression proximity network, D represents the original
discrepancy matrix, and λ is the mean of nonzero values
from the discrepancy matrix, used above for normalization
of the resulting values. NGwas then thresholded to boost
the signal of regionally similar gene expression profiles
above the noise of the endogenously dense matrix; any
values below the mean plus one standard deviation of
nonzero and non-1 values was set to 0, signifying that for
our purposes these two regions had effectively maximally
dissimilar gene expression profiles, and resulting in a net-
work density < 0.3, still more dense than that of C. NGwill
refer to the genetic expression network calculated across
the entire set of sequenced genes in the MGA, NTwill
refer to the network calculated only on the set of tau
expression and aggregation related genes, and NNwill refer
to the gene proximity network calculated only for norad-
renergic neurotransmitter related genes.

Regional gene expression
In addition to the gene proximity networks, we also
examine whether higher regional levels of MAPT and tau
aggregation related genes, as well as higher expression
levels of noradrenergic related genes, relate to regional tau
pathology severity. To get measures of regional gene ex-
pression levels we extracted the normalized gene expres-
sion intensity from the Allen Institute MGA for our genes
of interest and summed the expression intensity across
those specific genes. This resulted in a vector that had one
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measurement of gene intensity per region from the con-
nectivity and genetic atlases for our genes of interest, for
each of the two aforementioned gene groups. In all cases
out suite of specific gene sets, across tau aggregation re-
lated [12], tau transcription promoting [3], and noradren-
ergic neurotransmission related genes [27], were derived
from prior work. A complete list of genes used can be
found in Additional file 1: Table S1. Among genes listed in
[12], we selected those that are either general proteino-
pathic aggregation risk factors or specifically tau related,
and excluded any genes that are solely related to amyloid
beta. We included PrP in the list of tau expression pro-
moting genes because this was the promoter sequence
used to drive tau transgene expression in all analyzed
mouse datasets.

Spatial diffusion modeling as an alternative model to
graph diffusion
We additionally created a spatial diffusion model as a
comparison or alternative hypothesis to the graph diffu-
sion model. The spatial diffusion model was based on the
same fundamental network diffusion eq. (2) stated below.
The difference between ND and spatial diffusion in the
present study is that the network for spatial diffusion is a
matrix where each entry in the matrix ND(i, j)is the recip-
rocal of the Cartesian distance between the center of mass
of each GM region included in the Allen Institute’s mouse
connectivity atlas. Using this distance matrix, ND, rather
than the connectivity matrix NC, we ran the diffusion
equation stated above in [2] to get a model approximating
diffusion based on spatial proximity, which will be referred
to as SPD.

Seed region proximity analyses
For the 5/6 datasets that had reported seed regions we
performed what we term a Proximity Analysis. An
example of this can be seen in Fig. 1. These analyses
involved calculating the average connectivity, spatial
distance, or genetic similarity with a given seed site or
sites on a region by region basis. This produced a 426 × 1
vector, corresponding to 426 Gy matter regions available
in the mouse atlas. We then compared this vector with
that of empirical regional pathology from each study and
an aggregated meta-dataset using a natural log trans-
formed regression, as proximity data in all networks as
well as empirical data were exponentially distributed and
would give erroneously high r-values due to outliers with
standard linear regression. We created the aggregated
meta dataset by vertically concatenating each the data
from each dataset in the y-vector, and each dataset’s corre-
sponding predictor vector in the x-vector. As datasets
were measured on different scales, the values in the y-
vector were normalized by division by the maximum

value, on a per dataset basis. We then performed a natural
log transformed regression as above.

Network diffusion
A previous graph theoretic model of pathology progres-
sion in AD throughout a brain network was shown to be
predictive of future patterns of disease progression [33].
The model captures the diffusion of the disease factor
throughout the network via the Network Diffusion
equation:

XGD tð Þ ¼ e −βLtð Þ �X 0ð Þ ð2Þ
This models the long range patterns of progression of

the protein pathology at any time t as a product of the
initial seeding pattern X(0), and the so-called diffusion
kernel exp.(−βtL), with diffusion and time constants, β
and t, [33], and the network Laplacian matrix, L. The
Laplacian is defined as [33, 34]:

L ¼ I–D −1=2ð Þ �N�D −1=2ð Þ ð3Þ
where N is the 426 × 426 connectivity matrix giving the
strength of connections between all region pairs. Since
we are interested in understanding how the same canon-
ical network diffusion model gives pathology progression
using various proximity networks, we therefore defined
separate 426 × 426 matrices corresponding to pairwise
proximity determined, respectively, using tracer-based
connectivity, spatial distance, and gene expression simi-
larity networks. These are denoted respectively by matri-
ces NC ,ND ,NG ,NT ,NN. Note that we defined 3
different gene-based similarity matrices NG ,NT ,NN, cor-
responding to general, tau-specific and noradrenergic
gene expression, respectively. For each proximity matrix,
the corresponding Laplacian was defined using Eq. (3).
The major difference with previous ND model is that

because we are interested in total pathology accumulation
over time, we model tau progression as a summative or
iterative process:

XNT ið Þ ¼ e −βLtð Þ �X i−1ð Þ þ X i−1ð Þ ð4Þ
We use eq. (4) to calculate, for any point in time, the

deposition of tau across the brain regions represented in
our connectivity, spatial distance, and gene expression
networks. Further information on the original network
diffusion equation and its mathematical foundation can
be found in both [1, 33]. The symbol meanings in Eq.
(4) are the same as in Eq. (2).
The result from the network diffusion equation was,

akin to proximity analyses, a vector with one entry
per region represented in the connectivity, spatial
distance, and gene expression networks. However, the
ND model produces predictions of regional pathology,
not a simple empirical measurement of network
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proximity with a seed region, and so does not require
a seed region, but only a baseline pathology measure-
ment. Akin to the proximity analyses discussed above,
we compared our prediction vector from the ND
model, run with the L from each network, to the re-
gional pathology measurements from each dataset
using a natural log transformed regression. We used

both baseline measurements and, where available, re-
ported seedpoints, as the initiation point for the ND
model. An example of the ND model and how to in-
terpret its results can be found in Fig. 3. Note in par-
ticular Fig. 3b: here we show both how we calculate
βt-values, by setting β = 0 and modulating t to the
value that produces the strongest correlation with the

Fig. 1 Connectivity proximity better correlates with regional pathology severity than gene expression profile proximity. Here proximity is demonstrated
in terms of connectivity and gene expression profile, using the 10 regions most proximal to the CA1 seed region from [4]. The thickness of each pipe
represents how proximal each region is with CA1, with thicker pipes indicating higher proximity, while each ball represents the regional tau pathology
severity. a Connectivity proximity with CA1 corresponds better with regional tau proteinopathy severity than does (b) gene expression profile proximity
with CA1. In an aggregated meta-dataset of all exogenously seeded mouse studies used in the present work, connectivity produced the best fit with
empirical regional tau pathology data (b) and produced the best, only positive, and significantly strongest relationship, as measured by r-value and tested
with Fisher’s R-to-Z Test, with regional tau pathology data (c). *** p < 0.001, in the Fisher’s R-to-Z Test for comparing r-values
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data, and how we assess predictive value added, by
calculating the change in r-value from baseline to
peak βt-value, in this manuscript referred to as Δr.

Comparing predictive value across different predictors
When comparing r-values, p-values, and fits across
predictions from proximity or ND modeling using
any of the connectivity, gene expression profile, or
spatial distance networks, we employed two methods.
First, using separate bivariate analyses, we obtained
Pearson’s r-values between regional tau and either
connectivity or gene expression. We compared the
resulting r statistic directly using Fisher’s R-to-Z Test,
and obtained a p-value for the likelihood of a true
difference between r-values associated with different
predictors. Next, we used a Multivariate Linear
Model, and entered predictions from connectivity
networks, regional gene expression across tau aggre-
gation and transcription related, as well as noradren-
ergic related, genes, and seed region or baseline
regional pathology data, as separate predictors. From
this we could calculate independent per-predictor r
and p-values, which we used as the basis of our
comparisons. All analyses were performed using the
following methods for creating the prediction and
data vectors: we used only the sampled regions from
each dataset in our regressions and multivariate linear
models, and 2) we used all 426 regions from the
MBA, with 0 pathology given in each region that
went unmeasured in our y-variable vector. All above
statistics were performed in MatLab.

Results
Assessing connectivity versus gene expression profile
similarity with seed regions via bivariate correlation
To quantify the role connectivity and gene expression
profile play in tau progression from a seed region we
first tested whether higher anatomical connectivity with
a seed region or degree of gene expression profile simi-
larity with a seed region was a better predictor of that
region’s tau pathology severity measured at the end of
the study, as well as of the longitudinal slope of mea-
sured tau over the duration of the study. An anatomical
example of what is meant by connectivity and gene ex-
pression profile similarity can be found in Fig. 1a. From
this panel, we demonstrate that connectivity proximity
with the seed region (in this case, CA1) was a better de-
terminant of regional tau pathology severity than was
gene expression profile proximity with the seed region.
Note that regions most heavily connected with the seed
region (here CA1) uniformly exhibit more tau pathology
at post-injection time points, whereas the regions most
genetically similar to the seed location do not, consistent
with the results of our across datasets analyses.

Across all five datasets citing exogenous seeding, apart
from one (“Boluda CBD”; [4]), connectivity with seed re-
gions was a better predictor of post-injection regional
tau pathology severity than was similarity in gene ex-
pression profile to seed, or spatial distance from seed
(Table 1; Fig. 1a-b). Since no single study reported all
possible affected regions, we repeated this analysis on a
meta-dataset created by aggregating all five studies into
one (called “Aggregated meta-dataset”, right column in
Table 1). On this meta-dataset, connectivity with the
seed region was the only significant predictor of regional
tau pathology levels at the last measured timepoint of
the study, r = 0.35, p < 0.001. None of the ways in which
we measured similarity in gene expression to seed,
whether across all sequenced genes (“General gene
expression”), or across a suite of genes known to
promote tau aggregation and expression (“Specific Gene
Expression”), or across the group of noradrenergic
neurotransmission related genes, were significantly
correlated with regional proteinopathy. Scatter plots
showing these correlations against the metadataset are
in Fig. 2a. Fisher’s R-to-Z test on these r-values yielded
that regional connectivity with seed is significantly better
at predicating regional tau pathology severity, compared
to gene expression, or spatial distance, p < 0.001 (Fig. 1b).
All scatterplots for per study analyses can be found in
Additional file 2: Figure S1 and all r-values can be found
in Table 1.

Comparing connectivity proximity with seed regions with
absolute regional gene expression levels using a
multivariate linear model
While similarity with the seed’s gene expression profile
was not predictive of regional tau, we hypothesized that
higher absolute expression of tau- or noradrenergic-
related genes might predict regional tau better than
connectivity with the seed region. To test this, we built a
multivariate linear model whose outcome was regional
tau at the final regionally quantified timepoint post-
seeding, and whose predictors were connectivity-to-seed,
and both types of gene expression profiles. We included
the seed region’s tau severity as an additional predictor,
since the seeded region continues to display elevated
levels of tau over time. In this model, we did not include
the general gene expression profile from all genes, as it
was found to be a poor predictor in the previous ana-
lysis. We found that connectivity consistently, across
datasets, explains observed tau pathology patterns than
does regional gene expression profile. The same was true
on the aggregated meta dataset, r = 0.35, p < 0.001
(Table 1, right column; Fig. 2a-b). Seed region and nor-
adrenergic related gene expression levels were found to
correlate with regional tau pathology severity, r = 0.20
and r = 0.24, respectively, p < 0.05 (Table 1; Fig. 2a-b),
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but not as significantly or strongly as connectivity with
the seed region. Neither tau nor noradrenergic related
gene regional gene expression levels correlated with re-
gional tau pathology severity. In exogenously seeded
mouse models, connectivity with the seed region was
found to be the best predictor of regional pathology seve-
rity. Anatomic illustrations can be found in Fig. 2c. Scat-
terplots for individual study by regional gene expression
analyses can be found in Additional file 2: Figure S2.

Assessing the predictive power of network diffusion
modeling using connectivity and gene expression profile
similarity network using bivariate correlations
The above results show that the proximal spread from
the exogenous seed is explained better by connectivity
to seed compared to gene expression. We now wish to
test whether ongoing pathology progression is also pri-
marily driven by connectivity or gene similarity between
all possible brain regions, beyond just proximity or simi-
larity with the seed region. This includes the possibility
that pathology could spread widely across the brain, into
further regions unrelated to the seed. For this purpose,
we lean on the mathematical Network Diffusion (ND)
model that was previously shown to recapitulate ongoing
pathology transmission in human anatomic brain
networks [33]. The ND model allows us to test
hypotheses regarding pathology spread on both ana-
tomic connectivity networks, as well as progression that
depends on inter-regional similarity in gene expression,

assuming that tau pathology is being driven to take hold
in regions genetically most similar to those already
exhibiting tau pathology. Of note, when we use the
terminology longitudinal or slope, we are not referring
to repeated measurements within the same animal, but
rather the pathology progression observed in the group
tau pathology patterns of mice sacrificed at different
timepoints post-injection or post-birth.
We created 4 networks, defined mathematically by

426 × 426 matrices NC ,ND ,NG ,NT ,NN (see Methods),
representing inter-regional connectivity, and 3 kinds of
gene expression similarity, respectively. The connectivity
graph NCis shown in Fig. 3a, and similar ones for the
gene expression similarity graphs can be envisaged. On
each such graph, we applied the ND model, using Eq.
(4), to produce predictions of future pathology
progression X(t), starting from the seed configuration
X(0)which is defined as a zero vector with 1 at the
seed location. At each time point t, the X(t) vector is
compared with empirical regional tau data via Pear-
son correlation, to producer(t). Examples of the
resulting r(t)-curve are shown in Fig. 3b, which shows
how well the ND model matches empirical data as
initial pathology X(0)diffuses into the rest of the
network. The improvement over the match (r-value)
with the seed configuration X(0) (indicated as Δr) is
the most important metric for assessing the predici-
tive value of the model, and is reported in Table 2,
using both connectivity and gene expression

Table 1 This table presents all of the r-values and p-value thresholds reported in Figs. 2 & 3 and in the corresponding parts of the
Results section

Bolunda DSAD Bolunda CBD Iba Hipp. Inj. Iba Str. Inj. Clavaguera Aggregate
Meta-Dataset

Mouse Model P301S P301S P301S P301S Alz17 /

Infusate DSAD
Homogenate

CBD
Homogenate

Synthetic Tau
Fibrils

Synthetic Tau
Fibrils

P301S purified
tau fibrils

/

Seed Region CA1 & V1 CA1 CA1 & CA3 Caudoputamen Hippocampus Aggregate
Meta-Seed

PROXIMITY (BIVARIATE CORRELATIONS)

Connectivity Proximity 0.34* 0.20 0.56*** 0.37** 0.64** 0.35***

Spatial Proximity 0.05 −0.14 −0.02 −0.23* 0.17 −0.04

General Gene Proximity −0.01 −0.10 −0.06 −0.38** 0.04 −0.12

Specific Tau Gene Proximity 0.05 0.29* −0.08 −0.50*** 0.05 −0.11

Noradrenergic Gene Proximity −0.24* −0.18 0.04 −0.28* −0.18 −0.10

ABSOLUTE REGIONAL GENE EXPRESSION VS. CONNECTIVITY (MULTIVARIATE LINEAR MODEL)

Connectivity Proximity 0.35*** 0.20 0.56*** 0.38* 0.65** 0.35***

Summed Specific Tau Gene Ex. −0.14 0.04 0.21 0.46** −0.34* 0.21

Summed Noradrenergic Gene Ex. 0.28* 0.20 0.23 0.41* 0.56* 0.24*

The aggregated and per dataset r-values are all reported in this table. The r-values in each dark gray row separated section of the table were obtained independently
from a standard Pearson Correlation to be compared with other proximity measurements (the top value) and from a Multivariate Linear Fit Model (the bottom value).
Values above the dark row titled Lin. Mod. are using regional proximity to the seed region as the predictor of tau pathology severity, whereas values below that row
compare connectivity proximity and regional gene expression, calculated using the Multivariate Linear Fit Model. *** p < 0.001, ** p < 0.01, * p < 0.05
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networks. The ND model can be considered indicative
of ongoing network progression only if Δr > 0. An ex-
ample anatomic illustration of the predictions the ND
model over time is depicted in Fig. 3c.
Across all exogenously seeded studies, ND using the

anatomic connectivity network was a significant

predictor of regional tau pathology severity patterns,
as well as regional slope of tau pathology increase
from empirical seedpoint; this was not true for pro-
gression based on genetic expression profile or spatial
proximity networks using ND (Table 2). In all seeded
studies, whether seeded in the hippocampus, striatum,

Fig. 2 Connectivity with the seed region better predicts regional tau pathology than does the regional expression level of tau aggregation and
transcription promoting and noradrenergic neurotransmission related genes. a Connectivity with the seed region produced the best correlate with
regional tau pathology severity data in seeded datasets. b A Multivariate Linear Model factoring out the individual contributions of connectivity
proximity, seed region location, and the regional gene expression levels towards predicting regional tauopathic severity indicates that connectivity
with the seed region is the most significant predictor, as indicated by the p-value threshold indicators within the bar chart. c Anatomic illustrations
illustrate the above statistical analyses. Larger spheres correspond with more predicted pathology by each modeled, as labeled. The color and
anatomic location legend to the right of the anatomic illustrations gives the sphere color and location corresponding to each major region in the
brain. This color and location scheme is replicated throughout all anatomic illustrations in this paper. *** p < 0.001, ** p < 0.01, * p < 0.05
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or neorcortex, ND using the connectivity rather than
gene expression profile similarity networks, best reca-
pitulated the spatiotemporal pattern of tau pathology
(Table 2; [19]). As illustrated in Fig. 4a-b ND using
connectivity network is the best model for predicting
tau pathology from an exogenous seedpoint in a seed
location independent manner. In the above regres-
sions, we included only those regions which were re-
ported to have an empirical “signal”, meaning those
regions for which the study in question reported a
tau value, zero or otherwise. We further tested
whether our results were largely driven by the present
datasets’ regions selected for quantification, by inclu-
ding all 426 regions in our analyses, regardless of
whether they were reported by the empirical study or
not. Using this retesting methodology, we again found
that as measured by Δr, across all studies, ND using
the anatomic connectivity network best recreated em-
pirical pathology patterns (Additional file 1: Table S2;
top section). ND modeling proceeding from reported
seedpoint against all five exogenously seeded studies

can be found in Additional file 2: Figure S3 for ND
using only study-selected regions, and in Additional
file 2: Figure S4 for ND using all 426 ABA (Allen
Brain Atlas) regions.

Comparing ND using the connectivity network with
absolute regional gene expression levels via a
multivariate linear model
Given that ND model based on gene expression simila-
rity networks was not a significant predictor, we next
tested whether absolute regional expression profile was
by itself a significant predictor instead. The results are
contained in Table 2 (bottom section), and show the t-
and p-statistic of each predictor in the linear model, for
each exogenously seeded mouse study. We found that
ND model based on connectivity outperformed absolute
gene expression across all seeded studies. Furthermore,
ND using the connectivity network was the only consist-
ently significant predictor, across all seeded studies, of
regional tau pathology severity.

Fig. 3 An example of ND modeling and associated analyses. a Here we demonstrate what is meant by representing the brain as a network, with
each ball indicating the center of mass of a region and each line between any pair of regions implying the presence of a connection between
them. b Here we demonstrate the parameter optimization or βt curve for ND modeling. A predictive curve, or one where the network used for
ND modeling adds predictive value beyond a starting point has a defined peak at βt > 0, whereas a non-predictive model will show a peak at
βt = 0. The delta-R measure indicated here refers to the increase in r-value from baseline given by ND. c Here we provide an anatomic illustration
of the predictions over time given by ND modeling about regional pathology severity, with each ball representing a region, and the size of the
ball indicating the degree of pathology severity
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The overall conclusion from Table 2 and Additional
file 1: Table S2 is that ND using the anatomic connecti-
vity network was the best model for predicting the pat-
terns of regional tau pathology severity, outperforming
both ND using gene expression profile similarity
networks and absolute regional gene expression of
known tau aggregation related genes, as well as norad-
renergic neurotransmission related genes. We found this
in all exogenously seeded studies, for both tau depos-
ition at the last measured timepoint and its longitudinal
slope, and regardless of whether we analyzed modeled
results of regional tau pathology using only the study
selected regions (Table 2) or using all 426 ABA regions
(Additional file 1: Table S2).

Modeling tau pathology using connectivity and gene
expression profile in a non-seeded mouse dataset
Regressions using only the regions sampled by this
study indicated that ND using the anatomic connect-
ivity network, while moderately predictive, underper-
formed ND utilizing gene expression similarity
networks across all timepoints (Table 3). However,
ND using genetic similarity networks predicts wide-
spread pathology across very many non-study-selected

regions, while ND using connectivity appears to give
a more sparse match with empirical data (Fig. 5a).
ND using genetic similarity networks results could be
artifacts of only testing a small subset of studies. To
assess this issue, as above, we reran all our analyses
using all 426 MBA, rather than only the areas se-
lected for quantification in this study by [17], indi-
cates that ND using the anatomic connectivity
network is the only covariate able to significantly im-
prove upon the baseline pathology measurements as a
predictor for spatiotemporal tau progression when all
426 ABA regions are included in the analyses (Table
3). Furthermore, absolute regional gene expression of
specific tau aggregation and expression promoting
factors, as well as noradrenergic related genes, only
recreates tau pathology as well as ND using the con-
nectivity network when the analysis used only the
study-sampled regions (Table 3). When all 426 MBA
regions are used in a Multivariate Linear Model ND
using the connectivity network again outperforms ab-
solute regional gene expression (Table 3). Moreover,
the anatomic match between the data and ND using
the anatomic connectivity network appears superior
to that between the data and regional expression of

Table 2 ND modeling to assess the relative contribution of connectivity and gene expression profile in explaining tau progression
and distribution

Measure Boluda DSAD
(6 Mo)

Boluda CBD
(6 Mo)

Iba Hipp. Inj.
(6 Mo)

Iba Str. Inj.
(6 Mo)

Clavaguera
(15 Mo)

Mouse Model / P301S P301S P301S P301S Alz17

Infusate / DSAD
Homogenate

CBD
Homogenate

Synthetic Tau
Fibrils

Synthetic Tau
Fibrils

P301S Purified
Tau

Seed Region / CA1 & V1 CA1 CA1 & CA3 Caudoput. Hippocampus

ND USING STUDY SELECTED REGIONS (BIVARIATE CORRELATIONS)

Connectivity, Deposition ΔR 0.30 0.22 0.45 0.23 0.25

Connectivity, Slope ΔR 0.27 0.23 0.40 0.11 0.47

Spatial, Deposition ΔR 0.01 0.00 0.01 0.00 0.03

Spatial, Slope ΔR 0.02 0.00 0.01 0.00 0.01

General Gene, Dep. ΔR 0.08 0.00 0.10 0.10 0.01

General Gene, Slope ΔR 0.17 0.01 0.28 0.08 0.22

Specific Gene, Dep. ΔR 0.01 0.02 0.03 0.02 0.00

Specific Gene, Slope ΔR 0.02 0.02 0.22 0.00 0.05

Noradren. Gene, Dep. ΔR 0.00 0.00 0.00 0.07 0.00

Noradren. Gene, Slope ΔR 0.00 0.00 0.01 0.03 0.00

ND-CONNECTIVITY VS REGIONAL GENE EXPRESSION (MULTIVARIATE LINEAR MODEL)

Connectivity T-Stat 12.74*** 8.97*** 10.51*** 2.90** 2.50*

Seed or Baseline T-Stat −0.31 1.40 0.28 0.50 1.69

Summed Specific Gene Ex. T-Stat −1.85 −2.05* −2.42* 2.53* 0.32

Summed Noradren. Gene Ex. T-Stat 2.64** 1.67 1.92 0.44 0.19

The entries below the “Bivariate Correlations” row correspond to the ΔR obtained from running the ND model with each row’s network from reported seedpoint.
The four entries after the “Multivariate Linear Model” row represent the t-values and p-value thresholds obtained from ND model predictions or summed regional
expression predictions after they were input as independent predictors into a Multivariate Linear Fit Model. *** p < 0.001, ** p < 0.01, * p < 0.05
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tau or noradrenergic related genes (Fig. 5b). While
these present results are consistent with our findings
in exogenously seeded datasets above, we were sur-
prised that connectivity would remain the best pre-
dictor even in a completely endogenously driven
transgenic mouse model. We therefore tested whether
the regional expression of genes known to have a
mechanistic link to protein misfolding in tauopathic
disorders (Mapt; Bace1; Hs3st2) or known to be ne-
cessary for norepinephrine synthesis (Dbh) would sig-
nificantly recreate end timepoint regional pattern of
tau pathology. In a Multivariate Linear Model how-
ever, ND using the anatomic connectivity network
remained the only significant predictor of regional

patterns of tau proteinopathy severity in analyses
using all 426 ABA regions; analyses using only study-
selected regions yielded no significant positive results
(Fig. 5c). Scatterplots and parameter optimization
curves for the non-seeded mouse dataset [17] can be
found in Additional file 2: Figure S5.

Staging
Finally, we explored whether regional gene expression
could predict tau pathology staging of the endogenous
mouse model. Using a t-test with a significance thresh-
old of α = 0.05, we identified tau and noradrenergic re-
lated genes that were differentially expressed in regions
showing baseline tau pathology from [17] relative to the

Fig. 4 ND modeling from seedpoints using the connectivity network best fits empirical spatiotemporal tau pathology progression in a seed
independent manner. a Regardless of whether seeding occurs in the hippocampus or (b) the striatum and overlying neocortex, ND modeling
using the connectivity network better fits empirical data than does ND modeling using any other network, across all timepoints. Here we use ND
modeling with the specific tau aggregation and transcription promoting gene expression profile similarity network as our comparison. The two
datasets, using different seed locations, both come from [19]. The color and location legend for this figure is the same as in Fig. 2, and once
again, sphere size corresponds with degree of predicted pathology in a given area
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rest of the brain. We then plotted the expression
patterns of these genes across regions showing earliest
pathology at the 2 months baseline stage (Stage 1), and
at 4 months (Stage 2), 6 months (Stage 3), and 8 months
(Stage 4) after birth to see if they were more heavily
expressed in regions exhibiting pathology at earlier
stages. The above definition of staging is not meant to
exactly mimic the classic Braak tau stages in humans, al-
though we aimed for a rough correspondence. We found
that no pattern of regional expression of any of these
differentially expressed genes predicts tau pathology
staging (Fig. 5d).

Discussion
The present study contributes to the field of neurodegen-
erative pathology progression in several ways. This is the
first study, to our knowledge, to demonstrate transregio-
nal transsynaptic tau progression in the mouse on a
macroscopic, whole brain, regionally unbiased level.
Although several mouse studies have reinforced the hy-
pothesis of trans-neuronal spread, they have hitherto been
descriptive and have focused on specific regions or projec-
tions. We rigorously and quantitatively demonstrate that
the brain’s anatomic connectivity network is a more im-
portant determinant of regional vulnerability and the

pattern of tau pathology progression than is regional gene
expression profile, both in exogenously seeded and non-
seeded mouse datasets. This may therefore represent the
first quantitative assessment of the relative contributions
of regional gene expression and anatomic connectivity in
the spatiotemporal development of tauopathic degenera-
tive disease. That spatiotemporal tau pathology prolifera-
tion patterns might be driven mainly by anatomic
connectivity is an important finding for three reasons.
First, our connectivity based explanation of tau pathology
proliferation argues that tau deposition is driven by archi-
tectonic or morphological properties, such as the connect-
ivity network, rather than neuronal-subtype specific
factors. Here we have considered gene expression profile
as a surrogate for the molecular and cell-type signature of
a brain region. Second, it argues against the hypothesis
that upstream regulators of proteinopathy are innately ar-
ranged within the brain in a manner that explains spatio-
temporal tau pathology progression [12]. Third, it argues
against tau deposition in mice being driven by transgene
specific factors, as higher regional expression of tau pro-
moting factors do not correspond with increased tau path-
ology severity, but connectivity with regions already
exhibiting pathology does. These novel findings in the field
of tau transmission give a quantitative foundation for future

Table 3 Regression and Linear Models analyses run restricted to only study selected regions and including all 426 ABA brain regions

Measure 4 Months Age 6 Months Age 8 Months Age

ND MODELING (BIVARIATE CORRELATIONS)

Analysis Using Study Selected Regions Only

Connectivity ΔR 0.00 0.01 0.02

Spatial ΔR 0.01 0.02 0.02

General Gene ΔR 0.02 0.03 0.04

Specific Tau Genes ΔR 0.08 0.13 0.12

Noradrenergic Genes ΔR 0.05 0.10 0.10

Analysis Using All 426 ABA Regions

Connectivity ΔR 0.09 0.16 0.21

Spatial ΔR 0.00 0.00 0.01

General Gene ΔR 0.00 0.00 0.00

Specific Gene ΔR 0.00 0.00 0.00

Noradrenergic Gene ΔR 0.00 0.00 0.00

ND VS REGIONAL GENE EX. (MULTIVARIATE LIN. MOD.) End Timepoint Deposition Analysis Using Study Selected
Regions Left

End Timepoint Deposition

Connectivity T-Stat −0.20 6.92***

Baseline Deposition T-Stat 1.73 ⇐ 1.83

Summed Specific Gene Ex. T-Stat 2.41* Analysis Using
All 426 ABA Regions Right

1.65

Summed Noradren. Gene Ex. T-Stat 1.05 ⇒ 3.96***

The entries under the “Bivariate Correlations” row correspond to the ΔR obtained from running the ND model from the baseline pathology measurement as this
dataset [17] had no exogenous seedpoint. The four entries after the “Multivariate Linear Model” row represent the t-values and p-value thresholds obtained from
ND model predictions or summed regional expression predictions after they were input as independent predictors into a Multivariate Linear Fit Model. Merged
row (in the bivariate analyses section) and column separators (in the multivariate linear model section) denote which statistics correspond to analyses run
restricted to only study selected regions or run using all 426 ABA brain regions. For T-Stats: *** p < 0.001, ** p < 0.01, * p < 0.05
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studies of the spatiotemporal development of degenerative
disease. These results and their implications are discussed
below. However, the current study does not definitively elu-
cidate all factors driving tau pathology transmission, as our
connectivity based spread ND model does not perfectly re-
capitulate spatiotemporal tau development. Furthermore, it

does not explore all facets related to connectivity that might
be important for tau pathology transmission. For instance, it
does not examine whether there is a directional predilection,
going in either a presynaptic or postsynaptic direction, to
tau pathology transmission. The current research should
therefore be read with these caveats in mind.

Fig. 5 ND modeling indicates connectivity is a better predictor of tau pathology progression and regional vulnerability than regional gene expression but
that regional gene expression does better in the non-seeded mouse dataset than in seeded datasets. a An anatomic spatiotemporal illustration of the
predictions of ND modeling using both the anatomic connectivity network and the gene expression similarity network, across a specific subset of genes
known to be important for promoting tau aggregation and transcription, as compared with the empirical spatiotemporal data on tau progression patterns.
b An anatomic illustration of the results from Tables 2 and 3—bottom-section comparing ND using the connectivity network with absolute regional gene
expression (c) Modeling pathology using individual genes known to have a mechanistic link with proteinopathy (Mapt, Bace1, Hs3st2) or genes necessary for
noradrenergic neurotransmission (Dbh) does not perform as well as ND using the anatomic connectivity network when analyzed using all 426 ABA regions.
d Genes that are differentially expressed among regions showing baseline tau relative to the rest of the brain are not more heavily expressed in regions
showing pathology at baseline or early relative to later stages. The color and location legends for the major regions in the brain illustrations are the same as
in Fig. 2 and Fig. 4, and sphere size corresponds with degree of predicted pathology in a given area. * p < 0.05, ** p < 0.01, *** p < 0.001
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Confirming transsynaptic spread of tau pathology in
mouse models on the whole brain, macroscopic scale
Tau progression data from multi-timepoint mouse
studies was most accurately recapitulated with ND
using NC (Table 2). Furthermore, connectivity proximity
with the seed region was a strong and significant pre-
dictor or regional pathology severity across all exogen-
ously seeded mouse datasets (Table 1; Figs. 1 and 2).
Unlike prior studies where a small number of regions
were preselected for tau pathology quantification, our
current data provide the first quantitative, regionally
unbiased support to the emerging notion that hyperpho-
sphorylated tau spreads via neural architecture, transynap-
tically propagating from neuron to neuron [6, 9, 16, 32].
Previous studies have focused on tau transmission across
a few specific synapses [40] or a small number of regions
[16, 25]. Almost all whole brain studies of pathology pro-
gression in AD have been in humans and have not tracked
proteinopathy directly, but rather followed gross atrophy
or hypometabolism using undirected GD [33, 34, 44]. The
current study is therefore novel in demonstrating transsy-
naptic transmission directly on mouse pathology data, on
a macroscopic basis along white matter fiber tracts (Tables
1 and 2; Figs. 1, 2, 3, 4, 5 and 6). This is the first study to
our knowledge to mathematically demonstrate that whole
brain macroscopic spatiotemporal tau pathology patterns
are dependent upon anatomical connectivity and therefore
fit the prion-like hypothesis of propagation [42]. We
would also like to note that here all our analyses were per-
formed with undirected networks, despite the availability
of directional information in the mouse connectome. Our
rationale behind this decision is that there is evidence
from both patient studies [33] and assessments looking at
the level of synapses [41] that transsynaptic tau spread is
bidirectional. Given prior evidence for bidirectional trans-
synaptic and transregional tau transmission and a dearth
of evidence for such transmission to be limited to only ei-
ther afferent or efferent projections, we used bidirectional
networks rather than impute directionality assumptions.
However, assessing directional biases in tau transmission
is important and should be the subject of future studies.

Anatomic connectivity from the seed region is a stronger
predictor of tau pathology progression than genetic
proximity or regional gene expression profile
We specifically tested whether the spatiotemporal
pattern of proteinopathy progression resulting from an
exogenously inoculated and known seed region is more
strongly predicted by anatomic connectivity or regional
gene expression profile. The question of how much does
gene expression contribute to pathology propagation vis
a vis connectivity has been a debate in the tau pathology
transmission field, as some mouse and clinical studies
[11, 12] report results emphasizing the role of regional

gene expression profile in determining regional suscepti-
bility to tau pathology. Meanwhile other clinical research
[33, 34, 44] points to the high predictive power the
brain’s anatomic connectivity network has for recapitu-
lating the spatiotemporal development of tau proteino-
pathy. Accumulating postmortem and mouse bench
studies point to definite trans-synaptic propagation of
tau. The highest accumulations of tau are often found at
the synapse [41], at both pre and post synaptic terminals
[16]. Tau pathology after exogenously seeding certain
regions often exhibits enhanced deposition in axonally
proximal regions, while sparing spatially proximal re-
gions [2, 9, 10, 32], indicating that axonal projections,
rather than spatial proximity, is the relevant mediator
of spread.
To test this, we first performed a model-free statis-

tical analysis involving only the reported seed region
and assessed the association of tau severity in all
brain regions with their proximity to the seed region.
“Proximity” was defined in 3 ways: connectivity, gene
expression similarity and spatial distance. We found
that connectivity with reported seed regions, as given
in the MBCA by axonal volume (Oh, et al., 2014), is
the best biological correlate with regional pathology
severity (Figs. 1 and 2). Both gene expression profile
similarity with seed region (Table 1; Fig. 1) and
higher absolute regional expression of tau aggregation
and transcription promoting genes (Table 1; Fig. 2)
failed to correlate as strongly with regional pathology
as did connectivity. Spatial proximity was never a
strong predictor of proteinopathy severity.
This kind of proximity-to-seed analysis is suggestive,

but does not capture the full extent of wider, ongoing
pathology progression. Therefore, we next implemented
the mathematical Network Diffusion (ND) model, which
was previously shown to accurately capture ongoing
connectome-mediated spread in humans [33]. By
applying this ND model to the mouse mesosclae ana-
tomical connectome we test, in a regionally unbiased
manner, the whole-brain macroscopic ramification of tau
pathology transmission, and compare it against alternate
predictors given by gene expression patterns. Thus, we
built a ND model on the gene similarity network to
model the hypothesis that tau transmission between two
regions is facilitated by the similarity in their molecular
signatures rather than anatomic connectivity. We also
built a similar ND model involving spatial distance
between brain regions, which would test for spatial
spread. We found that, across all exogenously seeded
studies, transregional spread on the anatomic con-
nectome is a better predictor of spatiotemporal tau path-
ology development than spatial proximity or gene
expression similarity, whether general or tau-specific
genetic proximity networks (Table 2). ND using the
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brain’s connectivity network also outperforms the
absolute levels of regional gene expression of tau-
associated and noradrenergic neurotransmission-related
genes, even when the predictive value of the seed region
or a baseline pathology measurement are factored out
(Table 2).
Our work therefore corroborates hypotheses of tau

pathology development that lend primacy to the role of
the brain’s anatomic connectivity network, and specifi-
cally implicate transsynaptic tau propagation as the most
likely mechanism of spread from an exogenous seed
region. Our data do not support a strong role for tau
aggregation related genes [12] and the noradrenergic
system [35] in determining regional vulnerability beyond
the seeded region(s). Prior work characterizing regional
expression of purported risk factors in prion and other
degenerative disease agrees with our analysis, finding no
consistent correlation between risk-factor expression
level and regional degree of degeneration [22].

The role of connectivity-based transmission in non-
exogenously seeded models
Gene expression profile similarity with regions already
exhibiting baseline tau pathology, across tau aggregation
and transcription related genes as well as noradrenergic
related genes, was a better correlate of regional path-
ology severity and the spatial pattern of tau pathology
than was connectivity (Table 3). However, this result
appeared potentially artefactual given the widespread
pathology predictions in non-study-selected regions
given only by ND using gene expression similarity, but
not connectivity, networks (Fig. 5a). This concern was
confirmed when all 426 ABA regions were included in
our analyses, rather than only the study selected regions;
in this reanalysis ND using the anatomic connectivity
network was the only model to significantly improve
upon baseline pathology (Table 3). Furthermore, ND
using the connectivity network was a strong and signifi-
cant predictor of regional tau pathology severity using
all 426 ABA regions in a Multivariate Linear Model in
the non-seeded dataset [17], while regional gene expres-
sion levels of neither tau or noradrenergic related genes
was at any timepoint (Table 3, bottom section; Fig. 5b).
When we combined ND using the connectivity net-

work and baseline pathology into a multivariate linear
model using regional expression patterns of several spe-
cific genes as the other tau pathology predictors, a major
AD risk factor gene [12] known to increase CSF tau,
Bace1 [36], a gene known to promote tau hyperpho-
sphorylation in cultured cells [39], Hs3st2, and the gene
specifically necessary for norepinephrine synthesis, Dbh
[35]. We found no evidence that absolute regional ex-
pression of any of these individual genes corresponded
with regional susceptibility to tau pathology, but found

that ND using the connectivity network was a strong
and significant predictor of regional pathology vulner-
ability, despite controlling for the effect of baseline path-
ology (Fig. 5c). We further identified genes from our tau
and noradrenergic related gene sets that were differen-
tially expressed in regions exhibiting baseline pathology
in the non-seeded dataset [17] but found that their re-
gional expression levels did not reproduce the regional
tau staging observed in the data (Fig. 5d). Our results
suggest that even in non-exogenously seeded mouse tau
pathology datasets, pathology spread is determined by
more by connectivity than differences in regional gene
expression.
Prior work using gene expression profile to explain

regional vulnerability to tau pathology focused on the
regions exhibiting earliest proteinopathy rather than
subsequent propagation ([11, 12]; Hyman, et al., 1984;
[28]), whether using the suite of tau aggregation pro-
moting genes [12] or noradrenergic neurotransmission
related genes [27]. Our results consistently show that
connectivity is the key determinant of ongoing tau
propagation and regional vulnerability once pathology
has initiated. However, given the especially strong
correlation between regional expression of our spe-
cific gene sets and regional pathology in our unseeded
dataset, we believe our present results indicate a role
for region-intrinsic factors in determining regions
most likely to initiate tau pathology, in line with the
major conclusions from [12]. Therefore, the current
study does not rule out a role for regional gene ex-
pression profile (and other cell-dependent factors) in
determining the location of tau pathology initiation,
but demonstrates that once proteinopathy is apparent,
regional vulnerability towards developing pathology is
driven more by connectivity.

Additional files

Additional file 1: Table S1. A list of genes used in the specific tau
aggregation and expression factor related genes and noradrenergic
neurotransmission related genes. The first column lists the gene
abbreviations, the second lists the full gene name denoting basic
function, and the third column gives the appropriate citation. Table S2.
Regression and Multivariate Linear Models run with all 426, rather than only
per-study selected regions. The entries under the “Bivariate Correlations” row
correspond to the ΔR obtained from running the ND model with each row’s
network from reported seedpoint. The four entries after the “Multivariate
Linear Model” row represent the t-values and p-value thresholds obtained
from ND model predictions or summed regional expression predictions after
they were input as independent predictors into a Multivariate Linear Fit Model.
*** p < 0.001, ** p < 0.01, * p < 0.05. (DOCX 132 kb)

Additional file 2: Figure S1. Per study r-value chart and scatterplots for
connectivity, gene expression profile, and spatial proximity with reported
seed regions. (a) Bar chart of r-values, per study, between regional tauopathy
data and proximity with the reported seed region in connectivity, gene
expression profile, and spatial distance networks. We also show scatterplots
of the relationship between proximity with the reported seed region across
each network, as indicated by the title above each scatterplot, and regional
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tau pathology data from (b) DSAD homogenate injected P301S mice and
(c) CBD homogenate injected P301S mice from [4], (d) P301S mice injected
in the hippocampus and (e) caudoputamen with synthetic tau fibrils from
[19], as well as hTau Alz17 mice injected with P301S purified tau tangles in the
hippocampus from [9]. Figure S2. Per study r-value chart and scatterplots of
regionally summed gene expression across tau aggregation and transcription
promoting genes, as well as noradrenergic neurotransmission related genes.
(a) Bar chart of r-values for connectivity proximity with reported seed regions,
empirical seed regions, and the regionally summed gene expression values
with regional tau pathology data. We also show the scatterplots depicting the
relationship between the regionally summed gene expression levels with data
from (b) DSAD homogenate injected P301S mice and (c) CBD homogenate
injected P301S mice from [4], (d) P301S mice injected in the hippocampus
and (e) caudoputamen with synthetic tau fibrils from [19], as well as hTau
Alz17 mice injected with P301S purified tau tangles in the hippocampus from
[9]. Figure S3. Scatterplots and βt curves for each of the relationships
between ND modeling using connectivity, gene expression profile
similarity, and spatial distance networks with regional tau pathology
data, run from reported seedpoints using only study selected regions.
The panels are the βt curves for end state tau deposition and regional slope
of tauopathy increase, in that order, as well as the scatterplots for end state
tau deposition on the top and regional slope of tauopathy increase on the
bottom. They are presented in the following order according to study: (b)
DSAD homogenate injected P301S mice and (c) CBD homogenate injected
P301S mice from [4], (d) P301S mice injected in the hippocampus and (e)
caudoputamen with synthetic tau fibrils from [19], as well as hTau Alz17
mice injected with P301S purified tau tangles in the hippocampus from [9].
Figure S4. Scatterplots and βt curves for each of the relationships between
ND modeling using connectivity, gene expression profile similarity, and
spatial distance networks with regional tau pathology data, run from
reported seedpoints using all 426 ABA regions. The panels are the βt curves
for end state tau deposition and regional slope of tauopathy increase, in
that order, as well as the scatterplots for end state tau deposition on the
top and regional slope of tauopathy increase on the bottom. They are
presented in the following order according to study: (b) DSAD homogenate
injected P301S mice and (c) CBD homogenate injected P301S mice from [4],
(d) P301S mice injected in the hippocampus and (e) caudoputamen with
synthetic tau fibrils from [19], as well as hTau Alz17 mice injected with P301S
purified tau tangles in the hippocampus from [9]. Figure S5. Scatterplots for
the correlation between data from the non-seeded mouse dataset obtained
from [17], with ND modeling across networks and timepoints as well as
regionally summed gene expression with final measured timepoint of regional
tauopathy severity; analysis here is done using both only study selected
regions and all 426 ABA regions. (a) The beta-t parameter optimization curves
at 4 months, 6 months, and 8 months using ND modeling with connectivity
and gene expression networks, with analysis done using only study selected
regions. (b) The attendant scatterplots related to the beta-t parameter curves
above at the final (8 month) timepoint. (c) Scatterplot of regional expression of
specific tau and noradrenergic related gene sets with regional tau pathology,
using only study selected regions in the analysis. (d) The beta-t parameters
optimization curves at 4 months, 6 months, and 8 months using ND modeling
with connectivity and gene expression networks, with analysis done using all
426 ABA regions. (e) The attendant scatterplots using the curves for the final
(8 month) timepoint. (f) Scatterplot of regional expression of specific tau and
noradrenergic related gene sets with regional tau pathology, using all 426 ABA
regions in the analysis. (PDF 1.14 mb)
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